

FEATURES

- UL60950 recognised
- Wide temperature performance at full 1 watt load, -40°C to 85°C
- Single & dual outputs
- SIP package style
- 5.2kVDC isolation 'Hi Pot Test'
- 3V, 5V & 12V inputs
- 3V, 5V, 9V, 12V & 15V outputs
- Internal SMD construction
- Pin compatible with the CRV1, NMV, MEV1, MMV1, MEJ1 series SIP DC-DC converters
- MTTF up to 13 million hours
- Custom solutions available

PRODUCT OVERVIEW

The NMJ series are dual and single output DC-DC converters in a 7 pin SIP package style offering pin and functionality compatibility with the NMV series SIP DC-DC converters. The NMJ series is UL60950 recognised and suitable for applications where safety and miniaturisation are of paramount importance. Isolation barrier approved for supplementary/reinforced insulation - see page 3.

NMJ Series

5.2kVDC Isolated 1W DC-DC Converters

SELECTION GUI	DE						
Order Code	Nominal Input Voltage	Output Voltage	Output Current	Ripple & Noise ²	Efficiency (Min.)	Isolation Capacitance	MTTF ¹
	V	V	mA	mV p-p	%	pF	kHrs
NMJ0505SC	5	±5	±100	40	60	3.0	4950
NMJ0509SC	5	±9	±55	30	64	3.0	3832
NMJ0512SC	5	±12	±42	20	65	3.0	2770
NMJ0515SC	5	±15	±33	20	65	3.0	1903
NMJ1205SC	12	±5	±100	40	60	3.0	3688
NMJ1209SC	12	±9	±55	30	65	3.0	3029
NMJ1212SC	12	±12	±42	20	65	3.0	2324
NMJ1215SC	12	±15	±33	20	65	3.0	1682
NMJ0303SAC	3.3	3.3	303	70	65	3.0	13780
NMJ0503SAC	5	3.3	303	60	64	3.0	13460
NMJ0505SAC	5	5	200	50	68	3.0	13360
NMJ0509SAC	5	9	111	50	72	3.0	12700
NMJ0512SAC	5	12	83	50	71	3.0	11490
NMJ0515SAC	5	15	66	50	71	3.0	9980
NMJ1205SAC	12	5	200	50	69	3.0	8447
NMJ1209SAC	12	9	111	50	73	3.0	8176
NMJ1212SAC	12	12	83	50	73	3.0	7660
NMJ1215SAC	12	15	66	50	74	3.0	6950

INPUT CHARACTERISTICS						
Parameter	Conditions	Min.	Тур.	Max.	Units	
	Continuous operation, 3V input types	2.97	3.3	3.63		
Voltage range	Continuous operation, 5V input types	4.5	5	5.5	V	
	Continuous operation, 12V input types	10.8	12	13.2		

OUTPUT CHARACTERIST	TICS					
Parameter	Conditions	Min.	Тур.	Max.	Units	
Rated Power	T _A =-40°C to 85°C, see derating graph			1	W	
Voltage Set Point Accuracy	See tolerance envelopes					
Line regulation	High VIN to low VIN		1.0	1.2	%/%	
	10% load to rated load, xx03		10.0	15.0	%	
Load regulation	10% load to rated load, 0505		7.0	10.0		
Single outputs	10% load to rated load, 0509, 0512, 0515		6.0	10.0		
	10% load to rated load, 12xx		5.0	7.0		
	10% load to rated load, 5V output types		10.0	15.0		
Load regulation	10% load to rated load, 9V output types		6.0	10.0	0/	
Dual outputs	10% load to rated load, 12V output types		6.0	10.0	%	
	10% load to rated load, 15V output types		6.0	10.0	1	
Zero Load Power Consumption	All types		250		mW	

