Description

The F2972 is a single-pole double-throw (SP2T) reflective RF switch featuring high linearity and wide bandwidth. This device is optimized from 5 MHz to 1.8 GHz to support downstream cable modem future migration for DOCSIS 3.1 applications, and operates at up to 10 GHz to support a multitude of wireless RF applications. Superb performance is achieved when used in either 50Ω or 75Ω terminating impedance applications.

The F2972 uses a single positive supply voltage of either +3.3 V or +5.0 V and is compatible with either 1.8 V or 3.3 V control logic.

Competitive Advantage

The F2972 provides extremely low insertion loss across the entire bandwidth while providing superb distortion performance.

- Optimized for DOCSIS 3.1 applications up to 1.8 GHz
- Optimized for Wi-Fi applications up to 5.9 GHz
- Low insertion loss
- High isolation
- Fast switching
- No external matching required

Typical Applications

- Broadband cable DOCSIS 3.0 / 3.1
- Set top box
- CATV filter bank switching
- Wi-Fi
- Cellular BTS
- General purpose

General Features

- Supply voltage: +2.5 V to +5.25 V
- 1.8 V and 3.3 V compatible control logic
- $2 \mathrm{~mm} \times 2 \mathrm{~mm}, 12$-pin TQFN package

Features (75 $)$

- Low insertion loss:
- 0.23 dB at 204 MHz
- 0.34 dB at 1.8 GHz
- High Isolation: 40 dB at 1.8 GHz
- P0.1dB compression of +37 dBm at 204 MHz
- Second Harmonic: -100 dBc at 204 MHz
- Third Harmonic: -120 dBc at 204 MHz
- Composite Second Order Distortion > 100dBc
- Composite Triple Beat Distortion > 100dBc

Features (50)

- Low insertion loss:
- 0.40 dB at 2.4 GHz
- 0.55 dB at 8 GHz
- High Isolation:
- 34 dB at 2.4 GHz
- High Linearity:
- IIP2 +125 dBm at 2.4 GHz
- IIP3 +77 dBm at 2.4 GHz
- P 0.1 dB compression of +40 dBm at 2.4 GHz
- Second Harmonic: - 100 dBc at 2.4 GHz
- Third Harmonic: - 110 dBc at 2.4 GHz

Block Diagram

Figure 1. Block Diagram

Pin Assignments

Figure 2. Pin Assignments for $2 \mathrm{~mm} \times 2 \mathrm{~mm} \times \mathbf{0 . 5 m m}$ 12-pin TQFN, NEG12 - Top View

Pin Descriptions

Table 1. Pin Descriptions

Number	Name	Description
1	GND	Internally grounded. Connect pin directly to paddle ground or as close as possible to pin with thru vias.
2	RFC	RF Common Port. If this pin is not OV DC, then an external coupling capacitor must be used.
3	GND	Internally grounded. Connect pin directly to paddle ground or as close as possible to pin with thru vias.
4	GND	Internally grounded. Connect pin directly to paddle ground or as close as possible to pin with thru vias.
5	RF1	RF1 Port. If this pin is not OV DC, then an external coupling capacitor must be used.
6	GND	Internally grounded. Connect pin directly to paddle ground or as close as possible to pin with thru vias.
7	$\mathrm{V}_{\text {cTL }}$	Logic control pin.
8	EN	Active high enable pin. If low, neither RF1 nor RF2 are connected to RFC. Pin is internally pulled up to 2.5 V through a $500 \mathrm{k} \Omega$ resistor.
9	$V_{c c}$	Power supply. Bypass to GND with capacitors shown in the Typical Application Circuit as close as possible to pin.
10	GND	Internally grounded. Connect pin directly to paddle ground or as close as possible to pin with thru vias.
11	RF2	RF2 Port. If this pin is not OV DC, then an external coupling capacitor must be used.
12	GND	Internally grounded. Connect pin directly to paddle ground or as close as possible to pin with thru vias.
	EP	Exposed Pad. Internally connected to GND. Solder this exposed pad to a PCB pad that uses multiple ground vias to provide heat transfer out of the device into the PCB ground planes. These multiple ground vias are also required to achieve the specified RF performance.

