COMPONENT SPECIFICATION

M402 SERIES CONNECTORS

MAY 2009

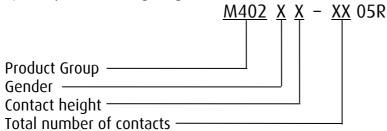
CC	N	TE	N	T	S	•
----	---	----	---	---	---	---

SECTION	SECTION TITLE			
1	Description of Connector and Intended Application	2		
2	Marking of the Connector and/or Package	2		
3	Ratings	2		
Appendix 1	Test Methods and Performance – M402	4		
Appendix 2	Test Methods and Performance – M402V	7		
Appendix 3	Handling Advice	10		

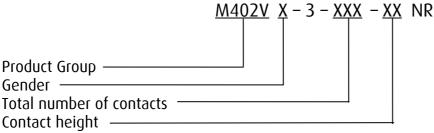
<u>ISSUE</u> 01

<u>C/NOTE</u> <u>DATE</u> ---- 15.05.09

COMPONENT SPECIFICATION M402 SERIES CONNECTORS


1. DESCRIPTION OF CONNECTOR AND INTENDED APPLICATION.

A selection of 0.50mm pitch connectors, comprising surface mount vertical headers sockets for parallel board-to-board applications. The connectors extend to 100 contacts, and can supply variable mating heights from 1.50mm up to 17.50mm.


2. MARKING OF THE CONNECTOR AND/OR PACKAGE (ORDER CODE).

The marking (order code) shall appear on the package and shall be of the following styles:

a) Low profile mating height connectors – 1.50mm, 2.00mm, 2.50mm

b) Variable height mating height connectors – 2.00mm to 17.50mm

For height detail and connector availability, please consult the latest technical drawing.

The batch code and quantity shall also appear on the package

3. RATINGS.

3.1. MATERIAL & FINISH.

Materials:	
M402 Mouldings	LCP, UL94V-0
M402V Mouldings	
Contacts	
Finish:	•
M402 Contacts	Gold over Nickel
M402V contacts	1.3um Tin over 2.5-4um Nickel

3. RATINGS (CONTINUED).

3.2.	ELECTRICAL CHARACTERISTICS.	
	Current rating	0.5A max
	Voltage rating	
	Contact resistance (initial):	
	, ,	90mΩ max
		50mΩ max
	Contact resistance (after conditioning):	
		150mΩ max
		70mΩ max
		XDIII 22III0X
	Insulation resistance:	1 000110
		1,000MΩ max
		100MΩ max
	Dielectric Withstanding Voltage:	
		150V AC rms for 1 minute
	M402V	200V AC rms for 1 minute
3.3.	ENVIRONMENTAL CHARACTERISTICS.	
3.3.	Temperature Range:	
		40°C to +105°C (96 hours)
	Vibration:	40 C to +65 C (96 Hours)
		1011z to FFIIz over 1 Fmm duration (hours
		10Hz to 55Hz over 1.5mm, duration 6 hours
	Solderability:	245±5°C for 3±0.5 seconds
		245±3 € 101 3±0.5 seconds
		235±3 € 101 5±0.3 5€€01105
	Resistance to Soldering Heat:	245±5°C for 60±3 seconds
		245±3 € 101 60±3 Seconds
		200±3 € 101 10±0.3 Seconds
	Humidity:	00 00% DIL 40+2% for 120 hours
		90-95% RH, 40±3°C for 120 hours
		90-95% RH, 40±2°C for 96 hours
	Salt spray:	
		5% for 24 hours
	M402V	5% for 48 hours
3.4.	MECHANICAL CHARACTERISTICS.	
•	Durability	50 cvcles
	Contact retention in moulding:	
	<u> </u>	1.0N min
		4.9N min
	Insertion force per contact:	
		1.0N max
		0.9N max
	Withdrawal force per contact:	
	•	0.06N min
		0.1N min
	: ₹ 1 T ✓ ← ₹ · · · · · · · · · · · · · · · · · ·	

APPENDIX 1 - TEST METHODS AND PERFORMANCE - M402.

A1.1. APPEARANCE.

A1.1.1. Examination of Product.

