3.3V MULTI-QUEUE FLOW-CONTROL DEVICES	
(4 QUEUES) 36 BIT WIDE CONFIGURATION	
589,824 bits	IDT72V51236
$1,179,648$ bits	IDT72V51246
$2,359,296$ bits	IDT72V51256

FEATURES:

- Choose from among the following memory density options:

IDT72V51236 - Total Available Memory $=589,824$ bits
IDT72V51246 - Total Available Memory $=1,179,648$ bits
IDT72V51256 - Total Available Memory $=2,359,296$ bits

- Configurable from 1 to 4 Queues
- Queues may be configured at master reset from the pool of Total Available Memory in blocks of 256×36
- Independent Read and Write access per queue
- User programmable via serial port
- Default multi-queue device configurations
-IDT72V51236: 4,096 x $36 \times 4 Q$
-IDT72V51246: 8, 192 x $36 \times 4 Q$
-IDT72V51256: 16,384 x $36 \times 4 Q$
- 100% Bus Utilization, Read and Write on every clock cycle
- 166 MHz High speed operation (6ns cycle time)
- $3.7 n \mathrm{n}$ access time
- Individual, Active queue flags ($\overline{\mathrm{OV}}, \overline{\mathrm{FF}}, \overline{\mathrm{PAE}}, \overline{\mathrm{PAF}}, \overline{\mathrm{PR}})$
- 4 bit parallel flag status on both read and write ports
- Provides continuous $\overline{\text { PAE }}$ and $\overline{\text { PAF }}$ status of up to 4 Queues
- Global Bus Matching - (All Queues have same Input Bus Width and Output Bus Width)
- User Selectable Bus Matching Options:
- x36in to x360ut
-x18in to x360ut
-x9in to x360ut
- x36in to x180ut
-x36in to x9out
- FWFT mode of operation on read port
- Packet mode operation
- Partial Reset, clears data in single Queue
- Expansion of up to 8 multi-queue devices in parallel is available
- JTAG Functionality (Boundary Scan)
- Available in a 256 -pin PBGA, 1 mm pitch, $17 \mathrm{~mm} \times 17 \mathrm{~mm}$
- HIGH Performance submicron CMOS technology
- Industrial temperature range $\left(-40^{\circ} \mathrm{C}\right.$ to $\left.+85^{\circ} \mathrm{C}\right)$ is available

FUNCTIONAL BLOCK DIAGRAM

MULTI-QUEUE FLOW-CONTROL DEVICE

DESCRIPTION:

The IDT72V51236/72V51246/72V51256 multi-queue flow-control devices are single chip within which anywhere between 1 and 4 discrete FIFO queues can be setup. All queues withinthe device have a common data input bus, (write port) and a common data outputbus, (read port). Data written into the write port is directed to a respective queue via an internal de-multiplex operation, addressed by the user. Data read from the read port is accessed from a respective queue via an internal multiplex operation, addressed by the user. Data writes and reads can be performed at high speeds up to 166 MHz , with accesstimes of 3.7 ns . Data write and read operations are totally independent of each other, a queue maybe selected on the write port and a different queue on the read port or both ports may select the same queue simultaneously.

The device provides Full flag and Output Valid flag status for the queue selected for write and read operations respectively. Also a Programmable AlmostFull and Programmable AlmostEmpty flagforeachqueue is provided. Two 4 bit programmable flag busses are available, providing status of all queues, including queues notselectedforwrite or read operations, these flag busses provide an individual flag per queue.

Bus Matching is available on this device, either port can be 9 bits, 18 bits or 36 bits wide provided that at least one port is 36 bits wide. When Bus Matching is used the device ensures the logical transfer of datathroughput in a Little Endian manner.

A packet mode of operation is also provided when the device is configured for 36 bitinput and 36 bitoutput port sizes. The Packet mode provides the user with a flag output indicating when at least one (or more) packets of data within a queue is availablefor reading. The PacketReady providestheuserwith a means by which to mark the start and end of packets of data being passed through the queues. The multi-queue device then provides the user with an internally generated packet ready status per queue.
The user has full flexibility configuring queues within the device, being able to program the total number of queues between 1 and 4 , the individual queue depths being independent of each other. The programmable flag positions are also user programmable. All programming is done via a dedicated serial port. If the user does not wish to program the multi-queue device, a default option is available that configures the device in a predetermined manner.
BothMaster Resetand Partial Resetpins are provided onthis device. AMaster Reset latches in all configuration setup pins and must be performed before programming ofthe device cantake place. A Partial Reset will resetthe readand write pointers of an individual queue, provided that the queue is selected on both the write port and read port at the time of partial reset.
AJTAG test port is provided, here the multi-queue flow-control device has a fully functional Boundary Scanfeature, compliant with IEEE 1149.1 Standard Test Access Port and Boundary Scan Architecture.
See Figure 1, Multi-Queue Flow-Control Device Block Diagramfor an outline of the functional blocks within the device.

Figure 1. Multi-Queue Flow-Control Device Block Diagram

PIN CONFIGURATION

NOTE:

1. DNC - Do Not Connect.

PBGA (BB256-1, order code: BB) TOP VIEW

DETAILED DESCRIPTION

MULTI-QUEUE STRUCTURE

The IDT multi-queue flow-control device has a single data input port and single data output port with up to 4 FIFO queues in parallel buffering between the two ports. The user can setup between 1 and 4 Queues within the device. Thesequeues canbe configured to utilize the total available memory, providing the userwithfullflexibility andability to configurethequeuesto be various depths, independent of one another.

MEMORYORGANIZATION/ALLOCATION

The memory is organized into what is known as "blocks", each block being 256×36 bits. When the user is configuring the number of queues and individual queue sizes the user mustallocate the memory to respective queues, in units ofblocks, that is, a single queue can be made up from 0 to mblocks, wherem is the total number of blocks available within a device. Also the total size of any given queue must be in increments of 256×36. For the IDT72V51236/ 72 V 51246 and IDT72V51256 the Total Available Memory is 64, 128 and 256 blocks respectively (a block being 256×36). Queues can be built from these blocks to make any size queue desired and any number of queues desired.

BUS WIDTHS

The inputport is commonto all queues withinthe device, as is the output port. The device provides the userwith Bus Matching options such thatthe inputport and output port can be either $x 9, \times 18$ or x36 bits wide provided that at least one of the ports is $x 36$ bits wide, the read and write port widths being set independently of one another. Because the ports are commonto all queues the width of the queues is not individually set, so that the input width of all queues are equal and the output width of all queues are equal.

WRITING TO \& READING FROM THE MULTI-QUEUE

Data being written into the device via the input port is directed to a discrete queue via the write queue select address inputs. Conversely, data being read fromthe device read portis read from aqueue selected viathe read queue select address inputs. Data can be simultaneously written into and read fromthe same queue or different queues. Once a queue is selected for data writes or reads, the writing and reading operation is performed in the same manner as conventional IDT synchronous FIFO, utilizing clocks and enables, there is a single clock and enable per port. When a specific queue is addressed on the write port, data placed on the data inputs is written to that queue sequentially based onthe rising edge of a write clock provided setup and hold times are met. Conversely, data is read on to the output portafter an access time from a rising edge on a read clock.

Theoperation of the write port is comparable to the function of a conventional FIFO operating in standard IDT mode. Write operations can be performed on the write portprovided thatthequeuecurrently selected is notfull, afull flagoutput provides status of the selected queue. The operation of the read port is comparable to the function of a conventional FIFO operating in FWFT mode. When a queue is selected on the output port, the next word in that queue will automatically fall through to the output register. All subsequent words from that queue require an enabled read cycle. Data cannot be read from a selected queue ifthatqueueis empty, the read portprovides anOutputValidflagindicating when data read out is valid. If the user switches to a queue that is empty, the last word from the previous queue will remain on the output register.

As mentioned, the write port has afull flag, providingfull status of the selected queue. Along with the full flag a dedicated almostfullflagis provided, this almost full flag is similar to the almost full flag of a conventional IDT FIFO. The device
provides a user programmable almost full flag for all 4 queues and when a respective queue is selected on the writeport, thealmostfull flagprovidesstatus for that queue. Conversely, the read port has an output valid flag, providing status of the data being read from the queue selected on the read port. As well as the outputvalid flag the device provides a dedicated almostempty flag. This almostempty flagis similartothealmostempty flag of aconventional IDTFIFO. The device provides a user programmable almost empty flag for all 4 queues and when a respective queue is selected onthe read port, the almostemptyflag provides status for that queue.

PROGRAMMABLE FLAG BUSSES

In additiontothese dedicatedflags, full \& almostfull onthe write portand output valid\& almostempty onthe read port, thereare twoflagstatusbusses. Analmost full flag status bus is provided, this bus is 4 bits wide. Also, an almostempty flag status bus is provided, again this bus is 4 bits wide. The purpose of these flag busses is to provide the user with a means by which to monitor the datalevels within queues that may notbe selected on the write or read port. As mentioned, the device provides almostfull and almostempty registers (programmable by the user) for each of the 4 queues in the device.

The 4 bit $\overline{\text { PAE }}$ and 4 bit $\overline{\text { PAF }}$ n busses provide a discretestatus of the Almost Empty and Almost Full conditions of all 4 queue's. Ifthe device is programmed for less than 4 queue's, then there will be a corresponding number of active outputs on the $\overline{\mathrm{PAE}}$ and $\overline{\mathrm{PAF}}$ n busses.
The flagbusses can provide a continuous status of all queues. Ifdevices are connected in expansion mode the individual flagbusses canbeleft in a discrete form, providing constant status of all queues, or the busses of individual devices can be connected together to produce a single bus of 4 bits. The device can then operate in a "Polled" or "Direct" mode.

When operating in polled mode the flag bus provides status of each device sequentially, thatis, on eachrising edge of a clocktheflagbusis updatedto show the status of each device in order. The rising edge of the write clock will update the Almost Full bus and a rising edge on the read clock will update the Almost Emptybus.
When operating in directmode the device driving the flag bus is selected by the user. The user addresses the device that will take control of a respective flag bus, these $\overline{\text { PAF }}$ and $\overline{\text { PAE }}$ n flag busses operating independently of one another. Addressing of the Almost Full flag bus is done via the write port and addressing of the Almost Empty flag bus is done via the read port.

PACKETMODE

The multi-queue flow-control device also offers a "PacketMode" operation. Packet Mode is user selectable and requires the device to be configured with both write and read ports as 36 bits wide. In packet mode, users can define the length of packets or frame by using the two most significant bits of the 36bit word. Bit 34 is used to mark the Start of Packet (SOP) and bit 35 is used to mark the End of Packet (EOP) as shown in Table 5). When writing data into a given queue, the first word being written is marked, by the user setting bit 34 as the "Start of Packet" (SOP) and the last word written is marked as the "End of Packet" (EOP) with all words written between the Start of Packet (SOP) marker (bit34) and the End of packet(EOP) packetmarker (bit35) constituting the entire packet. A packet can be any length the user desires, up to the total available memory in the multi-queue flow-control device. The device monitors the SOP (bit34) and looks for the word that contains the EOP (bit35). The read port is supplied with an additional status flag, "Packet Ready". The Packet Ready ($\overline{\mathrm{PR})}$) flag in conjunction with Output Valid ($\overline{\mathrm{OV}}$) indicates when at least one packet is available to read. When in packet mode the almostempty flag status, provides packet ready flag status for individual queues.

EXPANSION

Expansion of multi-queue devices is also possible, up to 8 devices can be connected in a parallelfashion providingthe possibility of both depth expansion or queue expansion. Depth Expansion means expanding the depths of individual queues. Queue expansion means increasing the total number of queues available. Depth expansion is possible by virtue of the fact that more memory blocks within a multi-queue device can be allocated to increase the depth of a queue. For example, depth expansion of 8 devices provides the possibility of 8 queues of $64 \mathrm{~K} x 36$ deep, each queue being setup within a single
device utilizing all memory blocks available to produce a single queue. This is the deepest queue that can setup within a device.

For queue expansion of the 4 queue device, a maximum number of 32 (8 $x 4$) queues may be setup, each queue being $2 \mathrm{~K} x 36$ deep, ifless queues are setup, then more memory blocks will be available to increase queue depths if desired. When connecting multi-queue devices in expansion mode all respective input pins (data \& control) and output pins (data \& flags), should be "connected" together between individual devices.

PIN DESCRIPTIONS

Symbol	Name	I/OTYPE	Description
BM	Bus Matching	LVTTL INPUT	This pin is setup before Master Resetand mustnottoggle during any device operation. This pin is used along with IW and OW to setup the multi-queue flow-control device bus width. Please refer to Table 3 fordetails.
$\begin{aligned} & \mathrm{D}[35: 0] \\ & \text { Din } \end{aligned}$	DatalnputBus	LVTTL INPUT	These are the 36 data input pins. Data is written into the device via these input pins on the rising edge of WCLK provided that WEN is LOW. Note, that in Packet mode D32-D35 may be used as packet markers, please see packetreadyfunctional discussionfor more detail. Due to bus matching notall inputs may be used, any unused inputs should be tied LOW.
DF ${ }^{(1)}$	DefaultFlag	LVTTL INPUT	If the user requires default programming of the multi-queue device, this pin mustbe setup before Master Resetand mustnottoggle during any device operation. The state of this inputatmaster resetdetermines the value of the $\overline{\text { PAE }}$ /PAF flag offsets. If DF is $L O W$ the value is 8 , if $D F$ is HIGH the value is 128 .
DFM ${ }^{(1)}$	Defaul Mode	LVTTL INPUT	The multi-queue device requires programming after master reset. The user can do this serially via the serial port, or the user can use the default method. IfDFM is LOW at master resetthen serial mode will be selected, if HIGH then default mode is selected.
ESTR	$\overline{\text { PAEn Flag Bus }}$ Strobe	LVTTL INPUT	Ifdirect operation of the $\overline{\text { PAEn }}$ bus has been selected, the ESTR input is used in conjunction with RCLK and the RDADD bus to selecta device for its queues to be placed on to the $\overline{\text { PAEn bus outputs. A device }}$ addressed via the RDADD bus is selected on the rising edge of RCLK provided that ESTR is HIGH. If Polled operations has been selected, ESTR should betied inactive, LOW. Note, that a $\overline{\text { PAEn flag bus }}$ selection cannotbe made, (ESTR mustNOT go active) until programming ofthe parthas been completed and SENO has gone LOW.
ESYNC	$\overline{\text { PAEn Bus Sync }}$	LVTTL OUTPUT	ESYNC is an outputfrom the multi-queue device that provides a synchronizing pulse for the $\overline{\text { PAEn bus }}$ during Polled operation of the $\overline{\text { PAEn bus. During Polled operation each devices queue status flags are }}$ loaded ontothe $\overline{\text { PAEn }}$ bus outputs sequentially based on RCLK. The first RCLK rising edgeloads device 1 on to $\overline{\text { PAEn, the second RCLK rising edgeloads device } 2 \text { andso on. Duringthe RCLK cycle thata selected }}$ device is placed on to the PAEn bus, the ESYNC output will be HIGH.
EXI	$\overline{\text { PAEn }} / \overline{\text { PRn }}$ Bus Expansion In	LVTTL INPUT	The EXI input is used when multi-queue devices are connected in expansion mode and Polled $\overline{\text { PAEn }}$ $\overline{\text { PRn }}$ bus operation has been selected. EXI of device ' N ' connects directly to EXO of device ' $\mathrm{N}-1$ '. The EXI receives a token from the previous device in a chain. In single device mode the EXI input must be tied LOWitthe $\overline{\text { PAE }} / / \overline{\text { PRn }}$ bus is operated indirectmode. Ifthe $\overline{\text { PAEn }} / / \overline{\text { PRn }}$ bus is operated in polled mode the EXI input must be connected to the EXO output of the same device. In expansion mode the EXI of the first device should be tied LOW, when direct mode is selected.
EXO	$\overline{\text { PAEn }} / \overline{\text { PRn }}$ Bus Expansion Out	LVTTL OUTPUT	EXO is an output that is used when multi-queue devices are connected in expansion mode and Polled $\overline{\text { PAE }}$ /PRn n us operation has been selected. EXO of device ' N ' connects directly to EXI of device ' $\mathrm{N}+1$ '. This pin pulses HIGH when device N placesits $\overline{\text { PAE }}$ status on tothe $\overline{\text { PAEn }} / \overline{\text { PRn }}$ bus with respecto RCLK. This pulse (token) is then passed on to the next device in the chain ' $\mathrm{N}+1$ ' and on the next RCLK rising edge the firstquadrant of device $\mathrm{N}+1$ will be loaded on to the $\overline{\operatorname{PAE}} \mathrm{n} / \overline{\mathrm{PR}} \mathrm{n}$ bus. This continues through the chain and EXO of the lastdevice is then looped back to EXI of the firstdevice. The ESYNC output of each device in the chain provides synchronization to the user of this looping event.
$\overline{\mathrm{F}} \overline{\mathrm{F}}$	Full Flag	$\begin{aligned} & \hline \text { LVTTL } \\ & \text { OUTPUT } \end{aligned}$	This pin provides the full flag output for the active queue, that is, the queue selected on the input port for write operations, (selected via WCLK, WRADD bus and WADEN). Onthe WCLK cycle after a queue selection, this flag will show the status of the newly selected queue. Data can be written to this queue on the next cycle provided FF is HIGH. This flag has High-Impedance capability, this is important during expansion of devices, whenthe FF flagoutput of up to 8 devices may be connectedtogetheronacommon line. The device with aqueue selectedtakes control of the $\overline{F F}$ bus, all other devices place their $\overline{F F}$ output into High-Impedance. When a queue selection is made on the write port this output will switch from High-Impedance control on the next WCLK cycle. This flag is synchronized to WCLK.
FM ${ }^{(1)}$	Flag Mode	LVTTL INPUT	This pin is setup before a master reset and must nottoggle during any device operation. The state of the FM pin during Master Reset will determine whether the $\overline{\text { PAF }}$ and $\overline{\text { PAEn flag busses operate in either }}$ Polled or Direct mode. If this pin is HIGH the mode is Polled, if LOW then it will be Direct.
FSTR	$\overline{\text { PAFn Flag Bus }}$ Strobe	LVTTL INPUT	Ifdirect operation of the $\overline{\text { PAFn }}$ bus has been selected, the FSTR inputis used in conjunction with WCLK and the WRADD bus to selecta device for its queues to be placed on to the $\overline{\text { PAFn }}$ bus outputs. A device addressed via the WRADD bus is selected on the rising edge of WCLK provided that FSTR is HIGH. If

PIN DESCRIPTIONS (CONTINUED)

