

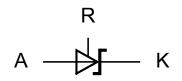
Features

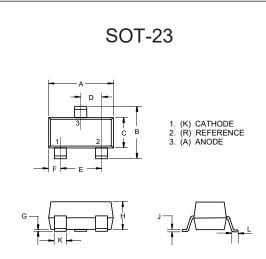
- The Reference Input Voltage Tolerance is 0.4%
- Programmable Output Voltage 36V
- · Low Output Noise Voltage and Fast Turn On Response
- Epoxy Meets UL 94 V-0 Flammability Rating
- · Moisture Sensitivity Level 1
- Halogen Free. "Green" Device (Note 1)
- Lead Free Finish/RoHS Compliant ("P" Suffix designates RoHS Compliant. See ordering information)

Programmable Precision Regulator

Maximum Ratings

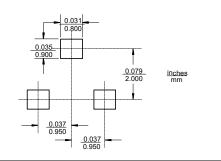
Parameter	Symbol	Value	Unit
Cathode Voltage	V _{KA}	37	V
Cathode Current Range	I _K	100	mA
Reference Input Current Range	I _{REF}	10	mA
Power Dissipation at 25 °C	P _D	0.35	W
Thermal Resistance Junction to Ambient	$R_{\theta JA}$	357	°C/W
Operating Temperature	T_{opr}	-40~125	°C
Storage Temperature Range	T _{STG}	-65~150	°C

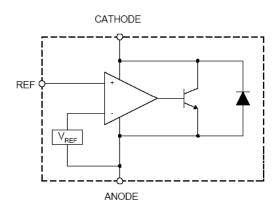

Recommended Operating Conditions


Parameter	Symbol	Min	Max	Unit
Cathode Voltage	V _{KA}	V_{REF}	36	V
Cathode Current Range	I _K	1.0	50	mA

Note:

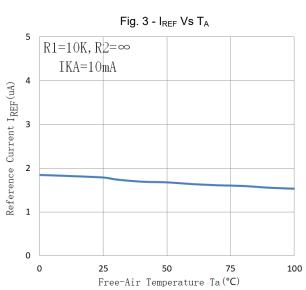
1. Halogen free "Green" products are defined as those which contain <900ppm bromine, <900ppm chlorine (<1500ppm total Br + Cl) and <1000ppm antimony compounds.

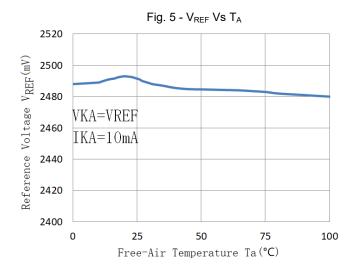

Marking Code: 431Q

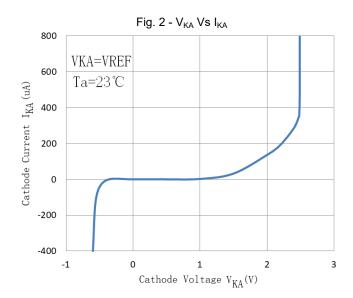

DIMENSIONS					
DIM INCHES		MM		NOTE	
DIIVI	MIN	MAX	MIN	MAX	NOTE
Α	0.110	0.120	2.80	3.04	
В	0.083	0.104	2.10	2.64	
С	0.047	0.055	1.20	1.40	
D	0.034	0.041	0.85	1.05	
E	0.067	0.083	1.70	2.10	
F	0.018	0.024	0.45	0.60	
G	0.0004	0.006	0.01	0.15	
Н	0.035	0.043	0.90	1.10	
J	0.003	0.007	0.08	0.18	
K	0.012	0.020	0.30	0.51	
L	0.007	0.020	0.20	0.50	

Suggested Solder Pad Layout

Functional Block Diagram


Electrical Characteristics @ 25°C (Unless Otherwise Specified)


Parameter	Symbol	Test Conditions	Min	Тур	Max	Unit
Reference output Voltage	V_{ref}	V _{KA} =V _{REF} , I _{KA} =10mA	2.485	2.495	2.505	V
Deviation of Reference Input Voltage	△V _{ref} / △T	$V_{KA}=V_{REF}$, $I_{KA}=10$ mA $T_A=0\sim70$ °C		-0.25		mV/°C
Ratio of Change in Reference Input	∆V _{ref} /	△V _{KA} =10V~V _{ref}		-4.7		ma\ //\ /
Voltage to the Change in Cathode Voltage	$\triangle V_{KA}$	△V _{KA} =36V~10V		-3.0		mV/V
Reference Input Current	I _{ref}	I_{KA} =10mA, R ₁ =10KΩ , R ₂ =∞		1.5	4.0	μA
Deviation of Reference Input Current Over Full Temperature Range	△I _{ref} / △T	I_{KA} =10mA, R_1 =10KΩ , R_2 = ∞ T_A =0~70°C		-3		nA/°C
Minimum Cathode Current for Regulation	I _{KA(min)}			0.4	1.0	mA
Off-State Cathode Current	I _{KA(off)}	V_{KA} =36V, V_{REF} =0V		0.1	1.0	μA
Dynamic Impedance	Z _{KA}	V _{KA} =V _{REF} ,I _{KA} =1~100mA,f≤1.0KHz		0.2	0.5	Ω



