PFS1200-12-054xA # **AC-DC Front End Power Supplies** The PFS1200-12-054xA is a 1200 Watt AC to DC power-factor-corrected (PFC) power supply that converts standard AC or HVDC power into a main output of 12 VDC for powering intermediate bus architectures (IBA) in high performance and reliability servers, routers, and network switches. Displays the CE-Mark for the European Low Voltage Directive (LVD). ### **KEY FEATURES** - Digital inrush current control - High Efficiency - Meets 80Plus Platinum efficiency requirement - Universal input voltage range: 90 305 VAC - High voltage DC input: 180 400 VDC - Always-On standby output (model dependent): - o 3.3 V - o Programmable 5 V / 12 V - Hot-plug capable - Parallel operation with active current sharing - Digital controls for improved performance - High density design: 39 W/in³ - Small form factor (WxHxL): 54.5 x 40 x 228.6 mm (2.15 x 1.57 x 8.98 in) - I2C communication interface for control, programming and monitoring with Power Management Bus protocol and PSMI Protocol - Over temperature, output over voltage and overcurrent protection - 256 Bytes of EEPROM for user information - 2 Status LEDs represent Input and Output status ### **APPLICATIONS** - High Performance Servers - Routers - Switches | 4 | | | | | |-------|--------|----------|--------|----------| | 7 (10 | INLUIN | /2 INIL/ | 10888 | 1 1/ \ N | | I. Un | DEDIN | G INFO | JOIVIA | | | PFS | 1200 | - | 12 | - | 054 | х | Α | х | |----------------|-------------|------|-----------|------|-------|-------------------------|-------------|---| | Product Family | Power Level | Dash | V1 Output | Dash | Width | Airflow 1 | Input | Options | | PFS Front-Ends | 1200 W | | 12 V | | 54 mm | N: Normal
R: Reverse | A: AC Input | blank: C14 Socket ² C: C16 Socket ² H: HVDC Socket ³ | - N = Normal Airflow from Output connector to Input AC socket; R = Reverse Airflow from Input AC socket to Output connector - C14 / C16 AC input connector, input range 90 ~ 264 VAC and 180 ~ 350 VDC - Ordering PN: PFS1200-12-054xAH for both AC and HVDC (Anderson 2006G1-BK) input connector, input range is 180 ~ 400 VDC and 90 ~ 305 VAC #### 2. OVERVIEW The PFS1200-12-054xA AC/DC power supply is with DSP control, high efficient front-end power supply. It incorporates resonance-soft-switching technology and interleaved power trains to reduce component stresses, providing increased system reliability and very high efficiency. With a wide input operational voltage range and minimal derating of output power with input voltage and temperature, the PFS1200-12-054xA power supply maximizes power availability in demanding server, network, and other high availability applications. The supply is fan cooled and ideally suited for integration with a matching airflow paths. Both the PFC stage and DC/DC stage is with DSP control. The DC/DC stage uses soft switching resonant techniques in conjunction with synchronous rectification. An active OR-ing device on the output ensures no reverse load current and renders the supply ideally suited for operation in redundant power systems. The always-on standby output, provides power to external power distribution and management controllers. It is protected with an active OR-ing device for maximum reliability. Status information is provided with front-panel LEDs. In addition, the power supply can be controlled and the fan speed set via the I2C bus. The I2C bus allows full monitoring of the supply, including input and output voltage, current, power, and inside temperatures. The fan speed is adjusted automatically depending on the actual power demand and supply temperature and can be overridden through the I2C bus. Figure 1. PFS1200-12-054NAH Series Block Diagram ### 3. ABSOLUTE MAXIMUM RATINGS Stresses in excess of the absolute maximum ratings may cause performance degradation, adversely affect long-term reliability, and cause permanent damage to the supply. | PARAME | TER | DESCRIPTION / CONDITION | MIN | NOM MAX | UNIT | |---------|---------------|-------------------------|-----|---------|------| | Vi maxc | Maximum Input | Continuous | 90 | 305 | VAC | ### 4. INPUT SPECIFICATIONS General Condition: T_A = 0... 50°C unless otherwise specified. | PARAMETER | | DESCRIPTION / CONDITION | MIN | NOM | MAX | UNIT | |--------------------|------------------------------------|---|------|---------|------|-------| | 1/2 | Nominal Input Voltage | | 100 | 115/230 | 277 | VAC | | V _{i nom} | Nominal Input Voltage | | 200 | | 3801 | VDC | | V_i | Input Voltage Ranges | Normal operating ($V_{i min}$ to $V_{i max}$) | 90 | | 305 | VAC | | | | | 180 | | 400 | VDC | | I _{i max} | Max Input Current | | | | 16 | Arms | | lip | Inrush Current Limitation | V_{imin} to V_{imax} , $T_{NTC} = 25$ °C(Figure 2) | | | 60 | A_p | | Fi | Input Frequency | | 47 | 50/60 | 63 | Hz | | PF | Power Factor | V_{inom} , 50 Hz, > 0.3 I_{1nom} | 0.94 | | | W/VA | | $V_{i on}$ | Turn-on Input Voltage ² | Ramping up | 74 | | 84 | VAC | | Vi on | rum-on input voitage- | namping up | 170 | | 180 | VDC | | | | | 72 | | 80 | VAC | | $V_{i off}$ | Turn-off Input Voltage | Ramping down | 168 | | 178 | VDC | | | | | 309 | | 314 | VAC | | | | Input Out of Range | 402 | | 410 | VDC | | | | V_{115VAC} , 0.2· k_{nom} , $V_{x nom}$, $T_A = 25$ °C | | 90 | | | | | | V_{115} VAC, $0.5 \cdot I_{x \text{ nom}}$, $V_{x \text{ nom}}$, $T_{A} = 25 ^{\circ} C$ | | 92 | | | | η | Efficiency | $V_{1115 \text{ VAC}}$, k_{nom} , $V_{\text{X nom}}$, $T_{\text{A}} = 25^{\circ}\text{C}$ | | 89 | | | | 11 | Efficiency | $V_{1230VAC}$, $0.2 \cdot I_{X \text{ nom}}$, $V_{X \text{ nom}}$, $T_{A} = 25^{\circ}C$ | | 90 | | | | | | $V_{1230VAC}$, $0.5 \cdot I_{x \text{ nom}}$, $V_{x \text{ nom}}$, $T_{A} = 25^{\circ}C$ | | 94 | | | | | | $V_{1230VAC}$, I_{x} nom, V_{x} nom, $T_{A} = 25^{\circ}C$ | | 91 | | | | Thold | Hold-up Time | Vi = 90Vac to 264 VAC, V1 ≥ 11.4 V,
Cout = 5000 μF, 80% nominal output power,
Time from de-assert INPUT_OK to Vout out of
regulation or OUTPUT_OK de-asserts | 5 | | | ms | ² The Front-End is provided with a minimum hysteresis of 3 V during turn-on and turn-off within the ranges. **Asia-Pacific** +86 755 298 85888 **Europe, Middle East** +353 61 49 8941 North America +1 866 513 2839 $^{^{1}}$ For PFS1200-12-054NA/ PFS1200-12-054NAC and PFS1200-12-054RA/ PFS1200-12-054RAC, normal DC operation input range is 200 VDC to 350 VDC; normal AC operation input range is 100 VAC \sim 240 VAC. #### **4.1 INPUT FUSE** Slow-acting 16 A input fuse $(5 \times 20 \text{ mm})$ in series the L line inside the power supply protect against severe defects. The fuse is not accessible from the outside and are therefore not serviceable parts. #### **4.2 INRUSH CURRENT** The AC-DC power supply exhibits low X-capacitance resulting in a low and short peak current, when the supply is connected to the mains. The internal bulk capacitor will be charged through an NTC which will limit the inrush current. **NOTE:** Do not repeat plug-in / out operations within a short time, or else the internal in-rush current limiting device (NTC) may not sufficiently cool down and excessive inrush current or component failure(s) may result. Figure 2. Inrush current, Vin = 305 Vac, 90°, CH3: Vin (500V/div), CH2: lin (10A/div) ### **4.3 INPUT UNDER-VOLTAGE** If the sinusoidal input voltage stays below the input under voltage lockout threshold Vi on, the supply will be inhibited. Once the input voltage returns within the normal operating range, the supply will return to normal operation again. #### **4.4 POWER FACTOR CORRECTION** Power factor correction (PFC) is achieved by controlling the input current waveform synchronously with the input voltage. An analog controller is implemented giving outstanding PFC results over a wide input voltage and load ranges. The input current will follow the shape of the input voltage. Figure 3. PF vs. Load #### 4.5 EFFICIENCY High efficiency is achieved by using state-of-the-art silicon power devices in conjunction with soft-transition topologies minimizing switching losses and a full digital control scheme. Synchronous rectifiers on the output reduce the losses in the high current output path. The speed of the fan is digitally controlled to keep all components at an optimal operating temperature regardless of the ambient temperature and load conditions. Figure 4. Efficiency vs. Load ### 5. OUTPUT SPECIFICATIONS General Condition: Ta = 0...50 °C unless otherwise specified. | PARAME | | DESCRIPTION / CONDITION | MIN | NOM | MAX | UNIT | |---|---
---|----------------------------------|---------------------|--|---| | Main Outp | | | | | | \/F.2 | | V _{1 nom}
V _{1 set} | Nominal Output Voltage Output Setpoint Accuracy | 0.5 · / _{1 nom} , $T_{amb} = 25 ^{\circ}\text{C}$ | -0.5 | 12.0 | +0.5 | VDC