Symbol	Name	I/OTYPE	Description
FSTR (Continued)	$\overline{\text { PAFn Flag Bus }}$ Strobe	LVTTL INPUT	Polled operations has been selected, FSTR should be tied inactive, LOW. Note, thata $\overline{\text { PAF }}$ n flag bus selection cannotbe made,(FSTR mustNOT goactive) until programming ofthe parthas been completed and $\overline{\text { SENO }}$ has gone LOW.
FSYNC	$\overline{\text { PAFn Bus Sync }}$	LVTTL OUTPUT	FSYNC is an outputfrom the multi-queue device that provides a synchronizing pulse for the $\overline{\text { PAFn }}$ bus during Polled operation of the PAFn bus. During Polled operation each quadrant of queue status flags is loaded on to the $\overline{\text { PAF }}$ n bus outputs sequentially based on WCLK. The firstWCLK rising edge loads device 1 on to the $\overline{\text { PAFn }}$ bus outputs, the second WCLK rising edge loads device 2 and so on. During the WCLKcycle that a selected device is placed on to the PAFn bus, the FSYNC output will be HIGH.
FXI	PAFnBus Expansion In	LVTTL INPUT	The FXI input is used when multi-queue devices are connected in expansion mode and Polled $\overline{\text { PAF }}$ bus operation has been selected. FXI of device ' N ' connects directly to FXO of device ' $\mathrm{N}-1$ '. The FXI receives a token from the previous device in a chain. In single device mode the FXI input must be tied mustbe connected to the FXO output of the same device. In expansion mode the FXI of the first device should betied LOW, when direct mode is selected.
FXO	$\overline{\text { PAFn Bus }}$ Expansion Out	LVTTL OUTPUT	FXO is an output that is used when multi-queue devices are connected in expansion mode and Polled $\overline{\text { PAFn }}$ bus operation has been selected. FXO of device ' N ' connects directly to FXI of device ' $\mathrm{N}+1$ '. This pinpulses HIGH when device Nplaces its $\overline{\text { PAF status on tothe } \overline{\text { PAF }} \text { bus with respectto WCLK. This pulse }}$ (token) is then passed on to the nextdevice in the chain ' $\mathrm{N}+\mathrm{t}$ ' and on the nextWCLK rising edge the first quadrant of device $\mathrm{N}+1$ will be loaded on to the $\overline{\text { PAF }}$ bus. This continues through the chain and FXO of the last device is then looped back to FXI of the first device. The FSYNC output of each device in the chain provides synchronization to the user of this looping event.
$\mathrm{ID}[2: 0]^{(1)}$	Device ID Pins	LVTTL INPUT	Forthe 4Q multi-queue device the WRADD address bus is 5 bits and RDADD address bus is 6 bits wide. Whenaqueue selectiontakesplacethe 3 MSb's ofthis address bus are usedto addressthe specific device (the LSb's are usedto address the queue within that device). During write/read operations the 3 MSb 's of the address are compared to the device ID pins. The firstdevice in achain of Multi-Queue's (connected in expansion mode), may be setup as ' 000 ', the second as ' 001 ' and so on through to device 8 which is '111', howeverthe ID does nothave to match the device order. In single device mode these pins should be setup as ' 000 ' and the 3 MSb's of the WRADD and RDADD address busses should betied LOW. The $\mathrm{ID}[2: 0]$ inputs setup a respective devices ID during master reset. These ID pins must not toggle during any device operation. Note, the device selected as the 'Master' does not have to have the ID of ' 000 '.
IW ${ }^{(1)}$	InputWidth	LVTTL INPUT	This pin is used in conjunction with OW and BMto setupthe inputand outputbus widthsto be acombination of $\mathrm{x} 9, \mathrm{x} 18$ or x 36 , (providing that one port is x 36).
MAST ${ }^{(1)}$	MasterDevice	LVTTL INPUT	The state of this inputatMaster Reset determines whether a given device (within a chain of devices), is the Masterdevice oraSlave. Ifthis pinisHIGH, the device is the master, ifitis LOW thenitis aSlave. The master device is the firstto take control of all outputs after a master reset, all slave devices go to High-Impedance, preventing bus contention. If a multi-queue device is being used in single device mode, this pin must be set HIGH.
$\overline{\mathrm{MRS}}$	Master Reset	LVTTL INPUT	A master resetis performed bytaking $\overline{\mathrm{RSS}}$ fromHIGHtoLOW, to HIGH. Device programmingis required after master reset.
$\overline{\mathrm{O}}$	OutputEnable	LVTTL INPUT	The Outputenable signal is an Asynchronous signal usedto provide three-state control of the multi-queue data output bus, Qout. If a device has been configured as a "Master" device, the Qout data outputs will be ina Low Impedance condition ifthe $\overline{\text { OE }}$ inputis LOW. If $\overline{\mathrm{OE}}$ is HIGH then the Qout data outputs will be in High Impedance. If a device is configured a "Slave" device, then the Qout data outputs will always be in High Impedance until that device has been selected on the Read Port, atwhich point $\overline{\mathrm{E}}$ provides threestate of that respective device.
OV	Output Valid Flag	LVTTL OUTPUT	This outputflagprovides outputvalid statusforthe dataword presentonthe multi-queueflow-control device data output port, Qout. This flag is therefore, 2 -stage delayed to match the data output path delay. That is, there is a 2RCLK cycle delay from the time a given queue is selected for reads, to the time the $\overline{\mathrm{OV}}$ flag represents the data in that respective queue. When a selected queue on the read port is read to empty, the $\overline{\mathrm{OV}}$ flag will go HIGH, indicating that data on the output bus is not valid. The $\overline{\mathrm{OV}}$ flag also has HighImpedance capability, required when multiple devices are used and the $\overline{\mathrm{OV}}$ flags are tied together.

PIN DESCRIPTIONS (CONTINUED)

Symbol	Name	I/OTYPE	Description
OW ${ }^{(1)}$	OutputWidth	LVTTL INPUT	This pin is setup during Master Reset and mustnottoggle during any device operation. This pin is used in conjunction with IW and BM to setup the data input and outputbus widths to be a combination of x 9 , $x 18$ or $\times 36$, (providing that one port is $x 36$).
$\overline{\text { PAE }}$	Programmable Almost-Empty Flag	LVTTL OUTPUT	This pin provides the Almost-Empty flag status for the queue that has been selected on the output port for read operations, (selected via RCLK, RDADD and RADEN). This pin is LOW when the selected queue is almost-empty. This flag output may be duplicated on one of the $\overline{\text { PAEn bus lines. This flag is }}$ synchronized to RCLK.
$\overline{\text { PAEn }} / \overline{\text { PR }}$	Programmable Almost-Empty Flag Bus/PacketReady Flag Bus	LVTTL OUTPUT	On the 4Q device the $\overline{\text { PAEn }} / \overline{\text { PR }} \mathrm{n}$ bus is 4 bits wide. During a Master Reset this bus is setup for either Almost Empty mode or Packet mode. This output bus provides $\overline{\overline{A E E}} / \overline{\mathrm{PR}}$ status of all 4 queues, within aselected device. During Queue read/write operations these outputs provide programmable empty flagstatus orpacketready status, in eitherdirector polled mode. The mode offlagoperation is determined during master reset via the state of the FM input. This flag bus is capable of High-Impedance state, this is important during expansion of multi-queue devices. During direct operation the $\overline{\mathrm{PAE}} / \overline{\text { PRn }}$ bus is updatedto show the $\overline{\mathrm{PAE}} / \overline{\mathrm{PR}}$ status of queues within a selected device. Selection is made using RCLK, ESTR and RDADD. During Polled operation the $\overline{\text { PAE }} / / \overline{\text { PR } n n ~ b u s ~ i s ~ l o a d e d ~ w i t h ~ t h e ~} \overline{\text { PAE }} / \overline{\text { PRn n status }}$ of multi-queue flow-control devices sequentially based onthe rising edge of RCLK. $\overline{\text { PAE }}$ or $\overline{\text { PR }}$ operation is determined by the state of PKT during master reset.
$\overline{\text { PAF }}$	Programmable Almost-Full Flag	$\begin{array}{\|l\|} \hline \text { LVTTL } \\ \text { OUTPUT } \end{array}$	This pin provides the Almost-Full flag status for the queue that has been selected on the input portfor write operations, (selectedviaWCLK, WRADD and WADEN). Thispinis LOW when the selected queue is almost-full. This flag outputmay be duplicated on one of the PAFn bus lines. This flagis synchronized toWCLK.
$\overline{\text { PAF }}$	Programmable Almost-Full FlagBus	$\begin{array}{\|l\|} \hline \text { LVTTL } \\ \text { OUTPUT } \end{array}$	Onthe 4Qdevice the $\overline{\text { PAF }}$ bus is 4 bits wide. This output bus provides $\overline{\text { PAF }}$ status of all 4 queues, within a selected device. During Queue read/write operations these outputs provide programmable full flag status, in either direct or polled mode. The mode of flag operation is determined during master reset via the state of the FM input. This flag bus is capable of High-Impedance state, this is important during expansion of multi-queue devices. During direct operation the $\overline{\text { PAF }}$ bus is updated to show the $\overline{\text { PAF }}$ status of aqueues within aselecteddevice. Selectionis made usingWCLK, FSTR, WRADD andWADEN. During Polled operation the $\overline{\text { PAF }}$ bus is loaded with the $\overline{\text { PAF }}$ status of multi-queue flow-control devices sequentially based on the rising edge of WCLK.
PKT ${ }^{(1)}$	PacketMode	LVTTL INPUT	The state of this pin during a Master Reset will determine whether the part is operating in Packet mode providing both a Packet Ready ($\overline{\mathrm{PR}}$) output and a Programmable Almost Empty ($\overline{\mathrm{PAE}})$ discrete output, or standard mode, providing a ($\overline{\mathrm{PAE}})$ output only. If this pin is HIGH during Master Reset the part will operate in packetmode, ifitis LOW then almostempty mode. If packetmodehas been selected the read port flag bus becomes packet ready flag bus, $\overline{P R} n$ and the discrete packet ready flag, $\overline{P R}$ is functional. Ifalmostempty operation has been selected then the flag bus provides almost empty status, $\overline{\text { PAE }}$ and thediscrete almostemptyflag, $\overline{\mathrm{PAE}}$ isfunctional, the $\overline{\mathrm{PR}} f l a g i s i n a c t i v e ~ a n d s h o u l d n o t b e ~ c o n n e c t e d . ~ P a c k e t ~$ Ready utilizes user marked locations to identify start and end of packets being written into the device. Packet Mode can only be selected if both the input port width and output port width are 36 bits.
$\overline{\mathrm{PR}}$	Packet Ready Flag	LVTTL	If packet mode has been selected this flag output provides Packet Ready status of the queue selected for read operations. During a master reset the state of the PKT input determines whether Packet mode of operation will be used. IfPacket mode is selected, then the condition of the $\overline{\overline{R R}}$ flag and $\overline{\mathrm{OV}}$ signal are asserted indicates a packet is ready for reading. The user must mark the start of a packet and the end of a packet when writing data into a queue. Using these StartOf Packet (SOP) and End Of Packet (EOP) markers, the multi-queue device sets $\overline{\text { PR }}$ LOW if one or more "complete" packets are available in the queue. A complete packet(s) must be written before the user is allowed to switch queues.
$\overline{\text { PRS }}$	Partial Reset	LVTTL INPUT	APartial Resetcanbeperformedonasinglequeueselected withinthemulti-queuedevice. BeforeaPartial Reset can be performed on a queue, that queue must be selected on both the write port and read port 2 clock cycles before the reset is performed. A Partial Reset is then performed by taking $\overline{\text { PRS LOW for }}$ one WCLK cycle and one RCLK cycle. The Partial Reset will only reset the read and write pointers to the firstmemory location, none of the devices configuration will be changed.

PIN DESCRIPTIONS (CONTINUED)

Symbol	Name	I/OTYPE	Description
Q[35:0] Qout	Data OutputBus	LVTTL OUTPUT	These are the 36 data output pins. Datais read out of the device via these output pins on the rising edge of RCLK provided that REN is LOW, $\overline{0}$ E is LOW and the queue is selected. Note, that in Packet mode Q32-Q35 may be used as packetmarkers, please see packetreadyfunctional discussionfor more detail. Due to bus matching not all outputs may be used, any unused outputs should not be connected.
RADEN	Read Address Enable	LVTTL INPUT	The RADEN input is used in conjunction with RCLK and the RDADD address bus to select a queue to be read from. A queue addressed via the RDADD bus is selected on the rising edge of RCLK provided that RADEN is HIGH. RADEN should be asserted (HIGH) only during a queue change cycle(s). RADEN should notbepermanentlytied HIGH. RADEN cannotbe HIGHforthe same RCLK cycle as ESTR. Note, thata read queue selection cannotbe made, (RADEN mustNOT go active) until programming of the part has been completed and SENO has gone LOW.
RCLK	Read Clock	LVTTL INPUT	When enabled by $\overline{R E N}$, the rising edge of RCLK reads data from the selected queue via the output bus Qout. The queue to be read is selected via the RDADD address bus and a rising edge of RCLK while RADEN is HIGH. A rising edge of RCLK in conjunction with ESTR and RDADD will also select the device to be placed on the $\overline{\operatorname{PAE}} / / \overline{\mathrm{PR}}$ n bus during directflag operation. During polled flag operation the $\overline{\text { PAEn }} / \overline{\text { PR }}$ n bus is cycled with respecto RCLK and the ESYNC signal is synchronizedto RCLK. The PAE, $\overline{\mathrm{PR}}$ and $\overline{\mathrm{OV}}$ outputs are all synchronized to RCLK. During device expansion the EXO and EXI signals are based on RCLK. RCLK must be continuous and free-running.
$\begin{aligned} & \text { RDADD } \\ & {[5: 0]} \end{aligned}$	Read Address Bus	LVTTL INPUT	For the 4Q device the RDADD bus is 6 bits. The RDADD bus is a dual purpose address bus. The first function of RDADD isto selectaqueue to be read from. The leastsignificant2bits of the bus, RDADD[1:0] are usedto address 1 of 4 possiblequeues within a multi-queue device. Address pin, RDADD[2] provides the user with a Null-Q address. If the user does not wish to address one of the 4 queues, a Null- Q can be addressed using this pin. The Null-Q operation is discussed in more detail later. The mostsignificant 3 bits, RDADD[5:3] are used to select 1 of 8 possible multi-queue devices that may be connected in expansion mode. These 3 MSb's will address adevice with the matching ID code. The address present on the RDADD bus will be selected on a rising edge of RCLK provided that RADEN is HIGH, (note, that data can be placed ontothe Qoutbus, readfrom the previously selected queue onthis RCLKedge). On the nextrising RCLK edge after a read queue select, a data word from the previous queue will be placed ontothe outputs, Qout, regardless ofthe RENinput. Two RCLK rising edges after read queue select, data will be placed on to the Qout outputs from the newly selected queue, regardless of REN due to the first wordfall through effect. The second function of the RDADD bus is to select the device of queues to be loaded on to the $\overline{\text { PAE }}$ / $\overline{\text { PRn }}$ bus during strobed flag mode. The mostsignificant 3 bits, RDADD[5:3] are again used to select 1 of 8 possible multi-queue devices that may be connected in expansion mode. Address bits RDADD[2:0] are don't care during device selection. The device address present on the RDADD bus will be selected on the rising edge of RCLK provided that ESTR is HIGH, (note, that data can be placed on to the Qout bus, read from the previously selected Queue on this RCLK edge). Please refer to Table 2 for details on RDADD bus.
$\overline{\mathrm{REN}}$	Read Enable	LVTTL INPUT	The $\overline{\text { REN }}$ inputenables read operations from a selected queue based ona rising edge of RCLK. A queue to be read from can be selected via RCLK, RADEN and the RDADD address bus regardless of the state of $\overline{R E N}$. Data from a newly selected queue will be available on the Qout outputbus on the second RCLK cycle after queue selection regardless of $\overline{R E N}$ due to the FWFT operation. A read enable is not required to cycle the $\overline{\text { PAEn }} / \overline{\text { PR }} n$ bus (in polled mode) or to select the device, (in direct mode).
SCLK	Serial Clock	LVTTL INPUT	Ifserial programming of the multi-queue device has been selected during master reset, the SCLKinput clocks the serial datathroughthe multi-queue device. Data setup on the Sl inputis loaded into the device on the risingedge ofSCLK provided that SENT is enabled, LOW. When expansion of devices is performed the SCLK of all devices should be connected to the same source.
$\overline{\text { SENI }}$	Serial InputEnable	LVTTL INPUT	During serial programming of a multi-queue device, data loaded ontothe Sl inputwill be clocked into the part (via a rising edge of SCLK), provided the SEN input of that device is LOW. If multiple devices are cascaded, the $\overline{\text { SENN }}$ inputshould be connectedtothe $\overline{\text { SENO }}$ output ofthe previous device. So when serial loading of a given device is complete, its $\overline{\text { SENO }}$ output goes LOW, allowing the nextdevice in the chain to be programmed ($\overline{\mathrm{SENO}}$ will follow $\overline{\mathrm{SENN}}$ of a given device once that device is programmed). The $\overline{\mathrm{SENI}}$ input of the master device (or single device), should be controlled by the user.

PIN DESCRIPTIONS (CONTINUED)

Symbol	Name	I/OTYPE	Description
$\overline{\text { SENO }}$	Serial OutputEnable	LVTTL OUTPUT	This output is used to indicate that serial programming or default programming of the multi-queue device has been completed. $\overline{\mathrm{SENO}}$ follows $\overline{\mathrm{SENI}}$ once programming of a device is complete. Therefore, $\overline{\mathrm{SENO}}$ will go LOW after programming provided $\overline{\mathrm{SENl}}$ is LOW, once $\overline{\mathrm{SENI}}$ is taken HIGH again, $\overline{\mathrm{SENO}}$ will also go HIGH. When the $\overline{\text { SENO }}$ output goes LOW, the device is ready to begin normal read/write operations. If multiple devices are cascaded and serial programming of the devices will be used, the $\overline{\text { SENO }}$ output should be connected to the $\overline{\text { SENI }}$ input of the next device in the chain. When serial programming of the first device is complete, $\overline{\text { SENO }}$ will go LOW, thereby taking the $\overline{\text { SEN }}$ input of the next device LOW and so on throughout the chain. When a given device in the chain is fully programmed the $\overline{\text { SENO }}$ output essentiallyfollowsthe $\overline{S E N}$ input. The user should monitorthe $\overline{\text { SENO }}$ output of the final device inthe chain. When this output goes LOW, serial loading of all devices has been completed.
SI	Serial In	LVTTL INPUT	During serial programming this pin is loaded with the serial data that will configure the multi-queue devices. Data present on SI will be loaded on a rising edge of SCLK provided that $\overline{\text { SENI }}$ is LOW. In expansion mode the serial data input is loaded into the first device in achain. When that device is loaded and its $\overline{\text { SENO }}$ has gone LOW, the data present on SI will be directly output to the SO output. The SO pin of the first device connects to the SI pin of the second and so on. The multi-queue device setup registers are shift registers.
SO	SerialOut	LVTTL OUTPUT	This output is used in expansion mode and allows serial data to be passed through devices in the chain to complete programming of all devices. The SI of a device connectsto SO of the previous device in the chain. The SO of the final device in a chain should not be connected.
TCK ${ }^{(2)}$	JTAG Clock	LVTTL INPUT	Clock input for JTAG function. One of four terminals required by IEEE Standard 1149.1-1990. Test operations ofthe device are synchronousto TCK. DatafromTMS and TDI are sampled on the rising edge of TCK and outputs change on the falling edge of TCK. Ifthe JTAG function is not used this signal needs to be tied to GND.
TDI ${ }^{(2)}$	JTAG Test Data Input	LVTTL INPUT	One of four terminals required by IEEE Standard 1149.1-1990. During the JTAG boundary scan operation, test data serially loaded viathe TDI on the rising edge of TCK to either the Instruction Register, ID Register and Bypass Register. An internal pull-up resistor forces TDI HIGH if left unconnected.
TDO ${ }^{(2)}$	JTAG Test Data Output	LVTTL OUTPUT	One of four terminals required by IEEE Standard 1149.1-1990. During the JTAG boundary scan operation, test data serially loaded outputviathe TDO on the falling edge of TCK from eitherthe Instruction Register, ID Register and Bypass Register. This outputis high impedance exceptwhen shifting, while in SHIFT-DR and SHIFT-IR controller states.
TMS ${ }^{(2)}$	JTAGMode Select	LVTTL INPUT	TMS is a serial input pin. One of four terminals required by IEEE Standard 1149.1-1990. TMS directs the device through its TAP controller states. An internal pull-up resistorforces TMS HIGH ifleft unconnected.
$\overline{\text { TRST }}{ }^{(2)}$	JTAGReset	LVTTL INPUT	$\overline{\text { TRST is anasynchronous resetpinfortheJTAG controller. TheJTAG TAP controllerdoes notautomatically }}$ resetuponpower-up, thus itmustbe resetby eitherthissignal orby setting TMS=HIGHfor five TCK cycles. If the TAP controller is not properly reset then the outputs will always be in high-impedance. If the JTAG function is used but the user does not want to use $\overline{T R S T}$, then $\overline{\text { TRST }}$ can be tied with $\overline{M R S}$ to ensure proper queue operation. If the JTAG function is not used then this signal needs to be tied to GND. An internal pull-up resistor forces TRSTHIGH ifleft unconnected.
WADEN	Write Address Enable	LVTTL INPUT	The WADEN input is used in conjunction with WCLK and the WRADD address bus to select a queue to be written into. A queue addressed viatheWRADD bus is selected on the rising edge of WCLK provided thatWADEN is HIGH.WADEN should be asserted (HIGH) only during a queue change cycle(s). WADEN should notbe permanently tiedHIGH.WADEN cannotbe HIGHforthe sameWCLK cycle asFSTR. Note, that a write queue selection cannot be made, (WADEN mustNOT go active) until programming of the part has been completed and $\overline{\text { SENO }}$ has gone LOW.
WCLK	WriteClock	LVTTL INPUT	When enabled by $\overline{W E N}$, the rising edge of WCLK writes data into the selected queue via the input bus, Din. The queue to be writtento is selected viathe WRADD address bus and a rising edge of WCLK while WADEN is HIGH. A rising edge ofWCLK in conjunction withFSTR andWRADD will also select the device to be placed on the $\overline{\mathrm{PAF}}$ b bus during direct flag operation. During polled flag operation the $\overline{\mathrm{PAF}} n$ bus is cycled with respect to WCLK and the FSYNC signal is synchronized to WCLK. The $\overline{\mathrm{PAF}}, \overline{\mathrm{PAF}}$ and $\overline{\mathrm{FF}}$ outputs are all synchronized to WCLK. During device expansion the FXO and FXI signals are based on WCLK. The WCLK must be continuous and free-running.

