

DATA SHEET SURFACE MOUNT MULTILAYER CERAMIC CAPACITORS Automotive grade HiCap X7R

6.3 ∨ TO 100 ∨ I µF to 10 µF RoHS compliant & Halogen Free

Ŧ

YAGEO

Surface-Mount Ceramic Multilayer Capacitors Automotive Grade HiCap X7R 6.3 V to 100 V

<u>SCOPE</u>

This specification describes Automotive grade X7R series chip capacitors with lead-free terminations and used for automotive equipments.

APPLICATIONS

All general purpose applications under normal operation and usage conditions for automotive equipments.

FEATURES

- AEC-Q200 qualified
- MSL class: MSL I
- AC series soldering is compliant with J-STD-020D
- High component and equipment reliability
- The capacitors are 100% performed by automatic optical inspection prior to taping.

ORDERING INFORMATION - GLOBAL PART NUMBER

All part numbers are identified by the series, size, tolerance, TC material, packing style, voltage, process code, termination and capacitance value.

GLOBAL PART NUMBER

AC <u>XXXX</u> <u>X</u> <u>X</u> <u>XXX</u> <u>X</u> B <u>X</u> <u>XXX</u> (1) (2) (3) (4) (5) (6) (7)

(I) SIZE - INCH BASED (METRIC)

0201 (0603) / 0402 (1005) / 0603 (1608) / 0805 (2012) / 1206 (3216)/ 1210 (3225) /1812 (4532)

(2) TOLERANCE

 $J = \pm 5\%$ K = ±10%

M= ±20%

Capacitance tolerance $\pm 5\%$ doesn't available for X7R full product range, please contact local sales before order

(3) PACKING STYLE (SEE TABLE. 9 FOR DETAIL)

- R = Paper/PE taping reel; Reel 7 inch
- K = Blister taping reel; Reel 7 inch
- P = Paper/PE taping reel; Reel 13 inch
- F = Blister taping reel; Reel 13 inch

(4) TC MATERIAL

X7R

(5) RATED VOLTAGE

$4 = 4 \vee$
5 = 6.3 V
6 = 10 V
7 = 16 V
8 = 25 V
G = 35 V
9 = 50 V
0 = 100 V

(6) PROCESS

B = X7R

(7) CAPACITANCE VALUE

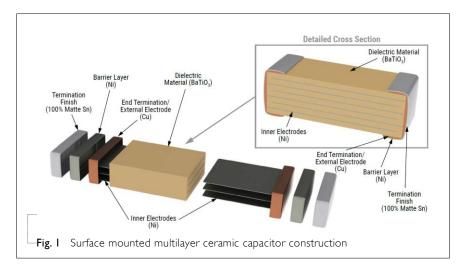
2 significant digits + number of zeros

The 3rd digit signifies the multiplying factor, and letter R is decimal point

Example: $|2| = |2 \times |0| = |20 \text{ pF}$

YAGEO

Surface-Mount Ceramic Multilayer Capacitors Automotive Grade HiCap X7R 6.3 V to 100 V


CONSTRUCTION

The capacitor consists of a rectangular block of ceramic dielectric in which a number of interleaved metal electrodes are contained. This structure gives rise to a high capacitance per unit volume.

The inner electrodes are connected to the two end terminations and finally covered with a layer of plated tin (Matte Sn). The terminations are leadfree. A cross section of the structure is shown in Fig.1.

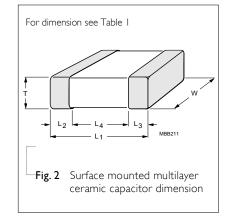

DIMENSION

 Table I
 For outlines see fig. 2

	TYPE L _I (mm) W (mm) T (MM)			L ₂ / L ₃ ((mm)	L ₄ (mm)
IYPE			I (MM)	min.	max.	min.
0201	0.6 ±0.03	0.3±0.03	0.3±0.03	0.10	0.20	0.20
0402	1.0 ±0.05	0.5 ±0.05	0.5 ±0.05	0.15	0.35	0.30
0603	1.6 ±0.10	0.8 ±0.10	0.8 ±0.10	0.20	0.50	0.60
	20.1010		0.6 ±0.10			
0805	2.0 ±0.10	1.25 ±0.10	0.85 ±0.10	0.25	0.75	0.70
	2.0 ±0.20	1.25 ±0.20	1.25 ±0.20			
			0.6 ±0.10			
	3.2 ±0.15	1.6 ±0.15	0.85 ±0.10			
1206			1.15 ± 0.10	0.25 0.75		
1206	3.2 ±0.30	1.6 ±0.20	1.25 ±0.20		0.75	1.50
			1.6 ±0.20			
	3.2 ±0.30	1.6 ±0.30	1.6 ±0.30			
	3.2 ±0.20	2.5 ±0.20	0.85 ±0.10			
	3.2 ±0.20	2.5 ±0.20	1.25 ±0.20			
1210	3.2 ±0.30	2.5 ±0.20	1.6 ±0.20	0.25	0.75	1.50
	3.2 ±0.30	2.3 ±0.20	2.0 ±0.20			
	3.2 ±0.40	2.5 ±0.30	2.5 ±0.20			
1808	4.5 ±0.40	2.0 ±0.30	1.25 ±0.20	0.25	0.75	2.20
			0.85 ±0.10			2.20
1812	4.5 ±0.40	3.2 ±0.30	1.25 ±0.20	0.25	0.75	
			1.6 ±0.20			