Renesas

Absolute Maximum Ratings

Stresses beyond those listed below may cause permanent damage to the device. Functional operation of the device at these or any other conditions beyond those indicated in the operational section of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

Table 2. Absolute Maximum Ratings

Parameter		Symbol	Minimum	Maximum	Units
Vcc to GND		Vcc	-0.3	+5.5	V
$\mathrm{V}_{\text {cti, }}$ EN		V Logic	-0.3	Lower of $\left(V_{c c}+0.3,3.9\right)$	V
RF1, RF2, RFC		$\mathrm{V}_{\text {RF }}$	-0.3	+0.3	V
Maximum Input CW Power, 50Ω, $\mathrm{T}_{\mathrm{EP}}=25^{\circ} \mathrm{C}$, $\mathrm{Vcc}=5.25 \mathrm{~V}$ (any port, insertion loss state) ${ }^{[a, b]}$	$5 \mathrm{MHz} \leq \mathrm{f}_{\text {RF }} \leq 10 \mathrm{MHz}$	$\mathrm{P}_{\text {ABSCW1 }}$		30	dBm
	$10 \mathrm{MHz}<\mathrm{f}_{\mathrm{RF}} \leq 25 \mathrm{MHz}$	$\mathrm{P}_{\text {ABSCW2 }}$		32	
	$25 \mathrm{MHz}<\mathrm{f}_{\mathrm{RF}} \leq 200 \mathrm{MHz}$	$\mathrm{P}_{\text {ABSCW3 }}$		33	
	$200 \mathrm{MHz}<\mathrm{f}_{\text {RF }} \leq 6000 \mathrm{MHz}$	$\mathrm{Pa}_{\text {ABSCW4 }}$		34	
	$\mathrm{ffF}>6000 \mathrm{MHz}$	$\mathrm{P}_{\text {ABSCW5 }}$		33	
Maximum Peak Power, $50 \Omega, \mathrm{~T}_{\mathrm{EP}}=25^{\circ} \mathrm{C}$, $\mathrm{Vcc}=5.25 \mathrm{~V}$ (any port, insertion loss state) $[\mathrm{a}, \mathrm{b}, \mathrm{c}]$	$5 \mathrm{MHz} \leq \mathrm{ffF} \leq 10 \mathrm{MHz}$	$\mathrm{P}_{\text {ABSPK1 }}$		35	dBm
	$10 \mathrm{MHz}<\mathrm{f}_{\text {RF }} \leq 25 \mathrm{MHz}$	$\mathrm{P}_{\text {ABSPK2 }}$		37	
	$25 \mathrm{MHz}<\mathrm{f}_{\text {RF }} \leq 200 \mathrm{MHz}$	$\mathrm{P}_{\text {ABSPK3 }}$		38	
	$200 \mathrm{MHz}<\mathrm{f}_{\mathrm{RF}} \leq 6000 \mathrm{MHz}$	$\mathrm{P}_{\text {ABSPK4 }}$		39	
	$\mathrm{fRF}>6000 \mathrm{MHz}$	PABSPK5		38	
Maximum Junction Temperature		TJMAX		+140	${ }^{\circ} \mathrm{C}$
Storage Temperature Range		$\mathrm{T}_{\text {st }}$	-65	+150	${ }^{\circ} \mathrm{C}$
Lead Temperature (soldering, 10s)		TLEAD		+260	${ }^{\circ} \mathrm{C}$
Electrostatic Discharge - HBM (JEDEC/ESDA JS-001-2012)		$V_{\text {Esthbm }}$		$\begin{gathered} 2500 \\ \text { (Class 2) } \\ \hline \end{gathered}$	V
Electrostatic Discharge - CDM (JEDEC 22-C101F)		$V_{\text {ESDCDM }}$		$\begin{gathered} 1000 \\ \text { (Class C3) } \\ \hline \end{gathered}$	V

a. \ln a 50Ω system, $\mathrm{dBmV}=\mathrm{dBm}[50 \Omega]+47$.

In a 75Ω system, $\mathrm{dBmV}=\mathrm{dBm}[75 \Omega]+48.75$.
b. $\mathrm{T}_{\mathrm{EP}}=$ Temperature of the exposed paddle.
c. 5% duty cycle of a 4.6 ms period.

Recommended Operating Conditions

Table 3. Recommended Operating Conditions

Parameter	Symbol	Condition	Minimum	Typical	Maximum	Units
Supply Voltage	V c		2.5	3.3	5.25	V
Operating Temperature Range	TEP	Exposed Paddle	-40		+105	${ }^{\circ} \mathrm{C}$
RF Frequency Range	f_{RF}	75Ω	0.005		1.8	GHz
		50,	0.005		10	
Maximum Operating Input Power	Pmax	Insertion Loss State $Z_{S}=Z_{L}=50 \Omega$			See Figure $3{ }^{[a]}$	dBm
Port Impedance (RFC, RF1, RF2)	$\mathrm{Z}_{\text {RF }}$	75ת System		75		Ω
		50, System		50		

a. In a 50Ω system, $\mathrm{dBmV}=\mathrm{dBm}[50 \Omega]+47$. In a 75Ω system, $\mathrm{dBmV}=\mathrm{dBm}[75 \Omega]+48.75$.