PIN DESCRIPTIONS (CONTINUED)

Symbol	Name	I/OTYPE	Description
$\overline{\text { WEN }}$	Write Enable	LVTTL INPUT	The $\overline{W E N}$ input enables write operations to a selected queue based on a rising edge of WCLK. A queue to be written to can be selected via WCLK, WADEN and the WRADD address bus regardless of the state of $\overline{W E N}$. Data present on Din can be written to a newly selected queue on the second WCLK cycle after queue selection provided that $\overline{W E N}$ is LOW. A write enable is not required to cycle the $\overline{\text { PAFn }}$ bus (in polled mode) or to select the device, (in direct mode).
$\begin{aligned} & \text { WRADD } \\ & {[4: 0]} \end{aligned}$	Write Address Bus	LVTTL INPUT	For the 4Q device the WRADD bus is 5 bits. The WRADD bus is a dual purpose address bus. The first function ofWRADD isto selectaqueueto be writtento. The leastsignificant2bits ofthe bus, WRADD[1:0] are used to address 1 of 4 possible queues within a multi-queue device. The mostsignificant 3bits, WRADD[4:2] are used to select 1 of 8 possible multi-queuedevices that may be connected in expansion mode. These 3 MSb's will address a device with the matching ID code. The address present on the WRADD bus will be selected on a rising edge of WCLK provided that WADEN is HIGH, (note, that data present on the Din bus can be written into the previously selected queue on this WCLK edge and on the next rising WCLK also, providing that WEN is LOW). Two WCLK rising edges after write queue select, data can be written into the newly selected queue. The second function of the WRADD bus is to select the device of queues to be loaded on to the $\overline{\text { PAF }}$ bus during strobed flag mode. The mostsignificant 3 bits, WRADD[4:2] are again used to select 1 of 8 possible multi-queue devices that may be connected in expansion mode. Address bits WRADD[1:0] are don'tcare during device selection. The device address present on the WRADD bus will be selected onthe rising edge of WCLK providedthatFSTR is HIGH, (note, that data can be written intothe previously selected queue on this WCLK edge). Please refer to Table 1 for details on the WRADD bus.
Vcc	+3.3V Supply	Power	These are Vcc power supply pins and must all be connected to $\mathrm{a}+3.3 \mathrm{~V}$ supply rail.
GND	Ground Pin	Ground	These are Ground pins and must all be connected to the GND supply rail.

NOTES:

1. Inputs should not change after Master Reset.
2. These pins are for the JTAG port. Please refer to pages 51-55 and Figures 31-33.

ABSOLUTE MAXIMUM RATINGS

Symbol	Rating	Com'I \& Ind'I	Unit
VTERM	TerminalVoltage with respect to GND	-0.5 to +4.5	V
TSTG	Storage Temperature	-55 to +125	${ }^{\circ} \mathrm{C}$
IOUT	DCOutputCurrent	-50 to +50	mA

NOTE:

1. Stresses greater than those listed under ABSOLUTE MAXIMUM RATINGS may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.

RECOMMENDED DC OPERATING CONDITIONS

Symbol	Parameter	Min.	Typ.	Max.	Unit
Vcc ${ }^{(1)}$	Supply Voltage (Com'//Ind'I)	3.15	3.3	3.45	V
GND	Supply Voltage (Com'//Ind'I)	0	0	0	V
VIH	InputHigh Voltage (Com'//Ind'I)	2.0	-	Vcc+0.3	V
VIL	InputLow Voltage (Com'//Ind'I)	-	-	0.8	V
TA	Operating TemperatureCommercial	0	-	+70	${ }^{\circ} \mathrm{C}$
TA	OperatingTemperatureIndustrial	-40	-	+85	${ }^{\circ} \mathrm{C}$

NOTE:

1. $\mathrm{VCC}=3.3 \mathrm{~V} \pm 0.15 \mathrm{~V}$, JEDEC JESD8-A compliant.

DC ELECTRICAL CHARACTERISTICS

(Commercial: $\mathrm{VcC}=3.3 \mathrm{~V} \pm 0.15 \mathrm{~V}, \mathrm{TA}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$;Industrial: $\mathrm{VCC}=3.3 \mathrm{~V} \pm 0.15 \mathrm{~V}, \mathrm{TA}=40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$; JEDEC JESD8-A compliant)

Symbol	Parameter	Min.	Max.	Unit
$\mathrm{ILI}^{(1)}$	InputLeakageCurrent	-10	10	$\mu \mathrm{~A}$
$\mathrm{ILO}{ }^{(2)}$	OutputLeakageCurrent	-10	10	$\mu \mathrm{~A}$
VOH	Output Logic "1" Voltage, $\mathrm{IOH}=-8 \mathrm{~mA}$	2.4	-	V
VoL	Output Logic "0" Voltage, $\mathrm{IOL}=8 \mathrm{~mA}$	-	0.4	V
$\mathrm{ICC1} 1^{(3,4,5)}$	Active Power Supply Current	-	100	mA
$\mathrm{ICC2} 2^{3,6)}$	StandbyCurrent	-	25	mA

NOTES:

1. Measurements with $0.4 \leq \mathrm{V}$ IN $\leq \mathrm{VCC}$.
2. $\overline{\mathrm{O}} \geq \mathrm{V}$ IH, $0.4 \leq \mathrm{V}_{\text {out }} \leq \mathrm{V}$ Cc.
3. Tested with outputs open (lout $=0$).
4. RCLK and WCLK toggle at 20 MHz and data inputs switch at 10 MHz .
 $C L=$ capacitive load (in pF).
5. RCLK and WCLK, toggle at 20 MHz .

The following inputs should be pulled to GND: WRADD, RDADD, WADEN, RADEN, FSTR, ESTR, SCLK, SI, EXI, FXI and all Data Inputs.
The following inputs should be pulled to Vcc: $\overline{\mathrm{WEN}}, \overline{\operatorname{REN}}, \overline{\mathrm{SENI}}, \overrightarrow{\mathrm{PRS}}, \overline{\mathrm{MRS}}$, TDI, TMS and TRST.
All other inputs are don't care, and should be pulled HIGH or LOW.

CAPACITANCE $\left(\mathrm{TA}_{\mathrm{A}}=+25^{\circ} \mathrm{C}, \mathrm{f}=1.0 \mathrm{MHz}\right)$

Symbol	Parameter ${ }^{(1)}$	Conditions	Max.	Unit
$\mathrm{CIN}^{(2)}$	Input Capacitance	$\mathrm{V}_{\mathrm{IN}}=0 \mathrm{~V}$	10	pF
CouT $^{(1,2)}$	Output Capacitance	Vout $=0 \mathrm{~V}$	10	pF

NOTES:

1. With output deselected, $\left(\overline{O E} \geq V_{I H}\right)$.
2. Characterized values, not currently tested.

AC TEST LOADS

Figure 2a. AC Test Load

Figure 2b. Lumped Capacitive Load, Typical Derating

AC TEST CONDITIONS

Innut Pulse Levels	GND to 3.0V
InputRise/FallTimes	1.5 ns
InputTiming ReeferenceLevels	1.5 V
OutputReferenceLevels	1.5 V
OutputLoad	See Figure 2a \& 2b

OUTPUT ENABLE \& DISABLE TIMING

AC ELECTRICAL CHARACTERISTICS

(Commercial: $\mathrm{VCC}=3.3 \mathrm{~V} \pm 0.15 \mathrm{~V}, \mathrm{TA}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$;Industrial: $\mathrm{VCC}=3.3 \mathrm{~V} \pm 0.15 \mathrm{~V}, \mathrm{TA}=40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$; JEDEC JESD8-A compliant)

Symbol	Parameter				กd' ${ }^{(1)}$	Unit
		IDT72V51236L6IDT72V51246L6IDT72V51256L6		$\begin{aligned} & \hline \text { IDT72V51236L7-5 } \\ & \text { IDT72V51246L7-5 } \\ & \text { IDT72V51256L7-5 } \end{aligned}$		
		Min.	Max.	Min.	Max.	
fs	Clock Cycle Frequency (WCLK \& RCLK)	-	166	-	133	MHz
tA	Data Access Time	0.6	3.7	0.6	4	ns
tCLK	Clock Cycle Time	6	-	7.5	-	ns
tCLKH	Clock High Time	2.7	-	3.5	-	ns
tCLKL	Clock Low Time	2.7	-	3.5	-	ns
tos	DataSetup Time	2	-	2.0	-	ns
DH	Data Hold Time	0.5	-	0.5	-	ns
tens	EnableSetup Time	2	-	2.0	-	ns
tenh	Enable Hold Time	0.5	-	0.5	-	ns
tRS	ResetPulseWidth	10	-	10	-	ns
tRSS	ResetSetup Time	15	-	15	-	ns
tRSR	Reset Recovery Time	10	-	10	-	ns
tPRSS	Partial ResetSetup	2.0	-	2.5	-	ns
tPRSH	Partial ResetHold	0.5	-	0.5	-	ns
tolz ($\overline{\mathrm{E}}$-Qn) ${ }^{(2)}$	OutputEnableto Outputin Low-Impedance	0.6	3.7	0.6	4	ns
tohz ${ }^{(2)}$	OutputEnableto OutputinHigh-Impedance	0.6	3.7	0.6	4	ns
toe	OutputEnable to Data Output Valid	0.6	3.7	0.6	4	ns
fc	Clock Cycle Frequency (SCLK)	-	10	-	10	MHz
tsCLK	Serial Clock Cycle	100	-	100	-	ns
tSCKH	Serial Clock High	45	-	45	-	ns
tSCKL	Serial Clock Low	45	-	45	-	ns
tSDS	Serial Dataln Setup	20	-	20	-	ns
tsDH	Serial Data In Hold	1.2	-	1.2	-	ns
tSENS	Serial EnableSetup	20	-	20	-	ns
tSENH	Serial Enable Hold	1.2	-	1.2	-	ns
tsDo	SCLK to Serial Data Out	-	20	-	20	ns
tseno	SCLK to Serial Enable Out	-	20	-	20	ns
tSDOP	Serial Data Out Propagation Delay	1.5	3.7	1.5	4	ns
tSENOP	Serial Enable Propagation Delay	1.5	3.7	1.5	4	ns
tPCWQ	Programming Complete to Write Queue Selection	20	-	20	-	ns
tPCRQ	Programming Complete to Read Queue Selection	20	-	20	-	ns
tAS	Address Setup	2.5	-	3.0	-	ns
taH	Address Hold	1	-	1	-	ns
twFF	Write Clock to Full Flag	-	3.7	-	5	ns
trov	Read Clock to Output Valid	-	3.7	-	5	ns
tSTS	StrobeSetup	2	-	2	-	ns
tsTH	StrobeHold	0.5	-	0.5	-	ns
tos	QueueSetup	2	-	2.5	-	ns
toh	Queue Hold	0.5	-	0.5	-	ns
tWAF	WCLK to $\overline{\text { PAF }}$ flag	0.6	3.7	0.6	4	ns
tRAE	RCLK to $\overline{\text { PAE }}$ flag	0.6	3.7	0.6	4	ns
tPAF	Write Clock to Synchronous Almost-Full Flag Bus	0.6	3.7	0.6	4	ns
tPAE	Read Clock to Synchronous Almost-Empty Flag Bus	0.6	3.7	0.6	4	ns

NOTES:

1. Industrial temperature range product for the $7-5 n$ s is available as a standard device. All other speed grades are available by special order.
2. Values guaranteed by design, not currently tested.

AC ELECTRICAL CHARACTERISTICS (CONTINUED)

(Commercial: $\mathrm{VCC}=3.3 \mathrm{~V} \pm 0.15 \mathrm{~V}, \mathrm{TA}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$; Industrial: $\mathrm{VCC}=3.3 \mathrm{~V} \pm 0.15 \mathrm{~V}, \mathrm{TA}=40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$; JEDEC JESD8-A compliant)

Symbol	Parameter	CommercialIDT72V51236L6IDT72V51246L6IDT72V51256L6		Com'I \& Ind'\|(1)IDT72V51236L7-5IDT72V51246L7-5IDT72V51256L7-5		Unit
		Min.	Max.	Min.	Max.	
tPAELZ ${ }^{(2)}$	RCLK to $\overline{\text { PAE }}$ Flag Bus to Low-Impedance	0.6	3.7	0.6	4	ns
tPAEHZ ${ }^{(2)}$	RCLK to $\overline{\text { PAE Flag Bus to High-Impedance }}$	0.6	3.7	0.6	4	ns
tPAFLZ ${ }^{(2)}$	WCLK to $\overline{\text { PAF F Flag Bus to Low-Impedance }}$	0.6	3.7	0.6	4	ns
tPAFHZ ${ }^{(2)}$	WCLK to $\overline{\text { PAF }}$ Flag Bus to High-Impedance	0.6	3.7	0.6	4	ns
tFFHZ ${ }^{(2)}$	WCLK to Full Flag to High-Impedance	0.6	3.7	0.6	4	ns
tFFLZ ${ }^{(2)}$	WCLK to Full Flag to Low-Impedance	0.6	3.7	0.6	4	ns
tovLZ ${ }^{(2)}$	RCLK to Output Valid Flag to Low-Impedance	0.6	3.7	0.6	4	ns
toviz ${ }^{(2)}$	RCLK to Output Valid Flag to High-Impedance	0.6	3.7	0.6	4	ns
tFSYMC	WCLK to $\overline{\text { PAF }}$ Bus Sync to Output	0.6	3.7	0.6	4	ns
tfxo	WCLK to $\overline{\text { PAF }}$ Bus Expansion to Output	0.6	3.7	0.6	4	ns
tesYMC	RCLK to $\overline{\text { PAE }}$ Bus Sync to Output	0.6	3.7	0.6	4	ns
texo	RCLK to $\overline{\text { PAE }}$ Bus Expansion to Output	0.6	3.7	0.6	4	ns
tPR	RCLK to Packet Ready Flag	0.6	3.7	0.6	4	ns
tSkEW1	SKEW time between RCLK and WCLK for $\overline{\mathrm{FF}}$ and $\overline{\mathrm{OV}}$	4.5	-	5.75	-	ns
tSkEW2	SKEW time between RCLK and WCLK for $\overline{\overline{P A F}}$ and $\overline{\text { PAE }}$	6	-	7.5	-	ns
tSkEW3	SKEW time between RCLK and WCLK for $\overline{\overline{P A F}}[0: 7]$ and $\overline{\text { PAE }}[0: 7]$	6	-	7.5	-	ns
tSKEW4	SKEW time between RCLK and WCLK for $\overline{\mathrm{PR}}$ and $\overline{\mathrm{OV}}$	6	-	7.5	-	ns
tSkEW5	SKEW time between RCLK and WCLK for $\overline{\mathrm{OV}}$ when in Packet Mode	10	-	12	-	ns
txIs	Expansion InputSetup	1.0	-	1.3	-	ns
tx\|	Expansion Input Hold	0.5	-	0.5	-	ns

NOTES:

1. Industrial temperature range product for the $7-5 \mathrm{~ns}$ is available as a standard device. All other speed grades are available by special order.
2. Values guaranteed by design, not currently tested.

FUNCTIONAL DESCRIPTION

MASTERRESET

A Master Reset is performed by toggling the $\overline{\text { MRS }}$ input from HIGH to LOW toHIGH. During a master resetall internal multi-queue device setup and control registers are initialized and require programming either serially by the uservia the serial port, or using the default settings. During a master reset the state of the following inputs determine the functionality of the part, these pins should be held HIGH or LOW.

PKT - Packet Mode
FM - Flag bus Mode
IW, OW, BM-Bus Matching options
MAST - Master Device
ID0, 1, 2 - Device ID
DFM - Programming mode, serial or default
DF-Offset value for $\overline{\mathrm{PAE}}$ and $\overline{\mathrm{PAF}}$
Once a master resethastaken place, the device must be programmed either serially or via the default method before any read/write operations can begin.

See Figure 4, Master Resetfor relevant timing.

PARTIALRESET

APartial Resetis a meansby whichthe usercan resetboththe read and write pointers of a single queue that has been setup within a multi-queue device. Before a partial resetcantake place on a queue, the respective queue mustbe selected onboththe read portand write porta minimum of 2 RCLK and2WCLK cyclesbeforethe $\overline{\mathrm{PRS}}$ goes LOW. The partial reset isthen performed bytoggling the $\overline{\text { PRS inputfromHIGHtoLOW toHIGH, maintaining the LOW stateforatleast }}$ oneWCLKandoneRCLKcycle. Onceapartial resethastakenplaceaminimum of 3WCLK and3RCLK cycles mustoccurbeforeenabled writes or reads can occur.

A Partial Reset only resets the read and write pointers of a given queue, a partial reset will noteffect the overall configuration and setup of the multi-queue device and its queues.

See Figure 5, Partial Resetfor relevant timing.

SERIAL PROGRAMMING

The multi-queue flow-control device is a fully programmable device, providing the user with flexibility in how queues are configured interms of the number of queues, depth of each queue and position of the $\overline{\mathrm{PAF}} / \overline{\mathrm{PAE}}$ flags within respectivequeues. All userprogramming is doneviathe serial portafteramaster reset has taken place. Internally the multi-queue device has setup registers which must be serially loaded, these registers contain values for every queue within the device, such as the depth and $\overline{\mathrm{PAE}} / \overline{\mathrm{PAF}}$ offset values. The IDT72V51236/72V51246/72V51256 devices are capable of up to 4 queues and therefore contain 4 sets of registers for the setup of each queue.

DuringaMasterResetiftheDFM (DefaultMode)inputisLOW, thenthe device will require serial programming by the user. It is recommended that the user utilize a 'C' program provided by IDT, this program will prompt the user for all information regarding the multi-queue setup. The program will then generate a serial bitstream which should be serially loaded into the device via the serial port. Forthe IDT72V51236/72V51246/72V51256 devices the serial programming requires a total number of serially loaded bits per device, (SCLK cycles with $\overline{S E N I}$ enabled), calculated by: 19+(Qx72) whereQisthenumber of queues the user wishes to setup within the device. Please refer to the separate Application Note, AN-303 for recommended control of the serial programming port.