OUTLINES

CAPACITANCE RANGE & THICKNESS FOR X7R

Table 2	Sizes from	0603 to 0805
i aoic z	01200 11 0111	

(CAP.	0603				0805					
		6.3V	10V	16 V	25 V	6.3 V	10 V	16 V	25 V	35 V	50 V
	ΙμF	0.8±0.1	0.8±0.1	0.8±0.1	0.8±0.1	-	1.25±0.2	1.25±0.2	1.25±0.2	-	1.25±0.2
	2.2 uF						I.25±0.2	I.25±0.2	1.25±0.2	I.25±0.2	
	4.7 uF						1.25±0.2	1.25±0.2			
	10 uF					1.25±0.2					

Table 3 Sizes 1206

CAP. 1206

	6.3 V	10V	16V	25V	50 V	100 V
ΙμF		1.15±0.10	1.15±0.10	1.60±0.2	1.60±0.2	1.60±0.2
2.2 µF			1.60±0.2	1.60±0.2	1.60±0.2	1.60±0.2
4.7 uF	1.60±0.2	1.60±0.2	1.60±0.2			
I0 uF						

Table 4	Sizes	1210 to	1812

С	CAP.	1210			1812	
		25 V	50V	100 V	50V	100V
	ΙμF	1.25±0.20	1.25±0.20	2.0±0.2	1.60±0.2	1.60±0.2
	2.2 µF		2.0±0.2	2.0±0.2		
	4.7 µF	2.5±0.2	2.5±0.2			

NOTE

I. Values in shaded cells indicate thickness class in mm

2. Capacitance value of non E3 series is on request

ELECTRICAL CHARACTERISTICS

X7R DIELECTRIC CAPACITORS; NI/SIN TERMINATIONS

Unless otherwise specified, all test and measurements shall be made under standard atmospheric conditions for testing as given in 5.3 of IEC 60068-1:

- Temperature: 15 °C to 35 °C
- Relative humidity: 25% to 75%
- Air pressure: 86 kPa to 106 kPa

Before the measurements are made, the capacitor shall be stored at the measuring temperature for a time sufficient to allow the entire capacitor to reach this temperature.

The period as prescribed for recovery at the end of a test is normally sufficient for this purpose.

DESCRIPTION Table 5	VALUE
Capacitance tolerance	
X7R	±5% ⁽¹⁾ , ±10%, ±20%
Maximum capacitance change as a function of temperature	
(temperature characteristic/coefficient):	
X7R	±15%
Operating temperature range:	
X7R	−55 °C to +125 °C

NOTE

I. Capacitance tolerance ±5% doesn't available for X7R full product range, please contact local sales force before order

 Surface-Mount Ceramic Multilayer Capacitors
 Automotive Grade HiCap
 X7R
 6.3 V to 100 V

RATED VOLTAGE AND CAPACITANCE

Table 6					
SIZE CODE	RATED VOLTAGE (V)	CAPACITANCE (µF)	D.F.	RC @ 25 °C (Ω・F)	RC @ 125 °C (Ω・F)
	6.3	1.0	5.0%	500	50
0/02	10	1.0	5.0%	500	50
0603	16	1.0	7.5%	100	5
	25	1.0	7.5%	100	5
	10	1.0	5.0%	500	50
	16	1.0	5.0%	500	50
	25	1.0	5.0%	500	50
	50	1.0	5.0%	500	10
	10	2.2	5.0%	100	10
0805	16	2.2	5.0%	500	50
	25	2.2	5.0%	500	50
	35	2.2	5.0%	500	50
	10	4.7	10.0%	100	10
	16	4.7	10.0%	100	10
	6.3	10.0	10.0%	100	10
	10	1.0	3.5%	500	10
	25	1.0	3.5%	500	10
	50	1.0	5.0%	500	10
	100	1.0	5.0%	500	10
	16	2.2	5.0%	500	50
1206	25	2.2	5.0%	500	50
	50	2.2	5.0%	500	10
	100	2.2	5.0%	500	10
	6.3	4.7	10.0%	50	5
	10	4.7	10.0%	50	5
	16	4.7	10.0%	50	5
	25	1.0	2.5%	500	50
	50	1.0	2.5%	500	50
	100	1.0	5.0%	500	50
1210	50	2.2	5.0%	500	50
	100	2.2	5.0%	500	50
	25	4.7	10.0%	500	10
	50	4.7	10.0%	500	10
1812	50	1.0	2.5%	500	50
1012	100	1.0	2.5%	500	50

SOLDERING RECOMMENDATION

Table 7

SOLDERING METHOD	SIZE 0201	0402	0603	0805	1206	≥ 1210
Reflow	Reflow only	≥ 0.1 µF	≥ 1.0 µF	≥ 2.2 µF	≥ 4.7 µF	Reflow only
Reflow/Wave		< 0.1 µF	< 1.0 µF	< 2.2 µF	< 4.7 µF	

SOLDERING CONDITIONS

The lead free MLCCs are able to stand the reflow soldering conditions as below:

- Temperature: above 220 °C
- Endurance: 95 to 120 seconds
- Cycles: 3 times

The test of "soldering heat resistance" is carried out in accordance with the schedule of "MIL-STD-202G-method 210F", "The robust construction of chip capacitors allows them to be completely immersed in a solder bath of 260 °C for 10 seconds". Therefore, it is possible to mount MLCCs on one side of a PCB and other discrete components on the reverse (mixed PCBs). Surface Mount Capacitors are tested for solderability at 245 °C during 2 seconds. The test condition for no leaching is 260°C for 30 seconds.