Figure 3. Maximum Operating $R F$ Input $\operatorname{Power}\left(Z_{s}=Z_{L}=\mathbf{5 0 \Omega}\right)$

Renesns

General Specifications

Table 4. General Specifications

See F2972 Typical Application Circuit. Specifications apply when operated with $\mathrm{V}_{C C}=+3.3 \mathrm{~V}, \mathrm{~T}_{\mathrm{EP}}=+25^{\circ} \mathrm{C}, \mathrm{EN}=\mathrm{HIGH}$, single tone signal applied at RF1 or RF2 and measured at RFC, unless otherwise noted.

Parameter	Symbol	Condition		Minimum	Typical	Maximum	Units
Logic Input High Threshold	$\mathrm{V}_{\text {H }}$	V ctı, EN pins		$1.17{ }^{[b]}$		Lower of ($\mathrm{V}_{\mathrm{cc}}, 3.6$)	V
Logic Input Low Threshold	V_{LL}	$\mathrm{V}_{\text {ctL }}$, EN pins		-0.3		0.6	V
Logic Current	$\mathrm{IHH}^{\prime} \mathrm{I}_{\text {L }}$	$\mathrm{V}_{\text {cTL }}$, EN pins (each pin)		-10 []		+10	$\mu \mathrm{A}$
DC Current (V_{cc})	Icc	Normal Operation			80	150	$\mu \mathrm{A}$
		Standby (EN = LOW)			20	35	
Switching Rate	SW Rate					25	kHz
Startup Time	$\mathrm{T}_{\text {strtup }}$	From Standby State, 50\% EN to 90% RF	No Change in RF Path		1.0		$\mu \mathrm{s}$
			Change in RF Path		1.6		
Maximum Video Feed-Through, RFC Port	VID $\mathrm{F}_{\text {FT }}$	Peak transient during switching. $Z_{S}=Z_{L}=75 \Omega$. Measured with 20 ns rise time, OV to 3.3 V (3.3 V to OV) control pulse applied to $\mathrm{V}_{\text {cTL }}$.			5		$m \vee p-p$
Switching Time ${ }^{[c]}$	SW ${ }_{\text {TIME }}$	50% VcrL to 90% or 10% RF			1.5	3	$\mu \mathrm{s}$

a. Items in min/max columns in bold italics are guaranteed by test.
b. Items in min/max columns that are not bold italics are guaranteed by design characterization.
c. Measured at $f_{R F}=1 \mathrm{GHz}$.

Renesas

Electrical Characteristics

Table 5. Electrical Characteristics - 75Ω SPECIFICATION
See F2972 75Ω Application Circuit. Specifications apply when operated with $V_{C C}=+3.3 \mathrm{~V}, \mathrm{~T}_{E P}=+25^{\circ} \mathrm{C} . \mathrm{Z}_{\mathrm{S}}=\mathrm{Z}_{\mathrm{L}}=75 \Omega$, $\mathrm{EN}=\mathrm{HIGH}$, single tone signal applied at RF1 or RF2 and measured at RFC, EVKit trace and connector losses are de-embedded, unless otherwise noted.