% V _{1 nom} | | dV _{1 tot} | Total Regulation | V _{min} to V _{max} , 0 to 100% h _{nom} , T _{a min} to T _{a max} | -2 | | +2 | % V _{1 nom} | | P _{1 nom} | Nominal Output Power | 305 VAC > V _{in} ≥ 90 VAC, V ₁ = 12 VDC | | 1200 | | W | | | Refer to <i>Figure 6b</i> for derating curves | 400 VDC > V _{In} ≥180 VDC, V ₁ = 12 VDC | | 1200 | | W | | I _{1 nom} | Nominal Output Current | $305 \text{ VAC} > V_{in} \ge 90 \text{ VAC}, V_1 = 12 \text{ VDC}$ | | 100 | | ADC | | | Refer to <i>Figure 3b/3c</i> for derating curves | 400 VDC > V _{in} ≥180 VDC, V ₁ = 12 VDC | | 100 | | ADC | | V1 pp | Output Ripple Voltage | $V_{1 \text{ nom}}$, 0 to 100% $h_{1 \text{ nom}}$, 20 MHz BW (See Section 5.1) | | | 120 | mVpp | | dV1 Load | Load Regulation | Vi = Vinom, 0 - 100 % H nom | | 80 | | mV | | dV₁ Line | Line Regulation | $V_1 = V_1 \min V_1 \max$ | | 40 | | mV | | dl _{share} | Current Sharing | Deviation from h_{tot} / N, h_{t} > 10% | -3 | | +3 | Α | | dV _{dyn} | Dynamic Load Regulation | $\Delta h = 50\% \ h_{\text{nom}}, \ h = 10 \dots 100\% \ h_{\text{nom}},$ dh/dt = 1A/µs | -0.6 | | 0.6 | V | | T_{rec} | Recovery Time | $\Delta h = 50\% h_{\text{nom}}, h_1 = 10 \dots 100\% h_{\text{nom}},$
$dh/dt = 1A/\mu s$, recovery within 1% of V_{nom} | | | 2 | ms | | tac v1 | Start-up Time from AC | | | | 3 | sec | | t _{V1 rise} | Rise Time | $V_1 = 1090\% \ V_{1 \text{ nom}}$ | 0.5 | | 10 | ms | | | | | | | | | | CLoad | Capacitive Loading | $T_a = 25$ °C | 1000 | | 20000 | μF | | | Capacitive Loading Standby Output | <i>T</i> _a = 25°C | 1000 | _ | 20000 | μF | | | , , | VSB_SEL1 = 1
VSB_SEL2 = 1 | 1000 | 3.3 | 20000 | μF
VDC | | 3.3/5 V _{SB} S | Standby Output | VSB_SEL1 = 1 | 1000 | 3.3
5.0 | 20000 | | | 3.3/5 V _{SB} S | Standby Output | VSB_SEL1 = 1
VSB_SEL2 = 1
VSB_SEL1 = 0 | -0.5 | | +0.5 | VDC | | 3.3/5 V _{SB} 5 | Standby Output Nominal Output Voltage Output Setpoint | VSB_SEL1 = 1
VSB_SEL2 = 1
VSB_SEL1 = 0
VSB_SEL2 = 1 | | | | VDC
VDC | | 3.3/5 V _{SB} \$ V _{SB nom} V _{SB set} dV _{SB tot} | Nominal Output Voltage Output Setpoint Accuracy Total Regulation | VSB_SEL1 = 1
VSB_SEL2 = 1
VSB_SEL1 = 0
VSB_SEL2 = 1
0.5 · ks nom, Tamb = 25°C | -0.5 | | +0.5 | VDC VDC % V _{Inom} | | 3.3/5 V _{SB} \$ V _{SB nom} | Nominal Output Voltage Output Setpoint Accuracy | $VSB_SEL1 = 1 \\ VSB_SEL2 = 1 \\ VSB_SEL1 = 0 \\ VSB_SEL2 = 1 \\ 0.5 \cdot k_{SB nom}, \ T_{amb} = 25 ^{\circ}C$ $V_{min} to \ V_{max}, 0 to 100\% \ k_{SB nom}, \ T_{a min} to \ T_{a max}$ | -0.5 | 5.0 | +0.5 | VDC
VDC
% V _{Inom} | | 3.3/5 V _{SB} S V _{SB nom} V _{SB set} dV _{SB tot} P _{SB nom} | Standby Output Nominal Output Voltage Output Setpoint Accuracy Total Regulation Nominal Output Power | $VSB_SEL1 = 1 \\ VSB_SEL2 = 1 \\ VSB_SEL2 = 1 \\ VSB_SEL1 = 0 \\ VSB_SEL2 = 1 \\ 0.5 \cdot k_{SB nom}, \ T_{amb} = 25 ^{\circ}C$ $V_{min} to \ V_{max}, 0 to 100\% \ k_{SB nom}, \ T_{a min} to \ T_{a max}$ $V_{SB} = 3.3 \ VDC$ | -0.5 | 5.0 | +0.5 | VDC VDC % V _{Inom} % V _{SBnom} | | 3.3/5 V _{SB} \$ V _{SB nom} V _{SB set} dV _{SB tot} | Nominal Output Voltage Output Setpoint Accuracy Total Regulation | $VSB_SEL1 = 1 \\ VSB_SEL2 = 1 \\ VSB_SEL1 = 0 \\ VSB_SEL2 = 1$ $0.5 \cdot k_{SB nom}, T_{amb} = 25^{\circ}C$ $V_{min} to \ V_{max}, 0 to 100\% \ k_{SB nom}, T_{a min} to \ T_{a max}$ $V_{SB} = 3.3 \ VDC$ $V_{SB} = 5.0 \ VDC$ | -0.5 | 5.0
16.5
16.5 | +0.5 | VDC VDC % V _{Inom} | | 3.3/5 V _{SB} S V _{SB nom} V _{SB set} dV _{SB tot} P _{SB nom} | Standby Output Nominal Output Voltage Output Setpoint Accuracy Total Regulation Nominal Output Power | $VSB_SEL1 = 1 \\ VSB_SEL2 = 1 \\ VSB_SEL2 = 1 \\ VSB_SEL2 = 0 \\ VSB_SEL2 = 1 \\ 0.5 \cdot k_{SB nom}, \ T_{amb} = 25 ^{\circ}C$ $V_{1 min} \text{ to } \ V_{1 max}, \ 0 \text{ to } 100\% \ k_{SB nom}, \ T_{a min} \text{ to } \ T_{a max}$ $V_{SB} = 3.3 \text{ VDC}$ $V_{SB} = 5.0 \text{ VDC}$ $V_{SB} = 3.3 \text{ VDC}$ | -0.5 | 16.5
16.5
5 | +0.5 | VDC VDC % V _{Inom} % V _{SBnom} | | 3.3/5 V _{SB} S VSB nom VSB set dVSB tot PSB nom ISB nom | Nominal Output Voltage Output Setpoint Accuracy Total Regulation Nominal Output Power Nominal Output Current Output Ripple Voltage | $VSB_SEL1 = 1 \\ VSB_SEL2 = 1 \\ VSB_SEL2 = 1 \\ VSB_SEL1 = 0 \\ VSB_SEL2 = 1 \\ 0.5 \cdot \&_{B nom}, \ T_{amb} = 25 ^{\circ}C$ $V_{min} to \ V_{max}, 0 \ to \ 100\% \ \&_{B nom}, \ T_{a min} \ to \ T_{a max}$ $V_{SB} = 3.3 \ VDC$ $V_{SB} = 5.0 \ VDC$ $V_{SB} = 3.3 \ VDC$ $V_{SB} = 5.0 \ VDC$ | -0.5 | 16.5
16.5
5 | +0.5
+5 | VDC VDC % Vinom % VsBnom W ADC | | 3.3/5 V _{SB} S V _{SB nom} V _{SB set} dV _{SB tot} P _{SB nom} | Standby Output Nominal Output Voltage Output Setpoint Accuracy Total Regulation Nominal Output Power Nominal Output Current | $VSB_SEL1 = 1 \\ VSB_SEL2 = 1 \\ VSB_SEL2 = 0 \\ VSB_SEL2 = 0 \\ VSB_SEL2 = 1 \\ 0.5 \cdot \&_{SB_nom}, \ T_{amb} = 25 ^{\circ}C$ $V_{min} to \ V_{max}, 0 to 100\% \ \&_{SB_nom}, \ T_{a\min} to \ T_{a\max}$ $V_{SB} = 3.3 \ VDC$ $V_{SB} = 3.3 \ VDC$ $V_{SB} = 3.3 \ VDC$ $V_{SB} = 5.0 \ VDC$ $V_{SB} = 5.0 \ VDC$ $V_{SB_nom}, \ \&_{SB_nom}, \ 20 \ MHz \ BW \ (See Section 5.1)$ | -0.5
-5 | 16.5
16.5
5 | +0.5
+5 | VDC VDC % V _{Inom} % V _{SBnom} W | | 3.3/5 V _{SB} S VSB nom VSB set dVSB tot PSB nom ISB nom | Nominal Output Voltage Output Setpoint Accuracy Total Regulation Nominal Output Power Nominal Output Current Output Ripple Voltage | VSB_SEL1 = 1 VSB_SEL2 = 1 VSB_SEL1 = 0 VSB_SEL1 = 0 VSB_SEL1 = 0 VSB_SEL2 = 1 0.5 · &B nom, Tamb = 25°C V minto V max, 0 to 100% &B nom, Ta min to Ta max VSB = 3.3 VDC VSB = 3.3 VDC VSB = 5.0 VDC VSB = 5.0 VDC VSB = 5.0 VDC VSB nom, &B nom, 20 MHz BW (See Section 5.1) VSB_SEL1 = 1, VSB_SEL2 = 1 VSB_SEL1 = 0, VSB_SEL2 = 1 Δ&B = 50% &B nom, &B = 5 100% &B nom, | -0.5
-5 | 16.5
16.5
5 | +0.5
+5
50
6.5 | VDC VDC % Vinom % VsBnom W ADC mVpp | | 3.3/5 V _{SB} S VSB nom VSB set dVsB tot PSB nom ISB nom VSB pp | Nominal Output Voltage Output Setpoint Accuracy Total Regulation Nominal Output Power Nominal Output Current Output Ripple Voltage Current Limitation | $VSB_SEL1 = 1 \\ VSB_SEL2 = 1 \\ VSB_SEL2 = 1 \\ VSB_SEL2 = 1 \\ VSB_SEL2 = 1 \\ O.5 \cdot \&B \text{ nom}, \ T_{amb} = 25 ^{\circ}\text{C}$ $V_{min} \text{ to } \ V_{max}, \ 0 \text{ to } 100\% \ \&B \text{ nom}, \ T_{a \text{ min}} \text{ to } \ T_{a \text{ max}}$ $V_{SB} = 3.3 \text{ VDC}$ $V_{SB} = 5.0 \text{ VDC}$ $V_{SB} = 3.3 \text{ VDC}$ $V_{SB} = 3.3 \text{ VDC}$ $V_{SB} = 5.0 | -0.5
-5
5.25
3.45 | 16.5
16.5
5 | +0.5
+5
50
6.5
4.3
5
250 | VDC VDC % Vinom % VsBnom W ADC mVpp ADC | | 3.3/5 V _{SB} S VSB nom VSB set dVSB tot PSB nom ISB nom VSB pp ISB max dVSBdyn | Standby Output Nominal Output Voltage Output Setpoint Accuracy Total Regulation Nominal Output Power Nominal Output Current Output Ripple Voltage Current Limitation Dynamic Load Regulation | VSB_SEL1 = 1 VSB_SEL2 = 1 VSB_SEL1 = 0 VSB_SEL1 = 0 VSB_SEL1 = 0 VSB_SEL2 = 1 0.5 · &B nom, Tamb = 25°C V minto V max, 0 to 100% &B nom, Ta min to Ta max VSB = 3.3 VDC VSB = 3.3 VDC VSB = 5.0 VDC VSB = 5.0 VDC VSB = 5.0 VDC VSB nom, &B nom, 20 MHz BW (See Section 5.1) VSB_SEL1 = 1, VSB_SEL2 = 1 VSB_SEL1 = 0, VSB_SEL2 = 1 Δ&B = 50% &B nom, &B = 5 100% &B nom, | -0.5
-5
5.25
3.45
-5 | 16.5
16.5
5 | +0.5
+5
50
6.5
4.3
5 | VDC VDC % Vnom % VsBnom W ADC mVpp ADC % VsBnom | | 3.3/5 V _{SB} S VSB nom VSB set dVsB tot PSB nom ISB nom VSB pp ISB max dVsBdyn Trec | Nominal Output Voltage Output Setpoint Accuracy Total Regulation Nominal Output Power Nominal Output Current Output Ripple Voltage Current Limitation Dynamic Load Regulation Recovery Time |
$VSB_SEL1 = 1 \\ VSB_SEL2 = 1 \\ VSB_SEL2 = 1 \\ VSB_SEL2 = 1 \\ VSB_SEL2 = 1 \\ O.5 \cdot \&B \text{ nom}, \ T_{amb} = 25 ^{\circ}\text{C}$ $V_{min} \text{ to } \ V_{max}, \ 0 \text{ to } 100\% \ \&B \text{ nom}, \ T_{a \text{ min}} \text{ to } \ T_{a \text{ max}}$ $V_{SB} = 3.3 \text{ VDC}$ $V_{SB} = 5.0 \text{ VDC}$ $V_{SB} = 3.3 \text{ VDC}$ $V_{SB} = 3.3 \text{ VDC}$ $V_{SB} = 5.0 | -0.5
-5
5.25
3.45 | 16.5
16.5
5 | +0.5
+5
50
6.5
4.3
5
250 | VDC VDC % V _{Inom} % V _{SBnom} W ADC mVpp ADC % V _{SBnom} μS | | 12 V _{SB} St | andby Output | | | | | | | |-----------------------|--------------------------|---|------------------------------|------|----|-------|-----------------------| | $V_{SB\ nom}$ | Nominal Output Voltage | $0.5 \cdot I_{SB \text{ nom}}$, $T_{amb} = 25^{\circ}C$ | VSB_SEL1 = 1 | | 12 | | VDC | | $V_{SB set}$ | Output Setpoint Accuracy | | $VSB_SEL2 = 0$ | -1 | | +1 | % V _{SB nom} | | dV _{SB tot} | Total Regulation | $V_{i \text{ min}}$ to $V_{i \text{ max}}$, 0 to 100% $I_{SB \text{ nom}}$, | $T_{a \min}$ to $T_{a \max}$ | -5 | | +5 | % V _{SB nom} | | P _{SB nom} | Nominal Output Power | V _{SB} = 12 VDC | | | 24 | | W | | I _{SB nom} | Nominal Output Current | V _{SB} = 12 VDC | | | | 2 | Α | | V_{SBpp} | Output Ripple Voltage | $V_{\rm SB\ nom}$, $I_{\rm SB\ nom}$, 20 MHz BW (See | Section 5.1) | | | 120 | mVpp | | I _{SB max} | Current Limitation | | | 2.1 | | 2.6 | ADC | | dV _{SBdyn} | Dynamic Load Regulation | $\Delta k_{\rm SB} = 50\% k_{\rm SB nom}, k_{\rm SB} = 5 \dots 100$ | 1% / _{SB nom} , | -0.6 | | 0.6 | V | | T_{rec} | Recovery Time | $dI_0/dt = 1 \text{ A/}\mu\text{s}$, recovery within 1 | % of $V_{1 \text{ nom}}$ | | | 2 | ms | | t _{AC VSB} | Start-up Time from AC | $V_{SB} = 90\% V_{SB nom}$ | | | | 2 | s | | t√SB rise | Rise Time | V _{SB} = 1090% V _{SB nom} | | | | 20 | ms | | C_{Load} | Capacitive Loading | $T_{amb} = 25^{\circ}C$ | | 100 | | 1,500 | μF | #### **5.1 OUTPUT VOLTAGE RIPPLE** Internal capacitance at the 12 V output (behind the OR-ing circuitry) is minimized to prevent disturbances during hot plug. In order to provide low output ripple voltage in the application, external