ISOLATION CH	ARACTERIST	TICS					
Parameter		Conditions	Min.	Тур.	Max.	Units	
Isolation test voltage		Flash tested for 1 second	5200			VDC	
Resistance		Viso= 500VDC		1		GΩ	
Cofoty atopdard	UL60950-1	Supplementary			300	Vrmo	
Safety standard	000930-1	Reinforced			150	Vrms	

Calculated using MIL-HDBK-217 FN2 calculation model with nominal input voltage at full load.
See ripple & noise test method.
All specifications typical at T_A=25°C, nominal input voltage and rated output current unless otherwise specified.

www.murata.com

NMJ Series

GENERAL CHARACTERISTIC	S				
Parameter	Conditions	Min.	Тур.	Max.	Units
Switching frequency	Single output		45		kHz
Switching frequency	Dual output		70		КПZ
TEMPERATURE CHARACTER	RISTICS				

TEMPENATURE UNANAUTERIS					
Parameter	Conditions	Min.	Тур.	Max.	Units
Specification	All output types, see safety approval section for UL temperature specification	-40		85	
Storage		-55		130	°C
Case Temperature above ambient	All output types			33	
Cooling	Free air convection				

ABSOLUTE MAXIMUM RATINGS	
Lead temperature 1.5mm from case for 10 seconds	260°C
Wave Solder	Wave Solder profile not to exceed the profile recommended in IEC 61760-1 Section 6.1.3. Please refer to <u>application notes</u> for further information.
Input voltage VIN, NMJ03 types	5V
Input voltage VIN, NMJ05 types	7V
Input voltage VIN, NMJ12 types	15V

NMJ Series

5.2kVDC Isolated 1W DC-DC Converters

TECHNICAL NOTES

ISOLATION VOLTAGE

'Hi Pot Test', 'Flash Tested', 'Withstand Voltage', 'Proof Voltage', 'Dielectric Withstand Voltage' & 'Isolation Test Voltage' are all terms that relate to the same thing, a test voltage, applied for a specified time, across a component designed to provide electrical isolation, to verify the integrity of that isolation.

Murata Power Solutions NMJ series of DC-DC converters are all 100% production tested at their stated isolation voltage. This is 5.2kVDC for 1 second.

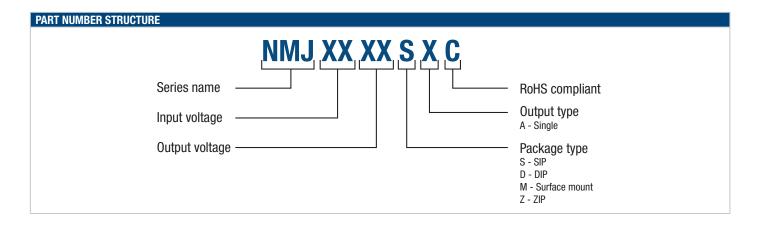
A question commonly asked is, "What is the continuous voltage that can be applied across the part in normal operation?"

The NMJ series has been recognized by Underwriters Laboratory to 300Vrms for Supplementary Insulation and 150Vrms for Reinforced Insulation.

REPEATED HIGH-VOLTAGE ISOLATION TESTING

It is well known that repeated high-voltage isolation testing of a barrier component can actually degrade isolation capability, to a lesser or greater degree depending on materials, construction and environment. We therefore strongly advise against repeated high voltage isolation testing, but if it is absolutely required, that the voltage be reduced by 20% from specified test voltage.

SAFETY APPROVAL

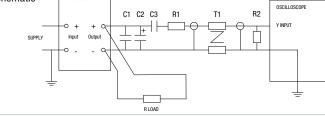

The NMJ series has been recognised by Underwriters Laboratory (UL) to UL60950 for supplementary insulation up to 300Vrms and reinforced insulation up to 150Vrms at a maximum ambient temperature of 75°C, measured on the side opposite the pins. File number E151252 applies.