Parameter	Symbol	Condition	Minimum	Typical	Maximum	Units
Insertion Loss (RFC to RF1, RF2)	IL	$\mathrm{f}_{\mathrm{RF}}=5 \mathrm{MHz}$		0.20		dB
		$5 \mathrm{MHz}<\mathrm{f}_{\mathrm{RF}} \leq 204 \mathrm{MHz}$		0.23	0.43 [b]	
		$204 \mathrm{MHz}<\mathrm{f}_{\text {RF }} \leq 1.2 \mathrm{GHz}$		0.32	0.52	
		$1.2 \mathrm{GHz}<\mathrm{f}_{\mathrm{RF}} \leq 1.8 \mathrm{GHz}$		0.34	0.54	
Isolation (All Paths)	ISO1	$\mathrm{f}_{\mathrm{RF}}=5 \mathrm{MHz}$		77		dB
		$5 \mathrm{MHz}<\mathrm{f}_{\mathrm{RF}} \leq 204 \mathrm{MHz}$		60		
		$204 \mathrm{MHz}<\mathrm{f}_{\text {RF }} \leq 1.2 \mathrm{GHz}$		44		
		$1.2 \mathrm{GHz}<\mathrm{ffF} \leq 1.8 \mathrm{GHz}$		40		
Return Loss (RFC, RF1, RF2) (Insertion Loss States)	RL	$\mathrm{f}_{\mathrm{RF}}=5 \mathrm{MHz}$		35		dB
		$5 \mathrm{MHz}<\mathrm{f}_{\mathrm{RF}} \leq 204 \mathrm{MHz}$		30		
		$204 \mathrm{MHz}<\mathrm{F}_{\mathrm{RF}} \leq 1.2 \mathrm{GHz}$		17		
		$1.2 \mathrm{GHz}<\mathrm{F}_{\mathrm{RF}} \leq 1.8 \mathrm{GHz}$		16		
2nd Harmonic	H2	$\mathrm{fiN}_{\text {I }}=27 \mathrm{MHz} \mathrm{P}_{\text {OUt }}=20 \mathrm{dBm}[\mathrm{c}]$		-80	-70	dBc
		$\mathrm{f}_{\mathrm{IN}}=204 \mathrm{MHz} \mathrm{P}_{\text {Out }}=20 \mathrm{dBm}$		-100	-90	
		$\mathrm{fiN}^{\text {}}=800 \mathrm{MHz}$ Pout $=20 \mathrm{dBm}$		-120	-110	
3 3rd Harmonic	H3	$\mathrm{fiN}=17 \mathrm{MHz}$ Pout $=20 \mathrm{dBm}$		-95	-80	dBc
		$\mathrm{ffin}=204 \mathrm{MHz}$ Pout $=20 \mathrm{dBm}$		-120	-105	
		$\mathrm{f}_{\mathrm{IN}}=800 \mathrm{MHz} \mathrm{P}_{\text {Out }}=20 \mathrm{dBm}$		-115	-100	
Input 0.1dB Compression Point [d] (RFC to RF1, RF2)	P0.1dB	$\mathrm{f}_{\mathrm{RF}}=5 \mathrm{MHz}$		37		dBm
		$\mathrm{f}_{\mathrm{RF}}=204 \mathrm{MHz}$		37		
		$\mathrm{f}_{\mathrm{RF}}=1.8 \mathrm{GHz}$		38		
Composite Second Order	CSO	41 dBmV / channel 137 channels [e]		>100		dBc
Composite Triple Beat	CTB			>100		

a. Items in min/max columns in bold italics are guaranteed by test.
b. Items in min/max columns that are not bold italics are guaranteed by design characterization.
c. $\mathrm{dBmV}=\mathrm{dBm}[75 \Omega]+48.75$.
d. The input 0.1 dB compression point is a linearity figure of merit. Refer to Figure 3 for the maximum operating RF input power levels.
e. Total power $=-7.75 \mathrm{dBm}[75 \Omega]+10^{*} \log (137)=+13.62 \mathrm{dBm}[75 \Omega]$.

Electrical Characteristics

Table 6. Electrical Characteristics - 50』 SPECIFICATION
See F2972 50Ω Application Circuit. Specifications apply when operated with $\mathrm{V}_{C C}=+3.3 \mathrm{~V}, \mathrm{~T}_{\mathrm{EP}}=+25^{\circ} \mathrm{C} . \mathrm{Z}_{S}=\mathrm{Z}_{\mathrm{L}}=50 \Omega$, $\mathrm{EN}=\mathrm{HIGH}$, single tone signal applied at RF1 or RF2 and measured at RFC, EVKit trace and connector losses are de-embedded, unless otherwise noted.

