INEAR SYSTEMS

LSK489A/B

Over 30 Years of Quality Through Innovation

Low Noise, Monolithic Dual N-Channel JFET Amplifier

INDUSTRY'S LOWEST INPUT CAPACITANCE MONOLITHIC DUAL N-CHANNEL JFET

Absolute Maximum Ratings					
@ 25 °C (unless otherwise stated)					
Maximum Temperatures					
Storage Temperature	-55 to +150°C				
Junction Operating Temperature	-55 to +150°C				
Maximum Power Dissipation, TA = 25°C					
Continuous Power Dissipation, per side ⁴	300mW				
Power Dissipation, total ⁵	500mW				
Maximum Currents					
Gate Forward Current	$I_{G(F)} = 10 \text{mA}$				
Maximum Voltages					
Gate to Source	$V_{GSS} = 60V$				
Gate to Drain	$V_{GDS} = 60V$				
Features					
Low Noise (f = 1kHz, NBW = 1Hz)	$e_n = 1.8 nV/\sqrt{Hz}$				
Low Input Capacitance	Ciss = 4pF				

G1 🗗 S2 99 D1 D2 20 D1 II: D2 SS 6 D2 G1 4 82 SOIC-A SOT-23 TO-71 **Top View Top View Top View** * For equivalent single version, see LSK189

Features

- Low Noise: $e_n = 1.8nV/\sqrt{Hz}$ (typ), f = 1kHz, NBW = 1Hz
- Very Low Common Source Input Capacitance of C_{ISS} = 4pF - typ
- High Slew Rate
- Low Offset/Drift Voltage
- Low Gate Leakage IGSS and IG
- High CMRR 102 dB

Benefits

- Tight Differential Voltage Match vs. Current
- Improved Op Amp Speed Settling Time Accuracy
- Minimum Input Error Trimming Error Voltage
- Lower Intermodulation Distortion Due to Low Input Capacitance

Applications

- Wideband Differential Amplifiers
- High Speed Temperature Compensated Single Ended Input Amplifier
- High Speed Comparators
- Impedance Converters
- Sonobouys and Hydrophones
- Acoustic Sensors

Description

The LSK489 is the industry's lowest input capacitance and low-noise monolithic dual N-Channel JFET. Low input capacitance substantially reduces intermodulation distortion. In addition, these dual JFETs feature tight offset voltage and low drift over temperature range, and are targeted for use in a wide range of precision instrumentation and sensor applications. The LSK489 is available in surface mount plastic SOIC 8L and SOT-23 6L, as well as thru-hole metal TO-71 6L packages. For an equivalent single N-Channel version refer to the LSK189 datasheet. LSK489 TO-71 6L and SOIC 8L are fit, form and pin compatible to the same LSK389 product.

The LSK489 provides a dramatic increase in capabilities for a wide range of low-noise applications. The most significant aspect of the LSK489 is how it combines a noise level nearly as low as the LSK389 while having much lower gate-to-drain capacitance, 4pF versus the 25pF. The slightly higher noise of the LSK489, versus the LSK389, is not significant in most instances, while the much lower capacitance enables designers to produce simpler, more elegant circuit designs with fewer devices that cost less in production. Also notice that the LSK489 and LSK389 TO-71 and SOIC packages are the same and pin compatible, therefore, they can be used interchangeably.

Like the Linear Systems LSK389, the LSK489 features a unique design construction of interleaving both JFETs on the same piece of silicon to provide excellent matching and thermal tracking, as well a low-noise profile having nearly zero popcorn noise. I_{DSS} range is divided into two segments providing designers improved resolution, which are A grade (Δ I_{DSS} = 6mA) and B grade (Δ I_{DSS} = 7mA). Contact Linear Systems for improved En, I_{DSS}, V_{GS}(off), Δ V_{GS} or any other limits. Based on new limits, LS will assign a new SELXXXX code to be used in shipments.

Symbol	Characteristic	Min.	Тур.	Max	Units	Conditions	
VGS1-VGS2	Differential Gate to Source Cutoff Voltage	-	8	20	mV	$V_{DS} = 10V$, $I_D = 1mA$	
IDSS1 IDSS2	Gate to Source Saturation Current Ratio	0.9	-	1.0	-	$V_{DS} = 10V, V_{GS} = 0V$	
CMRR	Common Mode Rejection Ratio -20 log ∆V _{GS1-2} /∆V _{DS}	95	102	-	dB	V_{DS} = 10V to 20V, I_D = 200 μ A	
en	Noise Voltage	-	1.8	-	nV/√Hz	$V_{DS} = 15V$, $I_D = 2.0$ mA, $f = 1$ kHz, NBW = 1Hz	
en	Noise Voltage	-	3.5	-	nV/√Hz	$V_{DS} = 15V, I_D = 2.0mA, f = 10Hz, NBW = 1Hz$	
Ciss	Common Source Input Capacitance	-	4	-	pF	Vec - 15V Ia - 500uA f - 1MHz	
Crss	Common Source Reverse Transfer Capacitance	-	2	-	pF	$v_{DS} = 10v, v_{D} = 300\mu A, t = 10012$	