Once the master reset is complete and $\overline{\mathrm{MRS}}$ is HIGH, the device can be serially loaded. Data present on the SI (serial in), input is loaded into the serial
port on a rising edge of SCLK (serial clock), provided that $\overline{\text { SENI }}$ (serial in enable), is LOW. Once serial programming of the device has been successfully completed the device will indicate this viathe $\overline{\mathrm{SENO}}$ (serial outputenable) going active, LOW. Upon detection of completion of programming, the user should ceaseall programming andtake $\overline{\mathrm{SEN}}$ inactive, HIGH. Note, $\overline{\mathrm{SENO}}$ follows $\overline{\mathrm{SENI}}$ once programming of a device is complete. Therefore, $\overline{\text { SENO }}$ will goLOW after programming provided $\overline{\text { SENN }}$ is LOW, once $\overline{\text { SENl }}$ istakenHIGH again, $\overline{\text { SENO }}$ will also go HIGH. The operation of the SO outputis similar, when programming of a given device is complete, the SO output will follow the SI input.
Ifdevices are beingused in expansion modethe serial ports of devices should be cascaded. The usercan load all devices via the serial input port control pins, $\mathrm{SI} \& \overline{\mathrm{SENI}}$, of the first device in the chain. Again, the user may utilize the ' C ' programto generate the serial bits stream, the program prompting the userfor the number of devices to be programmed. The $\overline{\mathrm{SENO}}$ and SO (serial out) of the first device should be connected to the $\overline{\mathrm{SENI}}$ and SI inputs of the second device respectively and so on, with the $\overline{\mathrm{SENO}} \& \mathrm{SO}$ outputs connecting to the $\overline{\text { SENI }} \&$ S I inputs of all devices throughthe chain. All devices in the chain should beconnectedtoacommonSCLK. The serial outputportofthe final device should be monitored by the user. When $\overline{\text { SENO }}$ of the final device goes LOW, this indicates that serial programming of all devices has been successfully completed. Upon detection of completion of programming, the user should cease all programming and take $\overline{\mathrm{SENI}}$ of the first device in the chain inactive, HIGH .
As mentioned, the first device in the chain has its serial input port controlled by the user, this is the first device to have its internal registers serially loaded by the serial bitstream. When programming of this device is complete it will take its $\overline{\text { SENO }}$ output LOW and bypass the serial data loaded on the SI input to its SO output. The serial input of the second device in the chain is now loaded with the data from the SO of the first device, while the second device has its $\overline{\text { SENI }}$ input LOW. This process continues through the chain until all devices are programmed and the $\overline{\text { SENO }}$ of the final device goes LOW.
Once all serial programming has been successfully completed, normal operations, (queue selections on the read and write ports) may begin. When connected in expansion mode, the IDT72V51236/72V51246/72V51256 devices require a total number of serially loaded bits per device to complete serial programming, (SCLK cycles withSENI enabled), calculated by:n[19+(Qx72)] where Q is the number of queues the user wishes to setup within the device, where n is the number of devices in the chain.

See Figure6, Serial Port Connectionand Figure 7, Serial Programmingfor connection and timing information.

DEFAULTPROGRAMMING

During a Master Reset if the DFM (Default Mode) input is HIGH the multiqueue device will be configured for default programming, (serial programming is not permitted). Default programming provides the user with a simpler, however limited means by which to setup the multi-queueflow-control device, rather than using the serial programming method. The default mode will configure a multi-queue device such that the maximum number of queues possible are setup, with all of the parts available memory blocks beingallocated equally between thequeues. The values of the $\overline{\mathrm{PAE}} / \overline{\mathrm{PAF}}$ offsets is determined by the state of the DF (default) pin during a master reset.
For the IDT72V51236/72V51246/72V51256 devices the default mode will setup 4 queues, each queue being $4,096 \times 36,8,192 \times 36$ and $16,384 \times 36$ deep respectively. For both devices the value of the $\overline{\mathrm{PAE}} / \overline{\mathrm{PAF}}$ offsets is determined at master reset by the state of the DF input. If $D F$ is $L O W$ then both the $\overline{\mathrm{PAE}} \& \overline{\mathrm{PAF}}$ offset will be 8 , if HIGH then the value is 128.
When configuring the IDT72V51236/72V51246/72V51256 devices in default mode the user simply has to apply WCLK cycles after a master reset, until $\overline{\text { SENO }}$ goesLOW, thissignalsthat defaultprogrammingiscomplete. Theseclock
cycles are required for the device to load its internal setup registers. When a single multi-queue is used, the completion of device programming is signaled bythe SENO output of a device going from HIGH to LOW. Note, that SENI must be held LOW when a device is setup for default programming mode.

When multi-queue devices are connected in expansion mode, the $\overline{\operatorname{SEN}}$ of thefirstdevice inachaincanbeheldLOW. The $\overline{\text { SENO O }}$ ofadevice shouldconnect tothe $\overline{\text { SEN }}$ of the nextdevice inthe chain. The $\overline{\text { SENO }}$ of the final device is used to indicate that default programming of all devices is complete. When the final $\overline{\text { SENO }}$ goes LOW normal operations may begin. Again, all devices will be programmed with their maximum number of queues and the memory divided equally between them. Please refer to Figure 8, Default Programming.

READING AND WRITING TO THE IDT MULTI-QUEUE FLOW-CONTROL DEVICE

The IDT72V51236/72V51346/72V51256 multi-queue flow-control devices can be configured in two distinct modes, namely Standard Mode and PacketMode.

STANDARD MODE OPERATION (PKT = LOW on Master Reset)

WRITE QUEUE SELECTION AND WRITE OPERATION (STANDARD MODE)

The IDT72V51236/72V51346/72V51256 multi-queue flow-control devices can be configured up to a maximum of 4 queues into which data can be written via a common write portusingthe datainputs (Din), write clock (WCLK) and write enable ($\overline{\mathrm{WEN}}$). The queue to be written is selected by the address present on the write address bus (WRADD) during a rising edge on WCLK
while write address enable (WADEN) is HIGH. The state of WEN does not impact the queue selection. The queue selection is requires 2 WCLK cycles. All subsequent data writes will beto this queue until another queue is selected.
Standard mode operation is defined as individual words will be writtento the device as opposed to PacketMode where complete packets may be written. The write portis designed such that 100% bus utilization can be obtained. This means that data can be written into the device on every WCLK rising edge including the cycle that a new queue is being addressed.
Changing queues requires a minimum of 2 WCLK cycles on the write port (see Figure 9, Write Queue Select, Write Operation and Fullflag Operation). WADEN goes high signaling a change of queue (clock cycle " A "). The address on WRADD atthattime determines the nextqueue. Datapresentedduring that cycle (" A ") and the next cycle (" B "), will be written to the active (old) queue, provided WEN is active LOW. If WEN is HIGH (inactive) for these two clock cycles, data will not be written into the previous queue. The write portdiscrete full flag will update to show the full status of the newly selected queue $\left(\mathrm{Q}_{\mathrm{x}}\right)$ at this lastcycle's rising edge ("B"). Data present onthe data inputbus (Din), can be written into the newly selected queue $\left(Q_{x}\right)$ on the rising edge of WCLK on the second cycle ("C") following a change of queue, provided WEN is LOW and the new queue is not full. If the newly selected queue is full at the point of its selection, any writes to that queue will be prevented. Data cannotbe written into a full queue.
Refer to Figure 9, Write Queue Select, Write Operation and Full flag Operation, Figure 10, Write Operations \& First Word Fall Throughfortiming diagrams and Figure 11, Full Flag Timing in Expansion Mode for timing diagrams.

TABLE 1 - WRITE ADDRESS BUS, WRADD[4:0]

Operation	WCLK	WADEN	FSTR	WRADD[4:0]	
Write Queue Select		1	0	$\begin{aligned} & 4 \\ & 3 \end{aligned}$	10 Write Queue Address (2 bits = 4 Queues)
$\overline{\text { PAF }}$ Flag Bus Device Select		0	1	$\begin{array}{cc} 4 & 3 \end{array}$	$\begin{array}{r} 10 \\ x \quad x \end{array}$

5937 drw05

READQUEUESELECTIONANDREADOPERATION(STANDARDMODE)
The IDT72V51236/72V51346/72V51256 multi-queue flow-control devices can be configured up to a maximum of 4 queues which data can be read via a common read port using the data outputs (Qout), read clock (RCLK) and read enable ($\overline{\mathrm{REN}})$. An output enable, $\overline{\mathrm{OE}}$ control pin is also provided to allow High-Impedance selection of the Qout data outputs. The multi-queue device read port operates in a mode similar to "First Word Fall Through" on a SuperSync IDT FIFO, but withthe addedfeature of data outputpipelining (see Figure 10, Write Operations \& First Word Fall Through). The queue to be read is selected by the address presented on the read address bus (RDADD) during a rising edge on RCLK while read address enable (RADEN) is HIGH. The state of $\overline{\text { REN }}$ does not impact the queue selection. The queue selection is requires 2 RCLK cycles. All subsequent data reads will be from this queue until another queue is selected.

Standard mode operation is defined as individual words will be read from the device as opposed to PacketMode where complete packets may be read. The read port is designed such that 100% bus utilization can be obtained. This means that data can be read out of the device on every RCLK rising edge including the cycle that a new queue is being addressed.

Changing queues requires a minimum of two RCLK cycles onthe read port (see Figure 12, Read Queue Select, Read Operation). RADEN goes high signaling a change of queue (clock cycle "D"). The address on RDADD atthat time determines the next queue. Data presented during that cycle ("D") will be read at " D " $\left(+t_{A}\right)$, can be read from the active (old) queue $\left(Q_{p}\right)$, provided $\overline{R E N}$ is active LOW. If $\overline{\mathrm{REN}}$ isHIGH (inactive) forthis clock cycle, data will notbe read from the previous queue. The next cycle's rising edge ("E"), the read port discrete empty flag will update to show the empty status of the newly selected
queue $\left(Q_{F}\right)$. The internal pipeline is also loaded at this time (" D ") with the last word from the previous (old) queue $\left(Q_{p}\right)$ as well as the next word from the new queue $\left(Q_{F}\right)$. Both ofthese words will fall through tothe output register(provided the $\overline{\mathrm{OE}}$ is asserted) consecutively (cycles "E" and "F" respectively) following the selection of the new queue regardless of the state of $\overline{\operatorname{REN}}$, unless the new queue $\left(Q_{F}\right)$ is empty. If the newly selected queue is empty, any reads from that queue will be prevented. Data cannot be read from an empty queue. The last word in the data output register (from the previous queue), will remain on the data bus, but the output valid flag, $\overline{\mathrm{OV}}$ will go HIGH , to indicate that the data present is no longer valid. This pipelining effect provides the user with 100\% bus utilization, and brings about the possibility thata "NULL" queue may be required within a multi-queue device. Null queue operation is discussed in the next section. Remember that $\overline{\mathrm{OE}}$ allows the user to place the data outputbus (Qout) into High-Impedance and the data can be read in to the output register regardless of $\overline{\mathrm{E}}$.

Referto Table2, for Read Address Bus arrangement. Also, referto Figures 12, 14, and 15 for read queue selection and read port operation timing diagrams.

PACKET MODE OPERATION (PKT = HIGH on Master Reset)

The Packet mode operation provides the capability where, user defined packets or frames can be written to the device as opposed to Standard mode where individual words are written. Forclarification, in Packet Mode, a packet can be written to the device with the starting location designated as Transmit Start of Packet (TSOP) and the ending location designated as Transmit End of Packet (TEOP). In conjunction, a packet read from the device will be designated as Receive Start of Packet(RSOP) and a Receive End of Packet

TABLE 2 - READ ADDRESS BUS, RDADD[5:0]

Operation	RCLK	RADEN	ESTR	RDADD[5:0]		
Read Queue Select	\downarrow	1	0	$\left\|\begin{array}{ccc} 5 & 4 & 3 \\ \text { Device Select } \\ \text { (Compared to } \\ \text { (10, } 1,2) \end{array}\right\|$	$\begin{gathered} { }^{2} \\ \text { Null-Q } \\ \text { Select Pin } \end{gathered}$	$\begin{gathered} 10 \\ \text { Read Queue Address } \\ \text { (2 bits }=4 \text { Queues }) \end{gathered}$
Flag Bus Device Selection	4	0	1	$\left\|\begin{array}{ccc} 5 & 4 & 3 \\ \text { Devive Select } \\ \text { (Compared to } \\ \text { (ODO, } 1,2) \end{array}\right\|$		$\begin{array}{ll} 10 \\ x & x \end{array}$

5937 drw06
(REOP). The minimum size for a packet is four words (SOP, two words of data and EOP). The almost empty flag bus becomes the "Packet Ready" $\overline{\text { PR flag }}$ bus whenthe device is configured for packetmode. Valid packets are indicated when both $\overline{\mathrm{PR}}$ and $\overline{\mathrm{OV}}$ are asserted.

WRITEQUEUESELECTION ANDWRITEOPERATION(PACKETMODE)

Itis required thatafull packetbe writtento aqueuebefore movingtoadifferent queue. The device requires two cycles to change queues. Packetmode, has 2 restrictions: <1> An extra word (or filler word) is required to be written after each packet on the cycle following the queue change to ensure the RSOP in the old queue is not read out on a queue change because of the first word fall through. <2> No SOP/EOP is allowed to read/written at cycle ("C" or "l") the nextcycle after a queuechange. Forclockfrequency (fs) of 133 MHz and below see Application Note AN-398. Inthis mode, the write portmay notobtain 100\% busutilization

Changing queues requires a minimum of two WCLK cycles on the write port (see Figure 16, Writing in Packet Mode during a Queue Change). WADEN goes high signaling a change of queue (clock cycle "B" or "H"). The address on WRADD at the rising edge of WCLK determines the next queue. Data presented on Din during that cycle ("B" or " H ") can continue to be written to the active (old) queue (Q_{A} or Q_{B} respectively), provided $\overline{W E N}$ is LOW (active). If $\overline{W E N}$ is HIGH (inactive) for this clock cycle (H), data will not be written in to the previous queue $\left(Q_{B}\right)$. The cycle following a request for queuechange ("C" or "l") will require a filler word to be written to the device. This can be done by clocking the TEOP twice orby writing afillerword. In packetmode, the multiqueue is designed under the 2 restrictions listed previously. Note, an erroneous Packet Ready flag may occuriftheEOP or SOP marker shows up atthe nextcycle after aqueue change. To preventanerroneousPacketReady flag from occurring a filler word should be written into the old queue at the last clock cycle of writing. Itis importantto know thatnoSOP orEOP may be written into the device during this cycle ("C" or"l"). The write port discrete full flag will updateto show the full status of thenewly selected queue $\left(Q_{B}\right)$ atthis lastcycle's rising edge ("C" or "l"). Data values presented on the data input bus (Din), can be written into the newly selected queue $\left(Q_{x}\right)$ on the rising edge of WCLK on the second cycle ("D" or "J") following a request for change of queue, providedWEN is LOW (active) and the new queue is notfull. If a selected queue is full (FF is LOW), then writes to that queue will be prevented. Note, data cannot be written into a full queue.

Refer to Figure 16, Writing in Packet Mode during a Queue Change and Figure 18, Data Input(Transit) packetmode of Operationfortiming diagrams.

READ QUEUE SELECTION AND READ OPERATION(PACKET MODE)

In Packet Mode it is required that a full packet is read from a queue before movingto adifferent queue. The device requirestwo cycles to changequeues. In Packet Mode, there are 2 restrictions <1> An extra word (or filler word) should have been inserted into the data stream after each packetto insure the RSOP in the old queue is not read out on a queue change because of the first word fall through and this word should be discarded. <2> No EOP/SOP is allowed to be read/written at cycle ("C" or "l") the next cycle after a queue change). Forclock frequency of 133Mhz and below see Application Note AN398. In this mode, the read port may not obtain 100% bus utilization

Changing queues requires a minimum of two RCLK cycles on the read port (see Figure 17, Reading in PacketMode during a Queue Change). RADEN goes high signaling a change of queue (clock cycle "B" or "I"). The address on RDADD at the rising edge of RCLK determines the queue. As illustrated in Figure 17 during cycle ("B"), data can be read from the active (old) queue $\left(Q_{A}\right)$), provided both $\overline{\mathrm{REN}}$ and $\overline{\mathrm{OE}}$ are LOW (active) simultaneously with changing queues. REOP forpacketlocated inqueue $\left(Q_{A}\right)$ mustbe read before
a queue change request is made ("B"). If $\overline{\mathrm{REN}}$ is HIGH (inactive) for this clock cycle ("l"), data will not be read from the previous queue $\left(Q_{B}\right)$. In applications where the multi-queue flow-control device is connected to a shared bus, an output enable, $\overline{\mathrm{OE}}$ control pin is also provided to allow High-Impedance selection of the data outputs (Qout). With referenceto Figure 17 when changing queues, a packet marker (SOP or EOP) should not be read on cycle ("C" or " ${ }^{\prime \prime}$ ". Reading a SOP or EOP should not occur during the cycles required for a queue change. It is also recommended that a queue change should notoccur once the reading ofthe packethas commenced. TheEOP marker ofthe packet prior to a queue change should be read on orbefore the queue change. If the EOP word is read before a queue change, REN can be pulled high to disable further reads. When the queue change is initiated, the filler word written into the current queue after the EOP word will fall through followed by and the first word from the new queue.
Refer to Figure 17, Reading in Packet Mode during a Queue Change as well as Figures 12, 14, and 15 for timing diagrams and Table 2, for Read Address bus arrangement.

Note, the almostempty flag bus becomes the "Packet Ready" flagbuswhen the device is configured for packet mode.

PACKETREADYFLAG

The multi-queue flow-control device provides the user with a Packet Ready feature. During a Master Reset the logic "1" (HIGH) on the PKT input signal (packet mode select), configures the device in packet mode. The $\overline{\mathrm{PR}}$ discrete flag, provides a packet ready status of the active queue selected on the read port. A packet ready status is individually maintained on all queues; however only the queue selected on the read porthas its packet ready status indicated on the $\overline{\mathrm{PR}}$ outputflag. A packet is available on the outputfor reading when both $\overline{\mathrm{PR}}$ and $\overline{\mathrm{OV}}$ are asserted LOW. Ifless than a full packet is available, the $\overline{\mathrm{PR}} f l a g$ will be HIGH (packet not ready). In packet mode, no words can be read from a queue until a complete packethas been written into that queue, regardless of $\overline{R E N}$.
When packetmode is selectedthe Programmable AlmostEmpty bus, $\overline{\text { PAEn, }}$ becomes the Packet Ready bus, $\overline{\text { PR }}$. When configured in Direct Bus (FM $=$ LOW during a master reset), the $\overline{\mathrm{PR}}$ n bus provides packet ready status in 8 queue increments. The $\overline{\text { PR } n ~ b u s ~ s u p p o r t s ~ e i t h e r ~ P o l l e d ~ o r ~ D i r e c t ~ m o d e s ~ o f ~}$ operation. The $\overline{\text { PRn mode of operation is configured through the Flag Mode }}$ (FM) bit during a Master Reset.
When the multi-queue is configured for packet mode operation, the device mustalso be configured for 36 bit write data bus and 36 bit read databus. The two most significant bits of the 36-bit data bus are used as "packet markers". On the write portthese are bits D34 (Transmit Start of Packet,) D35 (Transmit End of Packet) and on the read port Q34, Q35. All four bits are monitored by the packet control logic as data is written into and read out from the queues. The packet ready statusfor individual queues is then determined by the packet ready logic.

On the write port D34 is used to "mark" the first word being written into the selected queueasthe "TransmitStartof Packet", TSOP. Tofurtherclarify, when the user requires a word being written to be marked as the start of a packet, the TSOP input (D34) must be HIGH for the same WCLK rising edge as the word that is written. The TSOP marker is stored in the queue along with the data it was written in until the word is read out of the queue via the read port.
On the write portD35 is used to "mark" the last word of the packet currently being written into the selected queue as the "Transmit End of Packet"TEOP. When the user requires a word being written to be marked as the end of a packet, the TEOP input must be HIGH for the same WCLK rising edge as the word that is written in. The TEOP marker is stored in the queue along with the data it was written in until the word is read out of the queue via the read port.

TABLE 5 - PACKET MODE VALID BYTE

TMOD1 (D33)	TMOD2 (D32)	
RMOD1 (Q33)	RMOD2 (Q32)	VALID BYTES
0	0	A, B, C, D
0	1	A
1	0	A, B
1	1	A, B, C

NOTE:
937 drw07
Packet Mode is only available when the Input Port and Output Port are 36 bits wide.