Parameter	Symbol	Condition	Minimum	Typical	Maximum	Units
Insertion Loss (RFC to RF1, RF2)	IL	$\mathrm{f}_{\mathrm{RF}}=5 \mathrm{MHz}$		0.25	$0.45{ }^{\text {[b] }}$	dB
		$5 \mathrm{MHz}<\mathrm{f}_{\mathrm{RF}} \leq 1 \mathrm{GHz}$		0.33	0.53	
		$1 \mathrm{GHz}<\mathrm{f}_{\mathrm{RF}} \leq 2 \mathrm{GHz}$ [c]		0.36	0.56 [a]	
		$2 \mathrm{GHz}<\mathrm{ffF} \leq 3 \mathrm{GHz}$		0.40		
		$3 \mathrm{GHz}<\mathrm{f}_{\mathrm{RF}} \leq 6 \mathrm{GHz}$		0.45		
		$6 \mathrm{GHz}<\mathrm{ffF}^{5} \leq 8 \mathrm{GHz}$		0.55		
		$8 \mathrm{GHz}<\mathrm{ffF} \leq 9 \mathrm{GHz}$		0.65		
		$9 \mathrm{GHz}<\mathrm{f}_{\mathrm{RF}} \leq 10 \mathrm{GHz}$		0.80		
Isolation (RFC to RF1, RF2)	ISO1	$5 \mathrm{MHz}<\mathrm{f}_{\mathrm{RF}} \leq 1 \mathrm{GHz}$	43	48		dB
		$1 \mathrm{GHz}<\mathrm{f}_{\mathrm{RF}} \leq 2 \mathrm{GHz}$	36	42		
		$2 \mathrm{GHz}<\mathrm{f}_{\mathrm{RF}} \leq 3 \mathrm{GHz}$	31	37		
		$3 \mathrm{GHz}<\mathrm{f}_{\mathrm{RF}} \leq 6 \mathrm{GHz}$		27		
		$6 \mathrm{GHz}<\mathrm{f}_{\mathrm{RF}} \leq 8 \mathrm{GHz}$		22		
		$8 \mathrm{GHz}<\mathrm{f}_{\mathrm{RF}} \leq 10 \mathrm{GHz}$		18		
Isolation (RF1 to RF2, RF2 to RF1)	ISO2	$5 \mathrm{MHz}<\mathrm{f}_{\mathrm{RF}} \leq 1 \mathrm{GHz}$	40	45		dB
		$1 \mathrm{GHz}<\mathrm{f}_{\mathrm{RF}} \leq 2 \mathrm{GHz}$	33	38		
		$2 \mathrm{GHz}<\mathrm{f}_{\mathrm{RF}} \leq 3 \mathrm{GHz}$	29	34		
		$3 \mathrm{GHz}<\mathrm{f}_{\mathrm{RF}} \leq 6 \mathrm{GHz}$		26		
		$6 \mathrm{GHz}<\mathrm{f}_{\mathrm{RF}} \leq 8 \mathrm{GHz}$		21		
		$8 \mathrm{GHz}<\mathrm{f}_{\mathrm{RF}} \leq 10 \mathrm{GHz}$		18		
Return Loss (RFC, RF1, RF2) (Insertion loss states)	RL	$5 \mathrm{MHz}<\mathrm{ffF} \leq 1 \mathrm{GHz}$		28		dB
		$1 \mathrm{GHz}<\mathrm{f}_{\mathrm{RF}} \leq 2 \mathrm{GHz}$		26		
		$2 \mathrm{GHz}<\mathrm{ffF} \leq 3 \mathrm{GHz}$		26		
		$3 \mathrm{GHz}<\mathrm{f}_{\mathrm{RF}} \leq 6 \mathrm{GHz}$		25		
		$6 \mathrm{GHz}<\mathrm{f}_{\mathrm{RF}} \leq 8 \mathrm{GHz}$		23		
		$8 \mathrm{GHz}<\mathrm{ffF} \leq 9 \mathrm{GHz}$		18		
		$9 \mathrm{GHz}<\mathrm{f}_{\mathrm{RF}} \leq 10 \mathrm{GHz}$		16		

a. Items in min/max columns in bold italics are guaranteed by test.
b. Items in min / \max columns that are not bold italics are guaranteed by design characterization.
c. Minimum or maximum specification guaranteed by test at 2 GHz and by design characterization over the whole frequency range.

Electrical Characteristics

Table 7. Electrical Characteristics - 50』 SPECIFICATION
See F2972 50 Application Circuit. Specifications apply when operated with $V_{C C}=+3.3 \mathrm{~V}, \mathrm{~T}_{E P}=+25^{\circ} \mathrm{C} . \mathrm{Z}_{S}=\mathrm{Z}_{\mathrm{L}}=50 \Omega$, $\mathrm{EN}=\mathrm{HIGH}$, single tone signal applied at RF1 or RF2 and measured at RFC, EVKit trace and connector losses are de-embedded, unless otherwise noted.