Curve Characteristics

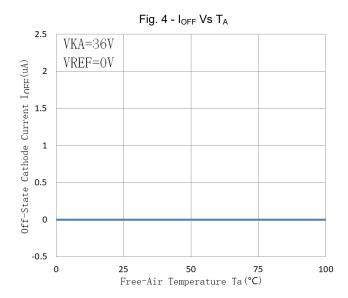


Figure 1. Test Circuit for $V_{KA} = V_{ref}$

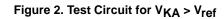
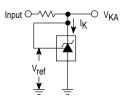
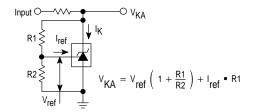
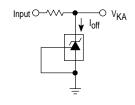
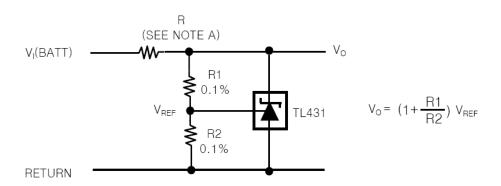
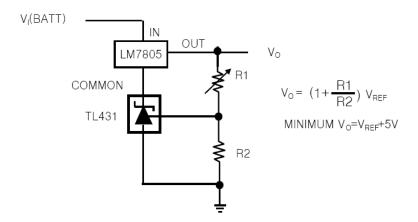
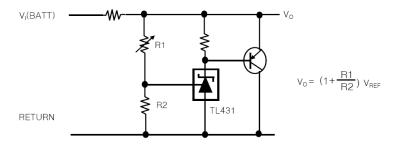





Figure 3. Test Circuit for Ioff

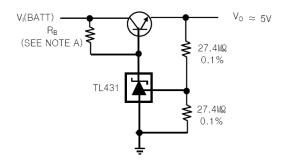



APPICATION INFORMATION

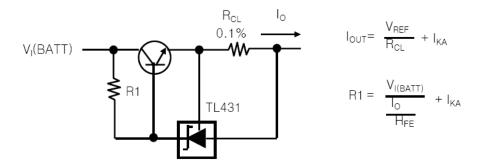
1. Shunt Regulator


Note A : R Should provide cathode current 1mA to the TL431 at minimum $V_{\text{I(BATT)}}$

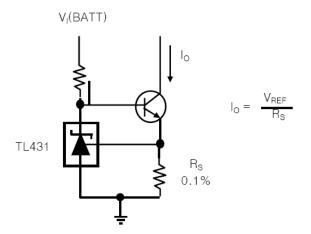
2. Output Control of a Three-Terminal Fixed Regulator



3. High-Current Shunt Regulator



NOTE A: R_B Should provide cathode current≥1mA to the TL431.


4. Efficient 5-V Precision Regulator

5. Precision Current Limiter

6. Precision Constant-Current Sink

Ordering Information

Device	Packing		
Part Number-TP	Tape&Reel: 3Kpcs/Reel		

IMPORTANT NOTICE

Micro Commercial Components Corp. reserves the right to make changes without further notice to any product herein to make corrections, modifications, enhancements, improvements, or other changes. **Micro Commercial Components Corp**. does not assume any liability arising out of the application or use of any product described herein; neither does it convey any license under its patent rights, nor the rights of others. The user of products in such applications shall assume all risks of such use and will agree to hold **Micro Commercial Components Corp**, and all the companies whose products are represented on our website, harmless against all damages. **Micro Commercial Components Corp**, products are sold subject to the general terms and conditions of commercial sale, as published at

https://www.mccsemi.com/Home/TermsAndConditions.

LIFE SUPPORT

MCC's products are not authorized for use as critical components in life support devices or systems without the express written approval of Micro Commercial Components Corporation.

CUSTOMER AWARENESS

Counterfeiting of semiconductor parts is a growing problem in the industry. Micro Commercial Components (MCC) is taking strong measures to protect ourselves and our customers from the proliferation of counterfeit parts. MCC strongly encourages customers to purchase MCC parts either directly from MCC or from Authorized MCC Distributors who are listed by country on our web page cited below. Products customers buy either from MCC directly or from Authorized MCC Distributors are genuine parts, have full traceability, meet MCC's quality standards for handling and storage. MCC will not provide any warranty coverage or other assistance for parts bought from Unauthorized Sources. MCC is committed to combat this global problem and encourage our customers to do their part in stopping this practice by buying direct or from authorized distributors.