capacitors (a parallel combination of 10 μ F low ESR capacitor in parallel with 0.1 μ F ceramic capacitors) should be added close to the power supply output. The setup of *Figure 5* has been used to evaluate suitable capacitor types. The capacitor combinations of Table 1 and Table 2 should be used to reduce the output ripple voltage. The ripple voltage is measured with 20 MHz BWL, close to the external capacitors. Figure 5. Output ripple test setup **NOTE:** Care must be taken when using ceramic capacitors with a total capacitance of 1 μF to 50 μF on output V1, due to their high quality factor the output ripple voltage may be increased in certain frequency ranges due to resonance effects. | EXTERNAL CAPACITOR V1 | DV1MAX | UNIT | |---|--------|------| | Standard test condition: | | | | 1 Pc 10 µF / min 16 V low ESR Capacitor | 120 | mVpp | | 1 pc 0.1 uF / 50 V ceramic capacitor | | | EXTERNAL CAPACITOR VSB DV1MAX Standard test condition: 1 pc 10 μ F / min 16 V low ESR Capacitor 1 pc 0.1 μ F / 50V ceramic capacitor 120 Table 1. Suitable capacitors for V₁ Table 2. Suitable capacitors for V_{SB} The output ripple voltage on V_{SB} is influenced by the main output V_1 . Evaluating V_{SB} output ripple must be done when maximum load is applied to V_1 . UNIT mVpp #### 6. PROTECTION SPECIFICATIONS | PARAM | METER | DESCRIPTION / CONDITION | MIN | NOM | MAX | UNIT | |----------------------|--------------------------------------|--|---------------------|-----|-------------------|------| | F | Input Fuse (L) | Not user accessible | | 16 | | Α | | V₁ ov | OV Threshold V_1 | | 13.3 | | 14.5 | VDC | | <i>t</i> ov v1 | OV Latch Off Time 1/1 | | | | 1 | ms | | V SB OV | OV Threshold V _{SB} | | 110% | | 120% | VDC | | t _{OV VSB} | OV Latch Off Time V _{SB} | | | 1 | | ms | | ∕v₁ lim | Over Current Limitation V_1 | $V_1 > 90 \text{ VAC}, T_a < 50^{\circ}\text{C}$ | 110 | | 140 | Α | | I _{VSB lim} | Over Current Limitation $V_{\rm SB}$ | $T_{\rm a}$ < 50°C for 12Vs _B
$T_{\rm a}$ < 50°C for 5Vs _B
$T_{\rm a}$ < 50°C for 3.3Vs _B | 2.1
3.45
5.25 | | 2.6
4.3
6.5 | А | | t _{V1 SC} | Short Circuit Regulation Time | $V_1 < 3$ V, time until I_{V1} is limited to < 200 A | | | 2 | ms | | T _{SD} | Over Temperature on Heat Sinks | Automatic shut-down | | 115 | 120 | °C | #### **6.1 OVERVOLTAGE PROTECTION** The PFS front-ends provide a fixed threshold overvoltage (OV) protection implemented with a HW comparator. Once an OV condition has been triggered, the supply will shut down and latch the fault condition. The latch can be unlocked by disconnecting the supply from the AC mains or by toggling the PSON_L input #### **6.2 UNDERVOLTAGE DETECTION** Both main and standby outputs are monitored. LED and PWOK_L pin signal if the output voltage exceeds $\pm 7\%$ of its nominal voltage. Output under voltage protection is provided on both outputs. When either V1 or VSB falls below 93% of its nominal voltage, the output is inhibited. #### **6.3 CURRENT LIMITATION** #### **6.3.1 MAIN OUTPUT** When main output runs in current limitation mode its output will turn OFF below 2 V but will shut down after 6 attempts. If current limitation mode is still present after the unit retry, output will continuously perform this routine until current is below the current limitation point. The supply will go through soft start every time it retries from current limitation mode. Figure 6a. Current Limitation on V_1 ($V_i = 230 \text{ VAC}$) **Output Power Derating Curve with Ambient Temperature** 1400 1200 NA Vin=90~132Vac RA Vin=90~132Vac NA Vin≥180Vac/180Vdc RA Vin≥180Vac/180Vdc 200 0 65 -5 0 10 20 30 40 45 50 55 60 **Ambient Temperature(°C)** The output power derating of V1 refers to Figure 6b Ambient Derating Curve. Figure 6b. Ambient Derating Curve #### Note: - 1. NA: Normal Airflow RA: Reverse Airflow Refer to Figure 21. - 2. The application of power supply should also refer to installation instructions document - 3. The power supply has no limitation on its output current/power in respect of meeting the operating conditions shown by the derating limits shown above. It is the responsibility of the end user to ensure operating conditions are maintained within their safety agency certification limits to assure safe and reliable operation. ### **6.3.2 STANDBY OUTPUT** #### 3.3 / 5 V_{SB} The standby output exhibits a substantially rectangular output characteristic down to 0 V (no hiccup mode / latch off). If it runs in current limitation and its output voltage drops below the UV threshold, then the main output will be inhibited (standby remains on). The current limitation of the standby output is independent of the AC input voltage. Figure 7. Current Limitation and Temperature Derating on $3.3 \, / \, 5 \, V_{SB}$ **Asia-Pacific** +86 755 298 85888 **Europe, Middle East** +353 61 49 8941 North America +1 866 513 2839 #### 12 V_{SB} On the standby output, a hiccup type over current protection is implemented. This protection will shut down the standby output immediately when standby current reaches or exceeds $k_{SB \text{ lim}}$. After an off-time of 1 s the output automatically tries to restart. If the overload condition is removed the output voltage will reach again its nominal value. At continuous overload condition the output will repeatedly trying to restart with 1s intervals. A failure on the Standby output will shut down both Main and Standby outputs. Figure 8. Current Limitation on 12 V_{SB} ### 7. MONITORING | PARAMETER | DESCRIPTION / CONDITION | | MIN NOM | MAX | UNIT | |---------------------|-------------------------|---|---------|------|------| | V _{i mon} | Input RMS Voltage | $V_{i \min} \leq V_{i} \leq V_{i \max}$ | -2.5 | +2.5 | % | | / _{i mon} | Input RMS Current | $I_i > 2 A_{rms}$ | -5 | +5 | % | | $P_{i mon}$ | True Input Power | $I_i > 2 A_{rms}$ | -5 | +5 | % | | V₁ mon | V ₁ Voltage | | -2 | +2 | % | | h mon | V ₁ Current | I1 > 25 A | -2 | +2 | % | | 71 mon | V1 Current | I1 ≤ 25 A | -1 | +1 | Α | | Po nom | Total Output Power | Po > 120 W | -5 | +5 | % | | Po nom | Total Output Power | Po ≤ 120 W | -12 | +12 | W | | V _{SB mon} | Standby Voltage | | -0.5 | +0.5 | V | | / _{SB mon} | Standby Current | I _{SB} ≤ I _{SB nom} | -0.5 | +0.5 | Α | ### 8. SIGNAL & CONTROL SPECIFICATIONS ### **8.1 ELECTRICAL CHARACTERISTICS** | PARAMETER | DESCRIPTION / CONDITION | | MIN | NOM | MAX | UNIT | |---------------------------|--|------------------------------------|------|------|-----|------| | PSKILL_H / PSON | L / HOTSTANDBYEN_H Inputs | | | | | | | ИL | Input Low Level Voltage | | -0.2 | | 0.8 | V | | Ин | Input High Level Voltage | | 2.4 | | 3.5 | V | | /L, H | Maximum Input Sink or Source Current | | 0 | | 1 | mA | | $R_{ m puPSKILL_H}$ | Internal Pull Up Resistor on PSKILL_H | | | 20 | | kΩ | | $R_{ m puPSON_L}$ | Internal Pull Up Resistor on PSON_L | | | 10 | | kΩ | | $R_{ m puhotstandbyen_h}$ | Internal Pull Up Resistor on HOTSTANDB | YEN_H | | 2 | | kΩ | | <i>R</i> Low | Resistance Pin to SGND for Low Level | | 0 | | 1 | kΩ | | <i>R</i> HIGH | Resistance Pin to SGND for High Level | | 50 | | | kΩ | | PWOK_H Output | | | | | | | | V o∟ | Output Low Level Voltage | I_{sink} < 4 mA | 0 | | 0.4 | V | | V он | Output High Level Voltage | $I_{\rm source} < 0.5 \ \text{mA}$ | 2.6 | | 3.5 | V | | $R_{ m puPWOK_H}$ | Internal Pull Up Resistor on PWOK_H | | | 1 | | kΩ | | ACOK_H Output
| | | | | | | | V o∟ | Output Low Level Voltage | ∕ _{sink} < 2 mA | 0 | | 0.4 | V | | V он | Output High Level Voltage | $I_{\rm source} < 50~\mu A$ | 2.6 | | 3.5 | V | | $R_{ m puACOK_H}$ | Internal Pull Up Resistor on ACOK_H | | | 1 | | kΩ | | SMB_ALERT_L O | utput | | | | | | | V ext | Maximum External Pull Up Voltage | | | | 12 | V | | V 6L | Output Low Level Voltage | l₅ource < 4 mA | 0 | | 0.4 | V | | Юн | Maximum High Level Leakage Current | | | | 10 | μΑ | | $R_{ m puSMB_ALERT_L}$ | Internal Pull Up Resistor on SMB_ALERT_L | | | None | | kΩ | ### **8.2 INTERFACING WITH SIGNALS** All signal pins have protection diodes implemented to protect internal circuits. When the power supply is not powered, the protection devices start clamping at signal pin voltages exceeding ±0.5 V. Therefore, all input signals should be driven only by an open collector/drain to prevent back feeding inputs when the power supply is switched off. If interconnecting of signal pins of several power supplies is required, then this should be done by decoupling with small signal schottky diodes except for SMB_ALERT_L, ISHARE and I²C pins. SMB_ALERT_L pins can be interconnected without decoupling diodes, since these pins have no internal pull up resistor and use a 15 V zener diode as protection device against positive voltage on pins. ISHARE pins must be interconnected without any additional components. This in-/output is disconnected from internal circuits when the power supply is switched off. Figure 9. Interconnection of Signal Pins ### **8.3 FRONT LEDS** There are two Bi-color (Green/ Amber) LEDs to indicate power supply status. The LEDs are visible on the power supply's front panel. The LEDs location meets ESD Requirements. Following are these definitions as: | LED FUNCTION | COLOR | BRIGHTNESS | |-------------------|--|----------------| | Input Status LED | Green (520 nm – 540 nm) / (Amber color not used) | 500-1000cd/m^2 | | Output Status LED | Green (520 nm – 540 nm) / Amber (520 nm – 540 nm)