RoHS COMPLIANCE INFORMATION

This series is compatible with RoHS soldering systems with a peak wave solder temperature of 260°C for 10 seconds. Please refer to <u>application</u> <u>notes</u> for further information. The pin termination finish on this product series is Tin Plate, Hot Dipped over Matte Tin with Nickel Preplate. The series is backward compatible with Sn/Pb soldering systems. For further information, please visit www.murata-ps.com/rohs

NMJ Series

NMJ Series


5.2kVDC Isolated 1W DC-DC Converters

CHARACTERISATION TEST METHODS

Ripple & Noise Characterisation Method

Ripple and noise measurements are performed with the following test configuration.

C1	1µF X7R multilayer ceramic capacitor, voltage rating to be a minimum of 3 times the output voltage of the DC-DC converter
C2	10μ F tantalum capacitor, voltage rating to be a minimum of 1.5 times the output voltage of the DC-DC converter with an ESR of less than $100m\Omega$ at 100 kHz
C3	100nF multilayer ceramic capacitor, general purpose
R1	450Ω resistor, carbon film, \pm 1% tolerance
R2	50Ω BNC termination
T1	3T of the coax cable through a ferrite toroid
RLOAD	Resistive load to the maximum power rating of the DC-DC converter. Connections should be made via twisted wires
Measured value	es are multiplied by 10 to obtain the specified values.

APPLICATION NOTES

Minimum load

The minimum load to meet datasheet specification is 10% of the full rated load across the specified input voltage range. Lower than 10% minimum loading will result in an increase in output voltage, which may rise to typically double the specified output voltage if the output load falls to less than 5%.

Capacitive loading and start up

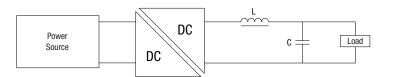
Typical start up times for this series, with a typical input voltage rise time of 2.2µs and output capacitance of 10µF, are shown in the table below. The product series will start into a capacitance of 47µF with an increased start time, however, the maximum recommended output capacitance is 10µF.

	Start-up time		Start-up time	Typical Start-Up Wave Form
	μs		μs	
NMJ0505SC	2530	NMJ0505SAC	1059	
NMJ0509SC	7865	NMJ0509SAC	3454	
NMJ0512SC	13080	NMJ0512SAC	7980	
NMJ0515SC	21560	NMJ0515SAC	11505	
NMJ1205SC	2770	NMJ1205SAC	1286	
NMJ1209SC	20455	NMJ1209SAC	3548	1*
NMJ1212SC	14475	NMJ1212SAC	7355	
NMJ1215SC	22300	NMJ1215SAC	11535	······································
MJ0303SAC	530	NMJ0503SAC	576	Chi 2V 回取 10V M 100µs Ch2 1、 7.4 V

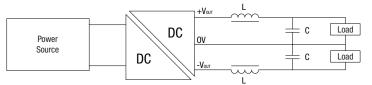
NMJ Series

5.2kVDC Isolated 1W DC-DC Converters

APPLICATION NOTES (Continued)


Output Ripple Reduction

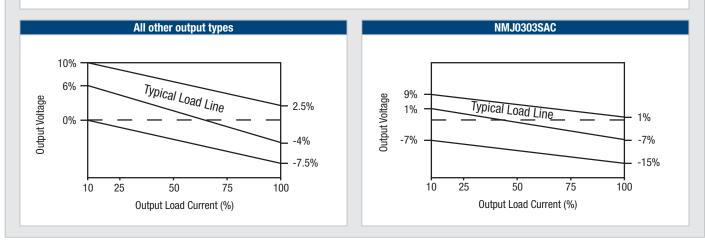
By using the values of inductance and capacitance stated, the output ripple at the rated load is lowered to 5mV p-p max.