The packet ready logic monitors all start and end of packet markers both as they enter respective queues via the write port and as they exit queues via the read port. The multi-queue internal logic increments and decrements a packet counter, which is provided for each queue. The functionality of the packet ready logic provides status as to whether at leastone full packet of data is available within the selected queue. A partial packet in a queue is regarded as a packet not ready and $\overline{\text { PR }}$ (active LOW) will be HIGH. In Packet mode, no words can be read from a queue until at least one complete packet has been written into the queue, regardless of $\overline{R E N}$. For example, if a TSOP has been written and some number of words later a TEOP is written a full packet of data is deemed to be available, and the $\overline{\mathrm{PR}}$ flag and $\overline{\mathrm{OV}}$ will go active LOW. Consequently if reads begin from a queue that has only one complete packet and the RSOP is detected on the output port as data is being read out, $\overline{\mathrm{PR}}$ will go inactive HIGH. $\overline{\mathrm{OV}}$ will remain LOW indicating there is still valid data being read out of that queue until the REOP is read. The user may proceed with the reading operation until the current packet has been read out and no further complete packets are available. Ifduring thattime anothercomplete packethas been written into the queue and the $\overline{\mathrm{PR}}$ flag will again gone active, then reads from the new packet may follow after the current packet has been completely readout.

The packet counters therefore look for start of packet markers followed by end of packet markers and regard data in between the TSOP and TEOP as a full packet of data. The packet monitoring has no limitation as to how many packets are written into a queue, the only constraint is the depth of the queue. Note, there is a minimum allowable packet size of four words, inclusive of the TSOP marker and TEOP marker.

The packet logic does expect a TSOP marker to be followed by a TEOP marker.

If a second TSOP marker is written after a first, it is ignored and the logic regards databetweenthe first TSOP and the firstsubsequent TEOP as the full packet. The same is true for TEOP; a second consecutive TEOP mark is ignored. On the read side the user should regard a packet as being between the first RSOP and the first subsequent REOP and disregard consecutive RSOP markers and/or REOP markers. This is why a TEOP may be written twice, using the second TEOP as the filler word.

As an example, the user may also wish to implement the use of an "Almost End of Packet"(AEOP) marker. For example, the AEOP can be assigned to data inputbitD33. The purpose of this AEOP marker is to provide an indicator
that the end of packet is a fixed (known) number of reads away from the end of packet. This is a useful feature when due to latencies within the system, monitoring the REOP markeralone does notprevent "over reading" of the data from the queue selected. For example, an AEOP marker set 4 writes before the TEOP marker provides the device connected to the read port with and "almost end of packet" indication 4 cycles before the end of packet.
TheAEOP canbe setany number of words beforetheend of packetdetermined by user requirements or latencies involved in the system.

See Figure 17, Reading in Packet Mode during a Queue Change, Figure 18, Data Input (Transmit) Packet Mode of Operation and Figure 19, Data Output (Receive) Packet Mode of Operation.

PACKET MODE-MODULO OPERATION

The internal packet ready control logic performs no operation on these modulo bits, they are only informational bits that are passed through with the respective databyte(s).

When utilizing the multi-queue flow-control device in packetmode, the user may also want to consider the implementation of "Modulo" operation or "valid byte marking". Modulo operation may be useful when the packets being transferred through a queue are in a specific byte arrangement even though the databus width is 36 bits. InModulooperationthe usercanconcatenate bytes toformaspecific datastringthroughthemulti-queue device. A possiblescenario is where a limited number of bytes are extracted from the packet for either analysis or filtered for security protection. This will only occur when the first 36 bit word of a packet is written in and the last 36 bit word of packet is written in. The modulo operation is a means by which the user can mark and identify specific data within the Queue.
On the write port data inputbits, D32 (transmit modulo bit2, TMOD2) and D33(transmitmodulo bit 1, TMOD1) can be used as data markers. Anexample of this could be to use D32 and D33 to code which bytes of a word are part of the packet that is also being marked as the "Start of Marker" or "End of Marker". Conversely on the read port when reading out these marked words, data outputs Q32 (receive modulo bit2, RMOD2) and Q33 (receive modulo bit 1, RMOD1) will pass on the byte validity information for that word. Referto Table 5 for one example of how the modulo bits may be setup and used. See Figure 18, Data Input (Transmit) Packet Mode of Operation and Figure 19, Data Output (Receive) Packet Mode of Operation.

NULL QUEUE OPERATION (OF THE READ PORT)

Pipelining of data to the output port enables the device to provide 100\% bus utilization in standardmode. Data canbe read out ofthe multi-queueflow-control device on every RCLK cycle regardless of queue switches or other operations. The device architecture is such that the pipeline is constantly filled with the next words in a selected queue to be read out, again providing 100% bus utilization. This type of architecture does assume that the user is constantly switching queues such that during a queue switch, the last data word required from the previous queue will fall through the pipeline to the output.

Note, thatifreads cease atthe empty boundary of aqueue, thenthe lastword will automatically flow through the pipeline to the output.

The Null-Q is selected via read port address space RDADD[2]. The RDADD[5:0] bus should be addressed with $x x x 1 x x$, this address is the Null-Q. A null queue can be selected when no further reads are required from a previously selected queue. Changing to a null queue will continue to propagate data in the pipeline to the previous queue's output. The Null Q can remain selected until adatabecomes available in another queue for reading. The NullQ can be utilized in either standard or packet mode.

Note: If the user switches the read port to the null queue, this queue is seen as and treated as an empty queue, therefore after switching to the null queue the lastword from the previous queue will remain in the output register and the $\overline{\mathrm{OV}}$ flag will go HIGH, indicating data is not valid.

The Null queue operation only has significance to the read port of the multiqueue, it is a means to force data through the pipeline to the output. Null Q selection and operation has no meaning on the write port of the device. Also, refer to Figure 20, Read Operation and Null Queue Select for diagram.

$\overline{\text { PAF }} \mathrm{n}$ FLAG BUS OPERATION

The IDT72V51236/72V51246/72V51256 multi-queueflow-control devices can be configured for up to 4 queues, each queue having its own almost full status. Anactivequeuehasitsflagstatusoutputtothediscreteflags, $\overline{\mathrm{FF}}$ and $\overline{\mathrm{PAF}}$, on the write port. Queues that are not selected for a write operation can have their $\overline{P A F}$ status monitored viathe $\overline{\mathrm{PAF}}$ bus. The $\overline{\mathrm{PAF}}$ nflag bus is 4 bits wide, so that all 4 queues can have their status output to the bus. When a single multi-queue device is used anywhere from 1 to 4 queues may be set-up within the part, each queue havingits own dedicated $\overline{\mathrm{PAF}}$ flag output on the $\overline{\mathrm{PAF}}$ n bus. Queues 1 through 4 have their $\overline{\mathrm{PAF}}$ status to $\overline{\mathrm{PAF}}[0]$ through $\overline{\mathrm{PAF}[3]}$ respectively. If less than 4 queues are used then only the associated $\overline{\mathrm{PAF}} \mathrm{n}$ outputs will be required, unused PAFn outputs will be don't careoutputs. When devices are connected in expansion mode the $\overline{\text { PAF }}$ flag bus can also be expanded beyond 4 bits to produce a wider $\overline{\mathrm{PAF}}$ n bus that encompasses all queues.

Alternatively, the 4bit $\overline{\text { PAF }}$ nflagbus of each device canbe connectedtogether to form a single 4 bitbus, i.e. $\overline{\operatorname{PAF}[0] ~ o f ~ d e v i c e ~} 1$ will connectto $\overline{\mathrm{PAF}}[0]$ of device 2 etc. When connecting devices in this manner the $\overline{\mathrm{PAF}}$ n can only be driven by a single device at any time, (the $\overline{\text { PAF }}$ n outputs of all other devices must be in high impedance state). There are two methods by which the user can select which device has control of the bus, these are "Direct" (Addressed) mode or "Polled" (Looped) mode, determined by the state of the FM (flag Mode) input during a Master Reset.

EXPANDING UP TO 32 QUEUES OR PROVIDING DEEPER QUEUES

Expansion can take place using either the standard mode or the packet mode. In the 4 queue multi-queue device, the WRADD address bus is 5 bits wide. The 2 Least Significant bits (LSbs) are used to address one of the 4 availablequeues withina single multi-queue device. The 3MostSignificantbits (MSbs) are used when a device is connected in expansion mode with up to 8 devices connected in width expansion, each device having its own 3-bit
address. When logically expanded with multiple parts, each device is statically setup with a unique chip ID code on the ID pins, ID0, ID1, and ID2. A device is selectedwhenthe3MostSignificantbits oftheWRADD address bus matches a 3-bit ID code. The maximum logical expansion is 32 queues (4 queues x 8 devices) or a minimum of 8 queues (1 queue per device $x 8$ devices), each of the maximum size of the individual memory device.
Note: The WRADD bus is also used in conjunction with FSTR (almost full flag bus strobe), to address the almost full flag bus during direct mode of operation.
Refer to Table 1, for Write Address bus arrangement. Also, refer to Figure 11, Full Flag Timing Expansion Mode, Figure 13, Output Valid Flag Timing (In Expansion Mode), and Figure 30, Multi-Queue Expansion Diagram, for timing diagrams.

BUS MATCHING OPERATION

Bus Matching operation between the input portand output port is available. During a master reset of the multi-queue the state of the three setup pins, BM (BusMatching), IW (InputWidth) and OW (OutputWidth) determinetheinputand output port bus widths as per the selections shown in Table 3, "Bus Matching Set-up". 9 bit bytes, 18 bit words and 36 bitlong words can be written into and read from the queues provided that at least one of the ports is setup for x36 operation. When writing to or reading from the multi-queue in a bus matching mode, the device orders data in a "Little Endian" format. See Figure 3, Bus Matching Byte Arrangementfor details.
The Full flag and Almost Full flag operation is always based on writes and reads of data widths determined by the write port width. For example, ifthe input port is $x 36$ and the output port is $x 9$, then four data reads from a full queue will be required to cause the full flag to go HIGH (queue not full). Conversely, the Output Valid flagand AlmostEmpty flag operations are always based on writes and reads of data widths determined by the read port. For example, if the input port is $\times 18$ and the output port is $\times 36$, two write operations will be required to cause the output valid flag of an empty queue to go LOW, output valid (queue is notempty).
Note, that the inputport serves all queues within a device, as does the output port, therefore the inputbus widthto all queues is equal (determined by the input portsize) and the outputbus width from all queues is equal (determined by the outputportsize).

TABLE 3 - BUS-MATCHING SET-UP

BM	IW	OW	Write Port	Read Port
0	X	X	x36	x36
1	0	0	x 36	x 18
1	0	1	x 36	x 9
1	1	0	x18	x 36
1	1	1	x 9	x 36

FULL FLAG OPERATION

The multi-queue flow-control device provides a single Full Flagoutput, $\overline{F F}$. The $\overline{F F}$ flag output provides a full status of the queue currently selected on the write port for write operations. Internally the multi-queue flow-control device monitors andmaintains a status ofthe full condition of all queues withinit, however only the queue that is selected for write operations has its full status outputtothe $\overline{F F}$ flag. This dedicated flag is often referred to as the "active queue full flag".

When queue switches are being made on the write port, the $\overline{F F}$ flag output will switch to the new queue and provide the user with the new queue status, onthecycle after a new queue selection is made. The userthenhas afull status
for the new queue one cycle ahead of the WCLK rising edge that data can be written into the new queue. That is, a new queue can be selected on the write port via the WRADD bus, WADEN enable and a rising edge of WCLK. On the nextrising edge of WCLK, the $\overline{F F}$ flagoutput will show the full status of the newly selected queue. On the second rising edge of WCLK following the queue selection, data can be written into the newly selected queue provided that data and enable setup \& hold times are met.

Note, the FF flag will provide status of a newly selected queue one WCLK cycle afterqueue selection, which is one cyclebefore data can be writtentothat queue. This prevents the userfrom writing datato aqueuethatisfull, (assuming that a queue switch has been made to a queue that is actually full).

The $\overline{F F}$ flagissynchronoustotheWCLK and all transitions of the $\overline{\mathrm{FF}}$ flagoccur based onarising edge ofWCLK. Internally the multi-queue device monitors and keeps a record of the full status for all queues. It is possible that the status of a $\overline{\text { FF flag maybechanging internally eventhoughthatflag is not the active queue }}$ flag (selected on the write port). A queue selected on the read port may experience a change of its internal full flag status based on read operations.

SeeFigure 9, Write Queue Select, Write Operation and Full Flag Operation and Figure 11, Full Flag Timing in Expansion Modefor timing information.

EXPANSION MODE - FULL FLAG OPERATION

When multi-queue devices are connected in Expansion modethe $\overline{\mathrm{FF}}$ flags of all devices should be connected together, such that a system controller monitoring and managing the multi-queue devices write port only looks at a single $\overline{\text { FF flag (as opposed to a discrete } \overline{F F} \text { flag for each device). This FF flag }}$ is only pertinent to the queue being selected for write operations at that time. Remember, that when in expansion mode only one multi-queue device can be written to at any moment in time, thus the $\overline{F F}$ flag provides status of the active queue on the write port.

This connection of flag outputs to create a single flag requires that the $\overline{F F}$ flag outputhave aHigh-Impedance capability, such that when a queue selection is made only a single device drives the $\overline{\mathrm{FF}}$ flag bus and all other $\overline{\mathrm{FF}}$ flag outputs connected to the $\overline{F F}$ flag bus are placed into High-Impedance. The user does nothave to select this High-Impedancestate, a given multi-queue flow-control device will automatically place its $\overline{F F}$ flag output into High-Impedance when none of its queues are selected for write operations.

When queues withinasingle device are selected for write operations, the $\overline{F F}$ flag output of that device will maintain control of the $\overline{F F}$ flag bus. Its $\overline{F F}$ flag will simply update between queue switchestoshow the respective queuefull status.

The multi-queuedeviceplaces its $\overline{\mathrm{FF}}$ flagoutputinto High-Impedancebased onthe 3 bitID codefound inthe 3 mostsignificantbits of the writequeueaddress bus, WRADD. Ifthe3mostsignificantbits ofWRADD matchthe3bitIDcodesetup on the static inputs, ID0, ID1 and ID2 then the $\overline{F F}$ flag output of the respective device will be in a Low-Impedance state. If they do not match, then the $\overline{F F}$ flag output of the respective device will be in a High-Impedance state. See Figure 11, Full Flag Timing in Expansion Modefor details of flag operation, including when more than one device is connected in expansion.

OUTPUTVALID FLAG OPERATION

The multi-queue flow-control device provides a single Output Valid flag output, $\overline{\mathrm{OV}}$. The $\overline{\mathrm{OV}}$ provides an empty status or data output valid status for the data word currently available on the output register of the read port. The rising edge of an RCLK cycle that places new data onto the output register of the read port, also updates the $\overline{\mathrm{OV}}$ flag to show whether or not that new data word is actually valid. Internally the multi-queue flow-control monitors and maintains a status ofthe empty condition of all queues withinit, however only the queuethat is selected for read operations has its output valid (empty) status output to the $\overline{\mathrm{OV}}$ flag, giving a valid status for the word being read at that time.

The nature of the first word fall through operation means that when the last data word is read from a selected queue, the $\overline{\mathrm{OV}}$ flag will go HIGH on the next enabled read, that is, on the next rising edge of RCLK while $\overline{R E N}$ is LOW.

When queue switches are beingmade on the read port, the $\overline{\mathrm{OV}}$ flag will switch to show status of the new queue in line with the data outputfrom the new queue. When a queue selection is made the first data from that queue will appear on the Qout data outputs 2 RCLK cycles later, the $\overline{\mathrm{OV}}$ will change state to indicate validity of the data from the newly selected queue onthis $2^{\text {nd }}$ RCLK cycle also. The previous cycles will continue to output data from the previous queue and the $\overline{\mathrm{OV}}$ flag will indicate the status of those outputs. Again, the $\overline{\mathrm{OV}}$ flag always indicates status for the data currently present on the output register.
The $\overline{\mathrm{OV}}$ flag is synchronous to the RCLK and all transitions of the $\overline{\mathrm{OV}}$ flag occur based on a rising edge of RCLK. Internally the multi-queue device monitors and keeps a record of the outputvalid (empty) statusfor all queues. It is possible that the status of an $\overline{\mathrm{VV}}$ flag may bechanging internally eventhoughthat respective flag is not the active queue flag (selected on the read port). A queue selected on the write port may experience a change of its internal $\overline{\mathrm{OV}}$ flag status based on write operations, that is, data may be written into that queue causing it to become "notempty".
See Figure 12, Read Queue Select, Read Operationand Figure 13, Output Valid Flag Timingfor details of the timing.

EXPANSION MODE-OUTPUT VALID FLAG OPERATION

When multi-queue devices are connected in Expansion mode, the $\overline{\text { OV }}$ flags of all devices should be connected together, such that a system controller monitoring and managing the multi-queue devices read port only looks at a single $\overline{\mathrm{OV}}$ flag (as opposed to a discrete $\overline{\mathrm{OV}}$ flag for each device). This $\overline{\mathrm{OV}}$ flag is only pertinent to the queue being selected for read operations at that time. Remember, that when in expansion mode only one multi-queue device can be read from at any moment in time, thus the $\overline{\mathrm{OV}}$ flag provides status of the active queue on the read port.
Thisconnection offlag outputs to createasingle flag requires that the $\overline{\mathrm{OV}}$ flag outputhave aHigh-Impedance capability, such that when a queue selection is made only a single device drives the $\overline{\mathrm{OV}}$ flag bus and all other $\overline{\mathrm{OV}}$ flag outputs connected to the $\overline{\mathrm{OV}}$ flag bus are placed into High-Impedance. The user does nothave to selectthis High-Impedance state, a given multi-queueflow-control device will automatically place its $\overline{\text { OV }}$ flag output into High-Impedance when none of its queues are selected for read operations.
When queues withinasingle deviceare selectedfor read operations, the $\overline{\mathrm{OV}}$ flag output of that device will maintain control of the $\overline{\mathrm{OV}}$ flag bus. Its $\overline{\mathrm{OV}}$ flag will simply update between queue switches to show the respective queue output validstatus.

Themulti-queuedevice places its $\overline{\mathrm{OV}}$ flagoutputinto High-Impedancebased onthe3bitID code found inthe 3 mostsignificantbits of the readqueueaddress bus, RDADD. Ifthe3mostsignificantbits of RDADD matchthe3bitID code setup on the static inputs, ID0, ID1 and ID2 then the $\overline{\mathrm{OV}}$ flag output of the respective device will be in a Low-Impedance state. If they do not match, thenthe $\overline{\mathrm{OV}}$ flag output of the respective device will be in a High-Impedance state. See Figure 13, Output Valid Flag Timingfor details of flag operation, including when more than one device is connected in expansion.

ALMOST FULL FLAG

As previously mentioned the multi-queue flow-control device provides a single Programmable AlmostFullflagoutput, $\overline{\text { PAF }}$. The $\overline{\text { PAF flag outputprovides }}$ astatus ofthe almostfull conditionforthe active queue currently selected on the write port for write operations. Internally the multi-queue flow-control device monitors and maintains a status of the almostfull condition of all queues within it, however only the queue that is selected for write operations has its full status
outputtothe $\overline{\text { PAF }}$ flag. This dedicatedflagis often referredtoas the "activequeue almost full flag". The position of the $\overline{\text { PAF }}$ flag boundary within a queue can be at any point within that queues depth. This location can be user programmed via the serial port or one of the default values (8 or 128) can be selected if the user has performed default programming.

As mentioned, every queue within a multi-queue device has its own almost full status, when a queue is selected on the write port, this status is outputviathe $\overline{\mathrm{PAF}}$ flag. The $\overline{\mathrm{PAF}}$ flag valueforeachqueue is programmed during multi-queue device programming (along with the number of queues, queue depths and almostempty values). The $\overline{\text { PAF }}$ offset value, m, for a respective queue can be programmedto be anywhere between '0' and ' D ', where ' D ' is the total memory depth for that queue. The $\overline{P A F}$ value of differentqueues withinthe same device canbe different values.