TESTS AND REQUIREMENTS

Table 8 Test procedures and requirements

NO	AEC-Q200 TEST	TEST METHOD	REQUIREMENTS
		Unpowered ; 1000hours @ T=150 °C Measurement at 24±2 hours after test conclusion.	No visual damage
		rieasurement at 2112 hours after test conclusion,	ΔC/C X7R: Within ±10%
Ι	High Temperature Exposure		D.F.: within initial specified value
			IR: within initial specified value
	150 +0/-10 °C24 ±1 hours at1000 cycles with30 minutes at lo30 minutes at u	Preconditioning; 150 +0/–10 °C for 1 hour, then keep for	No visual damage
		24 ± 1 hours at room temperature 1000 cycles with following detail:	ΔC/C X7R: ±10%
2		30 minutes at lower category temperature 30 minutes at upper category temperature	D.F. meet initial specified value
		Recovery time 24 ±2 hours	IR meet initial specified value
3	Destructive Physical Analysis	Electrical test not required.	

 Surface-Mount Ceramic Multilayer Capacitors
 Automotive Grade HiCap
 X7R
 6.3 V to 100 V
 21

		T=24 hrs/per cycle; 10 continuous cycles unpowered. No visual damage
		Measurement at 24 \pm 2 hours after test condition. $\Delta C/C$ $\times 7R: \pm 15\%$
		D.F. Within initial specified value
		IR Meet initial specified value
4	Moisture Resistance	70 INITIAL CON- 65 90-100X RH 80-100X RH 80-100X RH 80-100X RH 60 24 HOURS 40 40 40 40 40 40 50 45 HUHIDITY UUCONTROLLED 40 <td< td=""></td<>
5	Biased Humidity	I. Preconditioning: 150 +0/-10 °C /1 hour, then keep for 24 ±1 hour at room tempNo visual damage after recovery2. Initial measure: Spec. refer to initial spec. C. D. I.R. Note: Series with 100 KQ $\Delta C/C$ $X7R: ±15%3. Test condition:85 °C, 85% R.H. connected with 100 K\Omega resistor, applied1.5V/Ur (no more than 630V) for 1,000 hours.D.F.X7R: 24 \pm 2 hours4. Recovery:X7R: 24 ±2 hours\Sigma/V or specified valuewhichever is greater(2) \ge 25V:\le 5\% or specified valuewhichever is greater5. Final measure: C. D. I.R.I.R.The insulation resistance shallgreater than 10% of initial spec.$

9 21

 Surface-Mount Ceramic Multilayer Capacitors
 Automotive Grade HiCap
 X7R
 6.3 V to 100 V

		I. Preconditioning:	No visual damage
		150 +0/-10 °C /1 hour, then keep for 24 ±1 hour at room temp 2. Initial measure:	ΔC/C X7R: ±15%
6	High Temperature Operational Life	 Spec: refer to initial spec C, D, IR 3. Endurance test: Temperature: 125 °C Specified stress voltage applied for 1,000 hours: Applied 150% × Ur. 4. Recovery time: 24 ±2 hours 5. Final measure: C, D, IR Note: If the capacitance value is less than the minimum value permitted, then after the other measurements have been made the capacitor shall be preconditioned according to "IEC 60384 4.1" and then the requirement shall be met. 	D.F. Less than 200% of initial spec. IR The insulation resistance shall be greater than 10% of initial spec.
7	External Visual	Any applicable method using × 10 magnification	In accordance with specification
8	Physical Dimension	Verify physical dimensions to the applicable device specification.	In accordance with specification
9	Mechanical Shock	Three shocks in each direction shall be applied along the three mutually perpendicular axes of the test specimen (18 shocks) Peak value: 1,500 g's Duration: 0.5 ms Velocity change: 15.4 ft/s Waveform: Half-sin	$\begin{array}{c} \Delta C/C \\ \times 7 R: \pm 10\% \end{array}$
10	Vibration	5 g's for 20 minutes, 12 cycles each of 3 orientations. Test from 10-2000 Hz.	$\begin{array}{l} \Delta C/C \\ \times 7R: \pm 10\% \\ \end{array}$ D.F: meet initial specified value IR meet initial specified value
11	Resistance to Soldering Heat	Precondition: $150 \pm 0/-10$ °C for 1 hour, then keep for 24 ± 1 hours at room temperature Preheating: for size ≤ 1206 : 120 °C to 150 °C for 1 minute Preheating: for size >1206 : 100 °C to 120 °C for 1 minute and 170 °C to 200 °C for 1 minute Solder bath temperature: 260 ± 5 °C Dipping time: 10 ± 0.5 seconds Recovery time: 24 ± 2 hours	Dissolution of the end face plating shall not exceed 25% of the length of the edge concerned $\Delta C/C$ X7R: $\pm 10\%$ D.F. within initial specified value IR within initial specified value

 Surface-Mount Ceramic Multilayer Capacitors
 Automotive Grade HiCap
 X7R
 6.3 V to 100 V
 21