Component selection

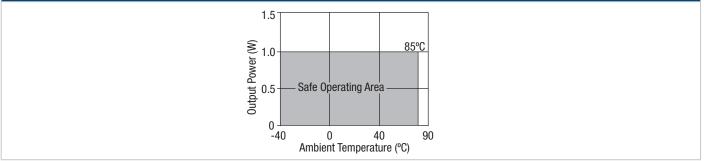
Capacitor: It is required that the ESR (Equivalent Series Resistance) should be as low as possible, ceramic types are recommended. The voltage rating should be at least twice (except for 15V output), the rated output voltage of the DC-DC converter.

Inductor: The rated current of the inductor should not be less than that of the output of the DC-DC converter. At the rated current, the DC resistance of the inductor should be such that the voltage drop across the inductor is <2% of the rated voltage of the DC-DC converter. The SRF (Self Resonant Frequency) should be >20MHz.

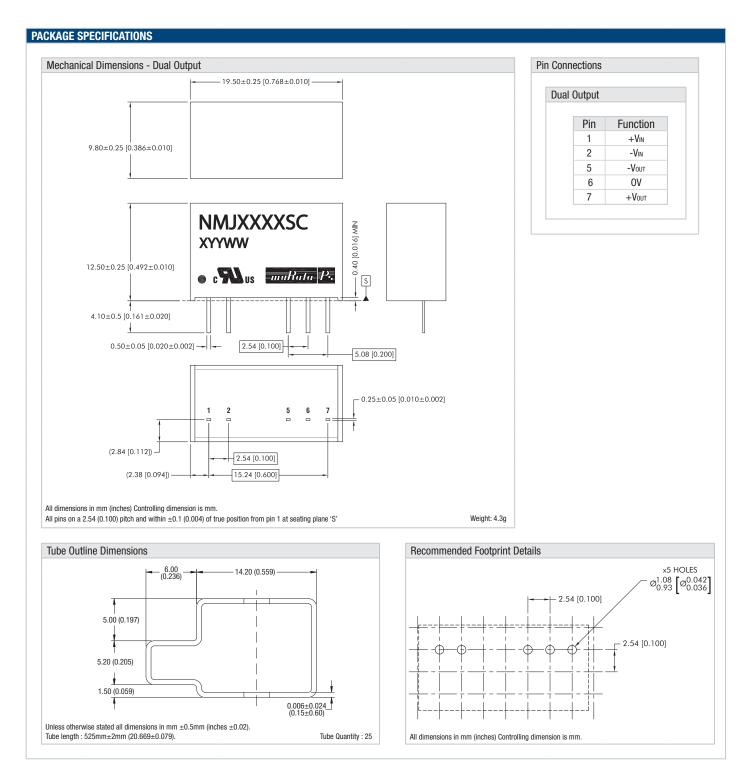
	Inductor			Capacitor
	L, μΗ	Through Hole	SMD	C, μF
3.3V single output types	22	22R223C	82223C	4.7
5V single output types	22	22R223C	82223C	4.7
9V single output types	47	22R473C	82473C	2.2
12V single output types	220	22R224C	82224C	0.47
15V single output types	220	22R224C	82224C	0.47