Amber (587 nm – 595 nm) | 500-1000cd/m^2 | | COMMAND NAME | OUTPUT V | OLTAGE STATUS | LED E | BEHAVIOR | |---------------------------|----------|---------------|------------------|----------------------| | CONDITION | VOUT (V) | VSTBY (V) | INPUT STATUS LED | OUTPUT STATUS LED | | VOUT Normal Operation | 12.00 | 3.3/5.0/12.0 | GREEN SOLID | GREEN SOLID | | VOUT_OV_FAULT_LIMIT | 0.00 | 3.3/5.0/12.0 | GREEN SOLID | AMBER SOLID | | VOUT_OV_WARN_LIMIT | 13.5 | 3.3/5.0/12.0 | GREEN SOLID | AMBER/GREEN BLINKING | | VSTBY_OV_FAULT_LIMIT | 12.00 | 0.00 | GREEN SOLID | AMBER SOLID | | VSTBY_OV_WARN_LIMIT | 12.00 | 3.7/5.6/13.5 | GREEN SOLID | AMBER/GREEN BLINKING | | VOUT_UV_FAULT_LIMIT | 0.00 | 3.3/5.0/12.0 | GREEN SOLID | AMBER SOLID | | VOUT_UV_WARN_LIMIT | 11.40 | 3.3/5.0/12.0 | GREEN SOLID | AMBER/GREEN BLINKING | | VSTBY_UV_FAULT_LIMIT | 12.00 | 0.00 | GREEN SOLID | AMBER SOLID | | VSTBY_UV_WARN_LIMIT | 12.00 | 3.0/4.5/11.0 | GREEN SOLID | AMBER/GREEN BLINKING | | IOUT_OC_FAULT_LIMIT | 0.00 | 3.3/5.0/12.0 | GREEN SOLID | AMBER SOLID | | IOUT_OC_WARN_LIMIT | 12.00 | 3.3/5.0/12.0 | GREEN SOLID | AMBER/GREEN BLINKING | | ISTBY_OC_FAULT_LIMIT | 12.00 | 0.00 | GREEN SOLID | AMBER SOLID | | ISTBY_OC_WARN_LIMIT | 12.00 | 3.3/5.0/12.0 | GREEN SOLID | AMBER/GREEN BLINKING | | TEMPERATURE FAULT LIMIT | 0.00 | 3.3/5.0/12.0 | GREEN SOLID | AMBER SOLID | | TEMPERATURE WARNING LIMIT | 12.00 | 3.3/5.0/12.0 | GREEN SOLID | AMBER/GREEN BLINKING | | VIN_OV_FAULT_LIMIT | 0.00 | 3.3/5.0/12.0 | GREEN BLINKING | AMBER SOLID | | VIN_OV_WARN_LIMIT | 12.00 | 3.3/5.0/12.0 | GREEN SOLID | AMBER/GREEN BLINKING | | VIN_UV_FAULT_LIMIT | 0.00 | 0.00 | GREEN BLINKING | OFF | | VIN_UV_WARN_LIMIT | 12.00 | 3.3/5.0/12.0 | GREEN SOLID | AMBER/GREEN BLINKING | | FAN_1_FAULT | 0.00 | 3.3/5.0/12.0 | GREEN SOLID | AMBER SOLID | | FAN_1_WARNING | 12.00 | 3.3/5.0/12.0 | GREEN SOLID | AMBER/GREEN BLINKING | | IOUT SHORT CIRCUIT | 0.00 | 3.3/5.0/12.0 | GREEN SOLID | AMBER SOLID | | ISTBY SHORT CIRCUIT | 12.00 | 0.00 | GREEN SOLID | AMBER SOLID | | PS_ON High | 0.00 | 3.3/5.0/12.0 | GREEN SOLID | GREEN BLINKING | | PS_KILL | 0.00 | 0.00 | GREEN SOLID | OFF | | | | | | | AMBER/GREEN BLINKING: means AMBER and GREEN LED flash alternately. Table 3. LED Status #### 8.4 PRESENT L This signaling pin is recessed within the connector and will contact only once all other connector contacts are closed. This active-low pin is used to indicate to a power distribution unit controller that a supply is plugged in. The maximum current on PRESENT_L pin should not exceed 10 mA. Figure 10. PRESENT_L signal pin #### 8.5 PSKILL H INPUT The PSKILL_H input is active-high and is located on a recessed pin on the connector and is used to disconnect the main output as soon as the power supply is being plugged out. This pin should be connected to SGND in the power distribution unit. The standby output will remain on regardless of the PSKILL_H input state. #### 8.6 AC TURN-ON / DROP-OUTS / ACOK_H The power supply will automatically turn-on when connected to the AC line under the condition that the PSON_L signal is pulled low and the AC line is within range. The ACOK_H signal is active-high. See the timing diagram, Figure 11 and Table 4. | OPERATIN | G CONDITION | MIN | MAX | UNIT | |-------------------------|---------------------------------------|-----|------|------| | t _{AC VSB} | AC Line to 90% V/SB | | 2 | sec | | <i>t</i> AC V1 | AC Line to 90% V ₁ | | 2 | sec | | tACOK_H on1 | ACOK_H signal on delay (start-up) | | 2000 | ms | | tACOK_H on2 | ACOK_H signal on delay (dips) | | 100 | ms | | tACOK_H off | ACOK_H signal off delay | | 5 | ms | | t√SB V1 del | V _{SB} to V₁ delay | 10 | 500 | ms | | t√1 holdup | Effective 1/4 holdup time | 5 | | ms | | t√SB holdup | Effective V _{SB} holdup time | 20 | | ms | | t _{ACOK_H V1} | ACOK_H to V₁ holdup | 5 | | ms | | t _{ACOK_H VSB} | ACOK_H to V _{SB} holdup | 15 | | ms | | t√1 off | Minimum 1/₁ off time | 1 | 2 | sec | | t _{VSB off} | Minimum V _{SB} off time | 1 | 2 | sec | NOTE: AC short dips means below 10 ms; AC long dips means 10 ms to 100 ms Table 4. AC Turn-on / Dip Timing Figure 11. AC turn-on timing Figure 13. AC long dips ### 8.7 PSON_L INPUT The PSON_L is an internally pulled-up (3.3 V) input signal to enable/disable the main output V1 of the front-end. This active-low pin is also used to clear any latched fault condition, see the parameters in *Table 5*. | OPERATING CONDITION | | MIN | MAX | UNIT | |---------------------------|-------------------------------------|-----|-----|------| | tpson_L v1on | PSON_L to V ₁ delay (on) | 2 | 20 | ms | | t _{PSON_L V1off} | PSON_L to V_1 delay (off) | 2 | 20 | ms | | t _{PSON_L H min} | PSON_L minimum High time | 10 | | ms | Table 5. PSON_L timing ### 8.8 PWOK_H SIGNAL The PWOK_H is an open drain output with an internal pull-up to 3.3 V indicating whether both V_{SB} and V_1 outputs are within regulation. This pin is active-low. The timing diagram is shown in *Figure 14* and referenced in the *Table 6*. Figure 14. PSON_L and PWOK_H turn-on/off timing | OPERATING | G CONDITION | MIN | MAX | UNIT | |----------------|---|------------|----------|----------| | tpwok_H del | PWOK_H to И delay (on) | 100 | 500 | ms | | | PWOK_H to V₁ delay (off) caused by: | | | | | tpwok H warn* | PSKILL_H | 0 | 1 | ms | | | PSON_L, OT, Fan Failure
ACOK_H (time change with loading
condition) | 0.5
0.5 | 5
100 | ms
ms | | CFWOR_II Walli | UV and OV on VSB | 1 | 30 | ms | | | OC on V1 (Software trigger) | -11 | 0 | ms | | | OC on V1 (Hardware trigger) | -1 | 0 | ms | | | OV on V1 | -3 | 0 | ms | ^{*} A positive value means a warning time, a negative value a delay (after fact). Table 6. PWOK_H timing ### 8.9 VSB VOLTAGE SELECTION (VSB_SEL1, VSB_SEL2) The standby output voltage can be configured to three different values: 3.3 V, 5 V and 12 V by pulling VSB_SEL1 and VSB_SEL2 input pins either to GND (Logic Low) or to 3.3 V | VSB_SEL1 | VSB_SEL2 | VSB Voltage | UNIT | |----------|----------|---------------|------| | 1 | 1 | 3.3 | V | | 0 | 1 | 5 | V | | 1 | 0 | 12 | V | | 0 | 0 | Invalid (Off) | | Table 6. VSB Voltage selection #### **8.10 CURRENT SHARE** The PFS front-ends have an active current share scheme implemented for V_1 . All the ISHARE current share pins need to be interconnected in order to activate the sharing function. If a supply has an internal fault or is not turned on, it will disconnect its ISHARE pin from the share bus. This will prevent dragging the output down (or up) in such cases. The current share function uses a analog bi-directional data exchange on a recessive bus configuration to transmit and receive current share information. The controller implements a Master/Slave current share function. The power supply providing the largest current among the group is automatically the Master. The other supplies will operate as Slaves and increase their output current to a value close to the Master by slightly increasing their output voltage. The voltage increase is limited to +250 mV. The standby output uses a passive current share method (droop output voltage characteristic). #### 8.11 SENSE INPUTS Main output has sense lines implemented to compensate for voltage drop on load wires (no sense lines for 12VSB). The maximum allowed voltage drop is 200 mV on the positive rail and 100 mV on the PGND rail. With open sense inputs the main output voltage will rise by 270 mV. Therefore, if not used, these inputs should be connected to the power output and PGND close to the power supply connector. The sense inputs are protected against short circuit. In this case the power supply will shut down. #### **8.12 HOT-STANDBY OPERATION** The hot-standby operation is an operating mode allowing to further increase efficiency at light load