Requirement: Product shall conform to the requirements of the applicable product drawing

and application specification.

Procedure: Visually, dimensionally and functionally inspected per applicable inspection

plan.

A1.2. ELECTRICAL.

A1.2.1. Contact Resistance (low level).

Requirement: $90m\Omega$ max.

Procedure: The socket and plug were mated. Low-level current was applied and

resistance measurements were taken.

Test Method: EIA-RS-364-23A

A1.2.2. Insulation Resistance.

Requirement: $1,000M\Omega$ min.

Procedure: Measurements taken of insulation resistance on unmated connectors. A

potential of 500V DC was applied between all contacts.

Test Method: EIA-RS-364-21A

A1.2.3. Dielectric Withstanding Voltage.

Requirement: 150V AC_{rms} for 60 seconds – no damage must be apparent.

Procedure: The potential was applied between adjacent contacts of the connector for 60

seconds.

Test Method: EIA-RS-364-20A

A1.3. MECHANICAL.

A1.3.1. Durability.

Requirement: No evidence of physical damage. Contact resistance at end of test = $150m\Omega$

max.

Procedure: Mate and unmate samples for 50 cycles, at maximum rate of 200 cycles per

hour.

Test Method: EIA-RS-364-09A

A1.3.2. Contact Retention Force.

Requirement: 100qf min per pin.

Procedure: A force applied along the axial direction as the contact is pulled at the speed

rate of 25±3mm per minute.

Test Method: EIA-RS-364-29A

A1.3.3. Mating Force.

Requirement: 100gf max per pin – see table below.

Procedure: Measure force necessary to mate printed circuit board to samples using free

floating fixtures at maximum rate of 25±3mm per minute.

Test Method: EIA-RS-364-13A

APPENDIX 1 - TEST METHODS AND PERFORMANCE - M402 (continued).

A1.3. MECHANICAL (continued).

A1.3.4. Unmating Force.

Requirement: 6qf min per pin – see table below.

Procedure: Measure force necessary to unmate printed circuit board to samples using

free floating fixtures at maximum rate of 25±3mm per minute.

Test Method: EIA-RS-364-13A

Number of	Ма	ting force (k		Unmating force (kgf)				
contacts	1 st	6 th	30 th	1 st	6 th	30 th		
10	1.00	1.10	1.10	0.06	0.050	0.050		
12	1.20	1.30	1.30	0.072	0.065	0.065		
14	1.40	1.50	1.50	0.084	0.075	0.075		
16	1.60	1.70	1.70	0.096	0.085	0.085		
20	2.00	2.10	2.10	0.120	0.110	0.110		
22	2.20	2.30	2.30	0.132	0.120	0.120		
24	2.40	2.50	2.50	0.144	0.135	0.135		
30	3.00	3.10	3.10	0.180	0.170	0.170		
34	3.40	3.50	3.50	0.204	0.195	0.195		
40	4.00	4.10	4.10	0.240	0.230	0.230		
50	5.00	5.10	5.10	0.300	0.290	0.290		
60	6.00	6.10	6.10	0.360	0.350	0.350		
70	7.00	7.10	7.10	0.420	0.400	0.400		
80	8.00	8.10	8.10	0.480	0.470	0.470		
90	9.00	9.10	9.10	0.540	0.530	0.530		
100	10.00	10.10	10.10	0.600	0.590	0.590		

A1.4. ENVIRONMENTAL.

A1.4.1. Solderability.

Requirement: More than 95% of the solderable area shall be covered with solder – no

damage must be apparent.

Procedure: After 5-10 seconds deep flux. Subject the connector lead to solder bath (63%)

Sn) at $+245\pm5^{\circ}$ C for 3 ± 0.5 seconds.

Test Method: MIL-STD-202F, Method 208

A1.4.2. Resistance to Solder Heat.

Requirement: No evidence of defect on surface.

Procedure: The specimens shall be placed in a chamber and subjected to a temperature

of +245±5°C for 60±3 seconds, then placed in ambient temperature for more

than 10 minutes.

Test Method: EIA-RS-364-56

A1.4.3. Thermal Shock Resistance.