Parameter	Symbol	Condition	Minimum	Typical	Maximum	Units
Input 0.1dB Compression [c]	P0.1dB	$\mathrm{f}_{\text {RF }}=2.4 \mathrm{GHz}$		40		dBm
		$\mathrm{f}_{\mathrm{RF}}=6.0 \mathrm{GHz}$		40		
		$\mathrm{f}_{\text {RF }}=8.0 \mathrm{GHz}$		40		
Input IP3 (RF1, RF2 to RFC)	IIP3	$\begin{aligned} & \mathrm{f}_{\mathrm{fF}}=2.4 \mathrm{GHz} \\ & \mathrm{P}_{\mathrm{IN}}=+24 \mathrm{dBm} / \text { tone } \end{aligned}$ $100 \mathrm{MHz} \text { spacing }$		77		dBm
Input IP2 (RF1, RF2 to RFC)	IIP2	$\begin{aligned} & \mathrm{f}_{1}=700 \mathrm{MHz} \\ & \mathrm{f}_{2}=1.7 \mathrm{GHz} \\ & \mathrm{P}_{\mathrm{N}}=+24 \mathrm{dBm} / \text { tone } \end{aligned}$ Measure 2.4 GHz product		125		dBm
		$\begin{aligned} & \mathrm{f}_{1}=2.4 \mathrm{GHz} \\ & \mathrm{f}_{2}=3.5 \mathrm{GHz} \\ & \mathrm{P}_{\text {IN }}=+24 \mathrm{dBm} / \text { tone } \end{aligned}$ Measure 5.9 GHz product		120		
Second Harmonic (RF1, RF2 to RFC)	H2	$\mathrm{f}_{\mathrm{N}}=2.4 \mathrm{GHz}, \mathrm{P}_{\text {IN }}=+24 \mathrm{dBm}$		-100	-90 [b]	dBc
		$\mathrm{f}_{\mathrm{N}}=5.9 \mathrm{GHz}, \mathrm{P}_{\text {IN }}=+24 \mathrm{dBm}$		-90	-80	
Third Harmonic (RF1, RF2 to RFC)	H3	$\mathrm{f}_{\mathrm{N}}=2.4 \mathrm{GHz}, \mathrm{P}_{\text {IN }}=+24 \mathrm{dBm}$		-110	-95	dBc
		$\mathrm{f}_{\mathrm{N}}=5.9 \mathrm{GHz}, \mathrm{P}_{\text {IN }}=+24 \mathrm{dBm}$		-100	-85	
Spurious Output (No RF Applied)	Pspur1	$f_{\text {out }} \geq 5 \mathrm{MHz}$ All unused ports terminated		-133		dBm
	Pspur2	$\mathrm{f}_{\text {out }}<5 \mathrm{MHz}$ All unused ports terminated		-120		

a. Items in min/max columns in bold italics are guaranteed by test.
b. Items in min / \max columns that are not bold italics are guaranteed by design characterization.
c. The input 0.1 dB compression point is a linearity figure of merit. Refer to Figure 3 for the maximum RF operating input power levels.

Thermal Characteristics

Table 8. Package Thermal Characteristics

Parameter	Symbol	Value	Units
Junction to Ambient Thermal Resistance	θ_{JA}	102	${ }^{\circ} \mathrm{C} / \mathrm{W}$
Junction to Case Thermal Resistance (Case is defined as the exposed paddle)	$\theta_{\mathrm{Jc} _ \text {_BOT }}$	56	${ }^{\circ} \mathrm{C} / \mathrm{W}$
Moisture Sensitivity Rating (Per J-STD-020)		MSL 1	

Typical Operating Conditions (TOCs)

Unless otherwise noted:

- $\mathrm{V}_{\mathrm{CC}}=+3.3 \mathrm{~V}$
- $\mathrm{EN}=\mathrm{HIGH}$
- $Z_{L}=Z_{S}=75 \Omega$
- $Z_{L}=Z_{S}=50 \Omega$
- All temperatures are referenced to the exposed paddle
- Evaluation Kit traces and connector losses are de-embedded

Typical Performance Characteristics - 75@ Performance

Figure 4. RF1 to RFC Insertion Loss

Figure 6. RF1 to RFC Isolation [RF2 On State]

Figure 8. RF1 to RF2 Isolation [RF1 On State]

Figure 5. RF2 to RFC Insertion Loss

Figure 7. RF2 to RFC Isolation [RF1 On State]

Figure 9. RF1 to RF2 Isolation [RF2 On State]

Typical Performance Characteristics - 75 Performance

Figure 10. RFC Return Loss [RF1 On State]