conditions in a redundant power supply system. Under specific conditions one of the power supplies is allowed to disable its DC/DC stage. This will save the power losses associated with this power supply and at the same time the other power supply will operate in a load range having a better efficiency. In order to enable the hot standby operation, the HOTSTANDBYEN_H and the ISHARE pins need to be interconnected. A power supply will only be allowed to enter the hot-standby mode, when the HOTSTANDBYEN_H pin is high, the load current is low and the supply was allowed to enter the hot-standby mode by the system controller via the appropriate I²C command (by default disabled). The system controller needs to ensure that only one of the power supplies is allowed to enter the hot-standby mode. If a power supply is in a fault condition, it will pull low its active-high HOTSTANDBYEN_H pin which indicates to the other power supply that it is not allowed to enter the hot-standby mode or that it needs to return to normal operation should it already have been in the hot-standby mode. NOTE: The system controller needs to ensure that only one of the power supplies is allowed to enter the hot-standby model. Figure 15. Recommended hot-standby configuration In order to prevent voltage dips when the active power supply is unplugged while the other is in hot-standby mode, it is strongly recommended to add the external circuit as shown in15. If the PRESENT_L pin status needs also to be read by the system controller, it is recommended to exchange the bipolar transistors with small signal MOS transistors or with digital transistors. #### 8.13 I2C / SMBUS COMMUNICATION The interface driver in the PFS supply is referenced to the V1 Return. The PFS supply is a communication Slave device only; it never initiates messages on the I2C/SMBus by itself. The communication bus voltage and timing is defined in Table 7 further characterized through: - There are no internal pull-up resistors - The SDA/SCL IOs are 3.3/5 V tolerant - Full SMBus clock speed of 100 kbps - Clock stretching limited to 1 ms - SCL low time-out of >25 ms with recovery within 10 ms - Recognizes any time Start/Stop bus conditions Figure 16. Physical layer of communication interface The SMB_ALERT_L signal indicates that the power supply is experiencing a problem that the system agent should investigate. This is a logical OR of the Shutdown and Warning events. The power supply responds to a read command on the general SMB_ALERT_L call address 25(0x19) by sending its status register. Communication to the DSP or the EÉPŘOM will be possible as long as the input AC voltage is provided. If no AC is present, communication to the unit is possible as long as it is connected to a life V1 output (provided e.g. by the redundant unit). If only VSB is provided, communication is not possible. | PARAMETER | DESCRIPTION / CONDITION | | MIN | NOM | MAX | UNIT | |------------------|--|--|-----------------------|-----|---------------------------|------| | ViL | Input low voltage | | -0.5 | | 1.0 | V | | V _{iH} | Input high voltage | | 2.3 | | 5.5 | V | | V_{hys} | Input hysteresis | | 0.15 | | | V | | VoL | Output low voltage | 3 mA sink current | 0 | | 0.4 | V | | t _r | Rise time for SDA and SCL (ViLmax-0.15V to ViHmin+0.15V) | 0.65V to 2.25V
f _{SCL} ≤ 100 kHz | 20+0.1Cb ³ | | 1000 | ns | | t _{of} | Output fall time
(ViHmin+0.15V to ViLmax-0.15V) | 2.25V to 0.65V
f _{SCL} ≤ 100 kHz | 20+0.1Cb ³ | | 300 | ns | | l _i | Input current SCL/SDA | 0.1 VDD < Vi < 0.9 VDD | -10 | | 10 | μΑ | | Ci | Internal Capacitance for each SCL/SDA | | | | 50 | pF | | f _{SCL} | SCL clock frequency | | 0 | | 100 | kHz | | Rpu | External pull-up resistor | f _{SCL} ≤ 100 kHz | | | 1000 ns / Cb ³ | Ω | | <i>thdsta</i> | Hold time (repeated) START | f _{SCL} ≤ 100 kHz | 4.0 | | | μs | | tLOW | Low period of the SCL clock | f _{SCL} ≤ 100 kHz | 4.7 | | | μS | ³ Cb = Capacitance of bus line in pF, typically in the range of 10...400 pF | t _{HIGH} | High period of the SCL clock | f _{SCL} ≤ 100 kHz | 4.0 | | μS | |------------------------|--------------------------------------|----------------------------|-----|------|----| | <i>tsusta</i> | Setup time for a repeated START | f _{SCL} ≤ 100 kHz | 4.7 | | μs | | <i>t</i> HDDAT | Data hold time | f _{SCL} ≤ 100 kHz | 0 | 3.45 | μS | | <i>tsudat</i> | Data setup time | f _{SCL} ≤ 100 kHz | 250 | | ns | | <i>tsusto</i> | Setup time for STOP condition | f _{SCL} ≤ 100 kHz | 4.0 | | μs | | <i>t_{BUF}</i> | Bus free time between STOP and START | f _{SCL} ≤ 100 kHz | 5 | | ms | Table 7. I2C / SMBus Specification Figure 17. I2C / SMBus Timing ### 8.14 ADDRESS / PROTOCOL SELECTION (APS) The APS pin provides the possibility to select the address by connecting a resistor to V1 return (0 V). A fixed addressing offset exists between the Controller and the EEPROM. #### NOTES: - If the APS pin is left open, the supply will operate with the Power Management Bus protocol at controller / EEPROM addresses 0xB6 / 0xA6. - The APS pin is only read at start-up of the power supply. Therefore, it is not possible to change address dynamically. | B (0) 4 | Dyetocal | I2C Address 5 | | |-----------------------------------|----------------|---------------|--------| | R _{APS} (Ω) ⁴ | Protocol | Controller | EEPROM | | 820 | | 0xB0 | 0xA0 | | 2700 | Power | 0xB2 | 0xA2 | | 5600 | Management Bus | 0xB4 | 0xA4 | | 8200 | | 0xB6 | 0xA6 | | 15000 | | 0xB0 | 0xA0 | | 27000 | PSMI | 0xB2 | 0xA2 | | 56000 | POIVII | 0xB4 | 0xA4 | | 180000 | | 0xB6 | 0xA6 | Figure 18. I2C address and protocol setting #### 8.15 CONTROLER AND EEPROM ACCESS The controller and the EEPROM in the power supply share the same I2C bus physical layer, see Figure 16. An I2C driver device assures logic level shifting (3.3/5 V) and a glitch-free clock stretching. The driver also pulls the SDA/SCL line to nearly 0 V when driven low by the DSP or the EEPROM providing maximum flexibility when additional external bus repeaters are needed. Such repeaters usually encode the low state with different voltage levels depending on the transmission direction. The DSP will automatically set the I2C address of the EEPROM with the necessary offset when its own address is changed / set. In order to write to the EEPROM, first the write protection needs to be disabled by sending the appropriate command to the DSP. By default, the write protection is on. The EEPROM provides 256 bytes of user memory. None of the bytes are used for the operation of the power supply. The LSB of the address byte is the R/W bit ⁴ E12 resistor values, use max 5% resistors Figure 19. I2C Bus to DPS and EEPROM #### **8.16 EEPROM PROTOCOL** The EEPROM follows the industry communication protocols used for this type of device. Even though page write / read commands are defined, it is recommended to use the single byte write / read commands. #### WRITE The write command follows the SMBus 1.1 Write Byte protocol. After the device address with the write bit cleared a first byte with the data address to write to is sent followed by the data byte and the STOP condition. A new START condition on the bus should only occur after 5ms of the last STOP condition to allow the EEPROM to write the data into its memory. #### **READ** The read command follows the SMBus 1.1 Read Byte protocol. After the device address with the write bit cleared the data address byte is sent followed by a repeated start, the device address and the read bit set. The EEPROM will respond with the data byte at the specified location. #### 8.17 POWER MANAGEMENT BUS PROTOCOL The Power Management Bus is an open standard protocol that defines means of communicating with power conversion and other devices. For more information, please see the System Management Interface Forum web site at www.powerSIG.org. Power Management Bus command codes are not register addresses. They describe a specific command to be executed. The PFS1200-12-054NAH supply supports the following basic command structures: - Clock stretching limited to 1 ms - SCL low time-out of >25 ms with recovery within 10 ms - Recognized any time Start/Stop bus conditions #### WRITE The write protocol is the SMBus 1.1 Write Byte/Word protocol. Note that the write protocol may end after the command byte or after the first data byte (Byte command) or then after sending 2 data bytes (Word command). In addition, Block write commands are supported with a total maximum length of 255 bytes. See PFS Programming Manual for further information. #### **READ** The read protocol is the SMBus 1.1 Read Byte/Word protocol. Note that the read protocol may request a single byte or word. In addition, Block read commands are supported with a total maximum length of 255 bytes. See PFS Programming Manual BCA.00006 for further information. #### 8.18 PSMI PROTOCOL New power management features in computer systems require the system to communicate with the power supply to access current, voltage, fan speed, and temperature information. Current measurements provide data to the system for determining potential system configuration limitations and provide actual system power consumption for facility planning. Temperature and fan monitoring allow the system to better manage fan speeds and temperatures for optimizing system acoustics. Voltage monitoring allows the system to calculate input wattage and warning of system voltage regulation problems. The Power Supply Management Interface (PSMI) supports diagnostic capabilities and allows managing of redundant power supplies. The communication method is SMBus. The current design guideline is version 2.12. The communication protocol is register based and defines a read and write communication protocol to read / write to a single register address. All registers are accessed via the same basic command given below. No PEC (Packet Error Code) is