When queue switches are being made on the write port, the $\overline{\text { PAF }}$ flag output will switch to the new queue and provide the user with the new queue status, on the second cycle after a new queue selection is made, on the sameWCLK cycle that data can actually be written to the new queue. That is, a new queue can be selected on the write port via the WRADD bus, WADEN enable and a rising edge of WCLK. On the second rising edge of WCLK following a queue selection, the $\overline{\mathrm{PAF}}$ flagoutput will show the full status ofthe newly selected queue. The $\overline{\mathrm{PAF}}$ is flag output is double register buffered, so when a write operation occursatthealmostfull boundary causingthe selectedqueue statustogoalmost full the $\overline{\text { PAF }}$ will go LOW2 WCLK cycles after the write. The same is true when a read occurs, there will be a 2 WCLK cycle delay after the read operation.

So the $\overline{\mathrm{PAF}}$ flag delays are:
from a write operation to $\overline{\text { PAF }}$ flag LOW is 2 WCLK + twaF
The delay from a read operation to $\overline{\text { PAF flag HIGH istSKEW2 }+ \text { WCLK + twAF }}$
Note, if tSKEW is violated there will be one added WCLK cycle delay.
The $\overline{\mathrm{PAF}}$ flag is synchronous to the WCLK and all transitions of the $\overline{\mathrm{PAF}}$ flag occur based on a rising edge of WCLK. Internally the multi-queue device monitors and keeps a record of the almostfull status for all queues. It is possible that the status of a $\overline{P A F}$ flag maybe changing internally eventhoughthatflag is not the active queue flag (selected on the write port). A queue selected on the read port may experience a change of its internal almost full flag status based on read operations. The multi-queue flow-control device also provides a duplicate of the $\overline{\mathrm{PAF}}$ flag on the $\overline{\mathrm{PAF}[3: 0] ~ f l a g ~ b u s, ~ t h i s ~ w i l l ~ b e ~ d i s c u s s e d ~ i n ~ d e t a i l ~}$ in a later section of the data sheet.

See Figures 22 and 23 for Almost Full flag timing and queue switching.

ALMOSTEMPTYFLAG

As previously mentioned the multi-queue flow-control device provides a single Programmable Almost Empty flag output, $\overline{\mathrm{PAE}}$. The $\overline{\mathrm{PAE}}$ flag output provides a status of the almostempty condition for the active queue currently
selected on the read port for read operations. Internally the multi-queue flowcontrolmonitors andmaintainsastatus ofthealmostempty condition of all queues withinit, howeveronly the queue thatisselected for read operations has itsempty status outputtothe $\overline{\text { PAE }}$ flag. This dedicatedflag is often referredtoasthe "active queuealmostempty flag". The position ofthe $\overline{\text { PAE }}$ flagboundary withina queue can be at any point within that queues depth. This location can be user programmed via the serial port or one of the default values (8 or 128) can be selected ifthe userhas performed default programming.

As mentioned, every queue within a multi-queue device has its own almost empty status, when aqueue is selected on the read port, this status is outputvia the $\overline{\mathrm{PAE}}$ flag. The $\overline{\mathrm{PAE}}$ flag value for each queue is programmed during multiqueue device programming (along with the number of queues, queue depths and almostfull values). The $\overline{\text { PAE }}$ offset value, n, for a respective queue can be programmed to be anywhere between ' 0 ' and ' D ', where ' D ' is the total memory depthfor that queue. The $\overline{\mathrm{PAE}}$ value of different queues within the same device can be differentvalues.
When queue switches are being made onthe read port, the $\overline{\text { PAE }}$ flag output will switch to the new queue and provide the user with the new queue status, on the second cycle after a new queue selection is made, on the same RCLK cycle that data actually falls through to the output register from the new queue. That is, a new queue can be selected on the read port via the RDADD bus, RADEN enable and a rising edge of RCLK. Onthe second rising edge of RCLK following a queue selection, the data word from thenew queue will be available at the output register and the $\overline{\mathrm{PAE}}$ flag output will show the empty status of the newly selected queue. The $\overline{\text { PAE }}$ is flag output is double register buffered, so when a read operation occurs at the almost empty boundary causing the selected queue status to go almostempty the $\overline{\mathrm{PAE}}$ will goLOW2RCLK cycles after the read. The same is true when a write occurs, there will be a 2 RCLK cycle delay after the write operation.

So the $\overline{\text { PAE }}$ flag delays are:
from a read operation to $\overline{P A E}$ flag LOW is 2 RCLK + tRAE
The delay from a write operation to $\overline{\text { PAE flag HIGH is tSKEw } 2+\text { RCLK }+ \text { traE }}$
Note, if tSKEW is violated there will be one added RCLK cycle delay.
The $\overline{\text { PAE }}$ flag is synchronous to the RCLK and all transitions of the $\overline{\text { PAE flag }}$ occur based on a rising edge of RCLK. Internally the multi-queue device monitors andkeepsarecordofthealmostemptystatusforall queues. Itispossible thatthe status ofa $\overline{\text { PAE }}$ flag maybe changing internally eventhoughthatflag is not the active queue flag (selected onthe read port). A queue selected on the write portmay experienceachange of its internal almostemptyflagstatusbased on write operations. The multi-queue flow-control device also provides a duplicate of the $\overline{\mathrm{PAE}}$ flag on the $\overline{\mathrm{PAE}}[3: 0]$ flagbus, this will be discussed in detail in a later section of the data sheet.

See Figures 24 and 25 for Almost Empty flag timing and queue switching.

TABLE 4 - FLAG OPERATION BOUNDARIES \& TIMING

Output Valid, $\overline{\mathrm{OV}}$ Flag Boundary	
I/O Set-Up	$\overline{\mathrm{OV}}$ Boundary Condition
In36 to out36 (Almost Empty Mode) (Both ports selectedfor samequeue when the $1^{\text {st }}$ Word is written in)	$\overline{\mathrm{OV}}$ Goes LOW after $1^{\text {st }}$ Write (see note 1 below for timing)
In36 to out36 (Packet Mode) (Both ports selectedfor samequeue when the $1^{\text {st }}$ Word is written in)	$\overline{\mathrm{OV}}$ Goes LOW after $1^{\text {st }}$ Write (see note 2 below for timing)
In36 to out18 (Both ports selected for samequeue when the $1^{\text {st }}$ Word is written in)	$\overline{\mathrm{OV}}$ Goes LOW after $1^{\text {st }}$ Write (see note 1 below for timing)
In36 to out9 (Both ports selectedfor samequeue when the $1^{\text {st }}$ Word is written in)	$\overline{\text { OV }}$ Goes LOW after $1^{\text {st }}$ Write (see note 1 below for timing)
In18 to out36 (Both ports selectedfor samequeue when the $1^{\text {st }}$ Word is written in)	$\overline{\mathrm{OV}}$ Goes LOW after $1^{\text {st }}$ Write (see note 1 below for timing)
In9 to out36 (Both ports selectedfor samequeue when the $1^{\text {st }}$ Word is written in)	$\overline{\mathrm{OV}}$ Goes LOW after $1^{\text {st }}$ Write (seenote 1 below for timing)

NOTE:

1. $\overline{\mathrm{V}} \mathrm{V}$ Timing

Assertion:
Write to $\overline{O V}$ LOW: tSKEW1 + RCLK + tROV
If tSKEW1 is violated there may be 1 added clock: tSKEW1 + 2 RCLK + tROV
De-assertion:
Read Operation to $\overline{\mathrm{OV}} \mathrm{HIGH}: ~ t R O V$
2. $\overline{\mathrm{OV}}$ Timing when in Packet Mode (36 in to 36 out only)

Assertion:
Write to $\overline{\mathrm{OV}}$ LOW: tSKEW4 + RCLK + trov
If tSKEW4 is violated there may be 1 added clock: tSKEW4 + 2 RCLK + tROV
De-assertion:
Read Operation to $\overline{\mathrm{OV}}$ HIGH: tROV

Programmable Almost Full Flag, $\overline{\text { PAF }}$ \& $\overline{\text { PAF }}$ n Bus Boundary	
I/O Set-Up	$\overline{\text { PAF }}$ \& $\overline{\text { PAFn }}$ Boundary
in36 to out36 (Both ports selected for same queue when the $1^{\text {st }}$ Word is written in until the boundary is reached)	$\overline{\text { PAF }} / \overline{\text { PAF }}$ Goes LOW after D+1-mWrites (see note belowfortiming)
in36 to out36 (Write port only selectedfor same queue when the $1^{\text {st }}$ Word is written in until the boundary is reached)	$\overline{\text { PAF/PAFn }}$ Goes LOW after D-mWrites (seenote belowfortiming)
in36 to out18	$\overline{\text { PAF }} / \overline{\mathrm{PAF}} \mathrm{n}$ Goes LOW after D-mWrites(seebelowfortiming)
in36 to out9	$\overline{\text { PAF/PAFn }}$ Goes LOW after D-mWrites(seebelowfortiming)
in18 to out36	$\overline{\text { PAF/PAFn }}$ Goes LOW after ([D+1-m] x 2) Writes (seenote belowfortiming)
in9 to out36	$\overline{\text { PAF }} / \overline{\text { PAF }}$ Goes LOW after ([D+1-m] x 4) Writes (seenotebelowfortiming)

Full Flag, FF Boundary	
I/O Set-Up	FFF Boundary Condition
In36 to out36 (Both ports selectedfor samequeue when the $1^{\text {st }}$ Word is written in)	$\overline{F F}$ Goes LOW after D+1 Writes (seenote below for timing)
In36 to out36 (Write portonly selectedforqueue when the $1^{\text {tt }}$ Word is written in)	FF Goes LOW after D Writes (seenote below for timing)
In36 to out18 (Both portsselectedfor samequeue when the $1^{\text {st }}$ Word is written in)	FF Goes LOW after D Writes (seenote belowfortiming)
In36 to out18 (Write portonly selectedforqueue when the $1^{\text {st }}$ Word is written in)	$\overline{F F}$ Goes LOW after D Writes (see note belowfortiming)
$\operatorname{In} 36$ to out9 (Both ports selectedfor samequeue when the $1^{\text {st }}$ Word is written in)	$\overline{F F}$ Goes LOW after D Writes (seenote belowfortiming)
In36 to out9 (Write portonly selectedforqueue when the $1^{\text {st }}$ Word is written in)	FF Goes LOW after D Writes (see note below fortiming)
In18 to out36 (Both ports selectedfor samequeue when the $1^{\text {st }}$ Word is written in)	FF Goes LOW after ([D+1] x 2) Writes (seenote belowfortiming)
In18 to out36 (Write portonly selectedforqueue when the $1^{\text {st }}$ Word is written in)	FF Goes LOW after (D x2) Writes (see note belowfortiming)
In9 to out36 (Both ports selectedfor samequeue when the $1^{\text {st }}$ Word is written in)	FF Goes LOW after ([D+1] x 4) Writes (see note belowfortiming)
In9 to out36 (Write portonly selectedforqueue when the $1^{\text {st }}$ Word is written in)	FF Goes LOW after (D x 4) Writes (see note below fortiming)

NOTE:
D = Queue Depth
$\overline{\mathrm{FF}}$ Timing
Assertion:
Write Operation to FF LOW: twFF
De-assertion:
Read to FF HIGH: tSKEW $1+$ tWFF
If tSKEW1 is violated there may be 1 added clock: tSKEW1+WCLK +tWFF

NOTE:

D = Queue Depth
$\mathrm{m}=$ Almost Full Offset value.

$$
\text { Default values: if DF is LOW at Master Reset then } m=8
$$ if DF is HIGH at Master Reset then $\mathrm{m}=128$

$\overline{\text { PAF Timing }}$

Assertion: Write Operation to $\overline{\text { PAF }}$ LOW: 2 WCLK + tWAF
De-assertion: Read to $\overline{\text { PAF }}$ HIGH: tSKEW2 + WCLK + twAF
If tSKEW2 is violated there may be 1 added clock: tSKEW2 + 2 WCLK + tWAF

$\overline{\mathrm{PA}} \overline{\mathrm{F}} \mathrm{n}$ Timing

Assertion: Write Operation to PAFn LOW: 2 WCLK* + tPAF
De-assertion: Read to $\overline{\text { PAFn HIGH: tSKEW3 }+ \text { WCLK }^{*}+\text { tPAF }}$
If tSKEW3 is violated there may be 1 added clock: tSKEW $3+2$ WCLK* + tPAF

* If a queue switch is occurring on the write port at the point of flag assertion or de-assertion there may be one additional WCLK clock cycle delay.

TABLE 4 - FLAG OPERATION BOUNDARIES \& TIMING (CONTINUED)

Programmable Almost Empty Flag, $\overline{\text { PAE }}$ Boundary	
I/O Set-Up	$\overline{\text { PAE Assertion }}$
in36 to out36 (Both ports selectedfor same queue when the $1^{\text {st }}$ Word is written in until the boundary is reached)	$\overline{\text { PAE Goes HIGH after n+2 }}$ Writes (seenote below for timing)
in36 to out18 (Both ports selected for same queue whenthe $1^{\text {st }}$ Word is written in until the boundary is reached)	$\overline{\text { PAE Goes HIGH after } n+1}$ Writes (seenotebelowfortiming)
in36 to out9 (Both ports selected for same queue when the $1^{\text {st }}$ Word is written in until the boundary is reached)	$\overline{\text { PAE Goes HIGH after } n+1}$ Writes (see note below fortiming)
in18 to out36 (Both ports selected for same queue whenthe $1^{\text {st }}$ Word is written in until the boundary is reached)	$\overline{\text { PAE Goes HIGH after }}$ ([n+2] x 2) Writes (seenote belowfortiming)
in9 to out36 (Both ports selectedfor same queue when the $1^{\text {st }}$ Word is written in until the boundary is reached)	$\overline{\text { PAE Goes HIGH after }}$ ([n+2] x 4) Writes (see note below fortiming)

NOTE:
$\mathrm{n}=$ Almost Empty Offset value.
Default values: if DF is LOW at Master Reset then $\mathrm{n}=8$
if DF is HIGH at Master Reset then $\mathrm{n}=128$

PAE Timing

Assertion: Read Operation to $\overline{\text { PAE LOW: } 2 \text { RCLK + tRAE }}$
De-assertion: Write to $\overline{\text { PAE HIGH: tSKEW2 }+ \text { RCLK }+ \text { tRAE }}$
If tSKEW2 is violated there may be 1 added clock: tSKEW2 +2 RCLK + tRAE

PACKET READY FLAG, $\overline{\text { PR }}$ BOUNDARY

Assertion:

Both the rising and falling edges of $\overline{\mathrm{PR}}$ are synchronous to RCLK.
$\overline{\text { PR Falling Edge occurs upon writing the first TEOP marker, on input D35, }}$ (assuming a TSOP marker, on input D34 has previously been written). i.e. a complete packet is available within a queue.

Timing:

From WCLK rising edge writing the TEOP word $\overline{\text { PR }}$ goes LOW after: tSKEW4
+2 RCLK + tpR
IftSKEW4 is violated:
$\overline{\text { PR goes LOW after tSKEW4 + } 3 \text { RCLK + tPR }}$
(Please refer to Figure 18, Data Input (Transmit) Packet Mode of Operation fortiming diagram).

De-assertion:

$\overline{\text { PRRising Edgeoccurs upon reading the last RSOP marker, from output Q34. }}$
i.e. there are no more complete packets available within the queue.

Timing:

From RCLK rising edge Reading the RSOP word the $\overline{\mathrm{PR}}$ goes HIGH after: 2 RCLK + tpR
(Please refer to Figure 19, Data Output(Receive) PacketMode of Operation fortiming diagram).

Programmable Almost Empty Flag Bus, $\overline{\text { PAEn Boundary }}$	
/O Set-Up	$\overline{\text { PAEn Boundary Condition }}$
$\begin{array}{l}\text { in36 to out36 } \\ \text { (Both ports selected for same queue when the } 1^{\text {st }}\end{array}$	$\begin{array}{l}\text { PAEn Goes HIGH after } \\ \text { n+2 Writes } \\ \text { Word is written in until the boundary is reached) }\end{array}$
(see note below fortiming)	

in36 to out36

(Write port only selected for same queue when the

1st Word is written in until the boundary is reached)\end{array}\right)\)

NOTE:

$\mathrm{n}=$ Almost Empty Offset value.
Default values: if DF is LOW at Master Reset then $\mathrm{n}=8$ if DF is HIGH at Master Reset then $n=128$

$\overline{\text { PAE }} \bar{E}$ Timing

Assertion: Read Operation to $\overline{\text { PAEn LOW: }} 2$ RCLK ${ }^{*}+$ tPAE
De-assertion: Write to $\overline{\text { PAEn HIGH: tSKEW3 }+ \text { RCLK* }+ \text { tPAE }}$
If tSKEW3 is violated there may be 1 added clock: tSKEW $3+2$ RCLK* + tPAE

* If a queue switch is occurring on the read port at the point of flag assertion or de-assertion there may be one additional RCLK clock cycle delay.

PACKET READY FLAG BUS, $\overline{\text { PRn BOUNDARY }}$
 Assertion:

Both the rising and falling edges of $\overline{\mathrm{PR}}$ n are synchronous to RCLK.
$\overline{\text { PRn }}$ Falling Edge occurs upon writing the first TEOP marker, on input D35, (assuming a TSOP marker, on input D34 has previously been written). i.e. a complete packet is available within a queue.

Timing:

From WCLK rising edge writing the TEOP word $\overline{\mathrm{PR}}$ goes LOW after: tSKEW4 +2 RCLK* + tPAE
If tsKEW4 is violated $\overline{\text { PR }}$ n goes LOW after tSKEW4 +3 RCLK* + tPAE
*Ifaqueue switch is occurring onthe read portatthe point offlag assertionthere may be one additional RCLK clock cycle delay.

De-assertion:

$\overline{\text { PR Rising Edge occurs upon reading the last RSOP marker, from output Q34. }}$
i.e. there are no more complete packets available within the queue.

Timing:
From RCLK rising edge Reading the RSOP word the $\overline{\mathrm{PR}}$ goes HIGH after: 2 RCLK* + tPAE
*If a queue switch is occurring on the read port at the point of flag assertion or de-assertion there may be one additional RCLK clock cycle delay.

PAFn BUS EXPANSION - DIRECT MODE

If FM is LOW at Master Reset then the PAFn bus operates in Direct (addressed) mode. Indirectmode the usercan address the device they require to control the PAFn bus. The address presenton the 3 mostsignificant bits of the WRADD[4:0] address bus with FSTR (PAF flag strobe), HIGH will be selected as the device on a rising edge ofWCLK. Soto address the firstdevice in a bank of devices the WRADD[4:0] address should be "000xx" the second device "001xx" andsoon. The3mostsignificantbits oftheWRADD[4:0] address bus correspondtothe device ID inputs ID[2:0]. The PAFnbus will change status toshowthenew device selected 1 WCLK cycleafterdevice selection. Note, that if a read or write operation is occurring to a specific queue, say queue ' x ' on the same cycle as a $\overline{\text { PAFn }}$ bus switch to the device containing queue ' x ', then there may be an extraWCLK cycle delay before that queues status is correctly shown on the respective output of the PAFn bus. However, the "active" PAF flag will show correct status atall times.

Devices can be selected on consecutive WCLK cycles, that is the device controlling the PAFn bus can change every WCLK cycle. Also, data present onthe inputbus, Din, canbe written into aqueue on the sameWLCK risingedge that a device is being selected on the $\overline{\text { PAFn }}$ bus, the only restriction being that awritequeueselectionandPAFnbusselectioncannotbemade onthe samecycle.

PAFn BUS EXPANSION- POLLED MODE

IfFM is HIGHatMaster Resethenthe $\overline{\text { PAFn }}$ bus operates in Polled (Looped) mode. In polled mode the $\overline{\text { PAFn }}$ bus automatically cycles through the devices connected in expansion. In expansion mode one device will be set as the Master, MAST inputtied HIGH, all otherdevices will haveMAST tied LOW. The master device is the first device to take control of the PAFn bus and place the $\overline{\text { PAF status of its queues onto the bus on the firstrising edge of WCLK after the }}$ $\overline{\text { MRS inputgoes }}$ HIGH once aMaster Resetis complete. The FSYNC (PAF sync pulse) output of the first device (master device), will be HIGH for one cycle of WCLK indicating thatitis has control of the PAFn bus for that cycle.