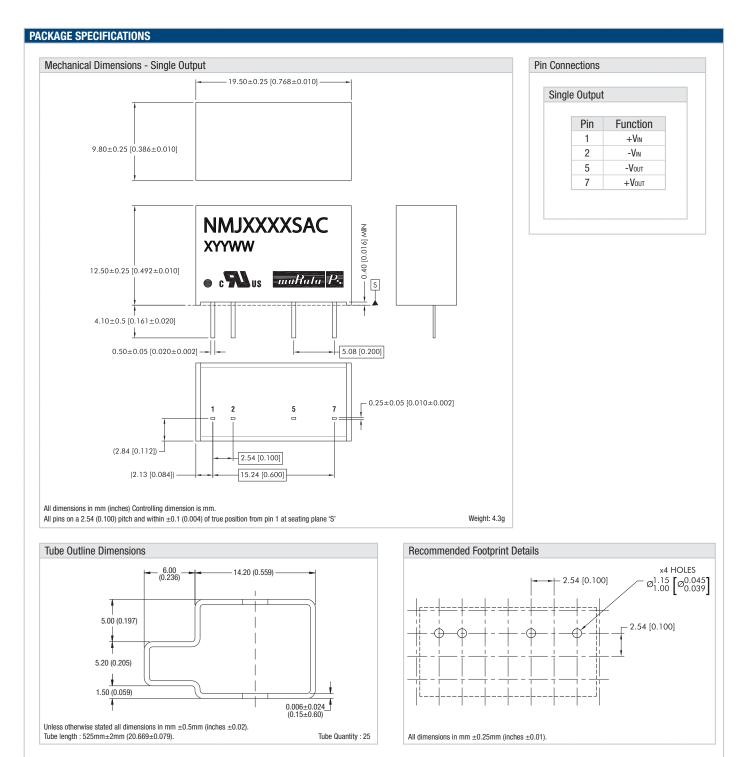

		Inductor			
	L, μΗ	Through Hole	SMD	C, μF	
5V dual output types	22	22R223C	82223C	4.70	
9V dual output types	47	22R473C	82473C	2.2	
12V dual output types	220	22R224C	82224C	0.47	
15V dual output types	220	22R224C	82224C	0.47	

NMJ Series


5.2kVDC Isolated 1W DC-DC Converters

TOLERANCE ENVELOPES


The voltage tolerance envelopes show typical load regulation characteristics for this product series. The tolerance envelope is the maximum output voltage variation due to changes in output loading and set point accuracy.


TEMPERATURE DERATING GRAPH

NMJ Series

NMJ Series

DC Isolated 1W DC-DC Converters

NMJ Series

5.2kVDC Isolated 1W DC-DC Converters

DISCLAIMER

Unless otherwise stated in the datasheet, all products are designed for standard commercial and industrial applications and NOT for safety-critical and/or life-critical applications.

Particularly for safety-critical and/or life-critical applications, i.e. applications that may directly endanger or cause the loss of life, inflict bodily harm and/or loss or severe damage to equipment/property, and severely harm the environment, a prior explicit written approval from Murata is strictly required. Any use of Murata standard products for any safety-critical, life-critical or any related applications without any prior explicit written approval from Murata shall be deemed unauthorised use.

These applications include but are not limited to:

- Aircraft equipment
- Aerospace equipment
- Undersea equipment
- Power plant control equipment
- Medical equipment
- Transportation equipment (automobiles, trains, ships, etc.)
- Traffic signal equipment
- Disaster prevention / crime prevention equipment
- Data Processing equipment

Murata makes no express or implied warranty, representation, or guarantee of suitability, fitness for any particular use/purpose and/or compatibility with any application or device of the buyer, nor does Murata assume any liability whatsoever arising out of unauthorised use of any Murata product for the application of the buyer. The suitability, fitness for any particular use/purpose and/or compatibility of Murata product with any application or device of the buyer remain to be the responsibility and liability of the buyer.

Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards that anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause harm, and take appropriate remedial actions. Buyer will fully indemnify and hold Murata, its affiliated companies, and its representatives harmless against any damages arising out of unauthorised use of any Murata products in any safety-critical and/ or life-critical applications.

Remark: Murata in this section refers to Murata Manufacturing Company and its affiliated companies worldwide including, but not limited to, Murata Power Solutions.

This product is subject to the following <u>operating requirements</u> and the <u>Life and Safety Critical Application Sales Policy</u>: Refer to: https://www.murata.com/en-eu/products/power/requirements

Murata Power Solutions (Milton Keynes) Ltd. makes no representation that the use of its products in the circuits described herein, or the use of other technical information contained herein, will not infringe upon existing or future patent rights. The described herein do not imply the granting of licenses to make, use, or sell equipment constructed in accordance therewith. Specifications are subject to change without notice. © 2020 Murata Power Solutions (Milton Keynes) Ltd.