Matching Characteristics @ 25°C (unless otherwise stated)

Electrical Characteristics @ 25°C (unless otherwise stated)

Symbol	Characteristic			Тур.	Max	Units	Conditions	
BV _{GSS}	Gate to Source Breakdown Voltage		-60	-	-	V	$V_{DS} = 0, I_D = -1nA$	
V(BR)G1 - G2	Gate to Gate Breakdown Voltage		±30	±45	-	V	I _G = ±1µA, I _D =I _S =0 A (Open Circuit)	
V _{GS(OFF)}	Gate to Source Pinch-off Voltage		-1.5	-	-3.5	V	$V_{DS} = 15V, I_D = 1nA$	
V _{GS}	Gate to Source Operating Voltage		-0.5	-	-3.5	V	$V_{DS} = 15V, I_D = 500\mu A$	
I _{DSS}	Drain to Source Saturation Current	LSK489A	2.5	5.5	8.5	mA	$V_{} = 15V_{} = 0$	
		LSK489B	8.0	11.5	15.0		$v_{DG} = 15v, v_{GS} = 0$	
lg	Gate Operating Current		-	-2	-25	pА	$V_{DG} = 15V, I_D = 200\mu A$	
			-	-0.8	-10	nA	T _A = 125°C	
Igss	Gate to Source Leakage Current		-	-	-100	pА	$V_{DG} = -15V, V_{DS} = 0$	
Gfs	Full Conductance Transconductance		1500	-	-	μS	$V_{DG} = 15V, V_{GS} = 0, f = 1kHz$	
G _{fs}	Transconductance		1000	1500	-	μS	$V_{DG} = 15V, I_D = 500 \mu A$	
Gos	Full Output Conductance		-	-	40	μS	$V_{DG} = 15V, V_{GS} = 0$	
Gos	Output Conductance		-	1.8	2.7	μS	$V_{DG} = 15V, I_D = 200\mu A$	

Package Dimensions

Notes

- 1. Absolute maximum ratings are limiting values above which serviceability may be impaired.
- 2. Pulse width $\leq 2_{ms}$.
- 3. All MIN/TYP/MAX Limits are absolute values. Negative signs indicate electrical polarity only.
- 4. Derate 2.4 mW/°C above 25°C.
- 5. Derate 4 mW/°C above 25°C.

Information furnished by Linear Integrated Systems is believed to be accurate and reliable. However, no responsibility is assumed for its use; nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Linear Integrated Systems.

Typical Characteristics

Typical Characteristics (Cont'd)

Typical Characteristics (Cont'd)

On-Resistance and Output Conductance Common-Source Reverse Feedback vs. Gate-Source Cutoff Voltage Capacitance vs. Gate-Source Voltage 500 5 50 40 g_{os} f_{DB} f=1 MHz 400 Cres - Reverse Feedback Capacitance (pF) Ibsimi - Drain-Source On-Resistance (0) gos - Output Conductance (µS) 4 30 300 3 V08 = 0 V 20 200 2 5V 10 1 100 $r_{DS} \otimes I_D = 1 \text{ mA}, V_{QS} = 0 \text{ V}$ $g_{DS} \otimes V_{DQ} = 10 \text{ V}, V_{QS} = 0 \text{ V}, f = kHz$ 15 V 0 Ó 0 -4 -12 -16 0 -8 -20 0 -5 -1 -2 3 -4 VGS(ut) - Gate-Source Cutoff Voltage (V) V_{G5} - Gate-Source Voltage (V) **Common-Source Forward Transconductance Output Conductance vs. Drain Current** vs. Drain Current 10 1.6 VGS(ott) = -3 V V_{DS}=10 V f=1 kHz VG5(pt) = -3V V_{DS}= 10 V 8 1.4 f=1 kHz gos - Output Conductance (JJS) grs - Forward Transconductance (mS) 1.2 TA =-55 C 6 TA = -55 C 25 C 0.8 4 25 C 0.4 125 C 2 125 C 0 0 0.1 1 10 0.1 1

Typical Characteristics (Cont'd)

In - Drain Current (mA)