Requirement: No damage, contact resistance = $150m\Omega$ max, insulation resistance = $100M\Omega$

min.

Procedure: Connector shall be subjected to 5 cycles under the following conditions: -40°C

+0/-3°C for 30 minutes; +25°C +10/-5°C for 5 minutes max; +105°C +3/-0°C for 30 minutes; +25°C +10/-5°C for 5 minutes max. Then contact resistance

and insulation resistance shall be measured.

Test Method: EIA-RS-364-56

APPENDIX 1 - TEST METHODS AND PERFORMANCE - M402 (continued).

A1.4. ENVIRONMENTAL (continued).

A1.4.4. Hydrogen Sulphide (H₂S) Resistance.

Requirement: No damage, contact resistance = $150m\Omega$ max.

Procedure: Bath temperature = $+40\pm2^{\circ}$ C, gas concentration = 3 ± 1 ppm, humidity = 75-

80% RH, duration = 48 hours.

A1.4.5. Temperature Life (Heat Ageing).

Requirement: No damage, contact resistance = $180 \text{m}\Omega$ max.

Procedure: The specimens shall be subjected to a temperature of +105±2°C for 96 hours,

and then placed in ambient temperature for more than 3 hours.

Test Method: MIL-STD-1344A, Method 1005.1.

A1.4.6. Resistance to Cold.

Requirement: No damage, contact resistance = $180 \text{m}\Omega$ max.

Procedure: The specimens shall be subjected to a temperature of -55±2°C for 96 hours,

and then placed in ambient temperature for more than 3 hours.

Test Method: MIL-STD-1344A, Method 1005.1.

A1.4.7. Humidity.

Requirement: No damage, contact resistance = $180 \text{m}\Omega$ max.

Procedure: The specimens shall be placed in a chamber and subjected to a relative

humidity of 90-95% and a temperature of +40±5°C for 120 hours, then placed

in ambient temperature for more than 1 hour.

Test Method: EIA-RS-364-31A

A1.4.8. Salt Spray.

Requirement: No damage, contact resistance = $180 \text{m}\Omega$ max.

Procedure: The specimens shall be subjected to a salt water spray (concentration = 5%)

at a temperature of +35±2°C for 24 hours, then placed in ambient

temperature for more than 1 hour.

Test Method: EIA-RS-364-26A

APPENDIX 2 - TEST METHODS AND PERFORMANCE -M402V.

A2.1. TEST SEQUENCE AND GROUPING.

Test		Test Group										
		Α	В	C	D	E	F	G	Н	ı	J	K
1	Examination of product	1, 9	1, 9	1, 5	1, 5	1, 5	1, 4	1, 5	1, 3	1, 3	1, 5	
	Contact Resistance	2, 6	2, 5	2, 4	2, 4	2, 4		2, 4			2, 4	
	Insulation Resistance	3, 7										
	Dielectric Withstanding Voltage	4, 8										
5	Insertion and Withdrawal Force		3									
6	Contact Retention Force											1
7	Durability		4									
8	Vibration			3								
9	Heat Resistance				3							
10	Cold Resistance					3						
	Humidity		5									
12	Solderability						3		2			
13	Resistance to Soldering Heat									2		
	Steam Ageing						2					
	Salt Spray							3				
16	Temperature Cycling										3	

A2.2. ELECTRICAL.

A2.2.1. Contact Resistance.

Requirement: $50m\Omega$ max Current: 100mA max Voltage: 20mV max

Test Method: MIL-STD-202F, Method 303

A2.2.2. Insulation Resistance.

Requirement: $500M\Omega$ min (initial), $100M\Omega$ min (after conditioning)

Voltage: 100V AC Duration: 1 minute

Test Method: MIL-STD-202, Method 302

A2.2.3. Dielectric Withstanding Voltage.

Requirement: No breakdown

Voltage: 200V AC Duration: 1 minute

Test Method: MIL-STD-202, Method 301

A2.3. MECHANICAL.

A2.3.1. Insertion and Withdrawal Forces.

Requirement: Insertion force = 90qf max per pin, Withdrawal force = 10qf min per pin

Speed: 25±3mm per minute

Test Method: MIL-STD-1344A, Method 2016

A2.3.2. Contact Retention Force.