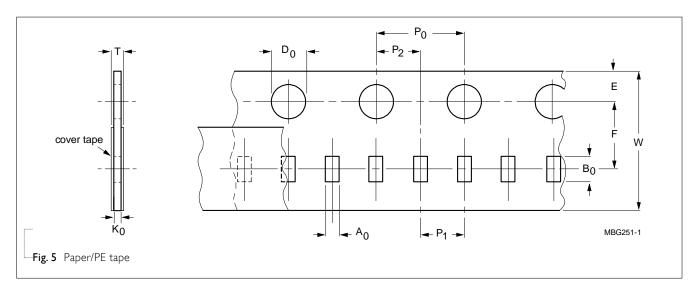
	Thermal Shock	1. Preconditioning: 150 +0/-10 °C /1 hour, then keep for 24±1 hour at room temp 2. Initial measure: Spec: refer to initial spec C, D, IR 3. Rapid change of temperature test: -55 °C to +125 °C; 300 cycles 15 minutes at -55°C ; 15 minutes at 125 °C 4. Recovery time: X7R 24±2 hours 5. Final measure: C, D, IR Per AEC-Q200-002 6 kV 2 kV 3 kV 4 kV <th>No visual damage ΔC/C X7R: ±15% D.F: meet initial specified value IR meet initial specified value A component passes a voltage level if all components stressed at that voltage level pass. VNM0053-1</th>	No visual damage ΔC/C X7R: ±15% D.F: meet initial specified value IR meet initial specified value A component passes a voltage level if all components stressed at that voltage level pass. VNM0053-1					
	Thermal Shock	temp 2. Initial measure: Spec: refer to initial spec C, D, IR 3. Rapid change of temperature test: -55 °C to +125 °C; 300 cycles 15 minutes at -55 °C ; 15 minutes at 125 °C 4. Recovery time: X7R 24±2 hours 5. Final measure: C, D, IR Per AEC-Q200-002	X7R: ±15% D.F: meet initial specified value IR meet initial specified value A component passes a voltage level if all components stressed at that voltage level pass.					
	Thermal Shock	 2. Initial measure: Spec: refer to initial spec C, D, IR 3. Rapid change of temperature test: -55 °C to +125 °C; 300 cycles 15 minutes at -55°C; 15 minutes at 125 °C 4. Recovery time: X7R 24±2 hours 5. Final measure: C, D, IR Per AEC-Q200-002 	X7R: ±15% D.F: meet initial specified value IR meet initial specified value A component passes a voltage level if all components stressed at that voltage level pass.					
	Thermal Shock	Spec: refer to initial spec C, D, IR 3. Rapid change of temperature test: -55 °C to +125 °C; 300 cycles 15 minutes at -55°C ; 15 minutes at 125 °C 4. Recovery time: X7R 24±2 hours 5. Final measure: C, D, IR Per AEC-Q200-002	D.F: meet initial specified value IR meet initial specified value A component passes a voltage level if all components stressed at that voltage level pass.					
	Thermal Shock	 3. Rapid change of temperature test: -55 °C to +125 °C; 300 cycles 15 minutes at -55°C; 15 minutes at 125 °C 4. Recovery time: X7R 24±2 hours 5. Final measure: C, D, IR Per AEC-Q200-002 	IR meet initial specified value A component passes a voltage level if all components stressed at that voltage level pass.					
	Thermal Shock	-55 °C to +125 °C; 300 cycles 15 minutes at -55°C ; 15 minutes at 125 °C 4. Recovery time: X7R 24±2 hours 5. Final measure: C, D, IR Per AEC-Q200-002 FAIL PASS	IR meet initial specified value A component passes a voltage level if all components stressed at that voltage level pass.					
		I5 minutes at -55°C ; I5 minutes at I25 °C 4. Recovery time: X7R 24±2 hours 5. Final measure: C, D, IR Per AEC-Q200-002 FAIL PASS	A component passes a voltage level if all components stressed at that voltage level pass.					
13		I5 minutes at I25 °C 4. Recovery time: X7R 24±2 hours 5. Final measure: C, D, IR Per AEC-Q200-002 FAIL PASS	A component passes a voltage level if all components stressed at that voltage level pass.					
13		4. Recovery time: X7R 24±2 hours 5. Final measure: C, D, IR Per AEC-Q200-002 FAIL PASS	level if all components stressed at that voltage level pass.					
13		X7R 24±2 hours 5. Final measure: C, D, IR Per AEC-Q200-002	level if all components stressed at that voltage level pass.					
13		5. Final measure: C, D, IR Per AEC-Q200-002	level if all components stressed at that voltage level pass.					
13		Per AEC-Q200-002	level if all components stressed at that voltage level pass.					
13			level if all components stressed at that voltage level pass.					
13		FAIL PASS	at that voltage level pass.					
13		FAIL PASS						
13		FAIL PASS	YNM0053-1					
13		FAIL PASS						
13		FAIL PASS						
13			t I					
13		DC	12 kV					
13		FAIL PASS	AD FAIL PASS					
	ESD							
		1 kV DC DC DC	16 kV AD					
		FAIL PASS FAIL PASS FAIL PAS	S FAIL PASS					
			B kV 12 kV 25 kV DC AD AD					
		FAIL PASS	FAIL PASS					
		<pre><</pre>	16 kV ⊠ 25 kV AD AD					
		Note: Classify the components according to the highest ESD voltage						
		Fig 4 Passive component HRM ESD test flow diagram	0 0					
		 Fig. 4 Passive component HBM ESD test flow diagram (DC = Direct Contact Discharge, AD = Air Discharge) 						
			The solder should cover over					
		I. Preheat at 155°C for 4 hours. After preheating, immerse the	95% of the critical area of each					
		capacitor in a solution of ethanol and rosin (25% rosin in	termination.					
		weight proportion). Immerse in eutectic solder solution for	ici i HilliddiOH,					
		5+0/-0.5 seconds at 235±5°C.						
		2. Should be placed into steam aging for 8 hours±15 minutes.						
		After preheating, immerse the capacitor in a solution of						
		ethanol and rosin (25% rosin in weight proportion).						
14	Solderability	Immerse in eutectic solder solution for 5+0/-0.5 seconds at						
		235±5°C.						
		3. Should be placed into steam aging for 8 hours±15 minutes.						
		Immerse in eutertic solder solution for 17()+5 seconds at						
		Immerse in eutectic solder solution for 120±5 seconds at 260±5°C.						
		After preheating, immerse the capacitor in a solution of Ethanol and rosin (25% rosin in weight proportion).						