The device also passes a "token" onto the nextdevice in the chain, the next device assuming control of the $\overline{\text { PAFn }}$ bus on the next WCLK cycle. This token passing is done via the FXO outputs and FXI inputs of the devices ("PAFn Expansion Out" and "PAFn Expansion In"). The FXO output of the first device connecting to the FXI input of the second device in the chain, the FXO of the second device connects to the FXI of the third device and so on. The FXO of the final device in achain connectstothe FXI ofthe firstdevice, so that once the $\overline{\text { PAFn }}$ bus has cycled through all devices control is again passed to the first device. The FXO outputof adevice will be HIGHforthe WCLK cycleithas control of the bus.

Please referto Figure 28, $\overline{\text { PAFn Bus-Polled Modefor timing information. }}$

$\overline{\text { PAEn }} / \overline{\text { PR }}$ n FLAG BUS OPERATION

The IDT72V51236/72V51246/72V51256 multi-queueflow-control devices canbe configuredfor upto4queues, eachqueue havingits ownalmostempty/ packetready status. An activequeuehasitsflagstatus outputtothe discreteflags, $\overline{\mathrm{OV}}, \overline{\mathrm{PAE}}$ and $\overline{\mathrm{PR}}$, on the read port. Queues that are not selected for a read operation can havetheir $\overline{\text { PAE }} / \overline{\operatorname{PR}}$ status monitored viathe $\overline{\text { PAE }} / / \overline{\operatorname{PRn}}$ bus. The $\overline{\text { PAEn }} / \overline{\text { PRn }}$ flagbus is 4 bits wide, sothatall 4 queues can havetheir status output tothe bus. The multi-queue device can provide either "AlmostEmpty" status or "PacketReady"status viathe $\overline{P A E} n /$ PRn bus ofits queues, depending on which has been selected via the PKT (Packet) input during a master reset. If PKT is HIGHthen packetmode is selected andthe $\overline{\text { PAEn }} / \overline{\text { PRn bus will provide "Packet }}$ Ready"status. Ifitis LOW then the $\overline{\text { PAEn }} /$ /PRn bus will provide "AlmostEmpty" status. In either case the operation of the bus is the same the difference being that the bus is providing "Packet Ready" status versus "Almost Empty" status.
When asingle multi-queue device is usedanywherefrom 1 to 4 queues may beset-up withinthe part, each queue havingits owndedicated $\overline{\text { PAEn }} / /$ PRnflag
output on the $\overline{\text { PAE }} n / \overline{\text { PR }}$ n bus. Queues 1 through 4 have their $\overline{\text { PAE } / \overline{\text { PR }} \text { status }}$ to $\overline{P A E}[0]$ through $\overline{\mathrm{AEE}}[3]$ respectively. Ifless than 4queues are usedthen only the associated $\overline{P A E} n / \overline{P R}$ noutputs will be required, unused $\overline{\text { PAEn }} / \overline{\text { PRn }}$ outputs will be don'tcare outputs. When devices are connected in expansion mode the $\overline{\text { PAEn }} / /$ PRn flag bus can also be expanded beyond 4 bits to produce a wider $\overline{\text { PAEn }} / \overline{\text { PR }}$ n busthatencompasses all queues.
Alternatively, the 4 bit $\overline{\text { PAE }} / /$ PRn flagbus of each device can be connected togethertoform a single 4 bitbus, i.e. $\overline{\text { PAE }}[0]$ of device 1 will connectto $\overline{\text { PAE }[0] ~}$ of device 2 etc. When connecting devices inthis mannerthe $\overline{\text { PAEn }} / \overline{\mathrm{PR}}$ nbus can only bedriven by a single device atany time, (the $\overline{\text { PAE }} n / \overline{\text { PR }}$ outputs ofall other devices mustbe inhigh impedance state). There are two methods by whichthe user can select which device has control of the bus, these are "Direct" (Addressed) mode or "Polled" (Looped) mode, determined by the state of the FM (flag Mode) input during a Master Reset.

$\overline{\text { PAEn }} / \overline{\text { PRn }}$ BUS EXPANSION- DIRECT MODE

If FM is LOW at Master Reset then the $\overline{\text { PAEn }} / / \overline{\text { PRn }}$ bus operates in Direct (addressed) mode. In directmode the usercan address the device they require to control the $\overline{\operatorname{PAE}} / \overline{\operatorname{PR}}$ n bus. The address present onthe 3 mostsignificantbits of the RDADD[5:0] address bus with ESTR ($\overline{\mathrm{PAE}} / \overline{\mathrm{PR}}$ flag strobe), HIGH will be selected as the device on arisingedge of RCLK. Soto address the firstdevice in a bank of devices the RDADD[5:0] address should be "000xx" the second device "001xx" andsoon. The3 mostsignificantbits ofthe RDADD[5:0]address bus correspond to the device ID inputs ID[2:0]. The $\overline{\text { PAE }} / \overline{\text { PR }}$ bus will change status to show the new device selected 1 RCLK cycle after device selection. Note, thatifa read orwrite operation is occurringto a specific queue, say queue 'x'onthe same cycleas aPAEn//PRnbus switchtothedevice containing queue ' x ', then there may be an extra RCLK cycle delay before that queues status is correctly shown on the respective output of the PAEn//PRnbus. However, the "active" $\overline{\text { PAE }}$ and/or $\overline{\text { PR }}$ flag will show correct status atall times.
Devices can be selected on consecutive RCLK cycles, that is the device controlling the $\overline{\text { PAEn }} / \overline{\text { PRn }}$ bus can change every RCLK cycle. Also, data can be read out of a queue on the same RCLK rising edge that a device is being selected on the $\overline{\mathrm{PAE}} / / \overline{\mathrm{PR}} \mathrm{n}$ bus, the only restriction being that a read queue selection and $\overline{\mathrm{PAE}} \mathrm{n} / \overline{\mathrm{PR}} \mathrm{n}$ bus selection cannot be made on the same cycle.

$\overline{\text { PAEn }} / / \overline{\text { PR }} \mathrm{n}$ BUS EXPANSION- POLLED MODE

If FM is HIGH at Master Reset then the $\overline{\text { PAEn }} / / \overline{\text { PR }}$ b bus operates in Polled (Looped) mode. In polled modethe $\overline{\text { PAEn }} / \overline{\text { PR }}$ nbus automatically cyclesthrough the devices connected in expansion. In expansion mode one device will be set as the Master, MAST inputtiedHIGH, all otherdevices will haveMAST tied LOW. The master device is the first device to take control of the $\overline{\operatorname{PAE}} / / \overline{\mathrm{PR}}$ n bus and placethe $\overline{\text { PAE PR }}$ status ofitsqueues ontothe bus onthefirstrisingedge of RCLK after the $\overline{M R S}$ inputgoes HIGH onceaMaster Resetis complete. The ESYNC (PAE/PR sync pulse) output of the firstdevice (masterdevice), will be HIGHfor one cycle of RCLKindicating thatitis has control of the $\overline{\text { PAEn }} / \overline{\text { PRn }}$ bus for that cycle.
The devicealso passes a "token" onto the nextdevice in the chain, the next device assuming control of the $\overline{\text { PAEE }} / \overline{\text { PRn }}$ bus on the next RCLK cycle. This tokenpassingis done viathe EXO outputs and EXI inputs of the devices ("PAEn/ $\overline{\text { PRn }}$ Expansion Out" and "PAEn/PRn Expansion In"). The EXO output of the firstdevice connectingtothe EXI inputofthe second device inthe chain, the EXO of the second device connects tothe EXI of the thirddevice and soon. The EXO of the final device in a chain connects to the EXI of the firstdevice, so that once the $\overline{\text { PAEn }} / \overline{\mathrm{PR}} \mathrm{n}$ bus has cycled through all devices control is again passed to the first device. The EXO output of a device will be HIGH for the RCLK cycle ithas control of the bus.
Please refer to Figure 29, $\overline{P A E n} / \overline{P R n}$ Bus - Polled Mode for timing information.
BYTE ORDER ON INP
BYTE ORDER ON OUT

BM	IW	OW
L	L	L
BM	IW	OW
H	L	L

(a) x36 INPUT to $\times 36$ OUTPUT

1st: Read from Queue 2nd: Read from Queue 1st: Read from Queue 2nd: Read from Queue 3rd: Read from Queue 4th: Read from Queue
(c) x36 INPUT to x9 OUTPUT
BYTE ORDER ON INPU
BYTE ORDER ON OUT

BM	IW	OW
H	H	L

1st: Write to Queue 2nd: Write to Queue Read from Queue
(d) x18 INPUT to $\times 36$ OUTPUT
BYTE ORDER ON INPUT PORT:
 1st: Write to Queue 2nd: Write to Queue 3rd: Write to Queue 4th: Write to Queue BYTE ORDER ON OUTPUT PORT:

BM	IW	OW
H	H	H

Read from Queue

5937 drw08

Figure 3. Bus-Matching Byte Arrangement

NOTES:

1. For a Partial Reset to be performed on a Queue, that Queue must be selected on both the write and read ports.
2. The queue must be selected a minimum of 2 clock cycles before the Partial Reset takes place, on both the write and read ports.
3. The Partial Reset must be LOW for a minimum of 1 WCLK and 1 RCLK cycle.
4. Writing or Reading to the queue (or a queue change) cannot occur until a minimum of 3 clock cycles after the Partial Reset has gone HIGH, on both the write and read ports.
5. The $\overline{\mathrm{PAF}}$ flag output for Qx on the $\overline{\mathrm{PAF}}$ flag bus may update one cycle later than the active $\overline{\mathrm{PAF}}$ flag.
6. The $\overline{\text { PAE }}$ flag output for Qx on the $\overline{\mathrm{PAE}}$ flag bus may update one cycle later than the active $\overline{\mathrm{PAE}}$ flag.

Figure 5. Partial Reset

Figure 6. Serial Port Connection for Serial Programming

으웅

NOTES:

1. Qy has previously been selected on both the write and read ports.
2. $\overline{\mathrm{OE}}$ is LOW.
3. The First Word Latency $=$ tSKEW1 + RCLK + tA. If tSKEW1 is violated an additional RCLK cycle must be added.

Figure 10. Write Operations \& First Word Fall Through

NOTE:

1. $\overline{\text { REN }}=\mathrm{HIGH}$.
Cycle:
A Queue, Q3 of device 1 is selected on the write port.
$\overline{\text { The }} \overline{F F}$ flag of device 1 is in High-Impedance, the write port of device 2 was previously selected. WEN is HIGH so no write occurs.
Queue, Q0 of device 1 is selected ${ }^{*} \mathbf{B}^{*} \quad \frac{\text { The }}{\text { WEN }} \overline{\text { FF }}$ flag of device 2 goes to High so no write occurs.
${ }^{*} \mathbf{B B}^{*}$ Word, Wx is read from the previously selected queue, (due to FWFT).
${ }^{*} \mathbf{C}^{*} \quad$ Word, Wd is written into Q3 of D1. This write operation causes Q3 to go full, $\overline{\text { FF }}$ goes LoW. ${ }^{*} \mathbf{B}^{*} \quad \frac{\text { The }}{\text { WEN }} \overline{\text { FF }}$ flag of device 2 goes to High so no write occurs.
${ }^{*} \mathbf{B B}^{*}$ Word, Wx is read from the previously selected queue, (due to FWFT).
${ }^{*} \mathbf{C}^{*} \quad$ Word, Wd is written into Q3 of D1. This write operation causes Q3 to go full, $\overline{\text { FF }}$ goes LoW.
${ }^{*}{ }^{*} \mathbf{A A}^{*}$
${ }^{*}$ AA * Queue, QO of device 1 is selected on the read port. ${ }^{*} \mathbf{C C}^{*}$ The first word from Q0 of D1 selected on cycle *AA* is read out, this occurred regardless of $\overline{\text { REN }}$ due to FWFT. This read caused Q0 to go not full, therefore the $\overline{\mathrm{FF}}$ flag will go HIGH after: tsKEW1 + twFF. Note if tskew is violated the time to FF flag HIGH is tskEw + WLCK + twFF.

Queue, Q0 of device 1 is selected on the write port. No write occurs on this cycle. The FF flag updates to show the status of D1 Q,, it is not full, FF goes No write occurs regardless of $\overline{W E N}$, the $\overline{F F}$ flag is LOW preventing writes.

The $\overline{F F}$ flag goes HIGH due to the read from Q0 of D1 on cycle *CC*. (This read is not an enabled read, it is due to the FWFT operation). Queue, Q2 of device 2 is selected on the write port.
The $\overline{F F}$ flag of device 1 goes to High-Impedance, this ${ }^{*} \mathbf{D}^{*}$
$* \mathbf{E}^{*}$
${ }^{*} \mathbf{F}^{*}$
${ }^{*} \mathbf{G}^{*}$
${ }^{*} \mathbf{H}^{*}$
${ }^{*}{ }^{*}{ }^{*}$
${ }^{*} \mathbf{J J}^{*}$

Figure 12 Read Queue Select, Read Operation

Cycle:
${ }^{*} \mathbf{B}^{\star}$ Wn-2 is read.

* ${ }^{*}$ Reads are disabled, $\mathrm{Wn}-1$ remains on the output bus
* ${ }^{*}$ A new queue, QF is selected for read operations.
${ }^{*} \mathbf{E}^{\star}$ Due to the First Word Fall Through (FWFT) effect, a read from the previous queue Qp will take place, Wn from Qp is placed onto the output bus regardless of $\overline{R E N}$.
${ }^{\star} \mathbf{F}^{\star}$ The next word available in the new queue, QF-Wo falls through to the output bus, again this is regardless of $\overline{R E N}$.
${ }^{*} I^{*}$ Word W_{2} from Qf remains on the output bus because Q_{G} is empty. The Output Valid Flag, $\overline{O V}$ goes HIGH to indicate that the current word is not valid, i.e. QG is empty W_{2} is the last word in QG.

Cycle:
${ }^{*} \mathrm{~A}^{*}$ Queue 3 of Device 1 is selected for read operations. The $\overline{\mathrm{OV}}$ is currently being driven by Device 2 , a queue within device 2 is selected for reads. Device 2 also has control of Qout bus, its Qout outputs are in Low-Impedance. This diagram only shows the Qout outputs of device 1. (Reads are disabled).
B Reads are now enabled. A word from the previously selected queue of Device 2 will be read out.
C The Qout of Device 1 goes to Low-Impedance and word Wd is read from Q3 of D1. This happens to be the last word of Q3. Device 2 places its Qout outputs into High-Impedance, device 1 has control of the Qout bus. The $\overline{\mathrm{OV}}$ flag of Device 2 goes to High-Impedance and Device 1 takes control of $\overline{\mathrm{OV}}$. The $\overline{\mathrm{OV}}$ flag of Device 1 goes LOW to show that Wd of Q3 is valid.
D Queue 2 of device 1 is selected for read operations. The last word of Q3 was read on the previous cycle, therefore $\overline{\mathrm{OV}}$ goes HIGH to indicate that the data on the Qout is not valid (Q3 was read to empty). Word, Wd remains on the output bus.
E The last word of Q3 remains on the Qout bus, $\overline{\mathrm{V}}$ is HIGH, indicating that this word has been previously read.
F The next word (We-1), available from the newly selected queue, Q2 of device 1 is now read out. This will occur regardess of $\overline{R E N}, 2$ RCLK cycles after queue selection due to the FWFT operation. The $\overline{\mathrm{OV}}$ flag now goes LOW to indicate that this word is valid.

* G^{*} The last word, We is read from Q2, this queue is now empty.
* H^{*} The $\overline{\mathrm{OV}}$ flag goes HIGH to indicate that Q2 was read to empty on the previous cycle.
। Due to a write operation the $\overline{\mathrm{OV}}$ flag goes LOW and data word W0 is read from Q2. The latency is: tskew + 1*RCLK + trov.
Figure 13. Output Valid Flag Timing (In Expansion Mode)

Cycle:
A Word $W d+1$ is read from the previously selected queue, Qp.
B Reads are disabled, word $W d+1$ remains on the output bus.
${ }^{*} C^{*}$ A new queue, Qn is selected for read port operations.
D Due to FWFT operation Word, Wd+2 of Qp is read out regardless of $\overline{R E N}$.
E The next available word Wx of Qn is read out regardless of $\overline{R E N}, 2$ RCLK cycles after queue selection. This is FWFT operation.

* F^{*} The queue, $Q p$ is again selected.
${ }^{*} \mathbf{G}^{*}$ Word $W x+1$ is read from Qn regardless of $\overline{R E N}$, this is due to FWFT.
${ }^{*} \mathbf{H}^{*}$ Word $W d+3$ is read from Qp, this read occurs regardless of $\overline{\text { REN }}$ due to FWFT operation.
*** Word Wd+4 is read from Qp.
* J * Reads are disabled on this cycle, therefore no further reads occur.

Figure 14. Read Queue Selection with Reads Disabled

NOTES:

1. The Output Valid flag, $\overline{\mathrm{OV}}$ is HIGH therefore the previously selected queue has been read to empty. The Output Enable input is Asynchronous, therefore the Qout output bus will go to Low-Impedance after time tolz.
The data currently on the output register will be available on the output after time toE. This data is the previous data on the output register, this is the last word read out of the previous queue.
2. In expansion mode the $\overline{\mathrm{OE}}$ inputs of all devices should be connected together. This allows the output busses of all devices to be High-Impedance controlled.

Cycle:
${ }^{*}$ A* Queue A is selected for reads. No data will fall through on this cycle, the previous queue was read to empty.
B No data will fall through on this cycle, the previous queue was read to empty.
${ }^{*} C^{*}$ Word, W0 from Qa is read out regardless of $\overline{R E N}$ due to FWFT operation. The $\overline{O V}$ flag goes LOW indicating that Word W0 is valid.
D Reads are disabled therefore word, W0 of Qa remains on the output bus.
E Reads are again enabled so word W1 is read from Qa.
F Word W2 is read from Qa.

* G^{*} Queue, Qb is selected on the read port. This queue is actually empty. Word, W3 is read from Qa.
* \mathbf{H}^{*} Word, W4 falls through from Qa.
I Output Valid flag, $\overline{\mathrm{OV}}$ goes HIGH to indicate that Qb is empty. Data on the output port is no longer valid. Output Enable is taken HIGH, this is Asynchronous so the output bus goes to High-Impedance after time, toHz.

Figure 15. Read Queue Select, Read Operation and $\overline{O E}$ Timing

. If tSKEW4 is violated $\overline{\mathrm{PR}}$ may take one additional RCLK cycle.
4. $\overline{\mathrm{PR}}$ will always go LOW on the same cycle or 1 cycle ahead of $\overline{\mathrm{OV}}$ going LOW, (assuming the last word of the packet is the last word in the queue).
5. In Packet mode, words cannot be read from a queue until a complete packet has been written into that queue, regardless of $\overline{\mathrm{REN}}$.
Figure 18. Data Input (Transmit) Packet Mode of Operation

[^0]
NOTE:
Figure 19. Data Output (Receive) Packet Mode of Operation

NOTES:

1. The purpose of the Null queue operation is so that the user can stop reading a block (packet) of data from a queue without filling the 2 stage output pipeline with the next words from that queue.
2. Please see Figure 21, Null Queue Flow Diagram.

Cycle:
${ }^{*} \mathbf{A}^{*}$ Null Q of device 0 is selected, when word $\mathrm{Wn}-1$ from previously selected Q 1 is read.

* $B^{*} \overline{\text { REN }}$ is HIGH and $W n$ (Last Word of the Packet) of Q 1 is pipelined onto the O / P register. Note: *B* and ${ }^{*} C^{*}$ are a minimum 2 RCLK cycles between Q selects.
C The Null Q is seen as an empty Queue on the read side, therefore Wn of Q1 remains in the O/P register and $\overline{\mathrm{OV}}$ goes HIGH .
D A new Q, Q3 is selected and the 1st word of Q3 will fall through present on the O/P register on cycle *F*.