used. #### WRITE The write protocol used is the SMBus 2.0 Write Word protocol. All writes are 16-bit words; byte reads are not supported nor allowed. The shaded areas in the figure indicate bits and bytes written by the PSMI master device. See PFS Programming Manual for further information. #### **READ** The read protocol used is the SMBus 2.0 Read Word protocol. All reads are 16-bit words; byte reads are not supported nor allowed. The shaded areas in the figure indicate bits and bytes written by the PSMI master device. See PFS Programming Manual for further information. ### **8.19 GRAPHICAL USER INTERFACE** Bel Power Solutions provides with its "Bel Power Solutions I2C Utility" a Windows® XP/Vista/Win7 compatible graphical user interface allowing the programming and monitoring of the PFS1200 Front-End. The utility can be downloaded on: belfuse.com/power-solutions and supports Power Management Bus protocols. The GUI allows automatic discovery of the units connected to the communication bus and will show them in the navigation tree. In the monitoring view the power supply can be controlled and monitored. If the GUI is used in conjunction with the SNP-OP-BOARD-01 or YTM.G1Q01.0 Evaluation Kit it is also possible to control the PSON_L pin(s) of the power supply. Further there is a button to disable the internal fan for approximately 10 seconds. This allows the user to take input power measurements without fan consumptions to check efficiency compliance to the Climate Saver Computing Platinum specification. The monitoring screen also allows to enable the hot-standby mode on the power supply. The mode status is monitored and by changing the load current it can be monitored when the power supply is being disabled for further energy savings. This obviously requires 2 power supplies being operated as a redundant system (as in the evaluation kit). NOTE: The user of the GUI needs to ensure that only one of the power supplies have the hot-standby mode enabled. Figure 20. Monitoring dialog of the I2C Utility #### 9. TEMPERATURE AND FAN CONTROL To achieve best cooling results sufficient airflow through the supply must be ensured. Do not block or obstruct the airflow at the rear of the supply by placing large objects directly at the output connector. The PFS1200-12-054NA series PSU is provided with normal airflow, which means the air enters through the DC output connector side of the supply and leaves at the AC input socket side. PFS supplies have been designed for horizontal operation. The fan inside of the supply is controlled by a microprocessor. The RPM of the fan is adjusted to ensure optimal supply cooling and is a function of output power and the inlet temperature. For the normal airflow version additional constraints apply because of the AC-connector. In a normal airflow unit, the hot air is exiting the power supply unit at the AC-inlet. The IEC connector on the unit is rated 105°C. If 70°C mating connector is used then end user must derated the input power to meet a maximum 70°C temperature at the front. **NOTE:** It is the responsibility of the user to check the front temperature in such cases. The unit is not limiting its power automatically to meet such a temperature limitation. ### 10. ELECTROMAGNETIC COMPATIBILITY ### **10.1 IMMUNITY** NOTE: Most of the immunity requirements are derived from EN 55024:1998/A2:2003. | PARAMETER | DESCRIPTION / CONDITION | CRITERION | |--------------------------------|--|---| | ESD Contact Discharge | IEC / EN 61000-4-2, ±8 kV, 25+25 discharges per test point (metallic case, LEDs, connector body) | А | | ESD Air Discharge | IEC / EN 61000-4-2, ±15 kV, 25+25 discharges per test point (non-metallic user accessible surfaces) | Α | | Radiated Electromagnetic Field | IEC / EN 61000-4-3, 10 V/m, 1 kHz/80% Amplitude Modulation, 1 µs Pulse Modulation, 10 kHz2 GHz | А | | Burst | IEC / EN 61000-4-4, level 3 AC port ±2 kV, 1 minute DC port ±1 kV, 1 minute | А | | Surge | IEC / EN 61000-4-5
Line to earth: level 3, ±2 kV
Line to line: level 2, ±1 kV | А | | RF Conducted Immunity | IEC/EN 61000-4-6, Level 3, 10 Vrms, CW, 0.15 80 MHz | Α | | Voltage Dips and Interruptions | IEC/EN 61000-4-11 1: Vi 230 V, 100% Load, Phase 0 °, Dip 100%, Duration 10 ms 2: Vi 230 V, 100% Load, Phase 0 °, Dip 100%, Duration 20 ms 3: Vi 230 V, 100% Load, Phase 0 °, Dip 100%, Duration >20 ms | A
V _{SB} : A, V ₁ : B
B | #### **10.2 EMISSION** | PARAMETER | DESCRIPTION / CONDITION | CRITERION | |---------------------|--|-----------| | Conducted Essission | EN 55032 / CISPR 32: 0.15 30 MHz, QP and AVG, single unit | Class A | | Conducted Emission | EN 55032 / CISPR 32: 0.15 30 MHz, QP and AVG, 2 units in rack system | Class A | | Dedicted Francisco | EN 55032 / CISPR 32: 30 MHz 1 GHz, QP, single unit | Class A | | Radiated Emission | EN 55032 / CISPR 32: 30 MHz 1 GHz, QP,
2 units in rack system | Class A | | Harmonic Emissions | IEC 61000-3-2, Vin = 115 VAC / 60 Hz, & Vin = 230 VAC / 50 Hz, 100% Load | Class A | | AC Flicker | IEC 61000-3-3, Vin = 230 VAC / 60 Hz, 100% Load | Pass | ### 11. SAFETY APPROVALS Maximum electric strength testing is performed in the factory according to IEC/EN 62368-1, and UL 62368-1. Input-to-output electric strength tests should not be repeated in the field. Bel Power Solutions will not honor any warranty claims resulting from electric strength field tests. | PARA | METER | DESCRIPTION / CONDITION | MIN | NOM | MAX | UNIT | |------------|--------------------------|--|----------|-----------------------------------|-----|------| | | Agency Approvals | UL 62368-1
CAN/CSA-C22.2 No. 62368-1
IEC 62368-1
EN 62368-1 | Approved | | | | | | Isolation Strength | Input (L/N) to case (PE) Input (L/N) to output Output to case (PE) | • | Basic
Reinforced
Functional | | | | d c | Creepage / Clearance | Primary (L/N) to protective earth (PE) Primary to secondary | | ccording to ety standard | | mm | | | Electrical Strength Test | Input to case Input to output Output and Signals to case | | ccording to ety standard | | kVAC | ## 12. ENVIRONMENTAL SPECIFICATIONS | PARAM | METER | DESCRIPTION / CONDITION | MIN | NOM | MAX | UNIT | |----------------|----------------------|---|-----|-----|------|------| | T _A | Ambient Temperature | V_{1min} to V_{1max} , I_{1nom} , I_{SBnom} below 1800 m Altitude | -5 | | +65 | °C | | | | (<1800 m, keep maximum operation temperature.
≥ 1800 m, decrease 1° C per 300 m) | | | | °C | | T_{Aext} | Extended Temp. Range | Derating output | +40 | | +65 | °C | | T_S | Storage Temperature | Non-operational | -40 | | +70 | °C | | | Altitude | Operational, above Sea Level, refer derating to Ta | - | | 3000 | m | | N a | Audible Noise | $V_{i \text{ nom}}$, 50% $I_{o \text{ nom}}$, $T_{A} = 25^{\circ}C$ | | 60 | | dBA | ## 13. MECHANICAL SPECIFICATIONS | PARA | AMETER | DESCRIPTION / CONDITION | MIN | NOM | MAX | UNIT | |------|------------|-------------------------|-----|-------|-----|------| | | | Width | | 54.5 | | | | | Dimensions | Height | | 40.0 | | mm | | | | Depth | | 228.6 | | | | М | Weight | | | 0.87 | | kg | ### PFS1200-12-054NAH, PFS1200-12-054RAH #### Input AC connector Anderson Power Products 2006G1-BK NOTE: A 3D step file of the power supply casing is available on request. Figure 22. Side View Figure 23. Top View Figure 24. Front and Rear View ### PFS1200-12-054NA, PFS1200-12-054RA ### C14 Type Input AC connector Rong Feng SS-120-1.0B-2.8BV or equivalent NOTE: A 3D step file of the power supply casing is available on request. Figure 25. Side View Figure 26. Side View Figure 27. Side View ### PFS1200-12-054NAC, PFS1200-12-054RAC ### C16 Type Input AC connector Rong Feng SS-120B-1.0-4.0Ad or equivalent NOTE: A 3D step file of the power supply casing is available on request. Figure 28. Side View Figure 29. Side View Figure 30. Side View ### 14. CONNECTIONS ### **14.1 AC INPUT CONNECTOR:** PFS1200-12-054NAH: **Power supplier connector:** ANDERSON POWER PRODUCTS 2006G1-BK **Mating connector:** Anderson Saf-D-Grid Power cord 2034KZ2 or equivalent, http://www.andersonpower.com/ PFS1200-12-054NA/RA: Power supplier connector: IEC320 C14 type PFS1200-12-054NAC/RAC: Power supplier connector: IEC320 C16 type ### **14.2 DC OUTPUT CONNECTOR:** Power Supply Connector: Tyco Electronics P/N 1926736-3 or FCI 101-22460-007LF (NOTE: Column 5 is recessed (short pins)) Mating Connector: Tyco Electronics P/N 2-1926739-5 or FCI 10108888-R10253SLF | Output 6, 7, 8, 9, 10 V1 +12 VDC main output 1, 2, 3, 4, 5 PGND Power ground (return) Control Pins A1 VSB Standby positive output B1 VSB Standby positive output C1 VSB Standby positive output D1 VSB Standby positive output A2 SGND Signal ground (VSB Return) B2 SGND Signal ground (VSB Return) B2 SGND Signal ground (VSB Return) C2 HOTSTANDBYEN_H Hot standby enable signal: active-high D2 VSB_SENSE_R VSB output negative sense E2 VSB_SENSE VSB output positive sense APS I²C address and protocol selection (select by a pull down resistor) B3 N/C Reserved C3 SDA I²C data signal line D3 V1_SENSE_R Main output positive sense E3 V1_SENSE Main output positive sense E4 SCL I²C clock signal line B4 PSON_L Power supply on input (connect to A2/B2 to turn unit on) | PIN | NAME | DESCRIPTION |