Figure 12. RF1 Return Loss [RF1 On State]

Figure 11. RFC Return Loss [RF2 On State]

Figure 13. RF2 Return Loss [RF2 On State]

Typical Performance Characteristics - 50 Performance

Figure 14. RF1 to RFC Insertion Loss

Figure 16. RF1 to RFC Isolation [RF2 On State]

Figure 18. RF1 to RF2 Isolation [RF1 On State]

Figure 15. RF2 to RFC Insertion Loss

Figure 17. RF2 to RFC Isolation [RF1 On State]

Figure 19. RF1 to RF2 Isolation [RF2 On State]

Typical Performance Characteristics - 50 Performance

Figure 20. RFC Return Loss [RF1 On State]

Figure 22. RF1 Return Loss [RF1 On State]

Figure 24. Switching Time [Isolation to Insertion Loss State]

Figure 21. RFC Return Loss [RF2 On State]

Figure 23. RF2 Return Loss [RF2 On State]

Figure 25. Switching Time
[Insertion Loss to Isolation State]

Control Mode

Table 9. Switch Control Truth Table

V CTL (pin 7)	EN (pin 8)	Switch State
LOW	HIGH	RFC to RF1 Insertion Loss State
HIGH	HIGH	RFC to RF2 Insertion Loss State
Don't Care	LOW	Standby

Application Information

Power Supplies

A common $V_{c c}$ power supply should be used for all pins requiring $D C$ power. All supply pins should be bypassed with external capacitors to minimize noise and fast transients. Supply noise can degrade noise figure and fast transients can trigger ESD clamps and cause them to fail. Supply voltage change or transients should have a slew rate smaller than $1 \mathrm{~V} / 20 \mu \mathrm{~s}$. In addition, all control pins should remain at $0 \mathrm{~V}(+/-0.3 \mathrm{~V})$ while the supply voltage ramps up or while it returns to zero.

Control Pin Interface

If control signal integrity is a concern and clean signals cannot be guaranteed due to overshoot, undershoot, ringing, etc., the following circuit at the input of each control pin is recommended. This applies to control pins 7 and 8 as shown below.

Figure 26. Control Pin Interface Schematic

75Ω Evaluation Kit Picture

Figure 27. Top View (75 ${ }^{\text {2 }}$

Figure 28. Bottom View (75 ${ }^{\text {) }}$

50Ω Evaluation Kit Picture

Figure 29. Top View (50 $)$

Figure 30. Bottom View (50 $)$

75』 Evaluation Kit / Applications Circuit

Figure 31. Electrical Schematic (75 $\mathbf{I N}_{\text {) }}$

50Ω Evaluation Kit / Applications Circuit

Figure 32. Electrical Schematic (50 ()

Table 10. 75 Bill of Material (BOM)

Part Reference	QTY	Description	Manufacturer Part \#	Manufacturer
C1	1	$0.1 \mu \mathrm{~F} \pm 10 \%, 16 \mathrm{~V}, \mathrm{X} 7 \mathrm{R}$, Ceramic Capacitor (0402)	GRM155R71C104KA88D	Murata
C2, C4	2	$100 \mathrm{pF} \pm 5 \%$ 50V, C0G, Ceramic Capacitor (0402)	GRM1555C1H101JA01D	Murata
C3	1	$0.01 \mu \mathrm{~F} \pm 5 \%$ 50V, X7R, Ceramic Capacitor (0603)	GRM188R71H103JA01D	Murata
R2, R3	2	100』 1/10W, Resistor (0402)	ERJ-2RKF1000X	Panasonic
J1- J5	5	F-Type Edge Mount	222181	Amphenol RF
J6	1	Conn Header Vert 5x1 Pos Gold	68002-205HLF	Amphenol FCl
U1	1	SP2T Switch 2mm x 2mm 12-pin TQFN	F2972NEGK	IDT
	1	Printed Circuit Board	F2972 75Ω PCB	IDT

Table 11. 50Ω Bill of Material (BOM)

Part Reference	QTY	Description	Manufacturer Part \#	Manufacturer
C1-C7	0	Not Installed (0402)		
R1- R3	3	0ת 1/10W, Resistor (0402)	ERJ-2GE0R00X	Panasonic
J1- J5	5	SMA Edge Mount	142-0761-881	Cinch Connectivity
J6	1	Conn Header 10 Pos 0.100" Str 15 Au	68602-210HLF	Amphenol FCl
$\begin{gathered} \hline \text { TP1, TP2, TP3, TP4, } \\ \text { TP5 } \end{gathered}$	0	Not Installed Test Point Loop		
U1	1	SP2T Switch 2mm x 2mm 12-pin TQFN	F2972NEGK	IDT
	1	Printed Circuit Board	F2972 50Ω PCB	IDT