		Capacitance	X7R: At 25 °C, 24 hours after annealing f = 1±0.1 KHz, measuring at voltage 1±0.2 V _{rms} at 25 °C	Within specified tolerance
		Dissipation Factor (D.F.)	X7R: At 25 °C, 24 hours after annealing f = 1±0.1 KHz, measuring at voltage 1±0.2 V _{rms} at 25 °C	In accordance with specification on Table 6
		Insulation Resistance (I.R.)	At U_r (DC) for I minute	In accordance with specification on Table 6
			Capacitance shall be measured by the steps shown in the following table. The capacitance change should be measured after 5 min at each specified temperature stage.	ΔC/C X7R: ±15% X7S: ± 22%
			Step Temperature(°C)	
15	Electrical		a 25±2	
	Characterization		b Lower temperature±3°C c 25±2	
		Temperature	d Upper Temperature±2°C	
		coefficient	e 25±2	
			X7R Capacitance Change shall be calculated from the formula as below $\Delta C = \frac{C2 - CI}{CI} \times 100\%$ CI: Capacitance at step c C2: Capacitance at step b or d	
		Voltage Proof	 Specified stress voltage applied for 1~5 seconds Ur ≤ 100 V: series applied 2.5 Ur Charge/Discharge current is less than 50 mA 	No breakdown or flashover

 Surface-Mount Ceramic Multilayer Capacitors
 Automotive Grade HiCap
 X7R
 6.3 V to 100 V

		Part mounted on a 100mm × 40mm FR4 PCB board, which is	No visu	al dama	age		٦
		I.6±0.2 mm thick and has a layer-thickness 35µm±10 µm. Part should be mounted using the following soldering reflow profile. Conditions:	ΔC/C X7R: ±I		0		
	16 Board Flex	X7R: Bending 2 mm at a rate of 1 mm/s, radius jig 340 mm		Dimen	sion(m	m)	
		Test Substrate:	Туре	а	b	с	
		b φ4.5 ^{ΥΝSC147}	0201	0.3	0.9	0.3	
16			0402	0.4	1.5	0.5	
			0603	1.0	3.0	1.2	
			0805	1.2	4.0	1.65	
			1206	2.2 2.2	5.0 5.0	1.65	
		100	1210 1808	3.5	7.0	2.0 3.7	
		unit: mm					
17	Terminal Strength	With the component mounted on a PCB obtained with the device to be tested, apply a 17.7N (1.8Kg) force to the side of a device being tested. This force shall be applied for 60+1 seconds. Also the force shall be applied gradually as not to apply a shock to the component being tested. * Apply 2N force for 0402 size. * Apply 1N force for 0201 size.	may be inspection integrity termina junction Before, test, the	employ on of the of the ls and b during a during a electric	ved for ne mec device body/te and aft e shall c al requ	body, rminal er the omply irements	
18	Beam Load Test	Place the part in the beam load fixture. Apply a force until the part breaks or the minimum acceptable force level required in the user specification(s) is attained.	≤ 0805 Thickness > 0.5mm: 20N Thickness ≤ 0.5mm: 8N ≥ 1206 Thickness ≥1.25 mm: 54N Thickness < 1.25 mm: 15N				

Jun. 10, 2022 V.0


 (\mathbb{Y})