--|----------------|----------------|--| | 1, 2, 3, 4, 5 PGND Power ground (return) Control Pins A1 VSB Standby positive output B1 VSB Standby positive output C1 VSB Standby positive output D1 VSB Standby positive output E1 VSB Standby positive output E2 SGND Signal ground (VSB Return) B2 SGND Signal ground (VSB Return) B2 SGND Signal ground (VSB Return) C2 HOTSTANDBYEN_H Hot standby enable signal: active-high D2 VSB_SENSE_R VSB output negative sense E2 VSB_SENSE VSB output positive sense E3 N/C Reserved C3 SDA PC data signal line D3 V1_SENSE_R Main output negative sense E3 V1_SENSE Main output positive sense E4 SCL PC clock signal line B4 PSON_L Power supply on input (connect to A2/B2 to turn unit on): active-low C4 SMB_ALERT_L SMB Alert signal output: active-low D4 VSB_SEL1 VSB voltage selection (See section 8.9) E5 ISHARE Current share bus (lagging pin) C5 PWOK_H Power OK signal output: (lagging pin): active-high D5 VSB_SEL2 VSB voltage selection (See section 8.9) | Output | | | | Control Pins A1 VSB Standby positive output B1 VSB Standby positive output C1 VSB Standby positive output D1 VSB Standby positive output E1 VSB Standby positive output E1 VSB Standby positive output B2 SGND Signal ground (VSB Return) B3 SGND Signal ground (VSB Return) C2 HOTSTANDBYEN_H Hot standby enable signal: active-high D2 VSB_SENSE_R VSB output negative sense E2 VSB_SENSE VSB output positive sense E3 N/C Reserved C3 SDA PC address and protocol selection (select by a pull down resistor) B3 N/C Reserved C3 SDA PC address and protocol selection (select by a pull down resistor) B3 N/C Reserved C3 SDA PC address and protocol selection (select by a pull down resistor) B4 V1_SENSE_R Main output negative sense B5 V1_SENSE_R Main output negative sense B6 V1_SENSE_B Main output positive sense B7 C clock signal line B8 PSON_L Power supply on input (connect to A2/B2 to turn unit on): active-low C4 SMB_ALERT_L SMB Alert signal output: active-low D4 VSB_SEL1 VSB voltage selection (See section 8.9) B5 PSKILL_H Power supply kill (lagging pin): active-high D5 VSB_SEL2 VSB voltage selection (See section 8.9) | 6, 7, 8, 9, 10 | V1 | +12 VDC main output | | A1 VSB Standby positive output B1 VSB Standby positive output C1 VSB Standby positive output D1 VSB Standby positive output E1 VSB Standby positive output E1 VSB Standby positive output A2 SGND Signal ground (VSB Return) B2 SGND Signal ground (VSB Return) C2 HOTSTANDBYEN_H Hot standby enable signal: active-high D2 VSB_SENSE_R VSB output negative sense E2 VSB_SENSE VSB output positive sense A3 APS I²C address and protocol selection (select by a pull down resistor) B3 N/C Reserved C3 SDA I²C data signal line D3 V1_SENSE_R Main output negative sense E3 V1_SENSE Main output positive sense A4 SCL I²C clock signal line B4 PSON_L Power supply on input (connect to A2/B2 to turn unit on): active-low C4 SMB_ALERT_L SMB Alert signal output: active-low D4 VSB_SEL1 VSB voltage selection (See section 8.9) A5 PSKILL_H Power supply ill (lagging pin): active-high B5 ISHARE Current share bus (lagging pin): active-high D5 VSB_SEL2 VSB voltage selection (See section 8.9) | 1, 2, 3, 4, 5 | PGND | Power ground (return) | | B1 VSB Standby positive output C1 VSB Standby positive output D1 VSB Standby positive output E1 VSB Standby positive output A2 SGND Signal ground (VSB Return) B2 SGND Signal ground (VSB Return) C2 HOTSTANDBYEN_H Hot standby enable signal: active-high D2 VSB_SENSE_R VSB output positive sense E2 VSB_SENSE VSB output positive sense A3 APS I²C address and protocol selection (select by a pull down resistor) B3 N/C Reserved C3 SDA I²C data signal line D3 V1_SENSE_R Main output negative sense E3 V1_SENSE Main output positive sense A4 SCL I²C clock signal line B4 PSON_L Power supply on input (connect to A2/B2 to turn unit on): active-low C4 SMB_ALERT_L SMB Alert signal output: active-low D4 VSB_SEL1 VSB voltage selection (See section 8.9) E4 ACOK_H AC input OK signal output (lagging pin): active-high D5 VSB_SEL2 VSB voltage selection (See section 8.9) | Control Pins | | | | C1 VSB Standby positive output D1 VSB Standby positive output E1 VSB Standby positive output A2 SGND Signal ground (VSB Return) B2 SGND Signal ground (VSB Return) C2 HOTSTANDBYEN_H Hot standby enable signal: active-high D2 VSB_SENSE_R VSB output negative sense E2 VSB_SENSE VSB output positive sense A3 APS I²C address and protocol selection (select by a pull down resistor) B3 N/C Reserved C3 SDA I²C data signal line D3 V1_SENSE_R Main output negative sense E3 V1_SENSE Main output positive sense A4 SCL I²C clock signal line B4 PSON_L Power supply on input (connect to A2/B2 to turn unit on): active-low C4 SMB_ALERT_L SMB Alert signal output: active-low D4 VSB_SEL1 VSB voltage selection (See section 8.9) E4 ACOK_H AC input OK signal: active-high E5 ISHARE Current share bus (lagging pin): active-high D5 VSB_SEL2 VSB voltage selection (See section 8.9) | A1 | VSB | Standby positive output | | D1 VSB Standby positive output E1 VSB Standby positive output A2 SGND Signal ground (VSB Return) B2 SGND Signal ground (VSB Return) C2 HOTSTANDBYEN_H Hot standby enable signal: active-high D2 VSB_SENSE_R VSB output negative sense E2 VSB_SENSE VSB output positive sense A3 APS I²C address and protocol selection (select by a pull down resistor) B3 N/C Reserved C3 SDA I²C data signal line D3 V1_SENSE_R Main output negative sense E3 V1_SENSE Main output positive sense A4 SCL I²C clock signal line B4 PSON_L Power supply on input (connect to A2/B2 to turn unit on): active-low C4 SMB_ALERT_L SMB Alert signal output: active-low C5 SMB_ALERT_L SMB Alert signal output: active-low C6 SMB_ALERT_L SMB Alert signal output: active-high A5 PSKILL_H Power supply kill (lagging pin): active-high C5 PWOK_H Power OK signal output (lagging pin): active-high D5 VSB_SEL2 VSB voltage selection (See section 8.9) | B1 | VSB | Standby positive output | | E1 VSB Standby positive output A2 SGND Signal ground (VSB Return) B2 SGND Signal ground (VSB Return) C2 HOTSTANDBYEN_H Hot standby enable signal: active-high D2 VSB_SENSE_R VSB output negative sense E2 VSB_SENSE VSB output positive sense A3 APS I²C address and protocol selection (select by a pull down resistor) B3 N/C Reserved C3 SDA I²C data signal line D3 V1_SENSE_R Main output negative sense E3 V1_SENSE_R Main output positive sense A4 SCL I²C clock signal line B4 PSON_L Power supply on input (connect to A2/B2 to turn unit on): active-low C4 SMB_ALERT_L SMB Alert signal output: active-low D4 VSB_SEL1 VSB voltage selection (See section 8.9) E4 ACOK_H AC input OK signal: active-high B5 ISHARE Current share bus (lagging pin): active-high D5 VSB_SEL2 VSB voltage selection (See section 8.9) | C1 | VSB | Standby positive output | | SGND Signal ground (VSB Return) Signal ground (VSB Return) C2 HOTSTANDBYEN_H Hot standby enable signal: active-high D2 VSB_SENSE_R VSB output negative sense E2 VSB_SENSE VSB output positive sense A3 APS ²C address and protocol selection (select by a pull down resistor) B3 N/C Reserved C3 SDA ²C data signal line D3 V1_SENSE_R Main output negative sense E3 V1_SENSE Main output positive sense A4 SCL ²C clock signal line B4 PSON_L Power supply on input (connect to A2/B2 to turn unit on): active-low C4 SMB_ALERT_L SMB Alert signal output: active-low D4 VSB_SEL1 VSB voltage selection (See section 8.9) E4 ACOK_H AC input OK signal: active-high A5 PSKILL_H Power supply kill (lagging pin): active-high D5 VSB_SEL2 VSB voltage selection (See section 8.9) | D1 | VSB | Standby positive output | | B2 SGND Signal ground (VSB Return) C2 HOTSTANDBYEN_H Hot standby enable signal: active-high D2 VSB_SENSE_R VSB output negative sense E2 VSB_SENSE VSB output positive sense E3 APS I²C address and protocol selection (select by a pull down resistor) B3 N/C Reserved C3 SDA I²C data signal line D3 V1_SENSE_R Main output negative sense E3 V1_SENSE Main output positive sense E4 SCL I²C clock signal line B4 PSON_L Power supply on input (connect to A2/B2 to turn unit on): active-low C4 SMB_ALERT_L SMB Alert signal output: active-low D4 VSB_SEL1 VSB voltage selection (See section 8.9) E4 ACOK_H AC input OK signal: active-high D5 VSB_SEL2 VSB voltage selection (See section 8.9) VSB_SEL2 VSB voltage selection (See section 8.9) | E1 | VSB | Standby positive output | | C2 HOTSTANDBYEN_H Hot standby enable signal: active-high D2 VSB_SENSE_R VSB output negative sense E2 VSB_SENSE VSB output positive sense A3 APS I²C address and protocol selection (select by a pull down resistor) B3 N/C Reserved C3 SDA I²C data signal line D3 V1_SENSE_R Main output negative sense E3 V1_SENSE Main output positive sense E4 SCL I²C clock signal line B4 PSON_L Power supply on input (connect to A2/B2 to turn unit on): active-low C4 SMB_ALERT_L SMB Alert signal output:
active-low C4 SMB_ALERT_L SMB Alert signal output: active-low D4 VSB_SEL1 VSB voltage selection (See section 8.9) E4 ACOK_H AC input OK signal: active-high B5 ISHARE Current share bus (lagging pin): active-high D5 VSB_SEL2 VSB voltage selection (See section 8.9) | A2 | SGND | Signal ground (VSB Return) | | D2 VSB_SENSE_R VSB output negative sense E2 VSB_SENSE VSB output positive sense A3 APS I²C address and protocol selection (select by a pull down resistor) B3 N/C Reserved C3 SDA I²C data signal line D3 V1_SENSE_R Main output negative sense E3 V1_SENSE Main output positive sense A4 SCL I²C clock signal line B4 PSON_L Power supply on input (connect to A2/B2 to turn unit on): active-low C4 SMB_ALERT_L SMB Alert signal output: active-low D4 VSB_SEL1 VSB voltage selection (See section 8.9) E4 ACOK_H AC input OK signal: active-high B5 ISHARE Current share bus (lagging pin): active-high C5 PWOK_H Power OK signal output (lagging pin): active-high D5 VSB_SEL2 VSB voltage selection (See section 8.9) | B2 | SGND | Signal ground (VSB Return) | | E2 VSB_SENSE VSB output positive sense A3 APS I²C address and protocol selection (select by a pull down resistor) B3 N/C Reserved C3 SDA I²C data signal line D3 V1_SENSE_R Main output negative sense E3 V1_SENSE Main output positive sense A4 SCL I²C clock signal line B4 PSON_L Power supply on input (connect to A2/B2 to turn unit on): active-low C4 SMB_ALERT_L SMB Alert signal output: active-low C4 SMB_SEL1 VSB voltage selection (See section 8.9) E4 ACOK_H AC input OK signal: active-high A5 PSKILL_H Power supply kill (lagging pin): active-high B5 ISHARE Current share bus (lagging pin): active-high C5 PWOK_H Power OK signal output (lagging pin): active-high D5 VSB_SEL2 VSB voltage selection (See section 8.9) | C2 | HOTSTANDBYEN_H | Hot standby enable signal: active-high | | A3 APS I²C address and protocol selection (select by a pull down resistor) B3 N/C Reserved C3 SDA I²C data signal line D3 V1_SENSE_R Main output negative sense E3 V1_SENSE Main output positive sense A4 SCL I²C clock signal line B4 PSON_L Power supply on input (connect to A2/B2 to turn unit on): active-low C4 SMB_ALERT_L SMB Alert signal output: active-low D4 VSB_SEL1 VSB voltage selection (See section 8.9) E4 ACOK_H AC input OK signal: active-high A5 PSKILL_H Power supply kill (lagging pin): active-high B5 ISHARE Current share bus (lagging pin): active-high C5 PWOK_H Power OK signal output (lagging pin): active-high D5 VSB_SEL2 VSB voltage selection (See section 8.9) | D2 | VSB_SENSE_R | VSB output negative sense | | B3 N/C Reserved C3 SDA I²C data signal line D3 V1_SENSE_R Main output negative sense E3 V1_SENSE Main output positive sense A4 SCL I²C clock signal line B4 PSON_L Power supply on input (connect to A2/B2 to turn unit on): active-low C4 SMB_ALERT_L SMB Alert signal output: active-low D4 VSB_SEL1 VSB voltage selection (See section 8.9) E4 ACOK_H AC input OK signal: active-high A5 PSKILL_H Power supply kill (lagging pin): active-high B5 ISHARE Current share bus (lagging pin): active-high C5 PWOK_H Power OK signal output (lagging pin): active-high D5 VSB_SEL2 VSB voltage selection (See section 8.9) | E2 | VSB_SENSE | VSB output positive sense | | C3 SDA I²C data signal line D3 V1_SENSE_R Main output negative sense E3 V1_SENSE Main output positive sense A4 SCL I²C clock signal line B4 PSON_L Power supply on input (connect to A2/B2 to turn unit on): active-low C4 SMB_ALERT_L SMB Alert signal output: active-low D4 VSB_SEL1 VSB voltage selection (See section 8.9) E4 ACOK_H AC input OK signal: active-high A5 PSKILL_H Power supply kill (lagging pin): active-high B5 ISHARE Current share bus (lagging pin): active-high C5 PWOK_H Power OK signal output (lagging pin): active-high D5 VSB_SEL2 VSB voltage selection (See section 8.9) | A3 | APS | I ² C address and protocol selection (select by a pull down resistor) | | D3 V1_SENSE_R Main output negative sense E3 V1_SENSE Main output positive sense A4 SCL I²C clock signal line B4 PSON_L Power supply on input (connect to A2/B2 to turn unit on): active-low C4 SMB_ALERT_L SMB Alert signal output: active-low D4 VSB_SEL1 VSB voltage selection (See section 8.9) E4 ACOK_H AC input OK signal: active-high A5 PSKILL_H Power supply kill (lagging pin): active-high B5 ISHARE Current share bus (lagging pin): active-high C5 PWOK_H Power OK signal output (lagging pin): active-high D5 VSB_SEL2 VSB voltage selection (See section 8.9) | B3 | N/C | Reserved | | E3 V1_SENSE Main output positive sense A4 SCL I²C clock signal line B4 PSON_L Power supply on input (connect to A2/B2 to turn unit on): active-low C4 SMB_ALERT_L SMB Alert signal output: active-low D4 VSB_SEL1 VSB voltage selection (See section 8.9) E4 ACOK_H AC input OK signal: active-high A5 PSKILL_H Power supply kill (lagging pin): active-high B5 ISHARE Current share bus (lagging pin): active-high C5 PWOK_H Power OK signal output (lagging pin): active-high D5 VSB_SEL2 VSB voltage selection (See section 8.9) | C3 | SDA | I ² C data signal line | | A4 SCL I²C clock signal line B4 PSON_L Power supply on input (connect to A2/B2 to turn unit on): active-low C4 SMB_ALERT_L SMB Alert signal output: active-low D4 VSB_SEL1 VSB voltage selection (See section 8.9) E4 ACOK_H AC input OK signal: active-high A5 PSKILL_H Power supply kill (lagging pin): active-high B5 ISHARE Current share bus (lagging pin): active-high C5 PWOK_H Power OK signal output (lagging pin): active-high D5 VSB_SEL2 VSB voltage selection (See section 8.9) | D3 | V1_SENSE_R | Main output negative sense | | B4 PSON_L Power supply on input (connect to A2/B2 to turn unit on): active-low C4 SMB_ALERT_L SMB Alert signal output: active-low D4 VSB_SEL1 VSB voltage selection (See section 8.9) E4 ACOK_H AC input OK signal: active-high A5 PSKILL_H Power supply kill (lagging pin): active-high B5 ISHARE Current share bus (lagging pin): active-high C5 PWOK_H Power OK signal output (lagging pin): active-high D5 VSB_SEL2 VSB voltage selection (See section 8.9) | E3 | V1_SENSE | Main output positive sense | | C4 SMB_ALERT_L SMB Alert signal output: active-low D4 VSB_SEL1 VSB voltage selection (See section 8.9) E4 ACOK_H AC input OK signal: active-high A5 PSKILL_H Power supply kill (lagging pin): active-high B5 ISHARE Current share bus (lagging pin) C5 PWOK_H Power OK signal output (lagging pin): active-high D5 VSB_SEL2 VSB voltage selection (See section 8.9) | A4 | SCL | I ² C clock signal line | | D4 VSB_SEL1 VSB voltage selection (See section 8.9) E4 ACOK_H AC input OK signal: active-high A5 PSKILL_H Power supply kill (lagging pin): active-high B5 ISHARE Current share bus (lagging pin) C5 PWOK_H Power OK signal output (lagging pin): active-high D5 VSB_SEL2 VSB voltage selection (See section 8.9) | B4 | PSON_L | Power supply on input (connect to A2/B2 to turn unit on): active-low | | E4 ACOK_H AC input OK signal: active-high A5 PSKILL_H Power supply kill (lagging pin): active-high B5 ISHARE Current share bus (lagging pin) C5 PWOK_H Power OK signal output (lagging pin): active-high D5 VSB_SEL2 VSB voltage selection (See section 8.9) | C4 | SMB_ALERT_L | SMB Alert signal output: active-low | | A5 PSKILL_H Power supply kill (lagging pin): active-high B5 ISHARE Current share bus (lagging pin) C5 PWOK_H Power OK signal output (lagging pin): active-high D5 VSB_SEL2 VSB voltage selection (See section 8.9) | D4 | VSB_SEL1 | VSB voltage selection (See section 8.9) | | B5 ISHARE Current share bus (lagging pin) C5 PWOK_H Power OK signal output (lagging pin): active-high D5 VSB_SEL2 VSB voltage selection (See section 8.9) | E4 | ACOK_H | AC input OK signal: active-high | | C5 PWOK_H Power OK signal output (lagging pin): active-high D5 VSB_SEL2 VSB voltage selection (See section 8.9) | A 5 | PSKILL_H | Power supply kill (lagging pin): active-high | | D5 VSB_SEL2 VSB voltage selection (See section 8.9) | B5 | ISHARE | Current share bus (lagging pin) | | | C5 | PWOK_H | Power OK signal output (lagging pin): active-high | | FF DDFOFNT I Down your house and the policy of the last | D5 | VSB_SEL2 | VSB voltage selection (See section 8.9) | | ES PRESENT_L Power supply present (lagging pin): active-low | E5 | PRESENT_L | Power supply present (lagging pin): active-low | ## **15. ACCESSORIES** | ITEM | DESCRIPTION | ORDERING PART
NUMBER | SOURCE | | |------|---|-------------------------|-----------------------------|--| | | Bel Power Solutions I ² C Utility Windows XP/Vista/7 compatible GUI to program, control and monitor PFS Front-Ends (and other I ² C units) | N/A | belfuse.com/power-solutions | | | | Dual Connector Board Connector board to operate 2 PFS units in parallel. Includes an on-board USB to I ² C converter (use <i>Bel Power Solutions FC Utility</i> as desktop software). | YTM.G2Q01.0 | belfuse.com/power-solutions | | ### **16. REVISION HISTORY** | DATE | REVISION | CHANGE | PREPARED
BY | APPROVED
BY | ECO / MCO
REF. NO. | |------------|----------|--|----------------|----------------|-----------------------| | 2019/10/21 | 1 | Initial release | Mike Chen | Mike Chen | C92902 | | 2019/10/21 | 2 | General update throughout the whole datasheet | Steven Ling | Mike Chen | C96518 | | 2019/11/28 | 3 | AC input change to max 305V | Steven Ling | Mike Chen | | | 2019/10/21 | 3 | Update output derating curve | Steven Ling | BJ Zeng | | | 2020/10/26 | 3 | Add project PFS1200-12-054NA/RA/NAC/RAC and the mechanical drawing | Chad Cai | BJ Zeng | | | 2020/11/27 | 3 | Update Figure 6b Ambient derating curve | Steven Ling | BJ Zeng | | | 2021/03/16 | Α | Upgrade to revision A | Steven Ling | BJ Zeng | CO111131 | | 2021/04/15 | В | Current Sharing from ±5% to ±3A | Steven Ling | BJ Zeng | CO112402 | | 2021/09/16 | С | Change VSB VOLTAGE
SELECTION Logic | Steven Ling | BJ Zeng | CO115336 | | 2023/04/14 | D | Update front LEDs status
Change format of some text | Xiaogang Luo | Gang Wang | CO127295 | ### For more information on these products consult: tech.support@psbel.com **NUCLEAR AND MEDICAL APPLICATIONS** - Products are not designed or intended for use as critical components in life support systems, equipment used in hazardous environments, or nuclear control systems. **TECHNICAL REVISIONS** - The appearance of products, including safety agency certifications pictured on labels, may change depending on the date manufactured. Specifications are subject to change without notice.