Figure 20. Read Operation and Null Queue Select

Figure 21. Null Queue Flow Diagram

Cycle:
${ }^{*} A^{*}$ Queue 2 of Device 1 is selected on the write port. A queue within Device 2 had previously been selected. The $\overline{\text { PAF }}$ output of device 1 is High-Impedance.
B No write occurs.
C Word, Wd-m is written into Q2 causing the $\overline{\text { PAF }}$ flag to go from HIGH to LOW. The flag latency is 2 WCLK cycles + twaf.
D Queue 0 if device 1 is now selected for write operations. This queue is not almost full, therefore the $\overline{\text { PAF }}$ flag will update after a 2 WCLK + twaf latency.
E The $\overline{\text { PAF }}$ flag goes LOW based on the write 2 cycles earlier.
F The $\overline{\mathrm{PAF}}$ flag goes HIGH due to the queue switch to Q 0 .
Figure 22. Almost Full Flag Timing and Queue Switch

NOTE:

1. The waveform here shows the $\overline{\mathrm{PAF}}$ flag operation when no queue switches are occurring and a queue selected on both the write and read ports is being written to then read from at the almost full boundary.
Flag Latencies:
Assertion: 2*WCLK + twaF
De-assertion: tskew2 + WCLK + twaf
If tSKEW2 is violated there will be one extra WCLK cycle.
Figure 23. Almost Full Flag Timing

Cycle:
${ }^{*} A^{*}$ Queue 3 of Device 1 is selected on the read port. A queue within Device 2 had previously been selected. The $\overline{\text { PAE }}$ flag output and the data outputs of device 1 are High-Impedance. *B* No read occurs.
C The PAE flag output now switches to device 1. Word, Wn is read from Q3 due to the FWFT operation. This read operation from Q3 is at the almost empty boundary, therefore $\overline{\text { PAE will go LOW } 2 \text { RCLK cycles later. }}$
D Q1 of device 1 is selected.
E The PAE flag goes LOW due to the read from Q3 2 RCLK cycles earlier. Word Wn+1 is read out due to the FWFT operation.
${ }^{*} F^{*}$ Word, W0 is read from Q1 due to the FWFT operation. The PAE flag goes HIGH to show that Q1 is not almost empty.

Figure 24. Almost Empty Flag Timing and Queue Switch

NOTE:

1. The waveform here shows the $\overline{\mathrm{PAE}}$ flag operation when no queue switches are occurring and a queue selected on both the write and read ports is being written to then read from at the almost empty boundary.
Flag Latencies:

Assertion: 2*RCLK + traE

De-assertion: tskew2 + RCLK + traE
If tskewz is violated there will be one extra RCLK cycle.
Figure 25. Almost Empty Flag Timing

Cycle:
A Queue 3 of Device 5 is selected for write operations.
Word, Wp is written into the previously selected queue.
AA Queue 3 of Device 5 is selected for read operations.
Another device has control of the $\overline{\text { PAEn bus. }}$
The discrete $\overline{\mathrm{PAE}}$ output of device 5 is currently in High-Impedance and the $\overline{\mathrm{PAE}}$ active flag is controlled by the previously selected device.

* $\mathrm{B}^{*} \quad$ Word $W p+1$ is written into the previously selected queue.
BB Word, Wa+1 is read from Qx of D5, due to FWFT operation.
C Word, Wn is written into the newly selected queue, Q3 of D5. This write will cause the $\overline{\text { PAE }}$ flag on the read port to go from LOW to HIGH (not almost empty) after time, tskew 3 + RCLK + tRAE (if tskews is violated one extra RCLK cycle will be added.
CC Word, Wy from the newly selected queue, Q3 will be read out due to FWFT operation.
Device 5 is selected on the $\overline{\text { PAE }}$ bus. Q3 of device 5 will therefore have is $\overline{\mathrm{PAE}}$ status output on $\overline{\mathrm{PAE}}[3]$. There is a single RCLK cycle latency before the $\overline{\mathrm{PAE}} \mathrm{n}$ bus changes to the new selection.
D Queue 2 of Device 3 is selected for write operations.
Word Wn+1 is written into Q3 of D5.
DD The $\overline{\text { PAE }}$ bus changes control to D5, the $\overline{\text { PAEn outputs of D5 go to Low-Impedance and are placed onto the outputs. The previously selected device now places its }}$ PAEn outputs into High-Impedance to prevent bus contention. Word, Wy+1 is read from Q3 of D5.
The discrete $\overline{\text { PAE }}$ flag will go HIGH to show that Q3 of D5 is not almost empty. Q3 of device 5 will have its $\overline{\text { PAE }}$ status output on $\overline{\text { PAE }}[3]$.
E No writes occur.
EE Word, Wy+2 is read from Q3 of D5.
F Device 4 is selected on the write port for the $\overline{\mathrm{PAF}}$ n bus.
Word, Wx is written into Q2 of D3.
FF The $\overline{\text { PAEn }}$ bus updates to show that Q3 of D5 is almost empty based on the reading out of word, Wy+1.
The discrete $\overline{\mathrm{PAE}}$ flag goes LOW to show that Q3 of D5 is almost empty based on the reading of Wy+1.
Figure 26. $\overline{P A E n}$ - Direct Mode, Flag Operation - Devices in Expansion

Cycle:
${ }^{*} \mathbf{A}^{*} \quad$ Queue 1 of device 0 is selected for read operations.
The last word in the output register is available on Qout. $\overline{\mathrm{OE}}$ was previously taken LOW so the output bus is in Low-Impedance
AA Device 0 is selected for the $\overline{\text { PAF }}$ n bus. The bus is currently providing status of a previously selected device X.

* B^{*} Word, $W x+1$ is read out from the previous queue due to the FWFT effect.
BB Queue 1 of device 0 is selected on the write port.
The $\overline{\text { PAF }}$ b bus is updated with the device selected on the previous cycle, device $0 \overline{\mathrm{PAF}}[1]$ is LOW showing the status of queue 1 .
The $\overline{\mathrm{PAF}} \mathrm{n}$ outputs of the device previously selected on the $\overline{\mathrm{PAF}} \mathrm{n}$ bus go to High-Impedance.
C Device 7 is selected for the $\overline{\text { PAF }}$ bus.
Word, Wd-m+1 is read from Q1 D0 due to the FWFT operation. This read is at the $\overline{\text { PAFn }}$ boundary of queue D0 Q1. This read will cause the $\overline{\text { PAF }}[1]$ output to go from
LOW to HIGH (almost full to not almost full), after a delay tSKEW3 + WCLK + tPAF. If tsKEW3 is violated add an extra WCLK cycle.
CC $\overline{\text { PAFn }}$ continues to show status of DO.
D No read operations occur, $\overline{\mathrm{REN}}$ is HIGH.
DD $\overline{\text { PAF }}[1]$ goes HIGH to show that D0 Q1 is not almost empty due to the read on cycle *C*
The active queue $\overline{\mathrm{PAF}}$ flag of device 0 goes from High-Impedance to Low-Impedance.
Word, Wy is written into D0 Q1.
E Queue 2 of Device 6 is selected for write operations.
EE Word, Wy+1 is written into D0 Q1.
* $\mathrm{F}^{*} \quad$ Word, Wd- $\mathrm{m}+2$ is read out due to FWFT operation.
FF $\overline{\mathrm{PAF}}[1]$ and the discrete $\overline{\mathrm{PAF}}$ flag go LOW to show the write on cycle *DD* causes Q1 of D0 to again go almost full.
Word, Wy+2 is written into D0 Q1.
G Word, W0 is read from Q0 of D6, selected on cycle *E*, due to FWFT.
Figure 27. $\overline{\text { PAFn }}$ - Direct Mode, Flag Operation - Devices in Expansion

5937 drw31
NOTE:

1. This diagram is based on 3 devices connected to expansion mode.

Figure 28. $\overline{\text { PAFn Bus - Polled Mode }}$

Figure 29. $\overline{\text { PAE }} n / \overline{P R}$ Bus - Polled Mode

NOTES:

1. If devices are configured for Direct operation of the PAFn/PAEn flag busses the FXI/EXI of the MASTER device should be tied LOW. All other devices tied HIGH. The FXO/EXO outputs are DNC (Do Not Connect).
2. Q outputs must not be mixed between devices, i.e. Q0 of device 1 must connect to Q 0 of device 2, etc.

JTAG INTERFACE

Five additional pins (TDI, TDO, TMS, TCK and TRST) are provided to support the JTAG boundary scan interface. The IDT72V51236/72V51246/ 72 V 51256 incorporates the necessary tap controller and modified pad cells to implementthe JTAG facility.

NotethatIDT provides appropriateBoundary ScanDescription Language program files for these devices.

The Standard JTAG interface consists of four basic elements:

- Test Access Port (TAP)
- TAP controller
- Instruction Register (IR)
- Data Register Port (DR)

The following sections provide a brief description of each element. For a complete description refertothe IEEE Standard TestAccess PortSpecification (IEEE Std. 1149.1-1990).

The Figure below shows the standard Boundary-Scan Architecture

Figure 31. Boundary Scan Architecture

TEST ACCESS PORT (TAP)

The Tap interface is a general-purpose port that provides access to the internal of the processor. Itconsists offour inputports (TCLK, TMS, TDI, $\overline{\text { TRST }}$) and one output port (TDO).

THE TAPCONTROLLER

The Tap controller is a synchronous finite state machine that responds to TMS and TCLK signals to generate clock and control signals to the Instruction and Data Registers for capture and update of data.

NOTES:

1. Five consecutive TCK cycles with TMS $=1$ will reset the TAP.
2. TAP controller does not automatically reset upon power-up. The user must provide a reset to the TAP controller (either by $\overline{\text { TRST }}$ or TMS).
3. TAP controller must be reset before normal Queue operations can begin.

Figure 32. TAP Controller State Diagram

Refer to the IEEE Standard Test Access Port Specification (IEEE Std. 1149.1) for the full state diagram

All state transitions within the TAP controller occur atthe rising edge of the TCLK pulse. The TMS signal level (0 or 1) determines the state progression that occurs on each TCLK rising edge. The TAP controllertakes precedence over the Queue and must be reset after power up of the device. See TRST description for more details on TAP controller reset.

Test-Logic-Reset Alltestlogic is disabled inthis controllerstate enabling the normal operation of the IC. The TAP controller state machine is designed in such a way that, no matter what the initial state of the controller is, the Test-Logic-Resetstate can be entered by holding TMS athigh and pulsing TCK five times. This is the reason why the Test Reset (TRST) pin is optional.

Run-Test-Idle In this controller state, the testlogic in the IC is active only if certaininstructions are present. For example, if an instruction activates the self test, then it will be executed when the controller enters this state. The testlogic in the IC is idles otherwise.
Select-DR-Scan This is a controller state where the decision to enter the Data Path orthe Select-IR-Scan state is made.

Select-IR-Scan This is a controller state where the decision to enter the Instruction Pathis made. The Controllercan returntothe Test-Logic-Resetstate otherwise.

Capture-IR In this controller state, the shiftregister bank in the Instruction Register parallelloads a pattern of fixed values on the rising edge of TCK. The last two significant bits are always required to be " 01 ".
Shitt-IR In this controller state, the instruction register gets connected betweenTDIandTDO, andthe captured pattern gets shifted oneach risingedge of TCK. The instructionavailable onthe TDIpinisalsoshifted intothe instruction register.
Exit1-IRThisis a controllerstate where adecisiontoentereitherthe PauseIRstate or Update-IR state is made.
Pause-IR This state is provided in order to allow the shifting of instruction register to betemporarily halted.
Exit2-DRThis is a controller state where a decision to enter either the ShiftIR state orUpdate-IR state is made.
Update-IR Inthis controllerstate, the instruction inthe instruction registeris latched in to the latch bank of the Instruction Register on every falling edge of TCK. This instruction also becomes the current instruction once itis latched.
Capture-DR Inthis controller state, the data is parallel loaded in to the data registers selected by the current instruction on the rising edge of TCK.
Shift-DR, Exit1-DR, Pause-DR, Exit2-DR and Update-DR These controller states are similar to the Shift-IR, Exitt-IR, Pause-IR, Exit2-IR and Update-IR states in the Instruction path.

THE INSTRUCTION REGISTER

The Instruction register allows an instruction to be shifted in serially into the processor at the rising edge of TCLK.

The Instruction is used to select the test to be performed, or the test data registerto be accessed, orboth. The instruction shifted intothe registeris latched atthe completion of the shifting process whenthe TAP controller is at UpdateIRstate.

The instruction register must contain 4 bitinstruction register-based cells which canhold instruction data. These mandatory cells are locatednearestthe serial outputs they are the leastsignificant bits.

TESTDATA REGISTER

The Test Data register contains three test data registers: the Bypass, the Boundary Scan register and Device ID register.

These registers are connected in parallel between a common serial input and a common serial data output.

The following sections provide a brief description of each element. For a completedescription, refertothe IEEE Standard TestAccess Port Specification (IEEE Std. 1149.1-1990).

TEST BYPASS REGISTER

The register is used to allow test data to flow through the device from TDI toTDO. Itcontains asingle stage shiftregisterforaminimumlengthinserial path. Whenthe bypass register is selected by an instruction, the shift register stage is set to a logic zero on the rising edge of TCLK when the TAP controller is in theCapture-DRstate.

The operation of the bypass register should not have any effect on the operation of the device in response to the BYPASS instruction.

THE BOUNDARY-SCAN REGISTER

The Boundary Scan Register allows serial data TDI be loaded into or read out of the processor input/outputports. The Boundary Scan Register is a part of the IEEE 1149.1-1990 Standard JTAG Implementation.

THE DEVICE IDENTIFICATION REGISTER

The Device Identification Register is a Read Only 32-bit register used to specify the manufacturer, part number and version of the processor to be determined through the TAP in response to the IDCODE instruction.

IDT JEDEC ID number is $0 \times B 3$. This translates to 0×33 when the parity is dropped in the 11-bit Manufacturer ID field.

For the IDT72V51236/72V51246/72V51256, the Part Number field contains the following values:

Device	Part\# Field (HEX)
IDT72V51236	$0 \times 41 \mathrm{~B}$
IDT72V51246	$0 \times 41 \mathrm{C}$
IDT72V51256	$0 \times 41 \mathrm{D}$

31(MSB)	2827	1211	0(LSB)
$\begin{aligned} & \text { Version (4 bits) } \\ & \text { 0X0 } \end{aligned}$	Part Number (16-bit)	Manufacturer ID (11-bit) 0X33	1

JTAG DEVICE IDENTIFICATION REGISTER

JTAG INSTRUCTION REGISTER

The Instruction registerallows instruction to be serially inputinto the device when the TAP controller is in the Shift-IR state. The instruction is decoded to performthefollowing:

- Selecttest data registers that may operate while the instruction is current. The other test data registers should not interfere with chip operation and the selected data register.
- Definethe serialtestdataregisterpaththatisusedtoshiftdatabetween TDI and TDO during data register scanning.
The Instruction Register is a 4 bit field (i.e. IR3, IR2, IR1, IR0) to decode 16 different possible instructions. Instructions are decoded as follows.

Hex Value	Instruction	Function
00	EXTEST	SelectBoundary Scan Register
01	SAMPLE/PRELOAD	SelectBoundary ScanRegister
02	IDCODE	SelectChipIdentificationdataregister
04	HIGH-IMPEDANCE	JTAG
$0 F$	BYPASS	SelectBypass Register

JTAG INSTRUCTION REGISTER DECODING

Thefollowing sections provide a brief description of each instruction. For acompletedescription refertothe IEEEStandardTestAccessPortSpecification (IEEE Std. 1149.1-1990).

EXTEST

The required EXTEST instruction places the IC into an external boundarytestmode andselectstheboundary-scan registertobe connected betweenTDI and TDO. During this instruction, the boundary-scan register is accessed to drive test data off-chip via the boundary outputs and receive test data off-chip viathe boundary inputs. As such, the EXTEST instruction is the workhorse of IEEE. Std 1149.1, providing forprobe-less testing of solder-jointopens/shorts and of logic clusterfunction.

IDCODE

Theoptional IDCODE instructionallowsthe ICto remaininitsfunctional mode and selects the optional device identification registerto be connected between TDI and TDO. The device identification register is a 32-bit shift register containing information regarding the IC manufacturer, device type, and version code. Accessing the device identification register does not interfere with the operation of the IC. Also, access to the device identification register should be immediately available, via a TAP data-scan operation, after power-up of the IC or after the TAP has been reset using the optional TRST pin or by otherwise movingtothe Test-Logic-Resetstate.

SAMPLE/PRELOAD

The required SAMPLE/PRELOAD instruction allows the IC to remain in a normalfunctional modeandselectstheboundary-scan registertobeconnected between TDI and TDO. During this instruction, the boundary-scan registercan be accessed via a date scan operation, to take a sample of the functional data entering and leaving the IC. This instruction is also used to preload test data into the boundary-scan register before loading an EXTEST instruction.

HIGH-IMPEDANCE

Theoptional High-Impedance instruction sets all outputs (including two-state as well as three-state types) of an IC to a disabled (high-impedance) state and selects the one-bit bypass register to be connected between TDI and TDO. During this instruction, data can be shifted throughthebypass registerfromTDI to TDO withoutaffecting the condition of the IC outputs.

BYPASS

The required BYPASS instruction allows the IC to remain in a normal functional mode and selects the one-bit bypass register to be connected between TDI and TDO. The BYPASS instruction allows serial data to be transferred through the IC from TDI to TDO without affecting the operation of the IC.

Figure 33. Standard JTAG Timing

SYSTEM INTERFACE PARAMETERS

Parameter	Symbol	Test Conditions	$\begin{aligned} & \text { IDT72V51236 } \\ & \text { IDT72V51246 } \\ & \text { IDT72V51256 } \end{aligned}$		
			Min.	Max.	Units
DataOutput	tDO ${ }^{(1)}$		-	20	ns
Data Output Hold	tDOH ${ }^{(1)}$		0	-	ns
Datalnput	tDS	$\begin{aligned} & \text { trise=3ns } \\ & \text { tfall=3ns } \end{aligned}$	1010	-	ns
	tD				

NOTE:

1. 50 pf loading on external output signals.

JTAG

AC ELECTRICAL CHARACTERISTICS
(Vcc $=3.3 \mathrm{~V} \pm 5 \%$; Tcase $=0^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$)

NOTE:

1. Guaranteed by design.

ORDERING INFORMATION

NOTE:

1. Industrial temperature range product for the $7-5$ ns is available as a standard device. All other speed grades are available by special order.

DATASHEET DOCUMENT HISTORY

10/10/2001
11/16/2001
12/19/2001
01/15/2002
04/05/2002
07/01/2002
06/04/2003
pgs. 1, 8, 11, 14, 15 and 28.
pgs. $4,11,17,22-26,28-31,33,45$ and 46.
pgs. 12 and 29.
pg. 50.
pgs. 7, 8, 10, 11, 14, 47 and 52.
pgs. 2 and 29 .
pgs. 1 through 56 .

IMPORTANT NOTICE AND DISCLAIMER

RENESAS ELECTRONICS CORPORATION AND ITS SUBSIDIARIES ("RENESAS") PROVIDES TECHNICAL SPECIFICATIONS AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING, WITHOUT LIMITATION, ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for developers skilled in the art designing with Renesas products. You are solely responsible for (1) selecting the appropriate products for your application, (2) designing, validating, and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, or other requirements. These resources are subject to change without notice. Renesas grants you permission to use these resources only for development of an application that uses Renesas products. Other reproduction or use of these resources is strictly prohibited. No license is granted to any other Renesas intellectual property or to any third party intellectual property. Renesas disclaims responsibility for, and you will fully indemnify Renesas and its representatives against, any claims, damages, costs, losses, or liabilities arising out of your use of these resources. Renesas' products are provided only subject to Renesas' Terms and Conditions of Sale or other applicable terms agreed to in writing. No use o any Renesas resources expands or otherwise alters any applicable warranties or warranty disclaimers for these products.
(Disclaimer Rev.1.0 Mar 2020)

Corporate Headquarters

TOYOSU FORESIA, 3-2-24 Toyosu,
Koto-ku, Tokyo 135-0061, Japan
www.renesas.com

Contact Information

For further information on a product, technology, the most up-to-date version of a document, or your nearest sales office, please visit: www.renesas.com/contact/

Trademarks

[^0]: NOTES:

 1. $\overline{\text { REN }}$ is HIGH.