Evaluation Kit (EVKit) Operation

External Supply Setup

Set up a $V_{c c}$ power supply in the voltage range of 2.5 V to 5.25 V with the power supply output disabled.
For the 75Ω EVKit, connect the disabled Vcc supply connection to J6 pin 2 and GND to J6 pins 1 or 5.
For the 50Ω EVKit, connect the disabled Vcc supply connection to J 6 pin 3 and GND to J 6 pin $1,2,4,6,8,9$ or 10.

Logic Control Setup

With the logic control lines disabled set the HIGH and LOW logic levels to satisfy the levels stated in the electrical specifications table.
For the 75Ω EVKit, connect the disabled logic control lines to J6 EN (pin 3) and VCTL (pin 4).
For the 50Ω EVKit, connect the disabled logic control lines to J6 EN / LS (pin 5) and $\mathrm{V}_{\text {cTL }}$ (pin 7).
See Table 9 for the logic truth table.

Turn On Procedure

Setup the supplies and EVKit as noted in the External Supply Setup and Logic Control Setup sections above.
Enable the $\mathrm{V}_{\text {cc }}$ supply.
Enable the logic control signals.
Set the logic setting to achieve the desired Table 9 configuration. Note that external control logic should not be applied without $\mathrm{V}_{c c}$ being present.

Turn Off Procedure

Set the logic control pins to a logic LOW.
Disable the V_{Cc} supply.

Package Drawings

Figure 33. Package Outline Drawing NEG12 PSC-4642

Recommended Land Pattern

Figure 34. Recommended Land Pattern NEG12 PSC-4642

Marking Diagram

Line 1-2972 = Abbreviated part number. Line 2- $Y=$ Year code.
Line 2 - $W=$ Work week code.
Line $2-{ }^{* *}=$ Sequential alpha for lot traceability.

Ordering Information

Orderable Part Number	Package	MSL Rating	Shipping Packaging	Temperature
F2972NEGK	$2 m m \times 2 m m \times 0.5 \mathrm{~mm} 12-$ VFQFP-N	MSL1	Cut Reel	$-40^{\circ} \mathrm{C}$ to $+105^{\circ} \mathrm{C}$
F2972NEGK8	$2 \mathrm{~mm} \times 2 \mathrm{~mm} \times 0.5 \mathrm{~mm} 12-$ VFQFP-N	MSL1	Tape and Reel	$-40^{\circ} \mathrm{C}$ to $+105^{\circ} \mathrm{C}$
F2972EVBI-75OHM	75Ω Evaluation Board			
F2972EVBI-50OHM	50Ω Evaluation Board			

Revision History

Revision	Revision Date	
Rev O	2017-Apr-19	Initial Releaseription of Change

IMPORTANT NOTICE AND DISCLAIMER

RENESAS ELECTRONICS CORPORATION AND ITS SUBSIDIARIES ("RENESAS") PROVIDES TECHNICAL SPECIFICATIONS AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING, WITHOUT LIMITATION, ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for developers skilled in the art designing with Renesas products. You are solely responsible for (1) selecting the appropriate products for your application, (2) designing, validating, and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, or other requirements. These resources are subject to change without notice. Renesas grants you permission to use these resources only for development of an application that uses Renesas products. Other reproduction or use of these resources is strictly prohibited. No license is granted to any other Renesas intellectual property or to any third party intellectual property. Renesas disclaims responsibility for, and you will fully indemnify Renesas and its representatives against, any claims, damages, costs, losses, or liabilities arising out of your use of these resources. Renesas' products are provided only subject to Renesas' Terms and Conditions of Sale or other applicable terms agreed to in writing. No use o any Renesas resources expands or otherwise alters any applicable warranties or warranty disclaimers for these products.
(Disclaimer Rev.1.0 Mar 2020)

Corporate Headquarters

TOYOSU FORESIA, 3-2-24 Toyosu,
Koto-ku, Tokyo 135-0061, Japan
www.renesas.com

Contact Information

For further information on a product, technology, the most up-to-date version of a document, or your nearest sales office, please visit: www.renesas.com/contact/

Trademarks