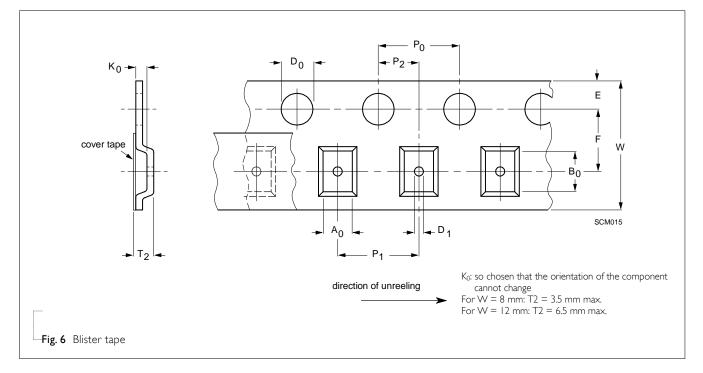
THICKNESS CLASSES AND PACKING QUANTITY

Table 9

	THICKNESS	PACKING CODE			QUANTITY PER REEL					
SIZE CODE	CLASSIFICATION	FACKI	NG CODE	TAPE WIDTH		1 / 7 INCH	Ø330 MM	1 / 13 INCH		
		7 INCH	13 INCH		Paper	Blister	Paper	Blister		
0201	0.3 ±0.03 mm	R	Р	8 mm	15,000		50,000			
0402	0.5 ±0.05 mm	R	Р	8 mm	10,000		50,000			
0603	0.8 ±0.1 mm	R	Р	8 mm	4,000		15,000			
	0.6 ±0.1 mm	R	Р	8 mm	4,000		20,000			
0805	0.85 ±0.1 mm	R	Р	8 mm	4,000		15,000			
	1.25 ±0.2 mm	К	F	8 mm		3,000		10,000		
	0.6 ±0.1 mm	R	Р	8 mm	4,000		20,000			
	0.85 ±0.1 mm	R	Р	8 mm	4,000		15,000			
1206	1.0/1.15 ±0.1 mm	К	F	8 mm		3,000		10,000		
	1.25 ±0.2 mm	К	F	8 mm		3,000		10,000		
	1.60 ±0.2 mm	К	F	8 mm		2,000		8,000		
	0.85 ±0.1 mm	К	F	8 mm		4,000		10,000		
	1.15 ±0.1 mm	К	F	8 mm		3,000		10,000		
1210	1.25 ±0.2 mm	К	F	8 mm		3,000		10,000		
	2.0 ±0.2 mm	К		8 mm		2,000				
	2.5 ±0.2 mm	К		8 mm		1,000				
	0.6 / 0.85±0.1 mm	К		l2 mm		2,000				
1010	1.15±0.1 mm	К		l2 mm		1,000				
1812	1.25±0.2 mm	К		l2 mm		1,000				
	1.6 ±0.2 mm	К		l2 mm		2,000				

PAPER/PE TAPE SPECIFICATION

Table 10 Dimensions of paper/PE tape for relevant chip size; see Fig.5


SIZE	SYMBOL	SYMBOL Unit: mm											
CODE	A0	B0	W	E	F	P0 (I)	PI	P2	ØD0	К0	Т		
0201	0.39 ± 0.06	0.70 ± 0.06	8.0 ± 0.20	1.75 ± 0.1	3.50 ± 0.05	4.0 ± 0.05	2.0 ± 0.05	2.0 ± 0.05	1.55 ± 0.03	0.38 ± 0.05	(0.47 / 0.55)±0.10		
0402	0.70 ± 0.15	1.21 ± 0.12	8.0 ± 0.20	1.75 ± 0.1	3.50 ± 0.05	4.0 ± 0.05	2.0 ± 0.05	2.0 ± 0.05	1.50 +0.1 /-0	(0.75 / 0.60)±0.10	(0.85 / 0.70)±0.10		
0603	1.05 ± 0.14	1.86 ± 0.13	8.0 ± 0.20	1.75 ± 0.1	3.50 ± 0.05	4.0 ± 0.10	4.0 ± 0.10	2.0 ± 0.05	1.50 +0.1 /-0	(1.05 / 0.95 / 0.75)±0.10	(1.15 / 1.05 / 0.85)±0.10		
0805	1.50 ± 0.15	2.26 ± 0.20	8.0 ± 0.20	1.75 ± 0.1	3.50 ± 0.05	4.0 ± 0.10	4.0 ± 0.10	2.0 ± 0.05	1.50 +0.1 /-0	(1.05 / 0.95 / 0.75)±0.10	(1.15 / 1.05 / 0.85)±0.10		
1206	1.90 ± 0.15	3.50 ± 0.20	8.0 ± 0.20	1.75 ± 0.1	3.50 ± 0.05	4.0 ± 0.10	4.0 ± 0.10	2.0 ± 0.05	1.50 +0.1 /-0	(0.95 / 0.75)±0.10	(1.05 / 0.85)± 0.10		

NOTE

 $1.P_0$ pitch tolerance over any 10 pitches is $\pm 0.2 \text{ mm}$

BLISTER TAPE SPECIFICATION

Table II Dimensions of blister tape for relevant chip size; see Fig.6

	SYMBOL												Un	iit: mm		
size Code	A ₀		B ₀		K ₀		W	E	F	ØD ₀	ØDI	P ₀ ⁽²⁾	Pı	P ₂		Т2
	Min.	Max.	Min.	Max.	Min.	Max.					Min.				Min.	Max.
0805	1.29	1.65	2.09	2.60	1.25	1.62	8.1 ±0.20	1.75 ±0.1	3.5 ±0.05	1.5 +0.1/-0.0	+0.1/-0.0	4.0 ±0.10	4.0 ±0.10	2.0 ±0.05	1.30	1.67
1206	1.65	2.12	3.30	3.75	1.22	2.15	8.1 ±0.20	1.75 ±0.1	3.5 ±0.05	1.5 +0.1/-0.0	+0.1/-0.0	4.0 ±0.10	4.0 ±0.10	2.0 ±0.05	1.27	2.20
1210	2.55	3.02	3.31	3.88	0.97	2.92	8.1 ±0.20	1.75 ±0.1	3.5 ±0.05	1.5 +0.1/-0.0	+0.1/-0.0	4.0 ±0.10	4.0 ±0.10	2.0 ±0.05	1.02	2.97
1808	2.05	2.55	4.80	5.45	1.30	2.45	12.1 ±0.20	1.75 ±0.1	5.5 ±0.05	1.5 +0.1/-0.0	1.5 +0.1/-0.0	4.0 ±0.10	4.0 ±0.10	2.0 ±0.05	1.35	2.50
1812	3.35	3.75	4.70	5.33	0.70	2.40	12.1 ±0.20	1.75 ±0.1	5.5 ±0.05	1.5 +0.1/-0.0	1.5 +0.1/-0.0	4.0 ±0.10	8.0 ±0.10	2.0 ±0.05	0.75	2.45

NOTE

I. Typical capacitor displacement in pocket

2. P_0 pitch tolerance over any 10 pitches is ± 0.2 mm

REEL SPECIFICATION

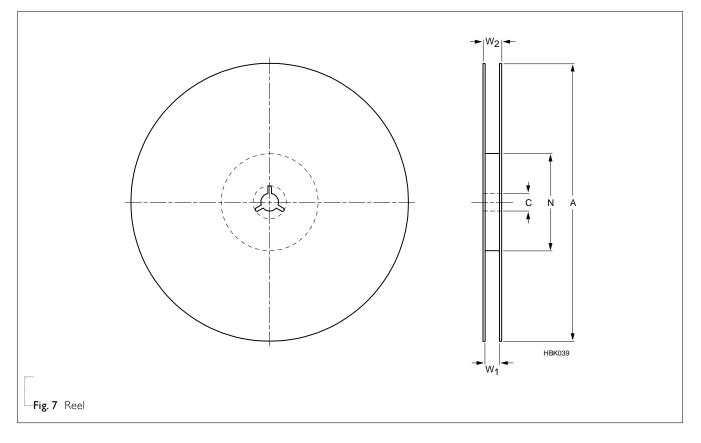


Table 12 Reel dimensions; see Fig.7

	SYMBOL								
TAPE WIDTH	A	N	С	W	W _{2max.}				
8 (Ø178 mm/7")	178 ±1.0	60 ±1.0	3 +0.50/-0.20	9.4 ±1.5	14.4				
8 (Ø330 mm/13")	330 ±1.0	100 ±1.0	13 +0.50/-0.20	9.0 ±0.2	4.4				
12 (Ø178 mm/7")	178 ±1.0	60 ±1.0	3 +0.50/-0.20	3.4 ±1.5	18.4				

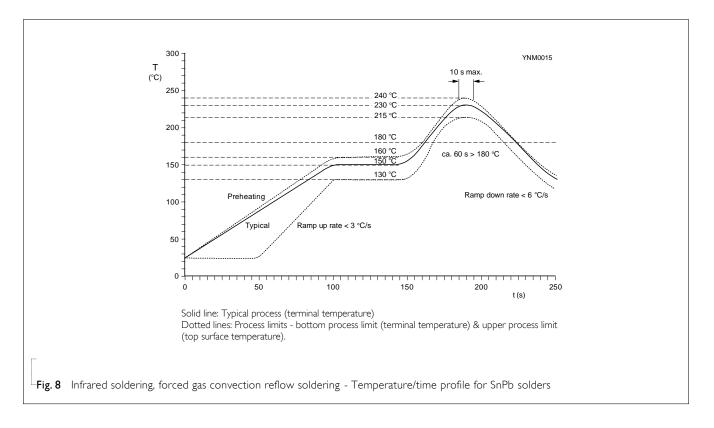
PROPERTIES OF REEL

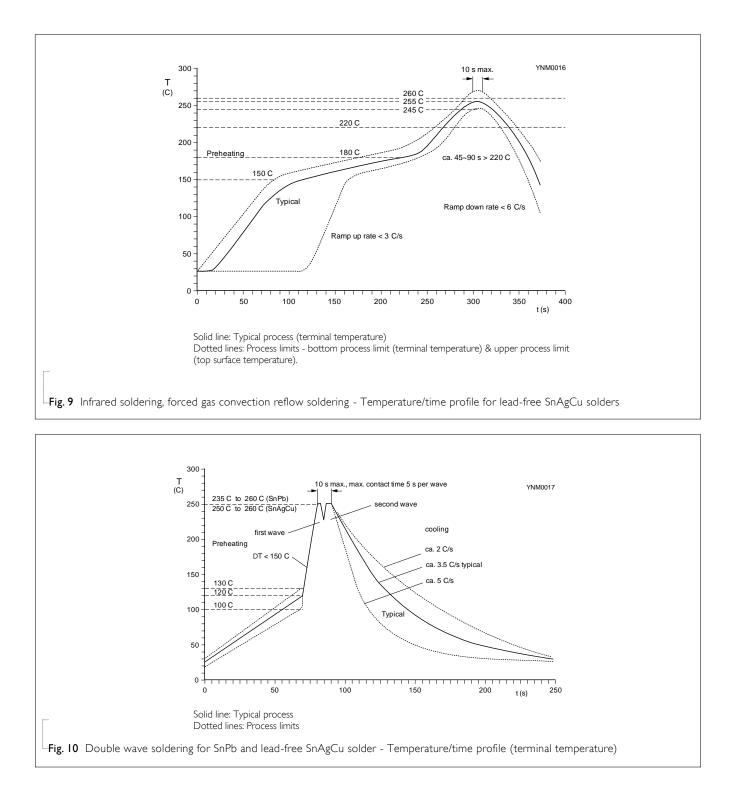
Material: polystyrene Surface resistance: $<10^{10}$ X/sq.

MOUNTING

SOLDER REPAIRS

Conventional solder repairs are carried out with a soldering iron as shown as Tab. 13. The tip of the soldering iron should not directly touch the chip component to avoid thermal shock on the interface between termination and body during mounting, repairing or de-mounting processes. Ensure the termination solder has melted before removing the chip component.


- Table 13 Recommended soldering iron condition


SIZE	Temp(°C)	DURATION (SEC.)	PREHEATING TEMP(°C)	ATMOSPHERE
0201/0402/0603/0805/1206	350 max.	3 max.	150 min.	air
1210/1808/1812/2220	280 max.	3 max.	150 min.	air

SOLDERING CONDITIONS

For normal use the capacitors may be mounted on printed-circuit boards or ceramic substrates by applying wave soldering, reflow soldering or conductive adhesive in accordance with *IEC 61760-1* (Standard method for the specification of surface mounting components). For advised soldering profiles see Figs 8, 9, 10.

An improper combination of soldering, substrate and chip size can lead to a damaging of the component. The risk increases with the chip size and with temperature fluctuations (>100 $^{\circ}$ C).

FOOTPRINT DIMENSIONS

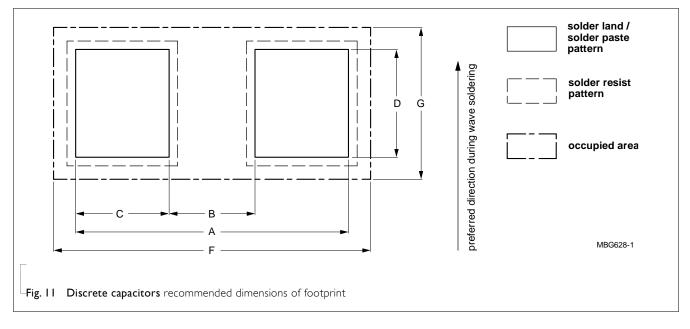


Table 14 Reflow soldering; for footprint dimensions see Fig. I I

SIZE	FOOTPRIN		Unit: mm				
CODE	А	В	С	D	F	G	Processing remarks
0201	0.8 ±0.20	0.25 ±0.05	0.28 ±0.07	0.3 ±0.10			
0402	1.5 ±0.15	0.5 ±0.15	0.5 ±0.15	0.5 ±0.15	1.75 ±0.15	0.95 ±0.15	_
0603	2.3 ±0.15	0.7 ±0.15	0.8 ±0.15	0.9 ±0.15	2.7 ±0.15	1.5 ±0.15	_
0603	2.3 ±0.25	0.5 ±0.25	0.9 ±0.25	0.9 ±0.25	2.7 ±0.25	1.5 ±0.25	IR or hot plate soldering
0805	2.8 ±0.25	0.9 ±0.25	0.95 ±0.25	1.4 ±0.25	3.2 ±0.25	2.1 ±0.25	_
1206	4.0 ±0.25	2.0 ±0.25	1.0 ±0.25	1.8 ±0.25	4.4 ±0.25	2.5 ±0.25	_
1210	4.0 ±0.25	2.0 ±0.25	1.0 ±0.25	2.7 ±0.25	4.4 ±0.25	3.4 ±0.25	
1808	5.4 ±0.25	3.3 ±0.25	1.05 ±0.25	2.3 ±0.25	5.8 ±0.25	2.9 ±0.25	_
1812	5.4 ±0.25	3.3 ±0.25	1.05 ±0.25	3.5 ±0.25	5.8 ±0.25	4.1 ±0.25	Ceramic substrate only
2220	6.6 ±0.25	4.5 ±0.25	1.05 ±0.25	5.3 ±0.25	7.0 ±0.25	5.9 ±0.25	

<u>REVISION HISTORY</u>

REVISION	DATE	CHANGE NOTIFICATION	DESCRIPTION
Version 0	Jun. 10, 2022	-	- New

"YAGEO reserves all the rights for revising the content of this datasheet without further notification, as long as the products itself are unchanged. Any product change will be announced by PCN."

Surface-Mount Ceramic Multilayer Capacitors

LEGAL DISCLAIMER

YAGEO, its distributors and agents (collectively, "YAGEO"), hereby disclaims any and all liabilities for any errors, inaccuracies or incompleteness contained in any product related information, including but not limited to product specifications, datasheets, pictures and/or graphics. YAGEO may make changes, modifications and/or improvements to product related information at any time and without notice.

YAGEO makes no representation, warranty, and/or guarantee about the fitness of its products for any particular purpose or the continuing production of any of its products. To the maximum extent permitted by law, YAGEO disclaims (i) any and all liability arising out of the application or use of any YAGEO product, (ii) any and all liability, including without limitation special, consequential or incidental damages, and (iii) any and all implied warranties, including warranties of fitness for a particular purpose, non -infringement and merchantability.

YAGEO products are designed for general purpose applications under normal operation and usage conditions. Please contact YAGEO for the applications listed below which require especially high reliability for the prevention of defects which might directly cause damage to the third party's life, body or property: Aerospace equipment (artificial satellite, rocket, etc.), Atomic energy-related equipment, Aviation equipment, Disaster prevention equipment, crime prevention equipment, Electric heating apparatus, burning equipment, Highly public information network equipment, data-processing equipment, Medical devices, Military equipment, Power generation control equipment, Safety equipment, Traffic signal equipment, Transportation equipment and Undersea equipment, or for any other application or use in which the failure of YAGEO products could result in personal injury or death, or serious property damage. Particularly **YAGEO Corporation and its affiliates do not recommend the use of commercial or automotive grade products for high reliability applications or manned space flight.**

Information provided here is intended to indicate product specifications only. YAGEO reserves all the rights for revising this content without further notification, as long as products are unchanged. Any product change will be announced by PCN.