Requirement: 500gf min per pin.
Speed: 25±3mm per minute

APPENDIX 2 - TEST METHODS AND PERFORMANCE -M402V (continued).

A2.3. MECHANICAL (continued).

A2.3.3. Durability.

Requirement: Contact resistance (initial) = $50m\Omega$ max, contact resistance (after

conditioning) = $70m\Omega$ max

Procedure: The contacts of the connector are subjected to 50 cycles of mating and

unmating.

A2.4. ENVIRONMENTAL.

A2.4.1. Vibration.

Requirement: No damage, contact resistance = $70m\Omega$ max, discontinuity = 1μ s max

Amplitude: 1.5mm

Frequency: 10 to 55 to 10Hz in 1 minute

Duration: 2 hours in each X, Y and Z axis, 6 hours total

Current: 100mA

Test Method: MIL-STD-202F, Method 201

A2.4.2. Heat Resistance.

Requirement: No damage, contact resistance = $70m\Omega$ max

Temperature: +80±2°C Duration: 96 hours

Test Method: MIL-STD-202, Method 108

A2.4.3. Cold Resistance.

Requirement: No damage, contact resistance = $70m\Omega$ max

Temperature: -40±2°C
Duration: 96 hours
Test Method: JIS C60068-2-1

A2.4.4. Humidity.

Requirement: No damage, contact resistance = $70m\Omega$ max, insulation resistance = $100M\Omega$

min, dielectric withstanding voltage as B.2.3.

Temperature: +40±2°C

Relative Humidity: 90-95%

Duration: 96 hours

Test Method: MIL-STD-202F, Method 103

A2.4.5. Solderability.

Requirement: Solder Flux, 95% of immersed area must show no voids or pin holes

Solder Time: 3±0.5 seconds Solder Temperature: +235±5°C

Test Method: MIL-STD-202F, Method 208

A2.4.6. Resistance to Solder Heat.

Requirement: No damage Solder Time: 10±0.5 seconds Solder Temperature: +260±5°C

Test Method: MIL-STD-202F, Method 210A

APPENDIX 2 - TEST METHODS AND PERFORMANCE -M402V (continued).

A2.4. ENVIRONMENTAL (continued).

A2.4.7. Steam Ageing.

Requirement: No damage, Solder Flux, 95% of immersed area must show no voids or pin

holes

Steam Ageing Temperature: +98±2°C

Duration: 8 hours

Solder Temperature: +235±5°C Solder Time: 3±0.5 seconds

Test Method: MIL-STD-202F, Method 208

A2.4.8. Salt Spray.

Requirement: No damage, contact resistance = $70m\Omega$ max

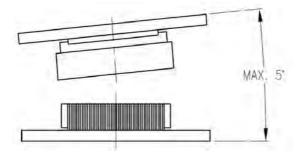
Chamber Temperature: +35±2°C Air Tank Temperature: +47±1°C

Salt Solution: 5±0.5% Duration: 48 hours

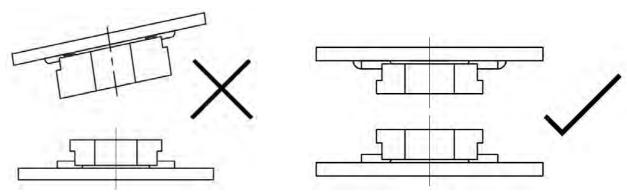
Test Method: MIL-STD-202F, Method 101D

A2.4.9. Temperature Cycling.

Requirement: No damage, contact resistance = $70m\Omega$ max


Procedure: 5 cycles of: -55±3°C for 30 minutes; +25±3°C for 30 minutes; +85±2°C for 30

minutes


Test Method: JIS C0025

APPENDIX 3 - HANDLING ADVICE.

- a) Under all possible conditions, connectors should be mated or unmated parallel to the mating connector.
- b) During mating, please do not exert heavy force if you encounter resistance. Both halves should be guided during mating.
- c) Mating done obliquely should only be carried out at a maximum of 5°:

d) When unmating, please do not separate connectors at a slanted position. The connectors should be separated parallel to each other:

