To our customers,

Old Company Name in Catalogs and Other Documents

On April $1^{\text {st }}$, 2010, NEC Electronics Corporation merged with Renesas Technology Corporation, and Renesas Electronics Corporation took over all the business of both companies. Therefore, although the old company name remains in this document, it is a valid Renesas Electronics document. We appreciate your understanding.

Renesas Electronics website: http://www.renesas.com

April 1 ${ }^{\text {st }}, 2010$
Renesas Electronics Corporation

Issued by: Renesas Electronics Corporation (http://www.renesas.com)
Send any inquiries to http://www.renesas.com/inquiry.

Notice

1. All information included in this document is current as of the date this document is issued. Such information, however, is subject to change without any prior notice. Before purchasing or using any Renesas Electronics products listed herein, please confirm the latest product information with a Renesas Electronics sales office. Also, please pay regular and careful attention to additional and different information to be disclosed by Renesas Electronics such as that disclosed through our website.
2. Renesas Electronics does not assume any liability for infringement of patents, copyrights, or other intellectual property rights of third parties by or arising from the use of Renesas Electronics products or technical information described in this document. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics or others.
3. You should not alter, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or in part.
4. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products and application examples. You are fully responsible for the incorporation of these circuits, software, and information in the design of your equipment. Renesas Electronics assumes no responsibility for any losses incurred by you or third parties arising from the use of these circuits, software, or information.
5. When exporting the products or technology described in this document, you should comply with the applicable export control laws and regulations and follow the procedures required by such laws and regulations. You should not use Renesas Electronics products or the technology described in this document for any purpose relating to military applications or use by the military, including but not limited to the development of weapons of mass destruction. Renesas Electronics products and technology may not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable domestic or foreign laws or regulations.
6. Renesas Electronics has used reasonable care in preparing the information included in this document, but Renesas Electronics does not warrant that such information is error free. Renesas Electronics assumes no liability whatsoever for any damages incurred by you resulting from errors in or omissions from the information included herein.
7. Renesas Electronics products are classified according to the following three quality grades: "Standard", "High Quality", and "Specific". The recommended applications for each Renesas Electronics product depends on the product's quality grade, as indicated below. You must check the quality grade of each Renesas Electronics product before using it in a particular application. You may not use any Renesas Electronics product for any application categorized as "Specific" without the prior written consent of Renesas Electronics. Further, you may not use any Renesas Electronics product for any application for which it is not intended without the prior written consent of Renesas Electronics. Renesas Electronics shall not be in any way liable for any damages or losses incurred by you or third parties arising from the use of any Renesas Electronics product for an application categorized as "Specific" or for which the product is not intended where you have failed to obtain the prior written consent of Renesas Electronics. The quality grade of each Renesas Electronics product is "Standard" unless otherwise expressly specified in a Renesas Electronics data sheets or data books, etc.
"Standard": Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home electronic appliances; machine tools; personal electronic equipment; and industrial robots.
"High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control systems; anti-disaster systems; anticrime systems; safety equipment; and medical equipment not specifically designed for life support.
"Specific": Aircraft; aerospace equipment; submersible repeaters; nuclear reactor control systems; medical equipment or systems for life support (e.g. artificial life support devices or systems), surgical implantations, or healthcare intervention (e.g. excision, etc.), and any other applications or purposes that pose a direct threat to human life.
8. You should use the Renesas Electronics products described in this document within the range specified by Renesas Electronics, especially with respect to the maximum rating, operating supply voltage range, movement power voltage range, heat radiation characteristics, installation and other product characteristics. Renesas Electronics shall have no liability for malfunctions or damages arising out of the use of Renesas Electronics products beyond such specified ranges.
9. Although Renesas Electronics endeavors to improve the quality and reliability of its products, semiconductor products have specific characteristics such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Further, Renesas Electronics products are not subject to radiation resistance design. Please be sure to implement safety measures to guard them against the possibility of physical injury, and injury or damage caused by fire in the event of the failure of a Renesas Electronics product, such as safety design for hardware and software including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult, please evaluate the safety of the final products or system manufactured by you.
10. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas Electronics product. Please use Renesas Electronics products in compliance with all applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive. Renesas Electronics assumes no liability for damages or losses occurring as a result of your noncompliance with applicable laws and regulations.
11. This document may not be reproduced or duplicated, in any form, in whole or in part, without prior written consent of Renesas Electronics.
12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas Electronics products, or if you have any other inquiries.
(Note 1) "Renesas Electronics" as used in this document means Renesas Electronics Corporation and also includes its majorityowned subsidiaries.
(Note 2) "Renesas Electronics product(s)" means any product developed or manufactured by or for Renesas Electronics.

Renesns

The revision list can be viewed directly by
clicking the title page.
The revision list summarizes the locations of revisions and additions. Details should always be checked by referring to the relevant text.

H8S/2245 Group

Hardware Manual

Renesas 16-Bit Single-Chip Microcomputer H8S Family / H8S/2200 Series

H8S/2246 HD6432246
HD6472246
H8S/2245 HD6432245
H8S/2244 HD6432244
H8S/2243 HD6432243
H8S/2242 HD6432242
H8S/2241 HD6432241R
H8S/2240 HD6412240

1. This document is provided for reference purposes only so that Renesas customers may select the appropriate Renesas products for their use. Renesas neither makes warranties or representations with respect to the accuracy or completeness of the information contained in this document nor grants any license to any intellectual property rights or any other rights of Renesas or any third party with respect to the information in this document.
2. Renesas shall have no liability for damages or infringement of any intellectual property or other rights arising out of the use of any information in this document, including, but not limited to, product data, diagrams, charts, programs, algorithms, and application circuit examples.
3. You should not use the products or the technology described in this document for the purpose of military applications such as the development of weapons of mass destruction or for the purpose of any other military use. When exporting the products or technology described herein, you should follow the applicable export control laws and regulations, and procedures required by such laws and regulations.
4. All information included in this document such as product data, diagrams, charts, programs, algorithms, and application circuit examples, is current as of the date this document is issued. Such information, however, is subject to change without any prior notice. Before purchasing or using any Renesas products listed in this document, please confirm the latest product information with a Renesas sales office. Also, please pay regular and careful attention to additional and different information to be disclosed by Renesas such as that disclosed through our website. (http://www.renesas.com)
5. Renesas has used reasonable care in compiling the information included in this document, but Renesas assumes no liability whatsoever for any damages incurred as a result of errors or omissions in the information included in this document.
6. When using or otherwise relying on the information in this document, you should evaluate the information in light of the total system before deciding about the applicability of such information to the intended application. Renesas makes no representations, warranties or guaranties regarding the suitability of its products for any particular application and specifically disclaims any liability arising out of the application and use of the information in this document or Renesas products.
7. With the exception of products specified by Renesas as suitable for automobile applications, Renesas products are not designed, manufactured or tested for applications or otherwise in systems the failure or malfunction of which may cause a direct threat to human life or create a risk of human injury or which require especially high quality and reliability such as safety systems, or equipment or systems for transportation and traffic, healthcare, combustion control, aerospace and aeronautics, nuclear power, or undersea communication transmission. If you are considering the use of our products for such purposes, please contact a Renesas sales office beforehand. Renesas shall have no liability for damages arising out of the uses set forth above.
8. Notwithstanding the preceding paragraph, you should not use Renesas products for the purposes listed below:
(1) artificial life support devices or systems
(2) surgical implantations
(3) healthcare intervention (e.g., excision, administration of medication, etc.)
(4) any other purposes that pose a direct threat to human life

Renesas shall have no liability for damages arising out of the uses set forth in the above and purchasers who elect to use Renesas products in any of the foregoing applications shall indemnify and hold harmless Renesas Technology Corp., its affiliated companies and their officers, directors, and employees against any and all damages arising out of such applications.
9. You should use the products described herein within the range specified by Renesas, especially with respect to the maximum rating, operating supply voltage range, movement power voltage range, heat radiation characteristics, installation and other product characteristics. Renesas shall have no liability for malfunctions or damages arising out of the use of Renesas products beyond such specified ranges.
10. Although Renesas endeavors to improve the quality and reliability of its products, IC products have specific characteristics such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Please be sure to implement safety measures to guard against the possibility of physical injury, and injury or damage caused by fire in the event of the failure of a Renesas product, such as safety design for hardware and software including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for aging degradation or any other applicable measures. Among others, since the evaluation of microcomputer software alone is very difficult, please evaluate the safety of the final products or system manufactured by you.
11. In case Renesas products listed in this document are detached from the products to which the Renesas products are attached or affixed, the risk of accident such as swallowing by infants and small children is very high. You should implement safety measures so that Renesas products may not be easily detached from your products. Renesas shall have no liability for damages arising out of such detachment.
12. This document may not be reproduced or duplicated, in any form, in whole or in part, without prior written approval from Renesas.
13. Please contact a Renesas sales office if you have any questions regarding the information contained in this document, Renesas semiconductor products, or if you have any other inquiries.

General Precautions in the Handling of MPU/MCU Products

The following usage notes are applicable to all MPU/MCU products from Renesas. For detailed usage notes on the products covered by this manual, refer to the relevant sections of the manual. If the descriptions under General Precautions in the Handling of MPU/MCU Products and in the body of the manual differ from each other, the description in the body of the manual takes precedence.

1. Handling of Unused Pins

Handle unused pins in accord with the directions given under Handling of Unused Pins in the manual.

- The input pins of CMOS products are generally in the high-impedance state. In operation with an unused pin in the open-circuit state, extra electromagnetic noise is induced in the vicinity of LSI, an associated shoot-through current flows internally, and malfunctions may occur due to the false recognition of the pin state as an input signal. Unused pins should be handled as described under Handling of Unused Pins in the manual.

2. Processing at Power-on

The state of the product is undefined at the moment when power is supplied.

- The states of internal circuits in the LSI are indeterminate and the states of register settings and pins are undefined at the moment when power is supplied.
In a finished product where the reset signal is applied to the external reset pin, the states of pins are not guaranteed from the moment when power is supplied until the reset process is completed.
In a similar way, the states of pins in a product that is reset by an on-chip power-on reset function are not guaranteed from the moment when power is supplied until the power reaches the level at which resetting has been specified.

3. Prohibition of Access to Reserved Addresses

Access to reserved addresses is prohibited.

- The reserved addresses are provided for the possible future expansion of functions. Do not access these addresses; the correct operation of LSI is not guaranteed if they are accessed.

4. Clock Signals

After applying a reset, only release the reset line after the operating clock signal has become stable. When switching the clock signal during program execution, wait until the target clock signal has stabilized.

- When the clock signal is generated with an external resonator (or from an external oscillator) during a reset, ensure that the reset line is only released after full stabilization of the clock signal. Moreover, when switching to a clock signal produced with an external resonator (or by an external oscillator) while program execution is in progress, wait until the target clock signal is stable.

5. Differences between Products

Before changing from one product to another, i.e. to one with a different type number, confirm that the change will not lead to problems.

- The characteristics of MPU/MCU in the same group but having different type numbers may differ because of the differences in internal memory capacity and layout pattern. When changing to products of different type numbers, implement a system-evaluation test for each of the products.

Preface

The H8S/2245 Group is a series of high-performance microcontrollers with a 32 -bit H8S/2000 CPU core, and a set of on-chip peripheral functions required for system configuration.

The H8S/2000 CPU can execute basic instructions in one state, and is provided with sixteen 16-bit general registers with a 32 -bit internal configuration, and a concise and optimized instruction set. The CPU can handle a 16 Mbyte linear address space (architecturally 4 Gbytes). Programs based on the high-level language C can also be run efficiently.

The address space is divided into eight areas. The data bus width and access states can be selected for each of these areas, and various kinds of memory can be connected fast and easily.

On-chip memory consists of large-capacity ROM and RAM. PROM (ZTAT ${ }^{\oplus}$) and mask ROM versions are available, providing a quick and flexible response to conditions from ramp-up through full-scale volume production, even for applications with frequently changing specifications.

On-chip peripheral functions include a 16 -bit timer pulse unit (TPU), 8 -bit timers, watchdog timer (WDT), serial communication interface (SCI), A/D converter, and I/O ports.

In addition, an on-chip data transfer controller (DTC) is provided, enabling high-speed data transfer without CPU intervention.

Use of the H8S/2245 Group enables compact, high-performance systems to be implemented easily.

This manual describes the hardware of the H8S/2245 Group. Refer to the H8S/2600 Series and H8S/2000 Series Software Manual for a detailed description of the instruction set.

Note: ZTAT is a registered trademark of Renesas Technology Corp.

Main Revisions for This Edition

Item	Page	Revision (See Manual for Details)
All	-	- Company name and brand names amended (Before) Hitachi, Ltd. \rightarrow (After) Renesas Technology Corp. - Designation for categories amended (Before) H8/2245 Series \rightarrow (After) H8/2245 Group
1.1 Overview Table 1.1 Overview	2	Table 1.1 amended CPU - High-speed operation suitable for realtime control - Maximum clock rate: 20 MHz - High-speed arithmetic operations ($20-\mathrm{MHz}$ operation)
1.3.2 Pin Functions in Each Operating Mode	$\begin{aligned} & 8 \text { to } \\ & 11 \end{aligned}$	Note *2 added Mode 2*1 Mode 3*1 Mode 6*1 Mode 7*1 PROM Mode*2
Table 1.2 Pin Functions in Each Operating Mode	11	Notes: 1. Cannot be used in the H8S/2240. 2. NC should be left open.
1.3.3 Pin Functions Table 1.3 Pin Functions	13	Description amended Operating mode control ... H8S/2245 Group is operating. Except for mode changing, be sure to fix the levels of the mode pins $\left(\mathrm{MD}_{2}\right.$ to $\left.\mathrm{MD}_{0}\right)$ by pulling them down or pulling them up until the power turns off.
2.1.1 Features	20	Description amended - High-speed operation - Maximum clock rate: 20 MHz - 8/16/32-bit register-register add/subtruct: 50 ns (20-MHz operation) - 8×8-bit register-register multiply: $600 \mathrm{~ns}(20-\mathrm{MHz}$ operation) - $16 \div 8$-bit register-register divide: $600 \mathrm{~ns}(20-\mathrm{MHz}$ operation) - 16×16-bit register-register multiply: $1000 \mathrm{~ns}(20-\mathrm{MHz}$ operation) - $32 \div 16$-bit register-register divide: $600 \mathrm{~ns}(20-\mathrm{MHz}$ operation)

Item	Page	Revision (See Manual for Details)
2.3 Address Space	27	Description amended ... address space in advanced mode. The usable modes and address spaces differ depending on the product. For details on each product, see section 3, MCU Operating Modes.
2.6.1 Overview	36	Table 2.1 amended
Table 2.1 Instruction Classification		LDM ${ }^{5}$, STM ${ }^{5}$ M MOVFPE* ${ }^{3}$, MOVTPE* ${ }^{3}$ TAS**
	37	Notes 4 and 5 added
		Notes: 4. Only register ER0, ER1, ER4, or ER5 should be used when using the TAS instruction. 5. Only register ER0 to ER6 should be used when using the STM/LDM instruction.
Table 2.3 Data Transfer Instructions	40	Note *2 added
		Size*1 LDM* ${ }^{2}$ STM* ${ }^{2}$
		Notes: 1. Size refers to the operand size.
		2. Only register ER0 to ER6 should be used when using the STM/LDM instruction.
Table 2.4 Arithmetic Operation Instructions	41,	Note *2 added
	42	Size*1 TAS**
	42	Notes: 1. Size refers to the operand size.
		2. Only register ER0, ER1, ER4, or ER5 should be used when using the TAS instruction.
Table 2.10 Block Data Transfer Instructions	48	Table 2.10 amended
		EEPMOV.W ... else next;
		Transfer a data block. Starting from the address set in ER5, transfers data for the number of bytes set in R4L or R4 to the address location set in ER6.
		Execution of the next instruction begins as soon as the transfer is completed.
2.10 Usage Notes to	66 to	Sections 2.10 to 2.10.4 added
2.10.4 Access Methods for Registers with WriteOnly Bits	70	

3.4 Pin Functions in	77
Each Operating Mode	Port E description in mode 4 amended (Before) P*1/D \rightarrow (After) P/D*1
Table 3.3 Pin Functions	
in Each Operating Mode	

5.1.2 Block Diagram

104
Figure 5.1 Block
Figure 5.1 amended
Diagram

5.3.1 External Interrupts 112 Figure 5.3 amended

Figure 5.3 Timing of Setting IRQnF
(Before) IRQn input pin \rightarrow (After) $\overline{\mathrm{IRQn}}$ input pin
Note added
Note: $\mathrm{n}=7$ to 0

5.5.1 Contention between Interrupt Generation and Disabling	126	Description amended When an interrupt enable bit is cleared to 0 to disable interrupt requests, the disabling becomes effective after execution of the instruction. ...
5.5.3 Times when Interrupts Are Disabled	127	Section 5.5.3 added

5.5.5 IRQ Interrupt	127,	Sections 5.5 .5 and 5.5 .6 added
5.5.6 NMI Interrupt 128		
Usage Notes		
6.3.6 Chip Select	150	Figure 6.3 title amended
Signals		
Figure 6.3 $\overline{\mathrm{CSn}}$ Signal		
Output Timing ($\mathrm{n}=0$ to 3) 6.4 Basic Timing to 150 Sections 6.4 to 6.4 .3 added 6.4.3 External Address to Space Access Timing 153		

6.5.5 Wait Control

Figure 6.18 Example of Wait State Insertion
Timing

Figure 6.18 amended

Note: $\not \subset$ indicates the timing of $\overline{\text { WAIT }}$ pin sampling.
7.2.5 DTC Transfer 184 Description amended

Count Register A (CRA)
... In repeat mode or block transfer mode, ... (CRAL). In repeat mode, CRAH holds the number of transfers while CRAL functions as an 8-bit transfer counter (1 to 256). In block transfer mode, CRAH holds the block size while CRAL functions as an 8bit block size counter (1 to 256). CRAL is decremented by 1 ...

Item	Page	Revision (See Manual for Details)
8.2.2 Register Configuration	214	Port 1 Data Direction Register (P1DDR) Description amended ... an undefined value will be read. This register is a write-only register, and cannot be written by bit manipulation instruction. For details, see section 2.10.4, Access Methods for Registers with Write-Only Bits. P1DDR is initialized to $\mathrm{H}^{\prime} 00$...
8.3.2 Register Configuration	225	Port 2 Data Direction Register (P2DDR) Description amended ... makes the pin an input pin. This register is a write-only register, and cannot be written by bit manipulation instruction. For details, see section 2.10.4, Access Methods for Registers with Write-Only Bits. P2DDR is initialized to $\mathrm{H}^{\prime} 00$...
8.4.2 Register Configuration	230	Port 3 Data Direction Register (P3DDR) Description amended ... an undefined value will be read. P3DDR cannot be modified. Setting a P3DDR bit to $1 \ldots$ makes the pin an input pin. This register is a write-only register, and cannot be written by bit manipulation instruction. For details, see section 2.10.4, Access Methods for Registers with Write-Only Bits. P3DDR is initialized to $\mathrm{H}^{\prime} \mathrm{OO}$...
8.5.2 Register Configuration	235	Port 4 Register (PORT4) Description amended PORT4 is an 8-bit read-only register that shows port 4 pin states. PORT4 cannot be modified. Bits 7 to 4 are reserved; ...
8.6.2 Register Configuration	237	Port 5 Data Direction Register (P5DDR) Description amended ... an undefined value will be read. P5DDR cannot be modified. Setting a P5DDR bit to $1 \ldots$ makes the pin an input pin. This register is a write-only register, and cannot be written by bit manipulation instruction. For details, see section 2.10.4, Access Methods for Registers with Write-Only Bits. P5DDR is initialized to $\mathrm{H}^{\prime} \mathrm{O}$...

Item	Page	Revision (See Manual for Details)
8.7.2 Register Configuration	241	Port A Data Direction Register (PADDR) Description amended ... an undefined value will be read. PADDR cannot be modified. Setting a PADDR bit to $1 \ldots$ makes the pin an input pin. This register is a write-only register, and cannot be written by bit manipulation instruction. For details, see section 2.10.4, Access Methods for Registers with Write-Only Bits. PADDR is initialized to H'0 ...
8.8.2 Register Configuration	248	Port B Data Direction Register (PBDDR) Description amended ... an undefined value will be read. This register is a write-only register, and cannot be written by bit manipulation instruction. For details, see section 2.10.4, Access Methods for Registers with Write-Only Bits. PBDDR is initialized to $\mathrm{H}^{\prime} 00$...
8.9.2 Register Configuration	254	Port C Data Direction Register (PCDDR) Description amended ... an undefined value will be read. This register is a write-only register, and cannot be written by bit manipulation instruction. For details, see section 2.10.4, Access Methods for Registers with Write-Only Bits. PCDDR is initialized to $\mathrm{H}^{\prime} 00$...
8.10.2 Register Configuration	260	Port D Data Direction Register (PDDDR) Description amended ... an undefined value will be read. This register is a write-only register, and cannot be written by bit manipulation instruction. For details, see section 2.10.4, Access Methods for Registers with Write-Only Bits. PDDDR is initialized to $\mathrm{H}^{\prime} 00$...
8.11.2 Register Configuration	266	Port E Data Direction Register (PEDDR) Description amended ... an undefined value will be read. This register is a write-only register, and cannot be written by bit manipulation instruction. For details, see section 2.10.4, Access Methods for Registers with Write-Only Bits. PEDDR is initialized to $\mathrm{H}^{\prime} 00$...
8.12.2 Register Configuration	272	Port F Data Direction Register (PFDDR) Description amended ... an undefined value will be read. This register is a write-only register, and cannot be written by bit manipulation instruction. For details, see section 2.10.4, Access Methods for Registers with Write-Only Bits. PFDDR is initialized by a power-on reset ...

Item	Page	Revision (See Manual for Details)
8.13.2 Register Configuration	278	Port G Data Direction Register (PGDDR) Description amended ... an undefined value will be read. PGDDR cannot be modified. This register is a write-only register, and cannot be written by bit manipulation instruction. For details, see section 2.10.4, Access Methods for Registers with Write-Only Bits. PGDDR is initialized by a power-on reset ...
8.14 Handling of Unused Pins	283	Section 8.14 added
9.2.1 Timer Control Register (TCR)	294	Bits 4 and 3-Clock Edge 1 and 0 (CKEG1, CKEG0) Note amended Note: Internal clock edge selection is valid when the input clock is $\phi / 4$ or slower. If $\phi / 1$ is selected as the input clock, this setting is ignored and count at falling edge of ϕ is selected.
9.2.5 Timer Status Register (TSR)	311	Bit 3-Input Capture/Output Compare Flag D (TGFD) Description amended [Clearing conditions] - When DTC is activated by TGID interrupt while DISEL bit of MRB in DTC is 0 with the transfer counter not being 0 . - When 0 is written to TGFD after reading TGFD $=1$ Bit 2—Input Capture/Output Compare Flag C (TGFC) Description amended [Clearing conditions] - When DTC is activated by TGIC interrupt while DISEL bit of MRB in DTC is 0 with the transfer counter not being 0 . - When 0 is written to TGFC after reading TGFC = 1
	312	Bit 1—Input Capture/Output Compare Flag B (TGFB) Description amended [Clearing conditions] - When DTC is activated by TGIB interrupt while DISEL bit of MRB in DTC is 0 with the transfer counter not being 0 . - When 0 is written to TGFB after reading TGFB = 1

Item Page Revision (See Manual for Details)

10.2.3 Time Constant	367	Description amended
Registers B0 and B1		... Note, however, that comparison is disabled during the T2 state
(TCORBO, TCORB1)	of a TCORB write cycle....	

10.2.5 Timer $\quad 370$	Bit 7-Compare Match Flag B (CMFB)
Control/Status Registers 0	Description amended
and 1(TCSR0, TCSR1)	[Clearing conditions]

- Cleared by reading CMFB when $\mathrm{CMFB}=1$, then writing 0 to CMFB
- When DTC is activated by CMIB interrupt while DISEL bit of MRB in DTC is 0 with the transfer counter not being 0 .
371 Bit 6-Compare Match Flag A (CMFA)
Description amended
[Clearing conditions]
- Cleared by reading CMFA when CMFA $=1$, then writing 0 to CMFA
- When DTC is activated by CMIA interrupt while DISEL bit of MRB in DTC is 0 with the transfer counter not being 0 .

10.6.1 Setting Module

381 Section 10.6.1 added

Stop Mode

11.2.2 Timer Control/Status Register (TCSR)	391	Bit 7-Overflow Flag (OVF)
		Note * added
		[Clearing condition] Cleared by reading TCSR when $\mathrm{OVF}=1$, then writing 0 to OVF*
		Note: * When OVF is polled and the interval timer interrupt is disabled, OVF = 1 must be read at least twice.
11.2.3 Reset Control/Status Register (RSTCSR)	393	Bit 7-Watchdog Timer Overflow Flag (WOVF)
		Description amended
		[Clearing condition] Cleared by reading RSTCSR when WOVF = 1 , then writing 0 to WOVF
11.4 Interrupts	400	Description added
		... whenever the OVF flag is set to 1 in TCSR. OVF must be cleared to 0 in the interrupt handling routine.
11.5.6 OVF Flag	402	Section 11.5.6 added
Clearing in Interval Timer		

Item	Page	Revision (See Manual for Details)
12.2.7 Serial Status Register (SSR)	417	Bit 7—Transmit Data Register Empty (TDRE)
		Note * added
		[Clearing conditions]
		- When 0 is written to ...
		- When the DTC* is activated by a TXI interrupt and write data to TDR
		Note: * DTC can clear this bit only when DISEL is 0 with the transfer counter not being 0 .
	418	Bit 6-Receive Data Register Full (RDRF)
		Note * added
		[Clearing conditions]
		- When 0 is written to ...
		- When the DTC* is activated by a RXI interrupt and write data to RDR
		Notes: RDR and the RDRF flag are not affected ...
		DTC can clear this bit only when DISEL is 0 with the transfer counter not being 0 .
	420	Bit 2-Transmit End (TEND)
		Note * added
		[Clearing conditions]
		- When 0 is written to ...
		- When the DTC* is activated by a TXI interrupt and write data to TDR
		Note: * DTC can clear this bit only when DISEL is 0 with the transfer counter not being 0 .

Item Page Revision (See Manual for Details)

12.3.3 Multiprocessor

Communication Function
Figure 12.10 Sample Multiprocessor Serial Transmission Flowchart

447 Note * added to figure 12.10
[3] Serial transmission continuation procedure: ... Checking and clearing of the TDRE flag is automatic when the DTC* is activated by a transmit data empty interrupt (TXI) request, and ...
Note: * The case, in which the DTC automatically clears the TDRE flag, occurs only when DISEL in DTC is 0 with the transfer counter not being 0 . Therefore, the TDRE flag should be cleared by CPU when DISEL is 1 , or when DISEL is 0 with the transfer counter being 0 .

Clocked Synchronous Mode
Figure 12.16 Sample Serial Transmission Flowchart
$456 \quad$ Note * added to figure 12.16
[3] Serial transmission continuation procedure: ... Checking and clearing of the TDRE flag is automatic when the DTC* is activated by a transmit data empty interrupt (TXI) request, and ...

Note: * The case, in which the DTC automatically clears the TDRE flag, occurs only when DISEL in DTC is 0 with the transfer counter not being 0 . Therefore, the TDRE flag should be cleared by CPU when DISEL is 1 , or when DISEL is 0 with the transfer counter being 0 .
Note * added to figure 12.18
[5] Serial reception continuation procedure: ... RDRF flag is cleared automatically when the DTC* is activated by a receive data full interrupt (RXI) request, and ...
Note: * The case, in which the DTC automatically clears the RDRF flag, occurs only when DISEL in DTC is 0 with the transfer counter not being 0 . Therefore, the RDRF flag should be cleared by CPU when DISEL is 1 , or when DISEL is 0 with the transfer counter being 0 .

Figure 12.20 Sample Flowchart of Simultaneous Serial Transmit and Receive Operations

461 Note * added to figure 12.20
[5] Serial transmission/reception continuation procedure: ... Also the RDRF flag is cleared automatically when the DTC* is activated by a receive data full interrupt (RXI) request, and ...

Notes: When switching from transmit or receive operation to ...

* The case, in which the DTC automatically clears the TDRE flag or RDRF flag, occurs only when DISEL in the corresponding DTC transfer is 0 with the transfer counter not being 0 . Therefore, the corresponding flag should be cleared by CPU when DISEL in the corresponding DTC transfer is 1 , or when DISEL is 0 with the transfer counter being 0 .

Item	Page	Revision (See Manual for Details)
12.4 SCI Interrupt	462	Note * added
		When TDRE flag in ... The TDRE flag is cleared to 0 automatically when data transfer is performed by the DTC*. The DTC cannot be activated by ... When RDRF flag in ... The RDRF flag is cleared to 0 automatically when data transfer is performed by the DTC雾. The DTC cannot be activated by an ERI interrupt request.
		Note: * The flag is not cleared when DISEL is 0 and the transfer counter value is not 0 .
12.5 Usage Notes	464	Description added
		The following points should be noted when using the SCI.
		Module Stop Mode Setting
		SCI operation can be disabled or enabled using the module stop control register. The initial setting is for SCI operation to be halted. Register access is enabled by clearing module stop mode. For details, see section 18, Power-Down Modes.
		Relation between Writes to TDR and TDRE Flag
	467	Restrictions Concerning DTC Updating ... - When RDR is read by the DTC, be sure to set the activation source to the relevant SCI reception data full interrupt (RXI).
		- The flag is cleared only when DISEL in DTC is 0 with the transfer counter not being 0 . When DISEL is 1 ,or DISEL is 0 with the transfer counter being 0 , the flag should be cleared by CPU.
		Note that transmitting, in particular, may not successfully be executed unless the TDRE flag is cleared by CPU.
	467 to 472	Description of "Operation in Case of Mode Transition" and "Switching from SCK Pin Function to Port Pin Function" added
13.2.2 Serial Status Register (SSR)	479	Bit 2 TEND description amended
		[Clearing conditions]
		- When 0 is written to ... - When the DTC* is activated by a TXI interrupt and write data to TDR
		[Setting conditions] ...
		- When TDRE $=1$ and ERS = 0 (normal transmission) 12.5 etu after transmission of 1-byte serial character when $\mathrm{GM}=0$ - When TDRE $=1$ and ERS $=0$ (normal transmission) 11.0 etu after transmission of 1-byte serial character when $\mathrm{GM}=1$

Item	Page	Revision (See Manual for Details)
13.2.2 Serial Status		
Register (SSR)	479	Note * added
		Notes: etu: ...
	* DTC can clear this bit only when DISEL is 0 with the transfer	
counter not being 0.		

Item	Page	Revision (See Manual for Details)
13.4 Usage Notes	500	Retransfer Operation Description amended - Retransfer operation when SCI is in receive mode [4] ... If DTC data transfer by an RXI source is enabled, the contents of RDR can be read automatically. When the RDR data is read by the DTC, the RDRF flag is automatically cleared to 0 if DISEL in DTC is 0 and the transfer counter value is not 0 .
	501	- Retransfer operation when SCI is in transmit mode [9] ... If DTC data transfer by an RXI source is enabled, the contents of RDR can be read automatically. When data is written to TDR by the DTC, the TDRE bit is automatically cleared to 0 if DISEL in DTC is 0 and the transfer counter value is not 0 .
14.1.1 Features	503	- High-speed conversion Description amended - Minimum conversion time: $6.5 \mu \mathrm{~s}$ per channel (at 20 MHz operation)
14.2.2 A/D Control/Status Register (ADCSR)	508	Bit 7-A/D End Flag (ADF) Note * added [Clearing conditions] - When 0 is written to ... - When the DTC* is activated by a ADI interrupt and ADDR is read Note: * The flag is cleared only when DISEL in DTC is 0 and the transfer counter value is not 0 .
	509	Bit 3-Clock Select (CKS) Description added \ldots is stopped (ADST $=0$). Set the conversion time to a value equal to or greater than the conversion time indicated in section 19.5, A/D Conversion Characteristics.
14.4.1 Single Mode (SCAN = 0)	514	Note * added to figure 14.3 Read conversion result*
Figure 14.3 Example of A/D Converter Operation (Single Mode, Channel 1 Selected)		

Item	Page	Revision (See Manual for Details)
17.7 Note on Crystal	553	Section 17.7 added
Resonator		

A. 1 Instruction List

(1) Data Transfer Instructions

Table A. 1 Instruction
Set
Note * added
LDM* STM*
Note: * Only register ER0 to ER6 should be used when using the STM/LDM instruction.

607 (2) Arithmetic Instructions
Note * added
TAS*
Note: * Only register ERO, ER1, ER4, or ER5 should be used when using the TAS instruction.

Table A. 4 Number of
Cycles in Instruction Execution

633 Notes *3 and *4 added
LDM* ${ }^{3}$
637 STM $^{* 3}$ TAS*
Notes: 3. Only register ER0 to ER6 should be used when using the STM/LDM instruction.
4. Only register ER0, ER1, ER4, or ER5 should be used when using the TAS instruction.

Appendix B Register Field

659 DTVECR H'FF37 DTC
Figure amended

DTC Software Activation Enable

0	DTC software activation is disabled [Clearing conditions] - When the DISEL bit is 0 and the specified number of transfers have not ended - When 0 is written to the DISEL bit after a software-activated data transfer end interrupt (SWDTEND) request has been sent to the CPU.
1	DTC software activation is enabled [Holding conditions] - When the DISEL bit is 1 and data transfer has ended - When the specified number of transfers have ended - During data transfer activated by software

Notes: 1. A value of 1 can always be written to the SWDTE bit, but 0 can only be written after 1 is read.
2. Only write to bits DTVEC6 to DTVEC0 when SWDTE is 0 .

662 SCKCR H'FF3A Clock Pulse Generator
Figure amended

	7	6	
Bit	7		
	PSTOP	-	
Initial value :	0	0	
Read/Write :	$\frac{R}{2} / W$	R/W	

680 SSRO H'FF7C SCIO
Note *2 added
R/(W)*1 DTC* ${ }^{2}$
Notes: 1. Can only be written with 0 for flag clearing.
2. DTC can clear this bit only when DISEL is 0 with the transfer counter not being 0 .

Item	Page	Revision (See Manual for Details)
Appendix B Register Field	681	SSR0 H'FF7C Smart Card Interface 0
		Note *2 added
		R/(W)*1 DTC* ${ }^{2}$
		Notes: 1. Can only be written with 0 for flag clearing.
		2. DTC can clear this bit only when DISEL is 0 with the transfer counter not being 0 .
	689	SSR1 H'FF84 SCI1
		Note *2 added
		R/(W)*1 DTC* ${ }^{2}$
		Notes: 1. Can only be written with 0 for flag clearing.
		2. DTC can clear this bit only when DISEL is 0 with the transfer counter not being 0 .
	690	SSR1 H'FF84 Smart Card Interface 1
		Note *2 added
		R/(W)*1 DTC* ${ }^{2}$
		Notes: 1. Can only be written with 0 for flag clearing.
		2. DTC can clear this bit only when DISEL is 0 with the transfer counter not being 0 .
	698	SSR2 H'FF8C SCl2
		Note *2 added
		R/(W)*1 DTC* ${ }^{2}$
		Notes: 1. Can only be written with 0 for flag clearing.
		2. DTC can clear this bit only when DISEL is 0 with the transfer counter not being 0 .
	699	SSR2 H'FF8C Smart Card Interface 2
		Note *2 added
		R/(W)*1 DTC* ${ }^{2}$
		Notes: 1. Can only be written with 0 for flag clearing.
		2. DTC can clear this bit only when DISEL is 0 with the transfer counter not being 0 .

Item	Page	Revision (See Manual for Details)
Appendix B Register Field	702	ADCSR H'FF98 A/D Converter
		Note *2 added
		R/(W)*1 DTC* ${ }^{2}$
		Notes: 1. Can only be written with 0 for flag clearing.
		2. DTC can clear this bit only when DISEL is 0 with the transfer counter not being 0 .
	705	TCSR0 H'FFB2 8-Bit Timer Channel 0
		TCSR1 H'FFB3 8-Bit Timer Channel 1
		Note *2 added
		R/(W)*1 DTC* ${ }^{2}$
		Notes: 1. Can only be written with 0 for flag clearing.
		2. DTC can clear this bit only when DISEL is 0 with the transfer counter not being 0 .
	707	TCSR H'FFBC(W) H'FFBC(R) WDT
		Note *2 added
		R/(W)*1
		Overflow Flag [Clearing condition] Cleared by reading TCSR when $O V F=1$, then writing 0 to OVF*2
		Notes: The method for writing to ...
		1. Can only be written with 0 for flag clearing.
		2. When polling OVF with the interval timer interrupt disabled, read TSCR twice or more while OVF is set to 1.
	709	RSTCSR H'FFBE(W) H'FFBF(R) WDT
		Figure amended
		Watchdog Timer Overflow Flag [Clearing condition] Cleared by reading RSTCSR when WOVF $=1$, then writing 0 to WOVF
	716	TSR0 H'FFD5 TPU0
		Note *2 added
		R/(W)*1 DTC* ${ }^{2}$
		Notes: 1. Can only be written with 0 for flag clearing.
		2. DTC can clear this bit only when DISEL is 0 with the transfer counter not being 0 .

Item	Page	Revision (See Manual for Details)
Appendix B Register Field	722	TSR1 H'FFE5 TPU1
		Note *2 added
		R/(W)*1 DTC* ${ }^{2}$
		Notes: 1. Can only be written with 0 for flag clearing.
		2. DTC can clear this bit only when DISEL is 0 with the transfer counter not being 0 .
	728	TSR2 H'FFF5 TPU2
		Note *2 added
		R/(W)*1 DTC* ${ }^{2}$
		Notes: 1. Can only be written with 0 for flag clearing.
		2. DTC can clear this bit only when DISEL is 0 with the transfer counter not being 0 .
Appendix H Package Dimensions	771	Figure H. 1 replaced
Figure H. 1 FP-100B Package Dimensions		
Figure H. 2 TFP-100B Package Dimensions	772	Figure H. 2 replaced

All trademarks and registered trademarks are the property of their respective owners.

Contents

Section 1 Overview 1
1.1 Overview 1
1.2 Internal Block Diagram 6
1.3 Pin Description 7
1.3.1 Pin Arrangement 7
1.3.2 Pin Functions in Each Operating Mode 8
1.3.3 Pin Functions 12
Section 2 CPU 19
2.1 Overview 19
2.1.1 Features 19
2.1.2 Differences between $\mathrm{H} 8 \mathrm{~S} / 2600 \mathrm{CPU}$ and $\mathrm{H} 8 \mathrm{~S} / 2000 \mathrm{CPU}$ 20
2.1.3 Differences from H8/300 CPU 21
2.1.4 Differences from $\mathrm{H} 8 / 300 \mathrm{H}$ CPU 21
2.2 CPU Operating Modes 22
2.3 Address Space 27
2.4 Register Configuration 28
2.4.1 Overview 28
2.4.2 General Registers 29
2.4.3 Control Registers 30
2.4.4 Initial Register Values 32
2.5 Data Formats 33
2.5.1 General Register Data Formats 33
2.5.2 Memory Data Formats 35
2.6 Instruction Set 36
2.6.1 Overview 36
2.6.2 Instructions and Addressing Modes 37
2.6.3 Table of Instructions Classified by Function 39
2.6.4 Basic Instruction Formats 49
2.6.5 Notes on Use of Bit Manipulation Instructions 50
2.7 Addressing Modes and Effective Address Calculation 50
2.7.1 Addressing Modes 50
2.7.2 Effective Address Calculation 53
2.8 Processing States 57
2.8.1 Overview 57
2.8.2 Reset State 58
2.8.3 Exception-Handling State 59
2.8.4 Program Execution State 61
2.8.5 Bus-Released State 61
2.8.6 Power-Down State 61
2.9 Basic Timing 62
2.9.1 Overview. 62
2.9.2 On-Chip Memory (ROM, RAM) 62
2.9.3 On-Chip Supporting Module Access Timing 64
2.9.4 External Address Space Access Timing 65
2.10 Usage Notes 66
2.10.1 TAS Instruction. 66
2.10.2 STM/LDM Instruction 66
2.10.3 Bit Manipulation Instructions 66
2.10.4 Access Methods for Registers with Write-Only Bits 68
Section 3 MCU Operating Modes 71
3.1 Overview 71
3.1.1 Operating Mode Selection 71
3.1.2 Register Configuration 72
3.2 Register Descriptions 73
3.2.1 Mode Control Register (MDCR) 73
3.2.2 System Control Register (SYSCR) 73
3.3 Operating Mode Descriptions 75
3.3.1 Mode 1 75
3.3.2 Mode 2 75
3.3.3 Mode 3 75
3.3.4 Mode 4 76
3.3.5 Mode 5 76
3.3.6 Mode 6 76
3.3.7 Mode 7 77
3.4 Pin Functions in Each Operating Mode 77
3.5 Memory Map in Each Operating Mode 78
Section 4 Exception Handling 93
4.1 Overview 93
4.1.1 Exception Handling Types and Priority 93
4.1.2 Exception Handling Operation 93
4.1.3 Exception Sources and Vector Table 94
4.2 Reset. 96
4.2.1 Overview 96
4.2.2 Reset Types 96
4.2.3 Reset Sequence 97
4.2.4 Interrupts after Reset 98
4.2.5 State of On-Chip Supporting Modules after Reset Release 98
4.3 Interrupts 99
4.4 Trap Instruction 100
4.5 Stack Status after Exception Handling 101
4.6 Notes on Use of the Stack 102
Section 5 Interrupt Controller 103
5.1 Overview 103
5.1.1 Features 103
5.1.2 Block Diagram 104
5.1.3 Pin Configuration 105
5.1.4 Register Configuration 105
5.2 Register Descriptions 106
5.2.1 System Control Register (SYSCR) 106
5.2.2 Interrupt Control Registers A to C (ICRA to ICRC) 107
5.2.3 IRQ Enable Register (IER) 108
5.2.4 IRQ Sense Control Registers H and L (ISCRH, ISCRL) 108
5.2.5 IRQ Status Register (ISR) 109
5.3 Interrupt Sources 111
5.3.1 External Interrupts 111
5.3.2 Internal Interrupts. 112
5.3.3 Interrupt Exception Handling Vector Table 112
5.4 Interrupt Operation 116
5.4.1 Interrupt Control Modes and Interrupt Operation 116
5.4.2 Interrupt Control Mode 0 119
5.4.3 Interrupt Control Mode 1 121
5.4.4 Interrupt Exception Handling Sequence 124
5.4.5 Interrupt Response Times 125
5.5 Usage Notes 126
5.5.1 Contention between Interrupt Generation and Disabling 126
5.5.2 Instructions that Disable Interrupts 127
5.5.3 Times when Interrupts Are Disabled 127
5.5.4 Interrupts during Execution of EEPMOV Instruction. 127
5.5.5 IRQ Interrupt 127
5.5.6 NMI Interrupt Usage Notes 128
5.6 DTC Activation by Interrupt 128
5.6.1 Overview 128
5.6.2 Block Diagram 129
5.6.3 Operation 129
Section 6 Bus Controller 131
6.1 Overview 131
6.1.1 Features 131
6.1.2 Block Diagram 132
6.1.3 Pin Configuration 133
6.1.4 Register Configuration 134
6.2 Register Descriptions 135
6.2.1 Bus Width Control Register (ABWCR) 135
6.2.2 Access State Control Register (ASTCR) 136
6.2.3 Wait Control Registers H and L (WCRH, WCRL) 137
6.2.4 Bus Control Register H (BCRH) 141
6.2.5 Bus Control Register L (BCRL) 143
6.3 Overview of Bus Control 145
6.3.1 Area Partitioning 145
6.3.2 Bus Specifications 146
6.3.3 Memory Interfaces 147
6.3.4 Advanced Mode 148
6.3.5 Areas in Normal Mode 149
6.3.6 Chip Select Signals 150
6.4 Basic Timing 150
6.4.1 On-Chip Memory (ROM, RAM) Access Timing 151
6.4.2 On-Chip Peripheral Module Access Timing 152
6.4.3 External Address Space Access Timing 153
6.5 Basic Bus Interface 153
6.5.1 Overview 153
6.5.2 Data Size and Data Alignment. 153
6.5.3 Valid Strobes 155
6.5.4 Basic Timing 156
6.5.5 Wait Control 164
6.6 Burst ROM Interface. 166
6.6.1 Overview 166
6.6.2 Basic Timing 166
6.6.3 Wait Control 168
6.7 Idle Cycle 169
6.7.1 Operation 169
6.7.2 Pin States in Idle Cycle 172
6.8 Bus Release 172
6.8.1 Overview 172
6.8.2 Operation 172
6.8.3 Pin States in External Bus Released State 173
6.8.4 Transition Timing 174
6.8.5 Usage Note. 175
6.9 Bus Arbitration 175
6.9.1 Overview 175
6.9.2 Operation 175
6.9.3 Bus Transfer Timing 176
6.9.4 External Bus Release Usage Note 176
6.10 Resets and the Bus Controller 176
Section 7 Data Transfer Controller. 177
7.1 Overview 177
7.1.1 Features 177
7.1.2 Block Diagram 178
7.1.3 Register Configuration 179
7.2 Register Descriptions 180
7.2.1 DTC Mode Register A (MRA) 180
7.2.2 DTC Mode Register B (MRB) 182
7.2.3 DTC Source Address Register (SAR) 183
7.2.4 DTC Destination Address Register (DAR) 183
7.2.5 DTC Transfer Count Register A (CRA) 184
7.2.6 DTC Transfer Count Register B (CRB) 184
7.2.7 DTC Enable Registers (DTCER) 185
7.2.8 DTC Vector Register (DTVECR) 186
7.2.9 Module Stop Control Register (MSTPCR) 187
7.3 Operation 187
7.3.1 Overview 187
7.3.2 Activation Sources 189
7.3.3 DTC Vector Table. 191
7.3.4 Location of Register Information in Address Space 194
7.3.5 Normal Mode 195
7.3.6 Repeat Mode 196
7.3.7 Block Transfer Mode 197
7.3.8 Chain Transfer 199
7.3.9 Operation Timing 200
7.3.10 Number of DTC Execution States. 201
7.3.11 Procedures for Using DTC. 203
7.3.12 Examples of Use of the DTC 204
7.4 Interrupts 206
7.5 Usage Notes 206
Section 8 I/O Ports 207
8.1 Overview 207
8.2 Port 1 213
8.2.1 Overview 213
8.2.2 Register Configuration 214
8.2.3 Pin Functions 216
8.3 Port 2 224
8.3.1 Overview 224
8.3.2 Register Configuration 224
8.3.3 Pin Functions 227
8.4 Port 3 229
8.4.1 Overview 229
8.4.2 Register Configuration 229
8.4.3 Pin Functions 232
8.5 Port 4 234
8.5.1 Overview 234
8.5.2 Register Configuration 234
8.5.3 Pin Functions 235
8.6 Port 5 236
8.6.1 Overview 236
8.6.2 Register Configuration 236
8.6.3 Pin Functions 239
8.7 Port A 240
8.7.1 Overview 240
8.7.2 Register Configuration 240
8.7.3 Pin Functions 244
8.7.4 MOS Input Pull-Up Function 246
8.8 Port B 247
8.8.1 Overview 247
8.8.2 Register Configuration 248
8.8.3 Pin Functions 250
8.8.4 MOS Input Pull-Up Function. 252
8.9 Port C 253
8.9.1 Overview 253
8.9.2 Register Configuration 254
8.9.3 Pin Functions 256
8.9.4 MOS Input Pull-Up Function. 258
8.10 Port D 259
8.10.1 Overview 259
8.10.2 Register Configuration 260
8.10.3 Pin Functions 262
8.10.4 MOS Input Pull-Up Function. 264
8.11 Port E 265
8.11.1 Overview 265
8.11.2 Register Configuration 266
8.11.3 Pin Functions 268
8.11.4 MOS Input Pull-Up Function. 270
8.12 Port F 271
8.12.1 Overview 271
8.12.2 Register Configuration 272
8.12.3 Pin Functions 274
8.13 Port G 277
8.13.1 Overview 277
8.13.2 Register Configuration 278
8.13.3 Pin Functions 281
8.14 Handling of Unused Pins 283
Section 9 16-Bit Timer Pulse Unit (TPU) 285
9.1 Overview 285
9.1.1 Features 285
9.1.2 Block Diagram 289
9.1.3 Pin Configuration 290
9.1.4 Register Configuration 291
9.2 Register Descriptions 292
9.2.1 Timer Control Register (TCR) 292
9.2.2 Timer Mode Register (TMDR) 296
9.2.3 Timer I/O Control Register (TIOR) 298
9.2.4 Timer Interrupt Enable Register (TIER) 307
9.2.5 Timer Status Register (TSR) 309
9.2.6 Timer Counter (TCNT) 313
9.2.7 Timer General Register (TGR) 313
9.2.8 Timer Start Register (TSTR) 314
9.2.9 Timer Synchro Register (TSYR) 315
9.2.10 Module Stop Control Register (MSTPCR) 316
9.3 Interface to Bus Master 317
9.3.1 16-Bit Registers 317
9.3.2 8-Bit Registers 317
9.4 Operation 319
9.4.1 Overview 319
9.4.2 Basic Functions 320
9.4.3 Synchronous Operation 325
9.4.4 Buffer Operation 328
9.4.5 PWM Modes 331
9.4.6 Phase Counting Mode 336
9.5 Interrupts 341
9.5.1 Interrupt Sources and Priorities 341
9.5.2 DTC Activation 342
9.5.3 A/D Converter Activation 342
9.6 Operation Timing 343
9.6.1 Input/Output Timing 343
9.6.2 Interrupt Signal Timing 348
9.7 Usage Notes 352
Section 10 8-Bit Timers 363
10.1 Overview 363
10.1.1 Features 363
10.1.2 Block Diagram 364
10.1.3 Pin Configuration 365
10.1.4 Register Configuration 365
10.2 Register Descriptions 366
10.2.1 Timer Counters 0 and 1 (TCNT0, TCNT1) 366
10.2.2 Time Constant Registers A0 and A1 (TCORA0, TCORA1) 367
10.2.3 Time Constant Registers B0 and B1 (TCORB0, TCORB1) 367
10.2.4 Time Control Registers 0 and 1 (TCR0, TCR1) 368
10.2.5 Timer Control/Status Registers 0 and 1 (TCSR0, TCSR1) 370
10.2.6 Module Stop Control Register (MSTPCR) 373
10.3 Operation 374
10.3.1 TCNT Incrementation Timing 374
10.3.2 Compare Match Timing 375
10.3.3 Timing of External RESET on TCNT 377
10.3.4 Timing of Overflow Flag (OVF) Setting 377
10.3.5 Operation with Cascaded Connection 378
10.4 Interrupt Sources 379
10.4.1 Interrupt Sources and DTC Activation 379
10.4.2 A/D Converter Activation 379
10.5 Sample Application 380
10.6 Usage Notes 381
10.6.1 Setting Module Stop Mode 381
10.6.2 Contention between TCNT Write and Clear 381
10.6.3 Contention between TCNT Write and Increment 382
10.6.4 Contention between TCOR Write and Compare Match 383
10.6.5 Contention between Compare Matches A and B 384
10.6.6 Switching of Internal Clocks and TCNT Operation 384
10.6.7 Interrupts and Module Stop Mode 386
Section 11 Watchdog Timer 387
11.1 Overview 387
11.1.1 Features 387
11.1.2 Block Diagram 388
11.1.3 Pin Configuration 389
11.1.4 Register Configuration 389
11.2 Register Descriptions 390
11.2.1 Timer Counter (TCNT) 390
11.2.2 Timer Control/Status Register (TCSR) 390
11.2.3 Reset Control/Status Register (RSTCSR) 392
11.2.4 Notes on Register Access 394
11.3 Operation 396
11.3.1 Watchdog Timer Operation 396
11.3.2 Interval Timer Operation 398
11.3.3 Timing of Setting Overflow Flag (OVF) 399
11.3.4 Timing of Setting of Watchdog Timer Overflow Flag (WOVF) 400
11.4 Interrupts 400
11.5 Usage Notes 401
11.5.1 Contention between Timer Counter (TCNT) Write and Increment 401
11.5.2 Changing Value of CKS2 to CKS0 401
11.5.3 Switching between Watchdog Timer Mode and Interval Timer Mode 402
11.5.4 System Reset by WDTOVF Signal 402
11.5.5 Internal Reset in Watchdog Timer Mode 402
11.5.6 OVF Flag Clearing in Interval Timer Mode 402
Section 12 Serial Communication Interface (SCI) 403
12.1 Overview 403
12.1.1 Features 403
12.1.2 Block Diagram 405
12.1.3 Pin Configuration 406
12.1.4 Register Configuration 407
12.2 Register Descriptions 408
12.2.1 Receive Shift Register (RSR) 408
12.2.2 Receive Data Register (RDR) 408
12.2.3 Transmit Shift Register (TSR) 409
12.2.4 Transmit Data Register (TDR) 409
12.2.5 Serial Mode Register (SMR) 410
12.2.6 Serial Control Register (SCR) 413
12.2.7 Serial Status Register (SSR) 417
12.2.8 Bit Rate Register (BRR) 421
12.2.9 Smart Card Mode Register (SCMR) 430
12.2.10 Module Stop Control Register (MSTPCR) 431
12.3 Operation 432
12.3.1 Overview 432
12.3.2 Operation in Asynchronous Mode 434
12.3.3 Multiprocessor Communication Function 445
12.3.4 Operation in Clocked Synchronous Mode 453
12.4 SCI Interrupts 462
12.5 Usage Notes 464
Section 13 Smart Card Interface 473
13.1 Overview 473
13.1.1 Features 473
13.1.2 Block Diagram 474
13.1.3 Pin Configuration 475
13.1.4 Register Configuration 475
13.2 Register Descriptions 477
13.2.1 Smart Card Mode Register (SCMR) 477
13.2.2 Serial Status Register (SSR) 478
13.2.3 Serial Mode Register (SMR) 480
13.2.4 Serial Control Register (SCR) 481
13.3 Operation 482
13.3.1 Overview 482
13.3.2 Pin Connections 483
13.3.3 Data Format 484
13.3.4 Register Settings 485
13.3.5 Clock 488
13.3.6 Data Transfer Operations 490
13.3.7 Operation in GSM Mode 497
13.4 Usage Notes 498
Section 14 A/D Converter 503
14.1 Overview 503
14.1.1 Features 503
14.1.2 Block Diagram 504
14.1.3 Pin Configuration 505
14.1.4 Register Configuration 506
14.2 Register Descriptions 507
14.2.1 A/D Data Registers A to D (ADDRA to ADDRD) 507
14.2.2 A/D Control/Status Register (ADCSR) 508
14.2.3 A/D Control Register (ADCR) 510
14.2.4 Module Stop Control Register (MSTPCR) 511
14.3 Interface to Bus Master 512
14.4 Operation. 513
14.4.1 Single Mode (SCAN = 0) 513
14.4.2 Scan Mode (SCAN = 1) 515
14.4.3 Input Sampling and A/D Conversion Time 517
14.4.4 External Trigger Input Timing 518
14.5 Interrupts 519
14.6 Usage Notes 519
Section 15 RAM 525
15.1 Overview 525
15.1.1 Block Diagram 526
15.1.2 Register Configuration 526
15.2 Register Descriptions 527
15.2.1 System Control Register (SYSCR) 527
15.3 Operation 527
Section 16 ROM 529
16.1 Overview 529
16.1.1 Block Diagram 530
16.1.2 Register Configuration 530
16.2 Register Descriptions 531
16.2.1 Bus Control Register L (BCRL) 531
16.3 Operation 532
16.4 PROM Mode 533
16.4.1 PROM Mode Setting 533
16.4.2 Socket Adapter and Memory Map 533
16.5 Programming 536
16.5.1 Overview 536
16.5.2 Programming and Verification 536
16.5.3 Programming Precautions 541
16.5.4 Reliability of Programmed Data 542
Section 17 Clock Pulse Generator 543
17.1 Overview 543
17.1.1 Block Diagram 543
17.1.2 Register Configuration 544
17.2 Register Descriptions 544
17.2.1 System Clock Control Register (SCKCR) 544
17.2.2 Low Power Control Register (LPWCR) 545
17.3 Oscillator 546
17.3.1 Connecting a Crystal Resonator 546
17.3.2 External Clock Input 548
17.4 Duty Adjustment Circuit 553
17.5 Medium-Speed Clock Divider 553
17.6 Bus Master Clock Selection Circuit 553
17.7 Note on Crystal Resonator 553
Section 18 Power-Down Modes 555
18.1 Overview 555
18.1.1 Register Configuration 556
18.2 Register Descriptions 557
18.2.1 Standby Control Register (SBYCR) 557
18.2.2 System Clock Control Register (SCKCR) 558
18.2.3 Module Stop Control Register (MSTPCR) 559
18.3 Medium-Speed Mode 560
18.4 Sleep Mode 561
18.5 Module Stop Mode 562
18.5.1 Module Stop Mode 562
18.5.2 Usage Notes 563
18.6 Software Standby Mode 564
18.6.1 Software Standby Mode 564
18.6.2 Clearing Software Standby Mode 564
18.6.3 Setting Oscillation Stabilization Time after Clearing Software Standby Mode. 565
18.6.4 Software Standby Mode Application Example. 565
18.6.5 Usage Notes 566
18.7 Hardware Standby Mode 567
18.7.1 Hardware Standby Mode 567
18.7.2 Hardware Standby Mode Timing 567
18.8ϕ Clock Output Disabling Function 568
Section 19 Electrical Characteristics 569
19.1 Absolute Maximum Ratings 569
19.2 Power Supply Voltage and Operating Frequency Ranges 570
19.3 DC Characteristics 572
19.4 AC Characteristics 579
19.4.1 Clock Timing 580
19.4.2 Control Signal Timing 582
19.4.3 Bus Timing 584
19.4.4 Timing of On-Chip Supporting Modules 592
19.5 A/D Conversion Characteristics. 597
19.6 Usage Notes 598
Appendix A Instruction Set 599
A. 1 Instruction List 599
A. 2 Operation Code Map 623
A. 3 Number of States Required for Instruction Execution 627
Appendix B Register Field. 638
B. 1 Register Addresses 638
B. 2 Register Descriptions 644
Appendix C I/O Port Block Diagrams 730
C. 1 Port 1 Block Diagram 730
C. 2 Port 2 Block Diagram 734
C. 3 Port 3 Block Diagram 738
C. 4 Port 4 Block Diagram 741
C. 5 Port 5 Block Diagram 742
C. 6 Port A Block Diagram 746
C. 7 Port B Block Diagram 747
C. 8 Port C Block Diagram 748
C. 9 Port D Block Diagram 749
C. 10 Port E Block Diagram 750
C. 11 Port F Block Diagram 751
C. 12 Port G Block Diagram 759
Appendix D Pin States 763
D. 1 Port States in Each Mode 763
Appendix E Pin States at Power-On 767
E. 1 When Pins Settle from an Indeterminate State at Power-On 767
E. 2 When Pins Settle from the High-Impedance State at Power-On 768
Appendix F Timing of Transition to and Recovery from Hardware Standby Mode 769
Appendix G Product Code Lineup. 770
Appendix H Package Dimensions 771

Section 1 Overview

1.1 Overview

The H8S/2245 Group is a series of microcomputers (MCUs: microcomputer units), built around the H8S/2000 CPU, employing Renesas Technology proprietary architecture, and equipped with peripheral functions on-chip.

The H8S/2000 CPU has an internal 32-bit architecture, is provided with sixteen 16-bit general registers and a concise, optimized instruction set designed for high-speed operation, and can address a 16-Mbyte linear address space. The instruction set is upward-compatible with H8/300 and $\mathrm{H} 8 / 300 \mathrm{H}$ CPU instructions at the object-code level, facilitating migration from the $\mathrm{H} 8 / 300$, H8/300L, or H8/300H Series.

On-chip peripheral functions required for system configuration include data transfer controller (DTC) bus masters, ROM and RAM, a 16-bit timer-pulse unit (TPU), 8-bit timer, watchdog timer (WDT), serial communication interface (SCI), A/D converter, and I/O ports.

The on-chip ROM is either PROM (ZTAT ${ }^{\circledR}$) or mask ROM, with a capacity of 128 kbytes, 64 kbytes, or 32 kbytes. ROM is connected to the CPU via a 16 -bit data bus, enabling both byte and word data to be accessed in one state. Instruction fetching has been speeded up, and processing speed increased.

Seven operating modes, modes 1 to 7, are provided, and there is a choice of address space and single-chip mode or external expansion mode.

The features of the H8S/2245 Group are shown in table 1.1.

Note: ZTAT is a registered trademark of Renesas Technology Corp.

Table 1.1 Overview

Item Specification

- General-register machine
- Sixteen 16-bit general registers (also usable as sixteen 8-bit registers or eight 32-bit registers)
- High-speed operation suitable for realtime control
- Maximum clock rate: 20 MHz
- High-speed arithmetic operations ($20-\mathrm{MHz}$ operation) 8/16/32-bit register-register add/subtract: 50 ns
16×16-bit register-register multiply: 1000 ns
$32 \div 16$-bit register-register divide: 1000 ns
- Instruction set suitable for high-speed operation
- Sixty-five basic instructions
- 8/16/32-bit move/arithmetic instructions
- Unsigned/signed multiply and divide instructions
- Powerful bit-manipulation instructions
- Two CPU operating modes
- Normal mode: 64-kbyte address space
- Advanced mode: 16-Mbyte address space

Bus controller

- Address space divided into 8 areas, with bus specifications settable independently for each area
- Chip select output possible for each area
- Choice of 8-bit or 16-bit access space for each area ($\overline{\mathrm{CSO}}$ to $\overline{\mathrm{CS} 3})$
- 2-state or 3-state access space can be designated for each area
- Number of program wait states can be set for each area
- Burst ROM directly connectable
- External bus release function

Data transfer
controller (DTC)

- Can be activated by internal interrupt or software
- Multiple transfers or multiple types of transfer possible for one activation source
- Transfer possible in repeat mode, block transfer mode, etc.
- Request can be sent to CPU for interrupt that activated DTC

Item	Specification		
16-bit timer-pulse unit (TPU)	- 3-channel 16-bit timer on-chip - Pulse I/O processing capability for up to 8 pins' - Automatic 2-phase encoder count capability - 8-bit up-counter (external event count capability) - Two time constant registers - Two-channel connection possible		
8-bit timer 2 channels			
Watchdog timer	- Watchdog timer or interval timer selectable - Asynchronous mode or synchronous mode selectable - Multiprocessor communication function - Smart card interface function		
Serial communication interface (SCI) 3 channels			
A/D converter	- Resolution: 10 bits - Input: 4 channels - Single or scan mode selectable - Sample and hold circuit - A/D conversion can be activated by external trigger or timer trigger		
I/O ports	- 75 I/O pins, 4 input-only pins		
Memory	- PROM or mask ROM - High-speed static RAM		
	H8S/2246	128 kbytes	8 kbytes
	H8S/2245	128 kbytes	4 kbytes
	H8S/2244	64 kbytes	8 kbytes
	H8S/2243	64 kbytes	4 kbytes
	H8S/2242	32 kbytes	8 kbytes
	H8S/2241	32 kbytes	4 kbytes
	H8S/2240	-	4 kbytes

Interrupt controller

- Nine external interrupt pins (NMI, $\overline{\mathrm{IRQ0}}$ to $\overline{\mathrm{IRQ7}}$)
- 34 internal interrupt sources
- Three priority levels settable

Item	Specification			
Power-down state	- Medium-speed mode - Sleep mode - Module stop mode - Software standby mode - Hardware standby mode			
Operating modes	Seven MCU operating modes			Data Bus
	ModeOperating Mode	On-Chip ROM	Initial Value	Maximum Value
	1 Normal On-chip ROM disabled expansion mode	Disabled	8 bits	16 bits
	On-chip ROM enabled expansion mode	Enabled	8 bits	16 bits
	3* Single-chip mode	Enabled	-	-
	$4 \quad$ Advanced On-chip ROM disabled expansion mode	Disabled	16 bits	16 bits
	5 On-chip ROM disabled expansion mode	Disabled	8 bits	16 bits
	6* On-chip ROM enabled expansion mode	Enabled	8 bits	16 bits
	7* Single-chip mode	Enabled	-	-
	Note: * Cannot be used in the H8S/2240.			
Clock pulse generator	- Built-in duty correction circuit			
Packages	- 100-pin plastic QFP (FP-100B) - 100-pin plastic TQFP (TFP-100B)			

Item	Specification		ROM/RAM (Bytes)	Packages
Product lineup				
	Mask ROM Version	ZTAT Version		
	HD6432246	HD6472246	128 k/8 k	FP-100B
	HD6432245	-	128 k/4 k	TFP-100B
	HD6432244	-	$64 \mathrm{k} / 8 \mathrm{k}$	
	HD6432243	-	$64 \mathrm{k} / 4 \mathrm{k}$	
	HD6432242	-	$32 \mathrm{k} / 8 \mathrm{k}$	
	HD6432241R	-	$32 \mathrm{k} / 4 \mathrm{k}$	
	HD6432240	-	-/4 k	

1.2 Internal Block Diagram

Figure 1.1 shows an internal block diagram.

Figure 1.1 Block Diagram

1.3 Pin Description

1.3.1 Pin Arrangement

Figure 1.2 shows the pin arrangement of the H8S/2245 Group.

Figure 1.2 H8S/2245 Group Pin Arrangement (FP-100B, TFB-100B: Top View)

1.3.2 Pin Functions in Each Operating Mode

Table 1.2 shows the pin functions in each of the operating modes.

Table 1.2 Pin Functions in Each Operating Mode

Pin No.
Pin Name

$\begin{aligned} & \text { FP-100B, } \\ & \text { TFP-100B } \end{aligned}$	Mode 1	Mode 2*1	Mode 3*1	Mode 4	Mode 5	Mode 6* ${ }^{\text {¹ }}$	Mode 7*1	PROM Mode*
1	$\begin{aligned} & \text { P1/l } \\ & \text { TIOCC0/ } \\ & \text { TCLKA } \end{aligned}$	$\mathrm{P} 1_{2} /$ TIOCCO/ TCLKA	$\mathrm{P} 1_{2} /$ TIOCCO/ TCLKA	$\mathrm{P}_{2} /$ TIOCC0/ TCLKA/A ${ }_{22}$	$\mathrm{P}_{2} /$ TIOCCO/ TCLKA/A ${ }_{22}$	$\mathrm{P}_{2} /$ TIOCCO/ TCLKA/A 22	$\mathrm{P}_{2} /$ TIOCCO/ TCLKA	NC
2	P_{1} / TIOCD0/ TCLKB	$\mathrm{P}_{1} /$ TIOCD0/ TCLKB	$\mathrm{P}_{1} /$ TIOCD0/ TCLKB	$\mathrm{P}_{1} /$ TIOCD0/ TCLKB/A ${ }_{23}$	P1 ${ }_{3}$ TIOCD0/ TCLKB/A ${ }_{23}$	$\mathrm{P}_{1} /$ TIOCDO/ TCLKB/A 23	$\mathrm{P}_{3} /$ TIOCD0/ TCLKB	NC

3	P1/4/TIOCA1	$\mathrm{P}_{4} /$ TIOCA1	P1 ${ }_{4} /$ TIOCA1	P14/TIOCA1	P14/TIOCA1	$\mathrm{P} 14^{\text {/TIOCA1 }}$	P1/4IOCA1	
4	$\begin{aligned} & \mathrm{P}_{5} / \\ & \text { TIOCB1/ } \\ & \text { TCLKC } \end{aligned}$	$\begin{aligned} & \mathrm{P} 1_{5} / \\ & \text { TIOCB1/ } \\ & \text { TCLKC } \end{aligned}$	$\begin{aligned} & \mathrm{P} 1_{5} / \\ & \text { TIOCB1/ } \\ & \text { TCLKC } \end{aligned}$	$\begin{aligned} & \mathrm{P} 1_{5} / \\ & \text { IOCB1/ } \\ & \text { TCLKC } \end{aligned}$	$\begin{aligned} & \text { P1 }{ }_{5} / \\ & \text { TIOCB1/ } \\ & \text { TCLKC } \end{aligned}$	$\begin{aligned} & \mathrm{P} 1_{5} / \\ & \text { TIOCB1/ } \\ & \text { TCLKC } \end{aligned}$	$\begin{aligned} & \mathrm{P}_{15 /} \\ & \text { TIOCB1/ } \\ & \text { TCLKC } \end{aligned}$	NC
5	$\begin{aligned} & \text { P1 }{ }_{6} \\ & \text { TIOCA2 } \end{aligned}$	$\begin{aligned} & \text { P1 }{ }_{6} \\ & \text { TIOCA2 } \end{aligned}$	$\begin{aligned} & \mathrm{P} 1_{6} / \\ & \text { TIOCA2 } \end{aligned}$	$\begin{aligned} & \mathrm{P} 1_{6} / \\ & \text { TIOCA2 } \end{aligned}$	$\begin{aligned} & \mathrm{P}_{1} / \\ & \text { TIOCA2 } \end{aligned}$	$\begin{aligned} & \text { P16 } \\ & \text { TIOCA2 } \end{aligned}$	$\begin{aligned} & \text { P16 }{ }_{6} \\ & \text { TIOCA2 } \end{aligned}$	NC
6	P1 TIOCB2/ TCLKD	P1 TIOCB2/ TCLKD	P1 ${ }_{7}$ TIOCB2/ TCLKD	P1 TIOCB2/ TCLKD	P1/ TIOCB2/ TCLKD	P1 $/$ TIOCB2/ TCLKD	P1./ TIOCB2/ TCLKD	NC
7	$\mathrm{V}_{\text {ss }}$	V_{ss}	$\mathrm{V}_{\text {ss }}$					
8	P3/TxD0	NC						
9	P3,/TxD1	NC						
10	P3, RxD0	P3/RxD0	P3/RxD0	P3, RxD0	P3/RxD0	P3/RxD0	$\mathrm{P} 3_{2} /$ RxD0	NC
11	$\mathrm{P}_{3} / \mathrm{RxD1}$	$\mathrm{P}_{3} / \mathrm{RxD1}$	$\mathrm{P}_{3} / \mathrm{RxD1}$	$\mathrm{P}_{3} / \mathrm{RxD} 1$	$\mathrm{P}_{3} / \mathrm{RxD1}$	$\mathrm{P}_{3} / \mathrm{RxD} 1$	$\mathrm{P}_{3} /$ RxD1	NC
12	$\frac{\mathrm{P}_{4} / \mathrm{SCKO}}{\mathrm{IRQ4}}$	$\frac{\mathrm{P} 3_{4} / \mathrm{SCK} 0 /}{\mathrm{RQ} 4}$	$\frac{\mathrm{P}_{4} / \mathrm{SCKO}}{\mathrm{IRQ} 4}$	$\frac{\mathrm{P}_{4} / \mathrm{SCKO}}{\mathrm{IRQ} 4}$	$\frac{\mathrm{P}_{4} / \text { SCKO } 0 /}{\mathrm{IRQ4}}$	$\frac{\mathrm{P}_{4} / \mathrm{SCK} 0 /}{\mathrm{IRQ}^{2}}$	$\frac{\mathrm{P}_{4} / \text { SCKO }}{\mathrm{IRQ} 4}$	NC
13	$\frac{\mathrm{P}_{5} / \mathrm{SCK} 1 /}{\mathrm{IRQ5}}$	$\frac{\mathrm{P} 3_{5} / \mathrm{SCK} 1 /}{\mathrm{RQ} 5}$	$\frac{\mathrm{P}_{5} / \mathrm{SCK} 1 /}{\mathrm{IRQ5}}$	$\frac{\mathrm{P}_{5} / \mathrm{SCK} 1 /}{\mathrm{RRQ5}}$	$\frac{\mathrm{P}_{5} / \mathrm{SCK} 1 /}{\mathrm{RRQ5}}$	$\frac{\mathrm{P}_{5} / \mathrm{SCK} 1 /}{\mathrm{TRQ5}}$	$\frac{\mathrm{P}_{5} / \mathrm{SCK} 1 /}{\mathrm{IRQ5}}$	NC
14	$\mathrm{PE}_{0} / \mathrm{D}_{0}$	PE $/ \mathrm{D}_{0}$	PE_{0}	$\mathrm{PE}_{0} / \mathrm{D}_{0}$	$\mathrm{PE}_{0} / \mathrm{D}_{0}$	$\mathrm{PE}_{0} / \mathrm{D}_{0}$	PE_{0}	NC
15	PE, $/ \mathrm{D}_{1}$	$\mathrm{PE}, \mathrm{D}_{1}$	PE_{1}	PE/ $/ \mathrm{D}_{1}$	$\mathrm{PE}, \mathrm{I}_{1}$	$\mathrm{PE}, \mathrm{L}_{1}$	PE_{1}	NC
16	$\mathrm{PE}_{2} / \mathrm{D}_{2}$	$\mathrm{PE}_{2} / \mathrm{D}_{2}$	PE_{2}	$\mathrm{PE}_{2} / \mathrm{D}_{2}$	$\mathrm{PE}_{2} / \mathrm{D}_{2}$	$\mathrm{PE}_{2} / \mathrm{D}_{2}$	PE_{2}	NC
17	$\mathrm{PE}_{3} / \mathrm{D}_{3}$	$\mathrm{PE}_{3} / \mathrm{D}_{3}$	PE_{3}	$\mathrm{PE}_{3} / \mathrm{D}_{3}$	$\mathrm{PE}_{3} / \mathrm{D}_{3}$	$\mathrm{PE}_{3} / \mathrm{D}_{3}$	PE_{3}	NC
18	$\mathrm{V}_{\text {ss }}$							

Pin No.
FP-100B, TFP-100B Mode 1 Mode 2 ${ }^{* 1} \quad$ Mode 3 $^{* 1} \quad$ Mode 4 Mode 5 Mode 6* ${ }^{* 1}$ Mode 7* ${ }^{* 1} \quad$ Mode $^{*^{2}}$

19	$\mathrm{PE}_{4} / \mathrm{D}_{4}$	$\mathrm{PE}_{4} / \mathrm{D}_{4}$	PE_{4}	$\mathrm{PE}_{4} / \mathrm{D}_{4}$	$\mathrm{PE}_{4} / \mathrm{D}_{4}$	$\mathrm{PE}_{4} / \mathrm{D}_{4}$	PE_{4}	NC
20	$\mathrm{PE}_{5} / \mathrm{D}_{5}$	$\mathrm{PE}_{5} / \mathrm{D}_{5}$	PE_{5}	$\mathrm{PE}_{5} / \mathrm{D}_{5}$	$\mathrm{PE}_{5} / \mathrm{D}_{5}$	$\mathrm{PE}_{5} / \mathrm{D}_{5}$	PE_{5}	NC
21	$P E_{6} / D_{6}$	PE ${ }_{6} / \mathrm{D}_{6}$	PE_{6}	$\mathrm{PE}_{6} / \mathrm{D}_{6}$	$\mathrm{PE}_{6} / \mathrm{D}_{6}$	$P \mathrm{E}_{6} / \mathrm{D}_{6}$	PE_{6}	NC
22	$\mathrm{PE}_{7} / \mathrm{D}_{7}$	$\mathrm{PE}_{7} / \mathrm{D}_{7}$	PE_{7}	$\mathrm{PE}_{7} / \mathrm{D}_{7}$	$\mathrm{PE}_{7} / \mathrm{D}_{7}$	$\mathrm{PE}_{7} / \mathrm{D}_{7}$	PE_{7}	NC
23	D_{8}	D_{8}	PD ${ }_{0}$	D_{8}	D_{8}	D_{8}	PD 0	D_{0}
24	D_{9}	D_{9}	PD ${ }_{1}$	D_{9}	D_{9}	D_{9}	PD ${ }_{1}$	D_{1}
25	D_{10}	D_{10}	PD_{2}	D_{10}	D_{10}	D_{10}	PD_{2}	D_{2}
26	D_{11}	D_{11}	PD_{3}	D_{11}	D_{11}	D_{11}	PD_{3}	D_{3}
27	D_{12}	D_{12}	PD_{4}	D_{12}	D_{12}	D_{12}	PD_{4}	D_{4}
28	D_{13}	D_{13}	PD_{5}	D_{13}	D_{13}	D_{13}	PD_{5}	D_{5}
29	D_{14}	D_{14}	PD_{6}	D_{14}	D_{14}	D_{14}	PD_{6}	D_{6}
30	D_{15}	D_{15}	PD_{7}	D_{15}	D_{15}	D_{15}	PD_{7}	D_{7}
31	$\mathrm{V}_{\text {ss }}$	$\mathrm{V}_{\text {ss }}$	V_{ss}	$\mathrm{V}_{\text {ss }}$				
32	A_{0}	$\mathrm{PC}_{0} / \mathrm{A}_{0}$	PC 0	A_{0}	A_{0}	$\mathrm{PC}_{0} / \mathrm{A}_{0}$	PC 0	A_{0}
33	A_{1}	$\mathrm{PC}_{1} / \mathrm{A}_{1}$	PC_{1}	A_{1}	A_{1}	$\mathrm{PC}_{1} / \mathrm{A}_{1}$	PC_{1}	A_{1}
34	A_{2}	$\mathrm{PC}_{2} / \mathrm{A}_{2}$	PC_{2}	A_{2}	A_{2}	$\mathrm{PC}_{2} / \mathrm{A}_{2}$	PC_{2}	A_{2}
35	A_{3}	$\mathrm{PC}_{3} / \mathrm{A}_{3}$	PC_{3}	A_{3}	A_{3}	$\mathrm{PC}_{3} / \mathrm{A}_{3}$	PC_{3}	A_{3}
36	A_{4}	$\mathrm{PC}_{4} / \mathrm{A}_{4}$	PC_{4}	A_{4}	A_{4}	$\mathrm{PC}_{4} / \mathrm{A}_{4}$	PC_{4}	A_{4}
37	A_{5}	$\mathrm{PC}_{5} / \mathrm{A}_{5}$	PC_{5}	A_{5}	A_{5}	$\mathrm{PC}_{5} / \mathrm{A}_{5}$	PC_{5}	A_{5}
38	A_{6}	$\mathrm{PC}_{6} / \mathrm{A}_{6}$	PC_{6}	A_{6}	A_{6}	$\mathrm{PC}_{6} / \mathrm{A}_{6}$	PC_{6}	A_{6}
39	A_{7}	$\mathrm{PC}_{7} / \mathrm{A}_{7}$	PC_{7}	A_{7}	A_{7}	$\mathrm{PC}_{7} / \mathrm{A}_{7}$	PC_{7}	A_{7}
40	V_{cc}							
41	A_{8}	$\mathrm{PB}_{0} / \mathrm{A}_{8}$	PB_{0}	A_{8}	A_{8}	$\mathrm{PB}_{0} / \mathrm{A}_{8}$	PB_{0}	A_{8}
42	A_{9}	$\mathrm{PB}_{1} / \mathrm{A}_{9}$	PB_{1}	A_{9}	A_{9}	$\mathrm{PB}_{1} / \mathrm{A}_{9}$	PB_{1}	$\overline{\mathrm{OE}}$
43	A_{10}	$\mathrm{PB}_{2} / \mathrm{A}_{10}$	PB_{2}	A_{10}	A_{10}	$\mathrm{PB}_{2} / \mathrm{A}_{10}$	PB_{2}	A_{10}
44	A_{11}	$\mathrm{PB}_{3} / \mathrm{A}_{11}$	PB_{3}	A_{11}	A_{11}	$\mathrm{PB}_{3} / \mathrm{A}_{11}$	PB_{3}	A_{11}
45	A_{12}	$\mathrm{PB}_{4} / \mathrm{A}_{12}$	PB_{4}	A_{12}	A_{12}	$\mathrm{PB}_{4} / \mathrm{A}_{12}$	PB_{4}	A_{12}
46	A_{13}	$\mathrm{PB}_{5} / \mathrm{A}_{13}$	PB_{5}	A_{13}	A_{13}	$\mathrm{PB}_{5} / \mathrm{A}_{13}$	PB_{5}	A_{13}
47	A_{14}	$\mathrm{PB}_{6} / \mathrm{A}_{14}$	PB_{6}	A_{14}	A_{14}	$\mathrm{PB}_{6} / \mathrm{A}_{14}$	PB_{6}	A_{14}
48	A_{15}	$\mathrm{PB}_{7} / \mathrm{A}_{15}$	PB_{7}	A_{15}	A_{15}	$\mathrm{PB}_{7} / \mathrm{A}_{15}$	PB_{7}	A_{15}

Pin No.
Pin Name

$\begin{aligned} & \text { FP-100B, } \\ & \text { TFP-100B } \end{aligned}$	Mode 1	Mode $\mathbf{2}^{* 1}$	Mode 3*1	Mode 4	Mode 5	Mode 6*1	Mode 7*1	PROM Mode*
49	$\mathrm{V}_{\text {ss }}$							
50	PA ${ }_{0}$	PA ${ }_{0}$	PA ${ }_{0}$	A_{16}	A_{16}	$\mathrm{PA}_{0} / \mathrm{A}_{16}$	PA ${ }_{0}$	A_{16}
51	PA ${ }_{1}$	PA ${ }_{1}$	PA ${ }_{1}$	A_{17}	A_{17}	$\mathrm{PA}_{1} / \mathrm{A}_{17}$	PA ${ }_{1}$	V_{cc}
52	PA_{2}	PA_{2}	PA_{2}	A_{18}	A_{18}	$\mathrm{PA}_{2} / \mathrm{A}_{18}$	PA_{2}	$\mathrm{V}_{\text {cc }}$
53	PA_{3}	PA_{3}	PA_{3}	A_{19}	A_{19}	$\mathrm{PA}_{3} / \mathrm{A}_{19}$	PA_{3}	NC
54	P50/TxD2	P50/TxD2	P50/TxD2	P5/TxD2	P5/TxD2	P5/TxD2	P50/TxD2	NC
55	P51/RxD2	P51/RxD2	P5,/RxD2	P5,/RxD2	P5,/RxD2	P51/RxD2	P5,/RxD2	NC
56	P5 ${ }_{2}$ /SCK2	P5 ${ }_{2}$ /SCK2	P5/SCK2	P5 ${ }_{2}$ /SCK2	P52/SCK2	P52/SCK2	P5/SCK2	NC
57	MD ${ }_{0}$	$\mathrm{V}_{\text {ss }}$						
58	MD ${ }_{1}$	$\mathrm{V}_{\text {ss }}$						
59	P 53	$\mathrm{P5}_{3}$	P 53	$\mathrm{P5}_{3}$	P 53	P 53	$\mathrm{P5}_{3}$	NC
60	WDTOVF	NC						
61	MD ${ }_{2}$	$\mathrm{V}_{\text {ss }}$						
62	$\overline{\mathrm{RES}}$	$\overline{\mathrm{RES}}$	$\overline{\mathrm{RES}}$	$\overline{\mathrm{RES}}$	$\overline{\mathrm{RES}}$	$\overline{\mathrm{RES}}$	$\overline{\text { RES }}$	$V_{\text {PP }}$
63	NMI	A9						
64	$\overline{\text { STBY }}$	STBY	STBY	STBY	STBY	STBY	STBY	$\mathrm{V}_{\text {ss }}$
65	$\mathrm{V}_{\text {c }}$	$\mathrm{V}_{\text {c }}$	V_{cc}	V_{cc}	V_{cc}	$\mathrm{V}_{\text {c }}$	$\mathrm{V}_{\text {c }}$	V_{cc}
66	XTAL	NC						
67	EXTAL	NC						
68	$\mathrm{V}_{\text {ss }}$							
69	$\mathrm{PF}_{7} / \mathrm{\phi}$	$\mathrm{PF}_{7} /$ /	$\mathrm{PF}_{7} /$ /	$\mathrm{PF}_{7} /$ ¢	$\mathrm{PF}_{7} / \mathrm{\phi}$	$\mathrm{PF}_{7} / \mathrm{\phi}$	$\mathrm{PF}_{7} / \mathrm{\phi}$	NC
70	$\overline{\text { AS }}$	$\overline{\text { AS }}$	PF_{6}	$\overline{\text { AS }}$	$\overline{\text { AS }}$	$\overline{\text { AS }}$	PF_{6}	NC
71	$\overline{\mathrm{RD}}$	$\overline{\mathrm{RD}}$	PF_{5}	$\overline{\mathrm{RD}}$	$\overline{\mathrm{RD}}$	$\overline{\mathrm{RD}}$	PF_{5}	NC
72	$\overline{\text { HWR }}$	$\overline{\text { HWR }}$	PF_{4}	HWR	HWR	HWR	PF_{4}	NC
73	LWR	$\overline{\text { LWR }}$	$\mathrm{PF}_{3} / \overline{\mathrm{IRQ3}}$	$\overline{\text { LWR }}$	$\overline{\text { LWR }}$	$\overline{\text { LWR }}$	$\mathrm{PF}_{3} / \overline{\mathrm{IRQ3}}$	NC
74	$\begin{aligned} & \frac{\mathrm{PF}_{2} / \overline{\mathrm{WAIT}} /}{} \overline{\mathrm{BREQO} /} \\ & \overline{\mathrm{IRQ2}} \end{aligned}$	$\begin{aligned} & \hline \mathrm{PF}_{2} \overline{\mathrm{WAIT}} / \\ & \overline{\mathrm{BREQO}} / \\ & \hline \overline{\mathrm{IRQ2}} \end{aligned}$	$\mathrm{PF}_{2} / \overline{\mathrm{IRQ} 2}$	$\begin{aligned} & \frac{\mathrm{PF}_{2} / \overline{\mathrm{WAIT}} /}{} \overline{\mathrm{BREQO} /} \\ & \hline \frac{\mathrm{RQ2}}{} \end{aligned}$	$\begin{aligned} & \frac{\mathrm{PF}_{2} \overline{\mathrm{WAIT}} /}{} \overline{\mathrm{BREQO} /} \\ & \hline \mathrm{IRQ2} \end{aligned}$	$\begin{aligned} & \frac{\mathrm{PF}_{2} \overline{\mathrm{WAIT}} /}{} \overline{\mathrm{BREQO} /} \\ & \hline \mathrm{IRQ2} \end{aligned}$	$\mathrm{PF}_{2} / \overline{\mathrm{IRQ} 2}$	$\overline{C E}$
75	$\frac{\mathrm{PF}_{1} \overline{\mathrm{BACK}} /}{\overline{\mathrm{RQ} 1}}$	$\begin{aligned} & \overline{\mathrm{PF} / \overline{\mathrm{BACK}}} / \overline{\mathrm{IRQ1}} \end{aligned}$	$\mathrm{PF}_{1} / \overline{\mathrm{RQQ}}$	$\frac{\overline{\mathrm{PF}} / \overline{\mathrm{BACK}} /}{\overline{\mathrm{IRQ1}}}$		$\begin{aligned} & \hline \frac{\mathrm{PF}_{\mathrm{F}} / \overline{\mathrm{BACK}} /}{\mathrm{IRQ1}} \end{aligned}$	$\mathrm{PF}_{1} / \overline{/ \mathrm{RQ} 1}$	$\overline{\text { PGM }}$

Rev.3.00 Mar. 26, 2007 Page 10 of 772
REJ09B0355-0300

Pin Name

$\begin{aligned} & \text { FP-100B, } \\ & \text { TFP-100B } \end{aligned}$	Mode 1	Mode $\mathbf{2}^{* 1}$	Mode 3*1	Mode 4	Mode 5	Mode $\mathbf{6 *}^{1}$	Mode $7^{* 1}$	PROM Mode*
76	$\frac{\mathrm{PF} / \sqrt{\mathrm{BREQ}} /}{\frac{\mathrm{IRO}}{}}$	$\frac{\mathrm{PF}_{\mathrm{R}} / \overline{\mathrm{BREQ}} /}{\mathrm{IRQO}}$	PF ${ }_{0} / \overline{\text { RQ0 }}$	$\frac{\mathrm{PF}_{0} / \overline{\mathrm{BREQ}} /}{\frac{\mathrm{IRQO}}{}}$	$\frac{\mathrm{PF}_{0} / \overline{\mathrm{BREQ}} /}{\overline{\mathrm{RQO}}}$	$\frac{\mathrm{PF}_{0} / \overline{\mathrm{BREQ}} /}{\overline{\mathrm{RQO}}}$	PF ${ }_{0} / \overline{\text { IRQ0 }}$	NC
77	$\mathrm{AV}_{\text {cc }}$	$\mathrm{AV}_{\text {cc }}$	$\mathrm{AV}_{\mathrm{cc}}$	$\mathrm{AV}_{\mathrm{cc}}$	$\mathrm{AV}_{\mathrm{cc}}$	$\mathrm{AV}_{\mathrm{cc}}$	$\mathrm{AV}_{\text {cc }}$	V_{cc}
78	$V_{\text {ref }}$	$\mathrm{V}_{\text {ref }}$	$V_{\text {ref }}$	$\mathrm{V}_{\text {cc }}$				
79	P4/AN0	NC						
80	P4,/AN1	P4, /AN1	P4,/AN1	P4,/AN1	P4,/AN1	P4,/AN1	P4/AN1	NC
81	P4/AN2	NC						
82	P4/AN3	P4/3N3	P4/AN3	P4/AN3	$\mathrm{P}_{3} /$ AN3	P4/AN3	P4/3N3	NC
83	$\mathrm{AV}_{\text {ss }}$	$\mathrm{V}_{\text {ss }}$						
84	$\mathrm{V}_{\text {ss }}$							
85	P2 ${ }_{0}$	P 20	P2 ${ }_{0}$	P 20	P 20	P2 ${ }_{0}$	P 20	NC
86	P2 ${ }_{1}$	NC						
87	P2/TMRIO	P2/TMRIO	P2/TMRIO	P2/TMRI0	P2/TMRIO	P2/TMRIO	P2/TMRIO	NC
88	$\mathrm{P}_{3} / \mathrm{TMCIO}$	$\mathrm{P}_{3} / \mathrm{TMCIO}$	$\mathrm{P}_{3} /$ TMCIO	NC				
89	$\mathrm{P} 244^{4}$ TMRI1	$\mathrm{P} 24^{4} / \mathrm{TMRI} 1$	P2/TMRI1	P2/TMRI1	P2/TMRI1	P2/TMRI1	P2/TMRI1	NC
90	$\mathrm{P} 25^{5}$ TMCl1	P2/TMCl1	$\mathrm{P} 2 / 5^{5} \mathrm{TMCl} 1$	$\mathrm{P}_{5} / \mathrm{TMCl} 1$	$\mathrm{P}_{5} / \mathrm{TMCl} 1$	$\mathrm{P} 2 / 5^{5} \mathrm{TMCl} 1$	$\mathrm{P}_{5} / \mathrm{TMCl} 1$	NC
91	P2/TMOO	P2/TMO0	P2/TMO0	P2/TMOO	P2/TMO0	P2/TMO0	P2/TMO0	NC
92	P2//TMO1	P2//TMO1	P2/TMO1	P2//TMO1	P2//TMO1	P2//TMO1	P2/TMO1	NC
93	$\overline{P_{G}} / \overline{\mathrm{IRQ6}} /$ $\overline{\text { ADTRG }}$	$\begin{aligned} & \frac{\mathrm{PG}_{\mathrm{o}} / \overline{\mathrm{IRQ6}} /}{\overline{\mathrm{ADTRG}}} \end{aligned}$	$\begin{aligned} & \hline \mathrm{PG}_{0} / \overline{\mathrm{RQ} 6} / \\ & \overline{\mathrm{ADTRG}} \end{aligned}$	$\mathrm{PG}_{0} / \overline{\mathrm{IRQ6} /}$ ADTRG	$\mathrm{PG} / \overline{\mathrm{IRQ} 6} /$ $\overline{\text { ADTRG }}$	$\overline{P_{G}} / \overline{\mathrm{IRQ6} /}$ ADTRG	$\begin{aligned} & \hline \mathrm{PG}_{\mathrm{o}} / \overline{\mathrm{IRQ6}} / \\ & \hline \mathrm{ADTRG} \end{aligned}$	NC
94	PG/ /IRQ7	PG, /IRQ7	$\mathrm{PG}_{1} / \overline{\mathrm{IRQ}}$	$\frac{\mathrm{PG}_{\mathrm{i}} / \overline{\mathrm{CS3}} /}{\overline{\mathrm{IRQ7}}}$	$\frac{\mathrm{PG} / \overline{\mathrm{CS3}} /}{\overline{\mathrm{IRQ7}}}$	$\frac{\mathrm{PG} / \overline{\mathrm{CS3}} /}{\overline{\mathrm{IRQ7}}}$	$\mathrm{PG}_{1} / \overline{\mathrm{RQ}} 7$	NC
95	PG ${ }_{2}$	PG ${ }_{2}$	PG ${ }_{2}$	$\mathrm{PG}_{2} / \overline{\mathrm{CS} 2}$	$\mathrm{PG}_{2} / \overline{\mathrm{CS} 2}$	$\mathrm{PG}_{2} / \overline{\mathrm{CS} 2}$	PG ${ }_{2}$	NC
96	PG_{3}	PG_{3}	PG_{3}	$\mathrm{PG}_{3} / \overline{\mathrm{CS} 1}$	$\mathrm{PG}_{3} / \overline{\mathrm{CS} 1}$	$\mathrm{PG}_{3} / \overline{\mathrm{CS1}}$	PG_{3}	NC
97	$\mathrm{PG}_{4} / \overline{\mathrm{CSO}}$	$\mathrm{PG}_{4} / \overline{\mathrm{CSO}}$	PG_{4}	$\mathrm{PG}_{4} / \overline{\mathrm{CSO}}$	$\mathrm{PG}_{4} / \overline{\mathrm{CSO}}$	$\mathrm{PG}_{4} / \overline{\mathrm{CSO}}$	PG_{4}	NC
98	$\mathrm{V}_{\text {cc }}$	$\mathrm{V}_{\text {cc }}$	V_{cc}	$\mathrm{V}_{\text {cc }}$				
99	P1 ${ }_{0}$ TIOCAO	P1 ${ }_{0}$ TIOCAO	P1。/ TIOCAO	$\begin{aligned} & \text { P1 } 1_{\mathrm{d}} \\ & \text { TIOCAO/A }{ }_{20} \end{aligned}$	$\begin{aligned} & \mathrm{P} 1_{0} \mathrm{~d} \\ & \text { TIOCA0/A }_{20} \end{aligned}$	$\begin{aligned} & \mathrm{P} 1_{\mathrm{o}} \mathrm{I} \\ & \mathrm{TIOCAO}_{2} / \mathrm{A}_{20} \end{aligned}$	P1 ${ }_{0}$ TIOCAO	NC
100	$\begin{aligned} & \hline \text { P1,I } \\ & \text { TIOCB0 } \end{aligned}$	$\begin{aligned} & \mathrm{P} 1_{1} / \\ & \text { TIOCB0 } \end{aligned}$	$\begin{aligned} & \text { P1,/ } \\ & \text { TIOCB0 } \end{aligned}$	$\begin{aligned} & \mathrm{P} 1, / \\ & \text { TIOCB0/A } \end{aligned}$	$\begin{aligned} & \mathrm{P} 1_{1 / \mathrm{I}} \\ & \mathrm{TIOCB} 0 / \mathrm{A}_{21} \end{aligned}$	$\begin{aligned} & \mathrm{P} 1_{1} / \\ & \mathrm{TIOCB} 0 / \mathrm{A}_{21} \end{aligned}$	$\begin{aligned} & \hline \text { P1,/ } \\ & \text { TIOCB0 } \end{aligned}$	NC

Notes: 1. Cannot be used in the $\mathrm{H} 8 \mathrm{~S} / 2240$.
2. NC should be left open.

1.3.3 Pin Functions

Table 1.3 outlines the pin functions.
Table 1.3 Pin Functions

Type	Symbol	Pin No.	1/0	Name and Function
		FP-100B, TFP-100B		
Power	$\mathrm{V}_{\text {cc }}$	40, 65, 98	Input	Power supply: All V_{cc} pins should be connected to the system power supply.
	$\mathrm{V}_{\text {ss }}$	7, 18, 31, 49, 68, 84	Input	Ground: All $\mathrm{V}_{\text {ss }}$ pins should be connected to the system power supply (0 V).
Clock	XTAL	66	Input	Connects to a crystal oscillator. See section 17, Clock Pulse Generator, for typical connection diagrams for a crystal oscillator and external clock input.
	EXTAL	67	Input	Connects to a crystal oscillator. The EXTAL pin can also input an external clock. See section 17, Clock Pulse Generator, for typical connection diagrams for a crystal oscillator and external clock input.
	ϕ	69	Output	System clock: Supplies the system clock to an external device.

Type	Symbol	Pin No.	1/0	Name and Function			
		FP-100B, TFP-100B					
Operating mode control	$\begin{aligned} & \mathrm{MD}_{2} \text { to } \\ & \mathrm{MD}_{0} \end{aligned}$	61, 58, 57	Input	Mode pins: These pins set the operating mode. The relation between the settings of pins MD_{2} to MD_{0} and the operating mode is shown below. These pins should not be changed while the H8S/2245 Group is operating.			
				Except for mode changing, be sure to fix the levels of the mode pins $\left(\mathrm{MD}_{2}\right.$ to MD_{0}) by pulling them down or pulling them up until the power turns off.			
							Operating Mode
				0	0	0	-
						1	Mode 1
					1	0	Mode 2*
						1	Mode 3*
				1	0	0	Mode 4
						1	Mode 5
					1	0	Mode 6*
						1	Mode 7*
				Note:	$\begin{array}{ll} \text { * Car } \\ \\ & \end{array}$	$\begin{aligned} & \text { 10t be } \\ & 2240 . \end{aligned}$	ed in the
System control	$\overline{\text { RES }}$	62	Input	Reset input: When this pin is driven low, the chip is reset. The type of reset can be selected according to the NMI input level. At power-on, the NMI pin input level should be set high.			
	$\overline{\text { STBY }}$	64	Input	Standby: When this pin is driven low, a transition is made to hardware standby mode.			
	$\overline{\overline{\text { BREQ }}}$	76	Input	Bus request: Used by an external bus master to issue a bus request to the H8S/2245 Group.			
	$\overline{\text { BREQO }}$	74	Output	Bus request output: The external bus request signal used when an internal bus master accesses external space in the external bus-released state.			

Type	Symbol	Pin No.	1/0	Name and Function
		FP-100B, TFP-100B		
System control	$\overline{\text { BACK }}$	75	Output	Bus request acknowledge: Indicates that the bus has been released to an external bus master.
Interrupts	NMI	63	Input	Nonmaskable interrupt: Requests a nonmaskable interrupt. When this pin is not used, it should be fixed high.
	$\begin{aligned} & \overline{\overline{\mathrm{IRQ7}} \mathrm{to}} \\ & \hline \mathrm{RQ} *^{1} \end{aligned}$	$\begin{aligned} & 94,93,13,12, \\ & 73 \text { to } 76 \end{aligned}$	Input	Interrupt request 7 to 0 : These pins request a maskable interrupt.
Address bus	$\begin{aligned} & \mathrm{A}_{23} \text { to } \\ & \mathrm{A}_{0} \end{aligned}$	$\begin{aligned} & 2,1,100,99 \\ & 53 \text { to } 50,48 \text { to } 41, \\ & 39 \text { to } 32 \end{aligned}$	Output	Address bus: These pins output an address.
Data bus	$\begin{aligned} & D_{15} \text { to } \\ & D_{0} \end{aligned}$	30 to 19, 17 to 14	I/O	Data bus: These pins constitute a bidirectional data bus.
Bus control	$\overline{\overline{\mathrm{CS3}}} \mathrm{to}$	94 to 97	Output	Chip select: Signals for selecting areas 3 to 0 .
	$\overline{\overline{\mathrm{AS}}}$	70	Output	Address strobe: When this pin is low, it indicates that address output on the address bus is enabled.
	$\overline{\mathrm{RD}}$	71	Output	Read: When this pin is low, it indicates that the external address space can be read.
	$\overline{\overline{H W R}}$	72	Output	High write: A strobe signal that writes to external space and indicates that the upper half (D_{15} to D_{8}) of the data bus is enabled.
	$\overline{\overline{L W R}}$	73	Output	Low write: A strobe signal that writes to external space and indicates that the lower half $\left(D_{7}\right.$ to $\left.D_{0}\right)$ of the data bus is enabled.
	$\overline{\text { WAIT }}$	74	Input	Wait: Requests insertion of a wait state in the bus cycle when accessing external 3-state address space.

Type	Symbol	$\frac{\text { Pin No. }}{\text { FP-100B, TFP-100B }}$	I/O	Name and Function
16-bit timerpulse unit (TPU)	TCLKD to TCLKA	6, 4, 2, 1	Input	Clock input D to A : These pins input an external clock.
	TIOCAO, TIOCBO, TIOCCO, TIOCDO	99, 100, 1, 2	I/O	Input capture/output compare match A0 to D0: The TGROA to TGROD input capture input or output compare output, or PWM output pins.
	TIOCA1, TIOCB1	3, 4	I/O	Input capture/output compare match A1 and B1: The TGR1A and TGR1B input capture input or output compare output, or PWM output pins.
	$\begin{aligned} & \text { TIOCA2, } \\ & \text { TIOCB2 } \end{aligned}$	5,6	I/O	Input capture/output compare match A2 and B2: The TGR2A and TGR2B input capture input or output compare output, or PWM output pins.
8-bit timer	TMOO, TMO1	91, 92	Output	Compare match output: The compare match output pins.
	TMCIO, TMCI1	88, 90	Input	Counter external clock input: Input pins for the external clock input to the counter.
	TMRIO, TMRI1	87, 89	Input	Counter external reset input: The counter reset input pins.
Watchdog timer (WDT)	WDTOVF	60	Output	Watchdog timer: The counter overflow signal output pin in watchdog timer mode.
Serial communication interface (SCI)/ Smart Card interface	$\begin{aligned} & \text { TxD2, } \\ & \text { TxD1, } \\ & \text { TxD0 } \end{aligned}$	54, 9, 8	Output	Transmit data (channel 0, 1, 2): Data output pins.
	$\begin{aligned} & \text { R×D2, } \\ & \text { R×D1, } \\ & \text { R×DO } \end{aligned}$	55, 11, 10	Input	Receive data (channel 0, 1, 2): Data input pins.
	$\begin{aligned} & \text { SCK2, } \\ & \text { SCK1, } \\ & \text { SCK0 } \end{aligned}$	56, 13, 12	I/O	Serial clock (channel 0, 1, 2): Clock I/O pins.

Pin No.

Type	Symbol	FP-100B, TFP-100B	1/0	Name and Function
A/D converter	AN3 to ANO	82 to 79	Input	Analog 3 to 0: Analog input pins.
	$\overline{\text { ADTRG }}$	93	Input	A/D conversion external trigger input: Pin for input of an external trigger to start A/D conversion.
	$\mathrm{AV}_{\mathrm{cc}}$	77	Input	This is the power supply pin for the A/D converter. When the A/D converter is not used, this pin should be connected to the system power supply (+5 V).
	$\mathrm{AV}_{\text {ss }}$	83	Input	This is the ground pin for the A/D converter. This pin should be connected to the system power supply (0 V).
	$\mathrm{V}_{\text {ref }}$	78	Input	This is the reference voltage input pin for the A/D converter. When the A/D converter is not used, this pin should be connected to the system power supply (+5 V).
I/O ports	$\begin{aligned} & \mathrm{P1}_{7} \text { to } \\ & \mathrm{P}_{0} \end{aligned}$	6 to 1,100, 99	I/O	Port 1: An 8-bit I/O port. Input or output can be designated for each bit by means of the port 1 data direction register (P1DDR).
	$\begin{aligned} & \mathrm{P}_{7} \text { to } \\ & \mathrm{P}_{0} \end{aligned}$	92 to 85	I/O	Port 2: An 8-bit I/O port. Input or output can be designated for each bit by means of the port 2 data direction register (P2DDR).
	$\begin{aligned} & \mathrm{P3}_{5} \text { to } \\ & \mathrm{P} 3_{0} \end{aligned}$	13 to 8	I/O	Port 3: A 6-bit I/O port. Input or output can be designated for each bit by means of the port 3 data direction register (P3DDR).
	$\begin{aligned} & \mathrm{P} 4_{3} \text { to } \\ & \mathrm{P} 4_{0} \end{aligned}$	82 to 79	Input	Port 4: A 4-bit input port.
	$\begin{aligned} & \mathrm{P5}_{3} \text { to } \\ & \mathrm{P} 5_{0} \end{aligned}$	59, 56 to 54	I/O	Port 5: A 4-bit I/O port. Input or output can be designated for each bit by means of the port 5 data direction register (P5DDR).

Type	Symbol	Pin No.		
		FP-100B, TFP-100B	I/O	Name and Function
I/O ports	$\begin{aligned} & \mathrm{PA}_{3} \text { to } \\ & \mathrm{PA}_{0}{ }^{* 2} \end{aligned}$	53 to 50	I/O	Port A: A 4-bit I/O port. Input or output can be designated for each bit by means of the port A data direction register (PADDR).
	$\begin{aligned} & \overline{\mathrm{PB}_{7} \text { to }} \\ & \mathrm{PB}_{0}^{* 3} \end{aligned}$	48 to 41	I/O	Port B: An 8-bit I/O port. Input or output can be designated for each bit by means of the port B data direction register (PBDDR).
	$\begin{aligned} & \hline \mathrm{PC}_{7} \text { to } \\ & \mathrm{PC}_{0}{ }^{* 3} \end{aligned}$	39 to 32	I/O	Port C: An 8-bit I/O port. Input or output can be designated for each bit by means of the port C data direction register (PCDDR).
	$\begin{aligned} & \overline{\mathrm{PD}_{7} \text { to }} \\ & \mathrm{PD}_{0}^{* 3} \end{aligned}$	30 to 23	I/O	Port D: An 8-bit I/O port. Input or output can be designated for each bit by means of the port D data direction register (PDDDR).
	$\begin{aligned} & \mathrm{PE}_{7} \text { to } \\ & \mathrm{PE}_{0} \end{aligned}$	22 to 19, 17 to 14	I/O	Port E: An 8-bit I/O port. Input or output can be designated for each bit by means of the port E data direction register (PEDDR).
	$\begin{aligned} & \overline{\mathrm{PF}_{7} \text { to }} \\ & \mathrm{PF}_{0}^{* *} \end{aligned}$	69 to 76	I/O	Port F: An 8-bit I/O port. Input or output can be designated for each bit by means of the port F data direction register (PFDDR).
	$\begin{aligned} & \mathrm{PG}_{4} \text { o } \\ & \mathrm{PG}_{0} \end{aligned}$	97 to 93	I/O	Port G: A 5-bit I/O port. Input or output can be designated for each bit by means of the port G data direction register (PGDDR).

[^0]2. Cannot be used in modes 4 and 5 in the $\mathrm{H} 8 \mathrm{~S} / 2240$.
3. Cannot be used in the H8S/2240.
4. PF_{6} to PF_{3} cannot be used in the $\mathrm{H} 8 \mathrm{~S} / 2240$.

Section 2 CPU

2.1 Overview

The H8S/2000 CPU is a high-speed central processing unit with an internal 32-bit architecture that is upward-compatible with the $\mathrm{H} 8 / 300$ and $\mathrm{H} 8 / 300 \mathrm{H}$ CPUs. The H8S/2000 CPU has sixteen 16-bit general registers, can address a 16-Mbyte (architecturally 4-Gbyte) linear address space, and is ideal for realtime control.

2.1.1 Features

The H8S/2000 CPU has the following features.

- Upward-compatible with $\mathrm{H} 8 / 300$ and $\mathrm{H} 8 / 300 \mathrm{H}$ CPUs
- Can execute H8/300 and H8/300H object programs
- General-register architecture
- Sixteen 16-bit general registers (also usable as sixteen 8-bit registers or eight 32-bit registers)
- Sixty-five basic instructions
- 8/16/32-bit arithmetic instructions
- Multiply and divide instructions
- Powerful bit-manipulation instructions
- Eight addressing modes
— Register direct [Rn]
— Register indirect [@ERn]
— Register indirect with displacement [@(d:16,ERn) or @(d:32,ERn)]
— Register indirect with post-increment or pre-decrement [@ERn+ or @-ERn]
— Absolute address [@aa:8, @aa:16, @aa:24, or @aa:32]
— Immediate [\#xx:8, \#xx:16, or \#xx:32]
— Program-counter relative [@(d:8,PC) or @(d:16,PC)]
— Memory indirect [@ @aa:8]
- 16-Mbyte address space
- Program: 16 Mbytes
- Data: 16 Mbytes (4 Gbytes architecturally)
- High-speed operation
- All frequently-used instructions execute in one or two states
- Maximum clock rate:
- 8/16/32-bit register-register add/subtract: 50 ns (20-MHz operation)
- 8×8-bit register-register multiply: $\quad 600 \mathrm{~ns}$ (20-MHz operation)
- $16 \div 8$-bit register-register divide: $\quad 600 \mathrm{~ns}(20-\mathrm{MHz}$ operation)
- 16×16-bit register-register multiply: $\quad 1000 \mathrm{~ns}$ (20-MHz operation)
- $32 \div 16$-bit register-register divide: $\quad 1000 \mathrm{~ns}$ (20-MHz operation)
- Two CPU operating modes
- Normal mode
- Advanced mode
- Power-down state
- Transition to power-down state by SLEEP instruction
- CPU clock speed selection

2.1.2 Differences between H8S/2600 CPU and H8S/2000 CPU

The differences between the H8S/2600 CPU and the H8S/2000 CPU are as shown below.

- Register configuration

The MAC register is supported only by the H8S/2600 CPU.

- Basic instructions

The four instructions MAC, CLRMAC, LDMAC, and STMAC are supported only by the H8S/2600 CPU.

- Number of execution states

The number of execution states of the MULXU and MULXS instructions.
Internal Operation

Instruction	Mnemonic	H8S/2600	H8S/2000
MULXU	MULXU.B Rs, Rd	3	12
	MULXU.W Rs, ERd	4	20
MULXS	MULXS.B Rs, Rd	4	13
	MULXS.W Rs, ERd	5	21

There are also differences in the address space, EXR register functions, power-down state, etc., depending on the product.

2.1.3 Differences from H8/300 CPU

In comparison to the $\mathrm{H} 8 / 300 \mathrm{CPU}$, the $\mathrm{H} 8 \mathrm{~S} / 2000 \mathrm{CPU}$ has the following enhancements.

- More general registers and control registers
- Eight 16-bit expanded registers, and one 8-bit control registers, have been added.
- Expanded address space
- Normal mode supports the same 64-kbyte address space as the H8/300 CPU .
- Advanced mode supports a maximum 16-Mbyte address space.
- Enhanced addressing
- The addressing modes have been enhanced to make effective use of the 16-Mbyte address space.
- Enhanced instructions
- Addressing modes of bit-manipulation instructions have been enhanced.
- Signed multiply and divide instructions have been added.
- Two-bit shift instructions have been added.
- Instructions for saving and restoring multiple registers have been added.
- A test and set instruction has been added.
- Higher speed
- Basic instructions execute twice as fast.

2.1.4 Differences from H8/300H CPU

In comparison to the $\mathrm{H} 8 / 300 \mathrm{H}$ CPU, the $\mathrm{H} 8 \mathrm{~S} / 2000 \mathrm{CPU}$ has the following enhancements.

- Additional control register
- One 8-bit control register has been added.
- Enhanced instructions
- Addressing modes of bit-manipulation instructions have been enhanced.
- Two-bit shift instructions have been added.
- Instructions for saving and restoring multiple registers have been added.
- A test and set instruction has been added.
- Higher speed
- Basic instructions execute twice as fast.

2.2 CPU Operating Modes

The H8S/2000 CPU has two operating modes: normal and advanced. Normal mode supports a maximum 64-kbyte address space. Advanced mode supports a maximum 16-Mbyte total address space (architecturally a maximum 16-Mbyte program area and a maximum of 4 Gbytes for program and data areas combined). The mode is selected by the mode pins of the microcontroller.

Figure 2.1 CPU Operating Modes

(1) Normal Mode

The exception vector table and stack have the same structure as in the $\mathrm{H} 8 / 300$ CPU.
Address Space: A maximum address space of 64 kbytes can be accessed.
Extended Registers (En): The extended registers (E0 to E7) can be used as 16-bit registers, or as the upper 16 -bit segments of 32 -bit registers. When En is used as a 16 -bit register it can contain any value, even when the corresponding general register (Rn) is used as an address register. If the general register is referenced in the register indirect addressing mode with pre-decrement (@-Rn) or post-increment ($@ \mathrm{Rn}+$) and a carry or borrow occurs, however, the value in the corresponding extended register (En) will be affected.

Instruction Set: All instructions and addressing modes can be used. Only the lower 16 bits of effective addresses (EA) are valid.

Exception Vector Table and Memory Indirect Branch Addresses: In normal mode the top area starting at $\mathrm{H}^{\prime} 0000$ is allocated to the exception vector table. One branch address is stored per 16 bits (figure 2.2). The exception vector table differs depending on the microcontroller. For details of the exception vector table, see section 4, Exception Handling.

Figure 2.2 Exception Vector Table (Normal Mode)
The memory indirect addressing mode (@ @aa:8) employed in the JMP and JSR instructions uses an 8-bit absolute address included in the instruction code to specify a memory operand that contains a branch address. In normal mode the operand is a 16 -bit word operand, providing a 16 bit branch address. Branch addresses can be stored in the top area from H'0000 to H'00FF. Note that this area is also used for the exception vector table.

Stack Structure: When the program counter (PC) is pushed onto the stack in a subroutine call, and the PC and condition-code register (CCR) are pushed onto the stack in exception handling, they are stored as shown in figure 2.3. The extended control register (EXR) is not pushed onto the stack. For details, see section 4, Exception Handling.

Figure 2.3 Stack Structure in Normal Mode

(2) Advanced Mode

Address Space: Linear access is provided to a $16-\mathrm{Mbyte}$ maximum address space (architecturally a maximum 16-Mbyte program area and a maximum 4-Gbyte data area, with a maximum of 4 Gbytes for program and data areas combined).

Extended Registers (En): The extended registers (E0 to E7) can be used as 16-bit registers, or as the upper 16-bit segments of 32-bit registers or address registers.

Instruction Set: All instructions and addressing modes can be used.

Exception Vector Table and Memory Indirect Branch Addresses: In advanced mode the top area starting at $\mathrm{H}^{\prime} 00000000$ is allocated to the exception vector table in units of 32 bits. In each 32 bits, the upper 8 bits are ignored and a branch address is stored in the lower 24 bits (figure 2.4). For details of the exception vector table, see section 4, Exception Handling.

Figure 2.4 Exception Vector Table (Advanced Mode)
The memory indirect addressing mode (@ @aa:8) employed in the JMP and JSR instructions uses an 8-bit absolute address included in the instruction code to specify a memory operand that contains a branch address. In advanced mode the operand is a 32 -bit longword operand, providing a 32-bit branch address. The upper 8 bits of these 32 bits are a reserved area that is regarded as $\mathrm{H}^{\prime} 00$. Branch addresses can be stored in the area from H'00000000 to H'000000FF. Note that the first part of this range is also the exception vector table.

Stack Structure: In advanced mode, when the program counter (PC) is pushed onto the stack in a subroutine call, and the PC and condition-code register (CCR) are pushed onto the stack in exception handling, they are stored as shown in figure 2.5. The extended control register (EXR) is not pushed onto the stack. For details, see section 4, Exception Handling.

Figure 2.5 Stack Structure in Advanced Mode

2.3 Address Space

Figure 2.6 shows a memory map of the H8S/2000 CPU. The H8S/2000 CPU provides linear access to a maximum 64-kbyte address space in normal mode, and a maximum 16-Mbyte (architecturally 4-Gbyte) address space in advanced mode. The usable modes and address spaces differ depending on the product. For details on each product, see section 3, MCU Operating Modes.

Figure 2.6 Memory Map

2.4 Register Configuration

2.4.1 Overview

The CPU has the internal registers shown in figure 2.7. There are two types of registers: general registers and control registers.

General Registers (Rn) and Extended Registers (En)

		07	07	0
ER0	E0	ROH	ROL	
ER1	E1	R1H	R1L	
ER2	E2	R2H	R2L	
ER3	E3	R3H	R3L	
ER4	E4	R4H	R4L	
ER5	E5	R5H	R5L	
ER6	E6	R6H	R6L	
ER7 (SP)	E7	R7H	R7L	

Control Registers (CR)

$$
\begin{aligned}
& 23 \text { PC }
\end{aligned}
$$

Legend:

SP: Stack pointer
H: Half-carry flag
PC: Program counter
EXR: Extended control register
T: Trace bit
I2 to 10: Interrupt mask bits
CCR: Condition-code register
I: Interrupt mask bit
UI: User bit or interrupt mask bit

U: User bit
$\mathrm{N}: \quad$ Negative flag
Z: Zero flag
V: Overflow flag
C: Carry flag
O.

Note: * This register does not affect operations in the H8S/2245 Group.
Figure 2.7 CPU Registers

2.4.2 General Registers

The CPU has eight 32 -bit general registers. These general registers are all functionally alike and can be used as both address registers and data registers. When a general register is used as a data register, it can be accessed as a 32 -bit, 16 -bit, or 8 -bit register. When the general registers are used as 32-bit registers or address registers, they are designated by the letters ER (ER0 to ER7).

The ER registers divide into 16-bit general registers designated by the letters E (E0 to E7) and R (R0 to R7). These registers are functionally equivalent, providing a maximum sixteen 16-bit registers. The E registers (E0 to E7) are also referred to as extended registers.

The R registers divide into 8 -bit general registers designated by the letters RH (R 0 H to R 7 H) and RL (R0L to R7L). These registers are functionally equivalent, providing a maximum sixteen 8 -bit registers.

Figure 2.8 illustrates the usage of the general registers. The usage of each register can be selected independently.

Figure 2.8 Usage of General Registers
General register ER7 has the function of stack pointer (SP) in addition to its general-register function, and is used implicitly in exception handling and subroutine calls. Figure 2.9 shows the stack.

Figure 2.9 Stack

2.4.3 Control Registers

The control registers are the 24-bit program counter (PC), 8-bit extended control register (EXR), and 8 -bit condition-code register (CCR).

(1) Program Counter (PC)

This 24-bit counter indicates the address of the next instruction the CPU will execute. The length of all CPU instructions is 2 bytes (one word) so the least significant PC bit is ignored. (When an instruction is read, the least significant PC bit is regarded as 0 .)

(2) Extended Control Register (EXR)

This 8-bit register does not affect operation in the H8S/2245 Group.
Bit 7—Trace Bit (T): This bit is reserved. It does not affect operation in the H8S/2245 Group.
Bits 6 to 3-Reserved: These bits are reserved. They are always read as 1 .
Bits 2 to 0—Interrupt Mask Bits (I2 to I0): These bits are reserved. They do not affect operation in the H8S/2245 Group.

(3) Condition-Code Register (CCR)

This 8-bit register contains internal CPU status information, including an interrupt mask bit (I) and half-carry (H), negative (N), zero (Z), overflow (V), and carry (C) flags.

Bit 7—Interrupt Mask Bit (I): Masks interrupts other than NMI when set to 1 . (NMI is accepted regardless of the I bit setting.) The I bit is set to 1 by hardware at the start of an exceptionhandling sequence. For details, refer to section 5, Interrupt Controller.

Bit 6-User Bit or Interrupt Mask Bit (UI): Can be written and read by software using the LDC, STC, ANDC, ORC, and XORC instructions. This bit can also be used as an interrupt mask bit. For details, refer to section 5, Interrupt Controller.

Bit 5-Half-Carry Flag (H): When the ADD.B, ADDX.B, SUB.B, SUBX.B, CMP.B, or NEG.B instruction is executed, this flag is set to 1 if there is a carry or borrow at bit 3 , and cleared to 0 otherwise. When the ADD.W, SUB.W, CMP.W, or NEG.W instruction is executed, the H flag is set to 1 if there is a carry or borrow at bit 11 , and cleared to 0 otherwise. When the ADD.L, SUB.L, CMP.L, or NEG.L instruction is executed, the H flag is set to 1 if there is a carry or borrow at bit 27, and cleared to 0 otherwise.

Bit 4-User Bit (U): Can be written and read by software using the LDC, STC, ANDC, ORC, and XORC instructions.

Bit 3-Negative Flag (N): Stores the value of the most significant bit (sign bit) of data.
Bit 2-Zero Flag (Z): Set to 1 to indicate zero data, and cleared to 0 to indicate non-zero data.
Bit 1—Overflow Flag (V): Set to 1 when an arithmetic overflow occurs, and cleared to 0 at other times.

Bit 0-Carry Flag (C): Set to 1 when a carry occurs, and cleared to 0 otherwise. Used by:

- Add instructions, to indicate a carry
- Subtract instructions, to indicate a borrow
- Shift and rotate instructions, to indicate a carry

The carry flag is also used as a bit accumulator by bit manipulation instructions.

Some instructions leave some or all of the flag bits unchanged. For the action of each instruction on the flag bits, refer to appendix A.1, Instruction List.

Operations can be performed on the CCR bits by the LDC, STC, ANDC, ORC, and XORC instructions. The N, Z, V, and C flags are used as branching conditions for conditional branch (Bcc) instructions.

2.4.4 Initial Register Values

Reset exception handling loads the CPU's program counter (PC) from the vector table, clears the trace bit in EXR to 0 , and sets the interrupt mask bits in CCR and EXR to 1 . The other CCR bits and the general registers are not initialized. In particular, the stack pointer (ER7) is not initialized. The stack pointer should therefore be initialized by an MOV.L instruction executed immediately after a reset.

2.5 Data Formats

The CPU can process 1-bit, 4-bit (BCD), 8-bit (byte), 16-bit (word), and 32-bit (longword) data. Bit-manipulation instructions operate on 1 -bit data by accessing bit $n(n=0,1,2, \ldots, 7)$ of byte operand data. The DAA and DAS decimal-adjust instructions treat byte data as two digits of 4-bit $B C D$ data.

2.5.1 General Register Data Formats

Figure 2.10 shows the data formats in general registers.

Figure 2.10 General Register Data Formats

Figure 2.10 General Register Data Formats (cont)

2.5.2 Memory Data Formats

Figure 2.11 shows the data formats in memory. The CPU can access word data and longword data in memory, but word or longword data must begin at an even address. If an attempt is made to access word or longword data at an odd address, no address error occurs but the least significant bit of the address is regarded as 0 , so the access starts at the preceding address. This also applies to instruction fetches.

Figure 2.11 Memory Data Formats
When $\operatorname{SP}(E R 7)$ is used as an address register to access the stack, the operand size should be word size or longword size.

2.6 Instruction Set

2.6.1 Overview

The H8S/2000 CPU has 65 types of instructions. The instructions are classified by function in table 2.1.

Table 2.1 Instruction Classification

Function	Instructions	Size	Types
Data transfer	MOV	BWL	5
	POP*1, PUSH*1	WL	
	LDM* ${ }^{5}$, STM ${ }^{* 5}$	L	
	MOVFPE* ${ }^{3}$, MOVTPE* ${ }^{3}$	B	
Arithmetic operations	ADD, SUB, CMP, NEG	BWL	19
	ADDX, SUBX, DAA, DAS	B	
	INC, DEC	BWL	
	ADDS, SUBS	L	
	MULXU, DIVXU, MULXS, DIVXS	BW	
	EXTU, EXTS	WL	
	TAS**	B	
Logic operations	AND, OR, XOR, NOT	BWL	4
Shift	SHAL, SHAR, SHLL, SHLR, ROTL, ROTR, ROTXL, ROTXR	BWL	8
Bit manipulation	BSET, BCLR, BNOT, BTST, BLD, BILD, BST, BIST, BAND, BIAND, BOR, BIOR, BXOR, BIXOR	B	14
Branch	Bcc**2, JMP, BSR, JSR, RTS	-	5
System control	TRAPA, RTE, SLEEP, LDC, STC, ANDC, ORC, XORC, NOP	-	9
Block data transfer	EEPMOV	-	1

Total: 65 types
Legend:
B: Byte size
W: Word size
L: Longword size
Notes: 1. POP.W Rn and PUSH.W Rn are identical to MOV.W @SP+, Rn and MOV.W Rn, @-SP. POP.L ERn and PUSH.L ERn are identical to MOV.L @SP+, ERn and MOV.L ERn, @-SP.
2. Bcc is the general name for conditional branch instructions.
3. Cannot be used in the H8S/2245 Group.
4. Only register ER0, ER1, ER4, or ER5 should be used when using the TAS instruction.
5. Only register ER0 to ER6 should be used when using the STM/LDM instruction.

2.6.2 Instructions and Addressing Modes

Table 2.2 indicates the combinations of instructions and addressing modes that the H8S/2000 CPU can use.

Table 2.2 Combinations of Instructions and Addressing Modes

Function	Instruction	Addressing Modes													
		$\underset{\text { ج }}{\times}$	$\underset{\sim}{\text { ¢ }}$							$\begin{aligned} & \stackrel{\rightharpoonup}{\underset{W}{\tilde{0}}} \\ & \text { ®̈) } \end{aligned}$	$\begin{aligned} & \text { N్ల } \\ & \stackrel{\pi}{\pi} \\ & \text { BOU } \end{aligned}$	$\begin{aligned} & \text { O} \\ & 0 \\ & \text { 0 } \\ & \text { (8) } \end{aligned}$			1
Data transfer	MOV	BWL	BWL	BWL	BWL	BWL	BWL	B	BWL	-	BWL	-	-	-	-
	POP, PUSH	-	-	-	-	-	-	-	-	-	-	-	-	-	WL
	LDM, STM	-	-	-	-	-	-	-	-	-	-	-	-	-	L
	MOVFPE*, MOVTPE*	-	-	-	-	-	-	-	B	-	-	-	-	-	-
Arithmetic operations	ADD, CMP	BWL	BWL	-	-	-	-	-	-	-	-	-	-	-	-
	SUB	WL	BWL	-	-	-	-	-	-	-	-	-	-	-	-
	ADDX, SUBX	B	B	-	-	-	-	-	-	-	-	-	-	-	-
	ADDS, SUBS	-	L	-	-	-	-	-	-	-	-	-	-	-	-
	INC, DEC	-	BWL	-	-	-	-	-	-	-	-	-	-	-	-
	DAA, DAS	-	B	-	-	-	-	-	-	-	-	-	-	-	-
	MULXU, DIVXU	-	BW	-	-	-	-	-	-	-	-	-	-	-	-
	MULXS, DIVXS	-	BW	-	-	-	-	-	-	-	-	-	-	-	-
	NEG	-	BWL	-	-	-	-	-	-	-	-	-	-	-	-
	EXTU, EXTS	-	WL	-	-	-	-	-	-	-	-	-	-	-	-
	TAS	-	-	B	-	-	-	-	-	-	-	-	-	-	-
Logic operations	AND, OR, XOR	BWL	BWL	-	-	-	-	-	-	-	-	-	-	-	-
	NOT	-	BWL	-	-	-	-	-	-	-	-	-	-	-	-
Shift		-	BWL	-	-	-	-	-	-	-	-	-	-	-	-
Bit manipulation		-	B	B	-	-	-	B	B	-	B	-	-	-	-
Branch	Bcc, BSR	-	-	-	-	-	-	-	-	-	-	\bigcirc	\bigcirc	-	-
	JMP, JSR	-	-	-	-	-	-	-	-	\bigcirc	-	-	-	\bigcirc	-
	RTS	-	-	-	-	-	-	-	-	-	-	-	-	-	\bigcirc

Function	Instruction	Addressing Modes													
		$\begin{aligned} & \times \\ & \text { X } \end{aligned}$	¢										$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & \frac{0}{0} \\ & \frac{1}{8} \end{aligned}$		1
System control	TRAPA	-	-	-	-	-	-	-	-	-	-	-	-	-	\bigcirc
	RTE	-	-	-	-	-	-	-	-	-	-	-	-	-	\bigcirc
	SLEEP	-	-	-	-	-	-	-	-	-	-	-	-	-	\bigcirc
	LDC	B	B	W	W	W	W	-	W	-	W	-	-	-	-
	STC	-	B	W	W	W	W	-	W	-	W	-	-	-	-
	ANDC, ORC, XORC	B	-	-	-	-	-	-	-	-	-	-	-	-	-
	NOP	-	-	-	-	-	-	-	-	-	-	-	-	-	\bigcirc
Block data transfer		-	-	-	-	-	-	-	-	-	-	-	-	-	BW

Legend:
B: Byte
W: Word
L: Longword
Note: * Cannot be used in the H8S/2245 Group.

2.6.3 Table of Instructions Classified by Function

Tables 2.3 to 2.10 summarize the instructions in each functional category. The notation used in the tables is defined below.

Operation Notation

Rd	General register (destination)*
Rs	General register (source)*
Rn	General register*
ERn	General register (32-bit register)
(EAd)	Destination operand
(EAs)	Source operand
EXR	Extended control register
CCR	Condition-code register
N	N (negative) flag in CCR
Z	Z (zero) flag in CCR
V	V (overflow) flag in CCR
C	C (carry) flag in CCR
PC	Program counter
SP	Stack pointer
\#IMM	Immediate data
disp	Displacement
+	Addition
-	Subtraction
\times	Multiplication
\div	Division
\wedge	Logical AND
v	Logical OR
\oplus	Logical exclusive OR
\rightarrow	Move
ᄀ	NOT (logical complement)
:8/:16/:24/:32	8-, 16-, 24-, or 32-bit length
Note: $* \quad$ General registers include 8-bit registers (R to R7, E0 to E7), and 32-bit registers (ER0	

Table 2.3 Data Transfer Instructions

Instruction	Size*1	Function
MOV	B/W/L	(EAs) \rightarrow Rd, Rs \rightarrow (EAd) Moves data between two general registers or between a general register and memory, or moves immediate data to a general register.
MOVFPE	B	Cannot be used in the H8S/2245 Group.
MOVTPE	B	Cannot be used in the H8S/2245 Group.
POP	W/L	@SP+ \rightarrow Rn Pops a register from the stack. POP.W Rn is identical to MOV.W @SP+, Rn. POP.L ERn is identical to MOV.L @SP+, ERn.
PUSH	W/L	Rn \rightarrow @-SP Pushes a register onto the stack. PUSH.W Rn is identical to MOV.W Rn, @ - SP. PUSH.L ERn is identical to MOV.L ERn, @-SP.
LDM*2	L	@SP+ \rightarrow Rn (register list) Pops two or more general registers from the stack.
${\text { STM }{ }^{* 2}}^{\text {L }}$Rn (register list) \rightarrow @-SP Pushes two or more general registers onto the stack.		

Notes: 1. Size refers to the operand size.
B: Byte
W: Word
L: Longword
2. Only register ERO to ER6 should be used when using the STM/LDM instruction.

Table 2.4 Arithmetic Operation Instructions

Instruction	Size**	Function
$\begin{aligned} & \text { ADD } \\ & \text { SUB } \end{aligned}$	B/W/L	$\mathrm{Rd} \pm \mathrm{Rs} \rightarrow \mathrm{Rd}, \mathrm{Rd} \pm \# \mathrm{IMM} \rightarrow \mathrm{Rd}$ Performs addition or subtraction on data in two general registers, or on immediate data and data in a general register. (Immediate byte data cannot be subtracted from byte data in a general register. Use the SUBX or ADD instruction.)
$\begin{aligned} & \hline \text { ADDX } \\ & \text { SUBX } \end{aligned}$	B	$R d \pm R s \pm C \rightarrow R d, \quad R d \pm \# I M M \pm C \rightarrow R d$ Performs addition or subtraction with carry or borrow on byte data in two general registers, or on immediate data and data in a general register.
$\begin{aligned} & \hline \text { INC } \\ & \text { DEC } \end{aligned}$	B/W/L	$\mathrm{Rd} \pm 1 \rightarrow \mathrm{Rd}, \quad \mathrm{Rd} \pm 2 \rightarrow \mathrm{Rd}$ Increments or decrements a general register by 1 or 2. (Byte operands can be incremented or decremented by 1 only.)
ADDS SUBS	L	$\mathrm{Rd} \pm 1 \rightarrow \mathrm{Rd}, \quad \mathrm{Rd} \pm 2 \rightarrow \mathrm{Rd}, \quad \mathrm{Rd} \pm 4 \rightarrow \mathrm{Rd}$ Adds or subtracts the value 1, 2, or 4 to or from data in a 32-bit register.
$\begin{aligned} & \hline \text { DAA } \\ & \text { DAS } \end{aligned}$	B	Rd decimal adjust \rightarrow Rd Decimal-adjusts an addition or subtraction result in a general register by referring to the CCR to produce 4-bit BCD data.
MULXU	B/W	$\mathrm{Rd} \times \mathrm{Rs} \rightarrow \mathrm{Rd}$ Performs unsigned multiplication on data in two general registers: either 8 bits $\times 8$ bits $\rightarrow 16$ bits or 16 bits $\times 16$ bits $\rightarrow 32$ bits.
MULXS	B/W	$\mathrm{Rd} \times \mathrm{Rs} \rightarrow \mathrm{Rd}$ Performs signed multiplication on data in two general registers: either 8 bits $\times 8$ bits $\rightarrow 16$ bits or 16 bits $\times 16$ bits $\rightarrow 32$ bits.
$\overline{\text { DIVXU }}$	B/W	$\mathrm{Rd} \div \mathrm{Rs} \rightarrow \mathrm{Rd}$ Performs unsigned division on data in two general registers: either 16 bits $\div 8$ bits $\rightarrow 8$-bit quotient and 8 -bit remainder or 32 bits $\div 16$ bits \rightarrow 16 -bit quotient and 16 -bit remainder.
DIVXS	B/W	$\mathrm{Rd} \div \mathrm{Rs} \rightarrow \mathrm{Rd}$ Performs signed division on data in two general registers: either 16 bits $\div 8$ bits $\rightarrow 8$-bit quotient and 8 -bit remainder or 32 bits $\div 16$ bits $\rightarrow 16$-bit quotient and 16-bit remainder.
CMP	B/W/L	Rd - Rs, Rd - \#IMM Compares data in a general register with data in another general register or with immediate data, and sets CCR bits according to the result.
$\overline{N E G}$	B/W/L	$0-R d \rightarrow R d$ Takes the two's complement (arithmetic complement) of data in a general register.

Instruction	Size* $^{* 1}$	Function
EXTU	W/L	Rd (zero extension) \rightarrow Rd Extends the lower 8 bits of a 16-bit register to word size, or the lower 16 bits of a 32-bit register to longword size, by padding with zeros on the left.
EXTS	W/L	Rd (sign extension) \rightarrow Rd Extends the lower 8 bits of a 16-bit register to word size, or the lower 16 bits of a 32-bit register to longword size, by extending the sign bit.
TAS*2 2	B	@ERd $-0,1 \rightarrow$ (<bit 7> of @Erd) Tests memory contents, and sets the most significant bit (bit 7) to 1.

Notes: 1. Size refers to the operand size.
B: Byte
W: Word
L: Longword
2. Only register ER0, ER1, ER4, or ER5 should be used when using the TAS instruction.

Table 2.5 Logic Operations Instructions

Instruction Size* Function

AND	B/W/L	$R d \wedge R s \rightarrow R d, R d \wedge \# I M M \rightarrow R d$ Performs a logical AND operation on a general register and another general register or immediate data.
$\overline{O R}$	B/W/L	$R d \vee R s \rightarrow R d, R d \vee \# I M M \rightarrow R d$ Performs a logical OR operation on a general register and another general register or immediate data.
XOR	B/W/L	$\mathrm{Rd} \oplus \mathrm{Rs} \rightarrow \mathrm{Rd}, \quad \mathrm{Rd} \oplus \# \mathrm{IMM} \rightarrow \mathrm{Rd}$ Performs a logical exclusive OR operation on a general register and another general register or immediate data.
NOT	B/W/L	$\neg \mathrm{Rd} \rightarrow \mathrm{Rd}$ Takes the one's complement of general register contents.

Note: * Size refers to the operand size.
B: Byte
W: Word
L: Longword

Table 2.6 Shift Operations Instructions

Instruction	Size*	Function
SHAL	B/W/L	Rd (shift) \rightarrow Rd Performs an arithmetic shift on general register contents. 1-bit or 2-bit shift is possible.
SHAR	B/W/L	Rd (shift) \rightarrow Rd Performs a logical shift on general register contents. 1-bit or 2-bit shift is possible.
SHLL	BHLR	Rd (rotate) \rightarrow Rd Rotates general register contents. 1-bit or 2-bit rotation is possible.
ROTL	BOTR	Rd (rotate) \rightarrow Rd Rotates general register contents through the carry flag. 1-bit or 2-bit rotation is possible.
ROTXL	B/W/L	

Note: * Size refers to the operand size.
B: Byte
W: Word
L: Longword

Table 2.7 Bit-Manipulation Instructions

Instruction	Size*	Function
BSET	B	$1 \rightarrow \text { (<bit-No.> of <EAd>) }$ Sets a specified bit in a general register or memory operand to 1 . The bit number is specified by 3-bit immediate data or the lower three bits of a general register.
BCLR	B	$0 \rightarrow$ (<bit-No.> of <EAd>) Clears a specified bit in a general register or memory operand to 0 . The bit number is specified by 3-bit immediate data or the lower three bits of a general register.
BNOT	B	$\neg(<\text { bit-No.> of <EAd>) } \rightarrow \text { (<bit-No.> of <EAd>) }$ Inverts a specified bit in a general register or memory operand. The bit number is specified by 3 -bit immediate data or the lower three bits of a general register.
BTST	B	$\neg(<\text { bit-No. }>\text { of }<\text { EAd }>) \rightarrow Z$ Tests a specified bit in a general register or memory operand and sets or clears the Z flag accordingly. The bit number is specified by 3 -bit immediate data or the lower three bits of a general register.
BAND	B	$\mathrm{C} \wedge(<\text { bit-No.> of }<\mathrm{EAd}>) \rightarrow \mathrm{C}$ ANDs the carry flag with a specified bit in a general register or memory operand and stores the result in the carry flag.
BIAND	B	$\mathrm{C} \wedge \neg(<b i t-N o .>$ of $<\mathrm{EAd}>$) $\rightarrow \mathrm{C}$ ANDs the carry flag with the inverse of a specified bit in a general register or memory operand and stores the result in the carry flag. The bit number is specified by 3 -bit immediate data.
BOR	B	$C \vee(<\text { bit-No. }>\text { of }<E A d>) \rightarrow C$ ORs the carry flag with a specified bit in a general register or memory operand and stores the result in the carry flag.
BIOR	B	$C \vee[\neg$ (<bit-No.> of <EAd>) $] \rightarrow$ C ORs the carry flag with the inverse of a specified bit in a general register or memory operand and stores the result in the carry flag. The bit number is specified by 3 -bit immediate data.

Instruction Size* Function

BXOR	B	$\mathrm{C} \oplus(<$ bit-No.> of $<\mathrm{EAd}>$) $\rightarrow \mathrm{C}$ Exclusive-ORs the carry flag with a specified bit in a general register or memory operand and stores the result in the carry flag.
BIXOR	B	$C \oplus[\neg(<$ bit-No. $>$ of $<$ EAd $>)] \rightarrow C$ Exclusive-ORs the carry flag with the inverse of a specified bit in a general register or memory operand and stores the result in the carry flag.
		The bit number is specified by 3-bit immediate data.

BLD B \quad| (<bit-No. $>$ of $<E A d>) \rightarrow$ C |
| :--- |
| Transfers a specified bit in a general register or memory operand to the | carry flag.

BILD
B $\quad \neg$ (<bit-No.> of <EAd>) \rightarrow C
Transfers the inverse of a specified bit in a general register or memory operand to the carry flag.
The bit number is specified by 3 -bit immediate data.
BST B \quad C \rightarrow (<bit-No.> of <EAd>)

Transfers the carry flag value to a specified bit in a general register or memory operand.
BIST
B $\quad \neg$ C \rightarrow (<bit-No.> of <EAd>)
Transfers the inverse of the carry flag value to a specified bit in a general register or memory operand.
The bit number is specified by 3 -bit immediate data.
Note: * Size refers to the operand size.
B: Byte

Table 2.8 Branch Instructions

Instruction	Size	Function		
Bcc	-	Branches to a specified address if a specified condition is true. The branching conditions are listed below.		
		Mnemonic	Description	Condition
		BRA(BT)	Always (true)	Always
		BRN(BF)	Never (false)	Never
		BHI	High	$C \vee Z=0$
		BLS	Low or same	$C \vee Z=1$
		BCC(BHS)	Carry clear (high or same)	$\mathrm{C}=0$
		BCS(BLO)	Carry set (low)	$C=1$
		BNE	Not equal	$\mathrm{Z}=0$
		BEQ	Equal	$\mathrm{Z}=1$
		BVC	Overflow clear	$\mathrm{V}=0$
		BVS	Overflow set	$V=1$
		BPL	Plus	$\mathrm{N}=0$
		BMI	Minus	$\mathrm{N}=1$
		BGE	Greater or equal	$\mathrm{N} \oplus \mathrm{V}=0$
		BLT	Less than	$\mathrm{N} \oplus \mathrm{V}=1$
		BGT	Greater than	$\mathrm{Z} \vee(\mathrm{N} \oplus \mathrm{V})=0$
		BLE	Less or equal	$\mathrm{Z} \vee(\mathrm{N} \oplus \mathrm{V})=1$

JMP	-	Branches unconditionally to a specified address.
BSR	-	Branches to a subroutine at a specified address.
JSR	-	Branches to a subroutine at a specified address.
RTS	-	Returns from a subroutine

Table 2.9 System Control Instructions

Instruction	Size*	Function
TRAPA	-	Starts trap-instruction exception handling.
RTE	-	Returns from an exception-handling routine.
SLEEP	-	Causes a transition to a power-down state.
LDC	B/W	$(E A s) \rightarrow \text { CCR, (EAs) } \rightarrow \text { EXR }$ Moves the source operand contents or immediate data to CCR or EXR. Although CCR and EXR are 8-bit registers, word-size transfers are performed between them and memory. The upper 8 bits are valid.
STC	B/W	$\mathrm{CCR} \rightarrow(\mathrm{EAd}), \mathrm{EXR} \rightarrow(\mathrm{EAd})$ Transfers CCR or EXR contents to a general register or memory. Although CCR and EXR are 8-bit registers, word-size transfers are performed between them and memory. The upper 8 bits are valid.
ANDC	B	CCR \wedge \#IMM \rightarrow CCR, EXR \wedge \#IMM \rightarrow EXR Logically ANDs the CCR or EXR contents with immediate data.
ORC	B	CCR \vee \#IMM \rightarrow CCR, EXR \vee \#IMM \rightarrow EXR Logically ORs the CCR or EXR contents with immediate data.
XORC	B	CCR \oplus \#IMM \rightarrow CCR, EXR \oplus \#IMM \rightarrow EXR Logically exclusive-ORs the CCR or EXR contents with immediate data.
NOP	-	$\mathrm{PC}+2 \rightarrow \mathrm{PC}$ Only increments the program counter.
Note:	Size refers to the operand size. B: Byte W: Word	

Table 2.10 Block Data Transfer Instructions

Instruction	Size	Function
EEPMOV.B	-	if $\mathrm{R} 4 \mathrm{~L} \neq 0$ then
		Repeat @ER5+ \rightarrow @ER6+ $\mathrm{R} 4 \mathrm{~L}-1 \rightarrow \mathrm{R} 4 \mathrm{~L}$
		Until R4L $=0$
		else next;
EEPMOV.W	-	if $\mathrm{R} 4 \neq 0$ then
		Repeat @ER5+ \rightarrow @ER6+ $\mathrm{R} 4-1 \rightarrow \mathrm{R} 4$
		$\text { Until R4 }=0$
		else next;
		Transfer a data block. Starting from the address set in ER5, transfers data for the number of bytes set in R4L or R4 to the address location set in ER6.
		Execution of the next instruction begins as soon as the transfer is completed.

2.6.4 Basic Instruction Formats

The H8S/2245 Group instructions consist of 2-byte (1-word) units. An instruction consists of an operation field (op field), a register field (r field), an effective address extension (EA field), and a condition field (cc).

Figure 2.12 shows examples of instruction formats.
(1) Operation field only
\square NOP, RTS, etc.
(2) Operation field and register fields

op	rn	rm
ADD.B Rn, Rm, etc.		

(3) Operation field, register fields, and effective address extension

op	rn	rm
EA (disp)		

(4) Operation field, effective address extension, and condition field

op	cc	EA (disp)
BRA d:16, etc		

Figure 2.12 Instruction Formats (Examples)
(1) Operation Field: Indicates the function of the instruction, the addressing mode, and the operation to be carried out on the operand. The operation field always includes the first four bits of the instruction. Some instructions have two operation fields.
(2) Register Field: Specifies a general register. Address registers are specified by 3 bits, data registers by 3 bits or 4 bits. Some instructions have two register fields. Some have no register field.
(3) Effective Address Extension: Eight, 16, or 32 bits specifying immediate data, an absolute address, or a displacement.
(4) Condition Field: Specifies the branching condition of Bcc instructions.

2.6.5 Notes on Use of Bit Manipulation Instructions

The BSET, BCLR, BNOT, BST, and BIST instructions read a byte of data, modify a bit in the byte, then write the byte back. Care is required when these instructions are used to access registers with write-only bits, or to access ports.

The BCLR instruction can be used to clear flags in the on-chip registers. In an interrupt-handling routine, for example, if it is known that the flag is set to 1 , it is not necessary to read the flag ahead of time. See section 2.10.3, Bit Manipulation Instructions, for details.

2.7 Addressing Modes and Effective Address Calculation

2.7.1 Addressing Modes

The CPU supports the eight addressing modes listed in table 2.11. Each instruction uses a subset of these addressing modes. Arithmetic and logic instructions can use the register direct and immediate modes. Data transfer instructions can use all addressing modes except program-counter relative and memory indirect. Bit manipulation instructions use register direct, register indirect, or absolute addressing mode to specify an operand, and register direct (BSET, BCLR, BNOT, and BTST instructions) or immediate (3-bit) addressing mode to specify a bit number in the operand.

Table 2.11 Addressing Modes

No.	Addressing Mode	Symbol
1	Register direct	Rn
2	Register indirect	@ERn
3	Register indirect with displacement	@(d:16,ERn)/@(d:32,ERn)
4	Register indirect with post-increment	@ERn+
	Register indirect with pre-decrement	@-ERn
5	Absolute address	@aa:8/@aa:16/@aa:24/@aa:32
6	Immediate	\#xx:8/\#xx:16/\#xx:32
7	Program-counter relative	@(d:8,PC)/@(d:16,PC)
8	Memory indirect	@@aa:8

(1) Register Direct-Rn

The register field of the instruction specifies an 8-, 16-, or 32-bit general register containing the operand. R0H to R7H and R0L to R7L can be specified as 8-bit registers. R0 to R7 and E0 to E7 can be specified as 16 -bit registers. ER0 to ER7 can be specified as 32-bit registers.
(2) Register Indirect—@ERn

The register field of the instruction code specifies an address register (ERn) which contains the address of the operand on memory. If the address is a program instruction address, the lower 24 bits are valid and the upper 8 bits are all assumed to be $0\left(\mathrm{H}^{\prime} 00\right)$.

(3) Register Indirect with Displacement—@(d:16, ERn) or @(d:32, ERn)

A 16-bit or 32-bit displacement contained in the instruction is added to an address register (ERn) specified by the register field of the instruction, and the sum gives the address of a memory operand. A 16-bit displacement is sign-extended when added.
(4) Register Indirect with Post-Increment or Pre-Decrement—@ERn+ or @-ERn

- Register indirect with post-increment-@ERn+

The register field of the instruction code specifies an address register (ERn) which contains the address of a memory operand. After the operand is accessed, 1,2 , or 4 is added to the address register contents and the sum is stored in the address register. The value added is 1 for byte access, 2 for word transfer instruction, or 4 for longword transfer instruction. For word or longword transfer instruction, the register value should be even.

- Register indirect with pre-decrement-@-ERn

The value 1,2 , or 4 is subtracted from an address register (ERn) specified by the register field in the instruction code, and the result becomes the address of a memory operand. The result is also stored in the address register. The value subtracted is 1 for byte access, 2 for word transfer instruction, or 4 for longword transfer instruction. For word or longword transfer instruction, the register value should be even.
(5) Absolute Address—@aa:8, @aa:16, @aa:24, or @aa:32

The instruction code contains the absolute address of a memory operand. The absolute address may be 8 bits long ($@ a a: 8$), 16 bits long (@aa:16), 24 bits long ($@ a a: 24$), or 32 bits long (@aa:32).

To access data, the absolute address should be 8 bits (@aa:8), 16 bits (@aa:16), or 32 bits ($@$ aa:32) long. For an 8 -bit absolute address, the upper 24 bits are all assumed to be 1
(H'FFFFFF). For a 16-bit absolute address the upper 16 bits are a sign extension. A 32-bit absolute address can access the entire address space.

A 24-bit absolute address (@aa:24) indicates the address of a program instruction. The upper 8 bits are all assumed to be $0\left(\mathrm{H}^{\prime} 00\right)$.

Table 2.12 indicates the accessible absolute address ranges.

Table 2.12 Absolute Address Access Ranges

Absolute Address		Normal Mode	Advanced Mode
Data address	8 bits (@aa:8)	H'FF00 to H'FFFF $^{16 \text { bits (@aa:16) }}$	H' $^{\prime} 0000$ to H'FFFFF
			H' $^{\prime} 000000$ to H'007FFF,
	32 bits (@aa:32)		H'FF8000 to H'FFFFFF $^{\text {H'000000 to H'FFFFFFF }}$
Program instruction address	24 bits (@aa:24)		

(6) Immediate—\#xx:8, \#xx:16, or \#xx:32

The instruction contains 8-bit (\#xx:8), 16-bit (\#xx:16), or 32-bit (\#xx:32) immediate data as an operand.

The ADDS, SUBS, INC, and DEC instructions contain immediate data implicitly. Some bit manipulation instructions contain 3-bit immediate data in the instruction code, specifying a bit number. The TRAPA instruction contains 2-bit immediate data in its instruction code, specifying a vector address.

(7) Program-Counter Relative—@(d:8, PC) or @(d:16, PC)

This mode is used in the Bcc and BSR instructions. An 8-bit or 16-bit displacement contained in the instruction is sign-extended and added to the 24 -bit PC contents to generate a branch address. Only the lower 24 bits of this branch address are valid; the upper 8 bits are all assumed to be 0 ($\mathrm{H}^{\prime} 00$). The PC value to which the displacement is added is the address of the first byte of the next instruction, so the possible branching range is -126 to +128 bytes (-63 to +64 words) or -32766 to +32768 bytes (-16383 to +16384 words) from the branch instruction. The resulting value should be an even number.

(8) Memory Indirect—@ @aa:8

This mode can be used by the JMP and JSR instructions. The instruction code contains an 8 -bit absolute address specifying a memory operand. This memory operand contains a branch address. The upper bits of the absolute address are all assumed to be 0 , so the address range is 0 to 255 ($\mathrm{H}^{\prime} 0000$ to $\mathrm{H}^{\prime} 00 \mathrm{FF}$ in normal mode, $\mathrm{H}^{\prime} 000000$ to $\mathrm{H}^{\prime} 0000 \mathrm{FF}$ in advanced mode). In normal mode the memory operand is a word operand and the branch address is 16 bits long. In advanced mode the memory operand is a longword operand, the first byte of which is assumed to be all $0\left(\mathrm{H}^{\prime} 00\right)$.

Note that the first part of the address range is also the exception vector area. For further details, refer to section 4, Exception Handling.

Figure 2.13 Branch Address Specification in Memory Indirect Mode
If an odd address is specified in word or longword memory access, or as a branch address, the least significant bit is regarded as 0 , causing data to be accessed or instruction code to be fetched at the address preceding the specified address. (For further information, see section 2.5.2, Memory Data Formats.)

2.7.2 Effective Address Calculation

Table 2.13 indicates how effective addresses are calculated in each addressing mode. In normal mode the upper 8 bits of the effective address are ignored in order to generate a 16-bit address.

Table 2.13 Effective Address Calculation

2.8 Processing States

2.8.1 Overview

The CPU has five main processing states: the reset state, exception handling state, program execution state, bus-released state, and power-down state. Figure 2.14 shows a diagram of the processing states. Figure 2.15 indicates the state transitions.

Note: * The power-down state also includes a medium-speed mode, module stop mode etc. See section 18, Power-Down Modes, for details.

Figure 2.14 Processing States

Notes: 1. From any state except hardware standby mode, a transition to the reset state occurs whenever $\overline{\operatorname{RES}}$ goes low. A transition can also be made to the reset state when the watchdog timer overflows.
2. From any state, a transition to hardware standby mode occurs when $\overline{\text { STBY }}$ goes low.

Figure 2.15 State Transitions

2.8.2 Reset State

When the $\overline{\mathrm{RES}}$ input goes low all current processing stops and the CPU enters the reset state. All interrupts are masked in the reset state. Reset exception handling starts when the $\overline{\operatorname{RES}}$ signal changes from low to high.

The reset state can also be entered by a watchdog timer overflow. For details, refer to section 11, Watchdog Timer.

2.8.3 Exception-Handling State

The exception-handling state is a transient state that occurs when the CPU alters the normal processing flow due to a reset, interrupt, or trap instruction. The CPU fetches a start address (vector) from the exception vector table and branches to that address.

(1) Types of Exception Handling and Their Priority

Exception handling is performed for resets, interrupts, and trap instructions. Table 2.14 indicates the types of exception handling and their priority. Trap instruction exception handling is always accepted, in the program execution state.

Exception handling and the stack structure depend on the interrupt control mode set in SYSCR.
Table 2.14 Exception Handling Types and Priority

Priority	Type of Exception	Detection Timing	Start of Exception Handling
High	Reset	Synchronized with clock	Exception handling starts immediately after a low-to-high transition at the $\overline{R E S}$ pin, or when the watchdog timer overflows.
	Interrupt	End of instruction execution or end of exception-handling sequence**	When an interrupt is requested, exception handling starts at the end of the current instruction or current exception-handling sequence

Notes: 1. Interrupts are not detected at the end of the ANDC, ORC, XORC, and LDC instructions, or immediately after reset exception handling.
2. Trap instruction exception handling is always accepted, in the program execution state.

(2) Reset Exception Handling

After the $\overline{\mathrm{RES}}$ pin has gone low and the reset state has been entered, when $\overline{\mathrm{RES}}$ goes high again, reset exception handling starts. When reset exception handling starts the CPU fetches a start address (vector) from the exception vector table and starts program execution from that address. All interrupts, including NMI, are disabled during reset exception handling and after it ends.

(3) Interrupt Exception Handling and Trap Instruction Exception Handling

When interrupt or trap-instruction exception handling begins, the CPU references the stack pointer (ER7) and pushes the program counter and other control registers onto the stack. Next, the CPU alters the settings of the interrupt mask bits in the control registers. Then the CPU fetches a start address (vector) from the exception vector table and program execution starts from that start address.

Figure 2.16 shows the stack after exception handling ends.

Figure 2.16 Stack Structure after Exception Handling (Examples)

2.8.4 Program Execution State

In this state the CPU executes program instructions in sequence.

2.8.5 Bus-Released State

This is a state in which the bus has been released in response to a bus request from a bus master other than the CPU. While the bus is released, the CPU halts except for internal operations.

There is one bus masters other than the CPU - the data transfer controller (DTC).
For further details, refer to section 6, Bus Controller.

2.8.6 Power-Down State

The power-down state includes both modes in which the CPU stops operating and modes in which the CPU does not stop. There are three modes in which the CPU stops operating: sleep mode, software standby mode, and hardware standby mode. There are also two other power-down modes: medium-speed mode, and module stop mode. In medium-speed mode the CPU and other bus masters operate on a medium-speed clock. Module stop mode permits halting of the operation of individual modules, other than the CPU. For details, refer to section 18, Power-Down Modes.

Sleep Mode: A transition to sleep mode is made if the SLEEP instruction is executed while the software standby bit (SSBY) in the standby control register (SBYCR) is cleared to 0 . In sleep mode, CPU operations stop immediately after execution of the SLEEP instruction. The contents of CPU registers are retained.

Software Standby Mode: A transition to software standby mode is made if the SLEEP instruction is executed while the SSBY bit in SBYCR is set to 1 . In software standby mode, the CPU and clock halt and all MCU operations stop. As long as a specified voltage is supplied, the contents of CPU registers and on-chip RAM are retained. The I/O ports also remain in their existing states.

Hardware Standby Mode: A transition to hardware standby mode is made when the $\overline{\text { STBY }}$ pin goes low. In hardware standby mode, the CPU and clock halt and all MCU operations stop. The on-chip supporting modules are reset, but as long as a specified voltage is supplied, on-chip RAM contents are retained.

2.9 Basic Timing

2.9.1 Overview

The H8S/2000 CPU is driven by a system clock, denoted by the symbol ϕ. The period from one rising edge of ϕ to the next is referred to as a "state." The memory cycle or bus cycle consists of one, two, or three states. Different methods are used to access on-chip memory, on-chip supporting modules, and the external address space.

2.9.2 On-Chip Memory (ROM, RAM)

On-chip memory is accessed in one state. The data bus is 16 bits wide, permitting both byte and word transfer instruction. Figure 2.17 shows the on-chip memory access cycle. Figure 2.18 shows the pin states.

Figure 2.17 On-Chip Memory Access Cycle

Figure 2.18 Pin States during On-Chip Memory Access

2.9.3 On-Chip Supporting Module Access Timing

The on-chip supporting modules are accessed in two states. The data bus is either 8 bits or 16 bits wide, depending on the particular internal I/O register being accessed. Figure 2.19 shows the access timing for the on-chip supporting modules. Figure 2.20 shows the pin states.

Figure 2.19 On-Chip Supporting Module Access Cycle

Figure 2.20 Pin States during On-Chip Supporting Module Access

2.9.4 External Address Space Access Timing

The external address space is accessed with an 8-bit or 16-bit data bus width in a two-state or three-state bus cycle. In three-state access, wait states can be inserted. For further details, refer to section 6, Bus Controller.

2.10 Usage Notes

2.10.1 TAS Instruction

Only register ER0, ER1, ER4, or ER5 should be used when using the TAS instruction. The TAS instruction is not generated by the Renesas Technology H8S and H8/300 Series C/C++ compilers. If the TAS instruction is used as a user-defined intrinsic function, ensure that only register ER0, ER1, ER4, or ER5 is used.

2.10.2 STM/LDM Instruction

With the STM or LDM instruction, the ER7 register is used as the stack pointer, and thus cannot be used as a register that allows save (STM) or restore (LDM) operation.

With a single STM or LDM instruction, two to four registers can be saved or restored. The available registers are as follows:

For two registers: ER0 and ER1, ER2 and ER3, or ER4 and ER5
For three registers: ER0 to ER2, or ER4 to ER6
For four registers: ER0 to ER3
For the Renesas Technology H8S or H8/300 Series C/C++ Compiler, the STM/LDM instruction including ER7 is not created.

2.10.3 Bit Manipulation Instructions

When a register that includes write-only bits is manipulated by a bit manipulation instruction, there are cases where the bits manipulated are not manipulated correctly or bits unrelated to the bits manipulated are changed.

When a register containing write-only bits is read, the value read is either a fixed value or an undefined value. This means that the bit manipulation instructions that use the value of bits read in their operation (BNOT, BTST, BAND, BIAND, BOR, BIOR, BXOR, BIXOR, BLD, and BILD) will not perform correct bit operations.

Also, bit manipulation instructions that perform a write operation on the data read after the calculation (BSET, BCLR, BNOT, BST, and BIST) may change bits unrelated to the bits manipulated. Thus extreme care is required when performing bit manipulation instructions on registers that include write-only bits.

The BSET, BCLR, BNOT, BST, and BIST instructions perform their operations in the following order.

1. Read the data in byte units
2. Perform the bit manipulation operation according to the instruction on the data read
3. Write the data back in byte units

Example: Using the BCLR instruction to clear only bit 4 in the port 1 P1DDR register.
The P1DDR register consists of 8 write-only bits and sets the I/O direction of the port 1 pins. Reading this register is invalid. When read, the values returned are undefined.

Here we present an example in which P14 is specified to be an input port using the BCLR instruction. Currently, P17 to P14 are set to be output pins and P13 to P10 are set to be input pins. At this point, the value of P1DDR is H'F0.

	P17	P16	P15	P14	P13	P12	P11	P10
I/O	Output	Output	Output	Output	Input	Input	Input	Input
P1DDR	1	1	1	1	0	0	0	0

To switch P14 from the Output pin to the input pin function, the value of P1DDR bit 4 must be changed from 1 to 0 ($H^{\prime} F 0 \rightarrow H^{\prime} E 0$). Here we assume that the BCLR instruction is used to clear P1DDR bit 4.

BCLR \#4,@P1DDR

However if a bit manipulation instruction of the type shown above is used on P1DDR, which is a write-only register, the following problem may occur.

Although the first thing that happens is that data is read from P1DDR in byte units, the value read at this time is undefined. An undefined value is a value that is either 0 or 1 in the register but reads out as an arbitrary value whose relationship to the actual value is unknown. Since the P1DDR bits are all write-only bits, every bit reads out as an undefined value. Although the actual value of P1DDR at this point is H'F0, assume that bit 3 becomes a 1 here, and the value read out is H'F8.

	P17	P16	P15	P14	P13	P12	P11	P10
I/O	Output	Output	Output	Output	Input	Input	Input	Input
P1DDR	1	1	1	1	0	0	0	0
Read value	1	1	1	1	1	0	0	0

The bit manipulation operation is performed on this value that was read. In this example, bit 4 will be cleared for H'F8.

	P17	P16	P15	P14	P13	P12	P11	P10
I/O	Output	Output	Output	Output	Input	Input	Input	Input
P1DDR	1	1	1	1	0	0	0	0
After bit manipulation	1	1	1	0	1	0	0	0

After the bit manipulation operation, this data will be written to P1DDR, and the BCLR instruction completes.

	P17	P16	P15	P14	P13	P12	P11	P10
I/O	Output	Output	Output	Input	Output	Input	Input	Input
P1DDR	1	1	1	0	1	0	0	0
Write value	1	1	1	0	1	0	0	0

Although the instruction was expected to write $\mathrm{H}^{\prime} \mathrm{E} 0$ back to P1DDR, it actually wrote $\mathrm{H}^{\prime} \mathrm{E} 8$, and P13, which was expected to be an input pin, is changed to function as an output pin. While this section described the case where P13 was read out as a 1, since the values read are undefined when P17 to P10 are read, when this bit manipulation instruction completes, bits that were 0 may be changed to 1 , and bits that were 1 may be changed to 0 . To avoid this sort of problem, see section 2.10.4, Access Methods for Registers with Write-Only Bits, for methods for modifying registers that include write-only bits.

Also note that it is possible to use the BCLR instruction to clear to 0 flags in internal I/O registers. In this case, if it is clear from the interrupt handler or other information that the corresponding flag is set to 1 , then there is no need to read the value of the corresponding flag in advance.

2.10.4 Access Methods for Registers with Write-Only Bits

Undefined values will be read out if a data transfer instruction is executed for a register that includes write-only bits, or if a bit manipulation instruction is executed for a register that includes write-only bits. To avoid reading undefined values, use methods such as those shown below to access registers that include write-only bits.

The basic method for writing to a register that includes write-only bits is to create a work area in internal RAM or other memory area and first write the data to that area. Then, perform the desired access operation for that memory and finally write that data to the register that includes write-only bits.

Figure 2.21 Flowchart for Access Methods for Registers That Include Write-Only Bits
Example: To clear only bit 4 in the port 1 P1DDR
The P1DDR register consists of 8 write-only bits and sets the I/O direction of the port 1 pins. Reading this register is invalid. When read, the values returned are undefined.

Here we present an example in which P14 is specified to be an input port using the BCLR instruction. First, we write the initial value H'F0 written to P1DDR to the work area in RAM (RAM0).

MOV.B \#H'F0, R0L
MOV.B R0L, @PAM0
MOV.B R0L, @P1DDR

	P17	P16	P15	P14	P13	P12	P11	P10
I/O	Output	Output	Output	Output	Input	Input	Input	Input
P1DDR	1	1	1	1	0	0	0	0

RAM0	1	1	1	1	0	0	0	0

To switch P14 from being an output pin to being an input pin, we must change the value of P1DDR bit 4 from 1 to $0\left(\mathrm{H}^{\prime} \mathrm{F} 0 \rightarrow \mathrm{H}^{\prime} \mathrm{E} 0\right)$. Here, were execute a BCLR instruction for RAM0.

BCLR \#4, @RAM0

	P17	P16	P15	P14	P13	P12	P11	P10
I/O	Output	Output	Output	Output	Input	Input	Input	Input
P1DDR	1	1	1	1	0	0	0	0

RAM0	1	1	1	0	0	0	0	0

Since RAM0 can be read and written, when the bit manipulation instruction is executed, only bit 4 in RAM0 is cleared. Then we write this RAM0 value to P1DDR.

MOV.B @RAM0, R0L
MOV.B R0L, @P1DDR

	P17	P16	P15	P14	P13	P12	P11	P10
I/O	Output	Output	Output	Input	Input	Input	Input	Input
P1DDR	1	1	1	0	0	0	0	0
RAM0	1	1	1	0	0	0	0	0

If this procedure is used to write registers that include write-only bits, programs can be written without depending on the type of the instructions used.

Section 3 MCU Operating Modes

3.1 Overview

3.1.1 Operating Mode Selection

Except for the $\mathrm{H} 8 \mathrm{~S} / 2240$, all $\mathrm{H} 8 \mathrm{~S} / 2245$ Group products have seven operating modes (modes 1 to 7). The H8S/2240 has three operating modes (modes 1,4 , and 5). These modes enable selection of the CPU operating mode, enabling/disabling of on-chip ROM, and the initial bus width setting, by setting the mode pins $\left(\mathrm{MD}_{2}\right.$ to $\left.\mathrm{MD}_{0}\right)$.

Table 3.1 lists the MCU operating modes.
Table 3.1 MCU Operating Mode Selection

MCU Operating Mode	MD ${ }_{2}$	MD ${ }_{1}$	MD	CPU Operating Mode	Description	On-chip ROM	External Data Bus	
							Initial Width	Max. Width
0	0	0	0	-	-	-	-	-
1			1	Normal	On-chip ROM disabled, expanded mode	Disabled	8 bits	16 bits
2*		1	0		On-chip ROM enabled, expanded mode	Enabled	8 bits	16 bits
3*			1		Single-chip mode		-	-
4	1	0	0	Advanced	On-chip ROM disabled,	Disabled	16 bits	16 bits
5			1		expanded mode		8 bits	16 bits
6*		1	0		On-chip ROM enabled, expanded mode	Enabled	8 bits	16 bits
7*			1		Single-chip mode		-	-

Note: * Cannot be used in the H8S/2240.

The CPU's architecture allows for 4 Gbytes of address space, but the H8S/2245 Group actually accesses a maximum of 16 Mbytes.

Modes 1,2 , and 4 to 6 are externally expanded modes that allow access to external memory and peripheral devices.

The external expansion modes allow switching between 8 -bit and 16-bit bus modes. After program execution starts, an 8-bit or 16-bit address space can be set for each area, depending on the bus controller setting. If 16 -bit access is selected for any one area, 16 -bit bus mode is set; if 8 -bit access is selected for all areas, 8 -bit bus mode is set.

Note that the functions of each pin depend on the operating mode.
The H8S/2245 Group can be used only in modes 1 to 7 . This means that the mode pins must be set to select one of these modes. Do not change the inputs at the mode pins during operation.

3.1.2 Register Configuration

The H8S/2245 Group has a mode control register (MDCR) that indicates the inputs at the mode pins $\left(\mathrm{MD}_{2}\right.$ to $\left.\mathrm{MD}_{0}\right)$, and a system control register (SYSCR) that controls the operation of the H8S/2245 Group. Table 3.2 summarizes these registers.

Table 3.2 Register Configuration

Name	Abbreviation	R/W	Initial Value	Address*
Mode control register	MDCR	R	Undetermined	H'FF3B
System control register	SYSCR	R/W	H'01	H'FF39

Note: * Lower 16 bits of the address.

3.2 Register Descriptions

3.2.1 Mode Control Register (MDCR)

Bit	7	6	5	4	3	2	1	0
	-	-	-	-	-	MDS2	MDS1	MDS0
Initial value:	1	0	0	0	0	—*	—*	—*
R/W	-	-	-	-	-	R	R	R

Note: * Determined by pins MD_{2} to MD_{0}.

MDCR is an 8-bit read-only register that indicates the current operating mode of the H8S/2245 Group.

Bit 7—Reserved: Read-only bit, always read as 1.
Bits 6 to 3—Reserved: Read-only bits, always read as 0 .
Bits 2 to 0—Mode Select 2 to 0 (MDS2 to MDSO): These bits indicate the input levels at pins MD_{2} to MD_{0} (the current operating mode). Bits MDS2 to MDS0 correspond to MD_{2} to MD_{0}. MDS2 to MDS0 are read-only bits-they cannot be written to. The mode pin (MD_{2} to MD_{0}) input levels are latched into these bits when MDCR is read. These latches are canceled by a power-on reset, but are retained after a manual reset.

3.2.2 System Control Register (SYSCR)

Bit	$:$
7	7

SYSCR is an 8-bit readable/writable register that selects the interrupt control mode, the detected edge for NMI, and enable or disable the on-chip RAM.

SYSCR is initialized to $\mathrm{H}^{\prime} 01$ by a reset and in hardware standby mode. It is not initialized in software standby mode.

Bit 7—Reserved: This bit can be read or written, but does not affect operation.

Bit 6—Reserved: Read-only bit, always read as 0.
Bits 5 and 4-Interrupt Control Mode 1 and 0 (INTM1, INTM0): These bits select the control mode of the interrupt controller. For details of the interrupt control modes, see section 5.4.1, Interrupt Control Modes and Interrupt Operation.

Bit 5	Bit 4	Interrupt Control Mode	Description	
INTM1	INTM0	Control of interrupts by I bit	(Initial value)	
0	0	0	Control of interrupts by I bit, U bit, and ICR	
	1	1	Setting prohibited	
1	0	-	Setting prohibited	

Bit 3-NMI Edge Select (NMIEG): Selects the valid edge of the NMI interrupt input.
Bit 3

NMIEG	Description	
0	An interrupt is requested at the falling edge of NMI input	(Initial value)
1	An interrupt is requested at the rising edge of NMI input	

Bits 2 and 1—Reserved: Read-only bits, always read as 0 .
Bit 0-RAM Enable (RAME): Enables or disables the on-chip RAM. The RAME bit is initialized when the reset status is released. It is not initialized in software standby mode.

Bit 0
RAME Description

0	On-chip RAM is disabled	
1	On-chip RAM is enabled	(Initial value)

Note: When the DTC is used, the RAME bit should not be cleared to 0 .

3.3 Operating Mode Descriptions

3.3.1 Mode 1

The CPU can access a 64-kbyte address space in normal mode. The on-chip ROM is disabled, and 8 -bit bus mode is set, immediately after a reset.

Ports B and C function as an address bus, port D functions as a data bus, and part of port F carries bus control signals. However, note that if 16-bit access is designated by the bus controller, the bus mode switches to 16 bits and port E becomes a data bus.

3.3.2 Mode 2

The CPU can access a 64-kbyte address space in normal mode. The on-chip ROM is enabled, and 8 -bit bus mode is set immediately after a reset.

Ports B and C function as input ports immediately after a reset. They can each be set to output addresses by setting the corresponding bits in the data direction register (DDR) to 1 . Port D functions as a data bus, and part of port F carries bus control signals. However, note that if 16-bit access is designated by the bus controller, the bus mode switches to 16 bits and port E becomes a data bus.

The amount of on-chip ROM that can be used on the H8S/2246, H8S/2245, H8S/2244, and H8S/2243 is limited to 56 kbytes.

Note: Mode 2 cannot be used in the H8S/2240.

3.3.3 Mode 3

The CPU can access a 64-kbyte address space in normal mode. The on-chip ROM is enabled, but external addresses cannot be accessed.

All I/O ports are available for use as input-output ports.
The amount of on-chip ROM that can be used on the H8S/2246, H8S/2245, H8S/2244, and H8S/2243 is limited to 56 kbytes.

Note: Mode 3 cannot be used in the H8S/2240.

3.3.4 Mode 4

The CPU can access a 16-Mbyte address space in advanced mode. The on-chip ROM is disabled.
Pins P_{3} to P_{0}, and ports A, B, and C function as an address bus, ports D and E function as a data bus, and part of port F carries bus control signals. $\mathrm{Pins} \mathrm{P}_{3}$ to $\mathrm{P} 1_{0}$ function as input ports immediately after a reset. They can each be set to output address use by setting the corresponding bits in the data direction register (DDR) to 1 .

The initial bus mode after a reset is 16 bits, with 16 -bit access to all areas. However, note that if 8bit access is designated by the bus controller for all areas, the bus mode switches to 8 bits.

3.3.5 Mode 5

The CPU can access a 16-Mbyte address space in advanced mode. The on-chip ROM is disabled.

Pins P_{3} to P_{0}, and ports A, B, and C function as an address bus, ports D functions as a data bus, and part of port F carries bus control signals. $\mathrm{Pins} \mathrm{P}_{3}$ to P_{0} function as input ports immediately after a reset. They can each be set to output address use by setting the corresponding bits in the data direction register (DDR) to 1 .

The initial bus mode after a reset is 8 bits, with 8 -bit access to all areas. However, note that if at least one area is designated for 16-bit access by the bus controller, the bus mode switches to 16 bits and port E becomes a data bus.

3.3.6 Mode 6

The CPU can access a 16-Mbyte address space in advanced mode. The on-chip ROM is enabled.

Pins P_{3} to $\mathrm{P} 1_{0}$, and ports A, B, and C function as input ports immediately after a reset. They can each be set to output addresses by setting the corresponding bits in the data direction register (DDR) to 1. Port D functions as a data bus, and part of port F carries bus control signals.

The initial bus mode after a reset is 8 bits, with 8 -bit access to all areas. However, note that if at least one area is designated for 16-bit access by the bus controller, the bus mode switches to 16 bits and port E becomes a data bus.

Note: Mode 6 cannot be used in the H8S/2240.

3.3.7 Mode 7

The CPU can access a 16-Mbyte address space in advanced mode. The on-chip ROM is enabled, but external addresses cannot be accessed.

All I/O ports are available for use as input-output ports.
Note: Mode 7 cannot be used in the H8S/2240.

3.4 Pin Functions in Each Operating Mode

The pin functions of ports 1 , and A to F vary depending on the operating mode. Table 3.3 shows their functions in each operating mode.

Table 3.3 Pin Functions in Each Mode

Port		Mode 1	Mode 2* ${ }^{\text {² }}$	Mode 3	Mode 4	Mode 5	Mode 6*2	Mode 7*2
Port 1	$\mathrm{P} 1_{3}$ to $\mathrm{P} 1_{0}$	$\mathrm{P} *^{1 / T}$	$\mathrm{P} * 1 / T$	$\mathrm{P} * 1 / \mathrm{T}$	$\mathrm{P} *^{1} / \mathrm{T} / \mathrm{A}$	$\mathrm{P} *^{1} / \mathrm{T} / \mathrm{A}$	$\mathrm{P} * 1 / \mathrm{T} / \mathrm{A}$	$\mathrm{P} * 1 / \mathrm{T}$
Port A	PA_{3} to PA_{0}	P	P	P	A	A	P*1/A	P
Port B		A	P*1/A	P	A	A	$\mathrm{P} * 1 / \mathrm{A}$	P
Port C		A	P*1/A	P	A	A	P*1/A	P
Port D		D	D	P	D	D	D	P
Port E		P*1/D	P*1/D	P	P/D* ${ }^{1}$	P*1/D	P*1/D	P
Port F	PF_{7}	P/C**	P/C* ${ }^{1}$	P*1/C	P/C* ${ }^{1}$	P/C* ${ }^{1}$	P/C* ${ }^{1}$	P*1/C
	PF_{6} to PF_{3}	C	C	P	C	C	C	P
	PF_{2} to PF_{0}	P*1/C	P*1/C		P*1/C	P*1/C	P*1/C	

Legend:
P: I/O port
T: Timer I/O
A: Address bus output
D: Data bus I/O
C: Control signals, clock I/O
Notes: 1. After reset
2. Cannot be used in the H8S/2240.

3.5 Memory Map in Each Operating Mode

The H8S/2246, H8S/2245, H8S/2244, H8S/2243, H8S/2242, H8S/2241, and H8S/2240 memory maps are shown in figures 3.1 to 3.7.

The address space is 64 kbytes in modes 1 to 3 (normal modes), and 16 Mbytes in modes 4 to 7 (advanced modes).

The on-chip ROM size is 128 kbytes in the H8S/2246 and H8S/2245, and 64 kbytes in the H8S/2244 and H8S/2243, but only 56 kbytes are available in modes 2 and 3 (normal modes).

The on-chip ROM size in the H8S/2242 and H8S/2241 is 32 kbytes.
The address space is divided into eight areas for modes 4 to 6 . For details, see section 6, Bus Controller.

Figure 3.1 H8S/2246 Memory Map in Each Operating Mode

Figure 3.1 H8S/2246 Memory Map in Each Operating Mode (cont)

Mode 1 (normal expanded mode with on-chip ROM disabled)		Mode 2 (normal expanded mode with on-chip ROM enabled)		(norma	Mode 3 single-chip mode)
H'0000	External address space	H'0000		H'0000	
			On-chip ROM		On-chip ROM
H'E400		H'DFFF H'E000		H'DFFF	
			External address space		
	Reserved area*	H'E400	Reserved area*		
H'ECOO		H'EC00		H'EC00	
	On-chip RAM*		On-chip RAM*		On-chip RAM
	External address			H'FBFF	
	External address space		space		
	Internal I/O registers		Internal I/O registers		Internal I/O registers
H'FF08	External address space	H'FF08	External address space		
H'FF28 H'FFFF	Internal I/O registers	H'FF28 H'FFFF	Internal I/O registers	H'FF28H'FFFF	
Note: * External addresses can be accessed by clearing the RAME bit in SYSCR to 0.					

Figure 3.2 H8S/2245 Memory Map in Each Operating Mode

Figure 3.2 H8S/2245 Memory Map in Each Operating Mode (cont)

Figure 3.3 H8S/2244 Memory Map in Each Operating Mode

Figure 3.3 H8S/2244 Memory Map in Each Operating Mode (cont)

Figure 3.4 H8S/2243 Memory Map in Each Operating Mode

Figure 3.4 H8S/2243 Memory Map in Each Operating Mode (cont)

Mode 1
(normal expanded mode with on-chip ROM disabled)

Mode 2 (normal expanded mode with on-chip ROM enabled)

Mode 3
(normal single-chip mode)

H'0000 | | |
| :---: | :---: |
| | |
| | |
| | |
| | |
| External address | | space

H'0000	
	On-chip ROM
$\begin{aligned} & \text { H'7FFF } \\ & \text { H'8000 } \end{aligned}$	
	Reserved area
$\begin{aligned} & \text { H'DFFF } \\ & \text { H'E000 } \end{aligned}$	
	External address space
H'E400	On-chip RAM*
	External address space
	Internal I/O registers
H'FF08	External address space
H'FF28 H'FFFF	Internal I/O registers

H'E400
H'FBFF

H'FE40 Internal I/O registers
H'FF07

H'FF28 H'FFFF

Internal I/O registers

Note: * External addresses can be accessed by clearing the RAME bit in SYSCR to 0.
Figure 3.5 H8S/2242 Memory Map in Each Operating Mode

Figure 3.5 H8S/2242 Memory Map in Each Operating Mode (cont)

Mode 1
(normal expanded mode with on-chip ROM disabled)

Mode 2 (normal expanded mode with on-chip ROM enabled)

Mode 3
(normal single-chip mode)

H'0000 | |
| :---: |
| |
| |
| |
| External address | space

H'0000	
	On-chip ROM
$\begin{aligned} & \text { H'7FFF } \\ & \text { H'8000 } \end{aligned}$	
	Reserved area
$\begin{aligned} & \text { H'DFFF } \\ & \text { H'E000 } \end{aligned}$	
	External address space
H'E400	Reserved area*
H'ECOO	On-chip RAM*
	External address space
	Internal I/O registers
H'FF08	External address space
H'FF28 H'FFFF	Internal I/O registers

H'EC00
H'FBFF

H'FE40 Internal I/O registers
H'FF07

H'FF28 H'FFFF

Internal I/O registers

Note: * External addresses can be accessed by clearing the RAME bit in SYSCR to 0.
Figure 3.6 H8S/2241 Memory Map in Each Operating Mode

Figure 3.6 H8S/2241 Memory Map in Each Operating Mode (cont)

Mode 1
(normal expanded mode with on-chip ROM disabled)

H'0000	

Modes 4 and 5 (advanced expanded modes with on-chip ROM disabled)

Note: * External addresses can be accessed by clearing the RAME bit in SYSCR to 0.
Figure 3.7 H8S/2240 Memory Map in Each Operating Mode (Modes 1, 4, and 5 Only)

Section 4 Exception Handling

4.1 Overview

4.1.1 Exception Handling Types and Priority

As table 4.1 indicates, exception handling may be caused by a reset, trap instruction, or interrupt. Exception handling is prioritized as shown in table 4.1. If two or more exceptions occur simultaneously, they are accepted and processed in order of priority. Trap instruction exceptions are accepted at all times, in the program execution state. See appendix D.1, Port States in Each Mode.

Exception handling sources, the stack structure, and the operation of the CPU vary depending on the interrupt control mode set by the INTM0 and INTM1 bits of SYSCR.

Table 4.1 Exception Handling Types and Priority

Priority	Exception Handling Type	Start of Exception Handling
High	Reset	Starts immediately after a low-to-high transition at the RES pin, or when the watchdog timer overflows.
	Interrupt	Starts when execution of the current instruction or exception handling ends, if an interrupt request has been issued*1
Lrap instruction (TRAPA)**	Started by execution of a trap instruction (TRAPA)	

Notes: 1. Interrupt detection is not performed on completion of ANDC, ORC, XORC, or LDC instruction execution, or on completion of reset exception handling.
2. Trap instruction exception handling requests are accepted at all times in program execution state.

4.1.2 Exception Handling Operation

Exceptions originate from various sources. Trap instructions and interrupts are handled as follows:

1. The program counter (PC) and condition code register (CCR) are pushed onto the stack.
2. The interrupt mask bits are updated.
3. A vector address corresponding to the exception source is generated, and program execution starts from that address.

For a reset exception, steps 2 and 3 above are carried out.

4.1.3 Exception Sources and Vector Table

The exception sources are classified as shown in figure 4.1. Different vector addresses are assigned to different exception sources.

Table 4.2 lists the exception sources and their vector addresses.

Exception sources	$\left\{\begin{array}{l}\text { Reset } \\ \text { Interrupts } \\ \text { Manual reset }\end{array}\right.$
	$\left\{\begin{array}{l}\text { External interrupts: NMI, IRQ7 to IRQ0 } \\ \text { Internal interrupts: 34 interrupt sources in } \\ \text { on-chip supporting modules }\end{array}\right.$
Trap instruction	

Figure 4.1 Exception Sources

In modes 6 and 7, the on-chip ROM available for use on the H8S/2246 and H8S/2245 after a power-on reset is the 64-kbyte area comprising addresses H'000000 to H'00FFFF. Care is required when setting vector addresses. In this case, clearing the EAE bit in BCRL enables the 128-kbyte area comprising addresses $\mathrm{H}^{\prime} 000000$ to $\mathrm{H}^{\prime} 01 \mathrm{FFFF}$ to be used for the on-chip ROM.

Table 4.2 Exception Vector Table

Exception Source	Vector Number	Vector Address**	
		Normal Mode	Advanced Mode
Power-on reset	0	$\mathrm{H}^{\prime} 0000$ to $\mathrm{H}^{\prime} 0001$	H'0000 to H'0003
Manual reset	1	$\mathrm{H}^{\prime} 0002$ to $\mathrm{H}^{\prime} 0003$	H'0004 to H'0007
Reserved for system use	2	$\mathrm{H}^{\prime} 0004$ to $\mathrm{H}^{\prime} 0006$	H'0008 to H'000B
	3	$\mathrm{H}^{\prime} 0006$ to $\mathrm{H}^{\prime} 0007$	$\mathrm{H}^{\prime} 000 \mathrm{C}$ to $\mathrm{H}^{\prime} 000 \mathrm{~F}$
	4	$\mathrm{H}^{\prime} 0008$ to $\mathrm{H}^{\prime} 0009$	H'0010 to H'0013
	5	$\mathrm{H}^{\prime} 000 \mathrm{~A}$ to H'000B	H'0014 to H'0017
	6	H'000C to H'000D	H'0018 to H'001B
External interrupt NMI	7	H'000E to H'000F	H'001C to H'001F
Trap instruction (4 sources)	8	$\mathrm{H}^{\prime} 0010$ to $\mathrm{H}^{\prime} 0011$	$\mathrm{H}^{\prime} 0020$ to H'0023
	9	$\mathrm{H}^{\prime} 0012$ to $\mathrm{H}^{\prime} 0013$	H'0024 to H'0027
	10	$\mathrm{H}^{\prime} 0014$ to H'0015	H'0028 to H'002B
	11	$\mathrm{H}^{\prime} 0016$ to $\mathrm{H}^{\prime} 0017$	H'002C to H'002F
Reserved for system use	12	$\mathrm{H}^{\prime} 0018$ to $\mathrm{H}^{\prime} 0019$	H'0030 to H'0033
	13	$\mathrm{H}^{\prime} 001 \mathrm{~A}$ to H'001B	H'0034 to H'0037
	14	H'001C to H'001D	H'0038 to H'003B
	15	H'001E to H'001F	H'003C to H'003F
External interrupt	16	$\mathrm{H}^{\prime} 0020$ to H'0021	H'0040 to H'0043
	17	$\mathrm{H}^{\prime} 0022$ to H'0023	H'0044 to H'0047
	18	$\mathrm{H}^{\prime} 0024$ to $\mathrm{H}^{\prime} 0025$	H'0048 to H'004B
	19	$\mathrm{H}^{\prime} 0026$ to H'0027	H'004C to H'004F
	20	$\mathrm{H}^{\prime} 0028$ to $\mathrm{H}^{\prime} 0029$	H'0050 to H'0053
	21	$\mathrm{H}^{\prime} 002 \mathrm{~A}$ to H'002B	H'0054 to H'0057
	22	H'002C to H'002D	H'0058 to H'005B
	23	H'002E to H'002F	$\mathrm{H}^{\prime} 005 \mathrm{C}$ to $\mathrm{H}^{\prime} 005 \mathrm{~F}$
Internal interrupt**	$\begin{gathered} 24 \\ 1 \\ 91 \end{gathered}$	$\begin{aligned} & \mathrm{H}^{\prime} 0030 \text { to } \mathrm{H}^{\prime} 0031 \\ & \mathrm{H}^{\prime} 00 \mathrm{~B} 6 \text { to } \mathrm{H}^{\prime} 00 \mathrm{~B} 7 \end{aligned}$	$\mathrm{H}^{\prime} 0060$ to $\mathrm{H}^{\prime} 0063$ $\mathrm{H}^{\prime} 016 \mathrm{C}$ to $\mathrm{H}^{\prime} 016 \mathrm{~F}$

Notes: 1. Lower 16 bits of the address.
2. For details of internal interrupt vectors, see section 5.3.3, Interrupt Exception Handling Vector Table.

4.2 Reset

4.2.1 Overview

A reset has the highest exception priority.
When the $\overline{\text { RES }}$ pin goes low, all processing halts and the H8S/2245 Group enters the reset state. A reset initializes the internal state of the CPU and the registers of on-chip supporting modules. Immediately after a reset, interrupt control mode 0 is set.

Reset exception handling begins when the $\overline{\mathrm{RES}}$ pin changes from low to high.
The level of the NMI pin at reset determines whether the type of reset is a power-on reset or a manual reset.

The H8S/2245 Group can also be reset by overflow of the watchdog timer. For details see section 11, Watchdog Timer.

4.2.2 Reset Types

A reset can be of either of two types: a power-on reset or a manual reset. Reset types are shown in table 4.3.

The internal state of the CPU is initialized by either type of reset. A power-on reset also initializes all the registers in the on-chip peripheral modules, while a manual reset initializes all the registers in the on-chip supporting modules except for the bus controller and I/O ports, which retain their previous states.

With a manual reset, since the on-chip supporting modules are initialized, ports used as on-chip supporting module I/O pins are switched to I/O ports controlled by DDR and DR.

Table 4.3 Reset Types

	Reset Transition Conditions			Internal State	
Type	NMI	$\overline{\text { RES }}$		CPU	On-Chip Supporting Modules
Power-on reset	High	Low	Initialized	Initialized	
Manual reset	Low	Low	Initialized	Initialized, except for bus controller and I/O ports	

A reset caused by the watchdog timer can also be of either of two types: a power-on reset or a manual reset.

4.2.3 Reset Sequence

The H8S/2245 Group enters the reset state when the $\overline{\mathrm{RES}}$ pin goes low.
To ensure that the H8S/2245 Group is reset, hold the $\overline{\mathrm{RES}}$ pin low for at least 20 ms at power-up. To reset the H8S/2245 Group during operation, hold the $\overline{\mathrm{RES}}$ pin low for at least 20 states. See appendix D.1, Port States in Each Mode.

When the $\overline{\mathrm{RES}}$ pin goes high after being held low for the necessary time, the H8S/2245 Group starts reset exception handling as follows:

1. The internal state of the CPU and the registers of the on-chip supporting modules are initialized, and the I bit is set to 1 in CCR.
2. The reset exception handling vector address is read and transferred to the PC, and program execution starts from the address indicated by the PC.

Figures 4.2 and 4.3 show examples of the reset sequence.

(1) Reset exception handling vector address ((1) $=\mathrm{H}^{\prime} 0000$)
(2) Start address (contents of reset exception handling vector address)
(3) Start address ((3) = (2))
(4) First program instruction

Figure 4.2 Reset Sequence (Modes 2 and 3)

(1) (3) Reset exception handling vector address ((1) $=\mathrm{H}^{\prime} 000000$, (3) $=\mathrm{H}^{\prime} 000002$)
(2) (4) Start address (contents of reset exception handling vector address)
(5) \quad Start address $((5)=(2)(4))$
(6) First program instruction

Note: * 3 program wait states are inserted.

Figure 4.3 Reset Sequence (Mode 4)

4.2.4 Interrupts after Reset

If an interrupt is accepted after a reset but before the stack pointer (SP) is initialized, the PC and CCR will not be saved correctly, leading to a program crash. To prevent this, all interrupt requests, including NMI, are disabled immediately after a reset. Since the first instruction of a program is always executed immediately after the reset state ends, make sure that this instruction initializes the stack pointer (example: MOV.L \#xx: 32, SP).

4.2.5 State of On-Chip Supporting Modules after Reset Release

After reset release, MSTPCR is initialized to $\mathrm{H}^{\prime} 3$ FFF and all modules except the DTC enter module stop mode. Consequently, on-chip supporting module registers cannot be read or written to. Register reading and writing is enabled when module stop mode is exited.

4.3 Interrupts

Interrupt exception handling can be requested by nine external sources (NMI, IRQ7 to IRQ0) and 34 internal sources in the on-chip supporting modules. Figure 4.4 classifies the interrupt sources and the number of interrupts of each type.

The on-chip supporting modules that can request interrupts include the watchdog timer (WDT), 16-bit timer-pulse unit (TPU), 8-bit timer, serial communication interface (SCI), data transfer controller (DTC), and A/D converter. Each interrupt source has a separate vector address.

NMI is the highest-priority interrupt. Interrupts are controlled by the interrupt controller. The interrupt controller has two interrupt control modes and can assign interrupts other than NMI to three priority/mask levels to enable multiplexed interrupt control.

For details of interrupts, see section 5, Interrupt Controller.

Notes: Numbers in parentheses are the numbers of interrupt sources.

* When the watchdog timer is used as an interval timer, it generates an interrupt request at each counter overflow.

Figure 4.4 Interrupt Sources and Number of Interrupts

4.4 Trap Instruction

Trap instruction exception handling starts when a TRAPA instruction is executed. Trap instruction exception handling can be executed at all times in the program execution state.

The TRAPA instruction fetches a start address from a vector table entry corresponding to a vector number from 0 to 3 , as specified in the instruction code.

Table 4.4 shows the status of CCR after execution of trap instruction exception handling.
Table 4.4 Status of CCR after Trap Instruction Exception Handling

	CCR	
Interrupt Control Mode	I	UI
0	1	-
1	1	1

Legend:
1: Set to 1
-: Retains value prior to execution.

4.5 Stack Status after Exception Handling

Figure 4.5 shows the stack after completion of trap instruction exception handling and interrupt exception handling.

Note: * Ignored on return.
Figure 4.5 (1) Stack Status after Exception Handling (Normal Modes)

Figure 4.5 (2) Stack Status after Exception Handling (Advanced Modes)

4.6 Notes on Use of the Stack

When accessing word data or longword data, the H8S/2245 Group assumes that the lowest address bit is 0 . The stack should always be accessed by word transfer instruction or longword transfer instruction, and the value of the stack pointer (SP, ER7) should always be kept even. Use the following instructions to save registers:

```
PUSH.W Rn (or MOV.W Rn, @-SP)
PUSH.L ERn (or MOV.L ERn, @-SP)
```

Use the following instructions to restore registers:

```
POP.W Rn (or MOV.W @SP+, Rn)
POP.L ERn (or MOV.L @SP+, ERn)
```

Setting SP to an odd value may lead to a malfunction. Figure 4.6 shows an example of what happens when the SP value is odd.

Figure 4.6 Operation when SP Value is Odd

Section 5 Interrupt Controller

5.1 Overview

5.1.1 Features

The H8S/2245 Group controls interrupts by means of an interrupt controller. The interrupt controller has the following features:

- Two interrupt control modes
- Either of two interrupt control modes can be set by means of the INTM1 and INTM0 bits in the system control register (SYSCR).
- Priorities settable with ICR
- An interrupt control register (ICR) is provided for setting interrupt priorities. Three priority levels can be set for each module for all interrupts except NMI.
- Independent vector addresses
- All interrupt sources are assigned independent vector addresses, making it unnecessary for the source to be identified in the interrupt handling routine.
- Nine external interrupts
- NMI is the highest-priority interrupt, and is accepted at all times. Rising edge or falling edge can be selected for NMI.
- Falling edge, rising edge, or both edge detection, or level sensing, can be selected for IRQ7 to IRQ0.
- DTC control
- DTC activation is performed by means of interrupts.

5.1.2 Block Diagram

A block diagram of the interrupt controller is shown in figure 5.1.

Figure 5.1 Block Diagram of Interrupt Controller

5.1.3 Pin Configuration

Table 5.1 summarizes the pins of the interrupt controller.
Table 5.1 Interrupt Controller Pins

Name	Symbol	I/O	Function
Nonmaskable interrupt	NMI	Input	Nonmaskable external interrupt; rising or falling edge can be selected
External interrupt requests 7 to 0	$\overline{\text { IRQ7 to } \overline{\text { IRQ0 }}}$	Input	Maskable external interrupts; rising, falling, or both edges, or level sensing, can be selected

5.1.4 Register Configuration

Table 5.2 summarizes the registers of the interrupt controller.
Table 5.2 Interrupt Controller Registers

Name	Abbreviation	R/W	Initial Value	Address**
System control register	SYSCR	R/W	H'01	H'FF39
IRQ sense control register H	ISCRH	R/W	H'00	H'FF2C
IRQ sense control register L	ISCRL	R/W	H'00	H'FF2D
IRQ enable register	IER	R/W	H'00	H'FF2E
IRQ status register	ISR	$\mathrm{R} /(\mathrm{W})^{*}{ }^{2}$	H'00	H'FF2F
Interrupt control register A	ICRA	R/W	H'00	H'FEC0
Interrupt control register B	ICRB	R/W	H'00	H'FEC1
Interrupt control register C	ICRC	R/W	H'00	H'FEC2

Notes: 1. Lower 16 bits of the address.
2. Can only be written with 0 for flag clearing.

5.2 Register Descriptions

5.2.1 System Control Register (SYSCR)

Bit	7	6	5	4	3	2	1	0
	-	-	INTM1	INTM0	NMIEG	-	-	RAME
Initial value:	0	0	0	0	0	0	0	1
R/W	R/W	-	R/W	R/w	R/W	-	-	R/W

SYSCR is an 8-bit readable/writable register that selects the interrupt control mode, and the detected edge for NMI.

Only bits 5 to 3 are described here; for details of the other bits, see section 3.2.2, System Control Register (SYSCR).

SYSCR is initialized to $\mathrm{H}^{\prime} 01$ by a reset and in hardware standby mode. It is not initialized in software standby mode.

Bits 5 and 4-Interrupt Control Mode 1 and $\mathbf{0}$ (INTM1, INTM0): These bits select one of two interrupt control modes for the interrupt controller.

Bit 5	Bit 4	Interrupt Control Mode	Description	
INTM1	INTM0		Interrupts are controlled by I bit	(Initial value)
0	0	0	Interrupts are controlled by I and UI bits and ICR	
	1	1	Setting prohibited	
1	0	-	Setting prohibited	

Bit 3-NMI Edge Select (NMIEG): Selects the input edge for the NMI pin.
Bit 3

NMIEG	Description	
0	Interrupt request generated at falling edge of NMI input	(Initial value)
1	Interrupt request generated at rising edge of NMI input	

5.2.2 Interrupt Control Registers A to C (ICRA to ICRC)

Bit	$:$	7	6	5	4	3	2	1	0
	ICR7	ICR6	ICR5	ICR4	ICR3	ICR2	ICR1	ICR0	
	Initial value:	0	0	0	0	0	0	0	0
R/W	$:$	R/W							

The ICR registers are three 8-bit readable/writable registers that set the interrupt control level for interrupts other than NMI.

The correspondence between ICR settings and interrupt sources is shown in table 5.3.

The ICR registers are initialized to $\mathrm{H}^{\prime} 00$ by a reset and in hardware standby mode.
Bit n—Interrupt Control Level (ICRn):
Bit n

| ICRn | Description | |
| :--- | :--- | :--- | :--- |
| 0 | The corresponding interrupt requests have priority level 0 (low priority) | (Initial value) |
| 1 | The corresponding interrupt requests have priority level 1 (high priority) | |
| Note: | $\mathrm{n}=7$ to 0 | |

Table 5.3 Correspondence between Interrupt Sources and ICR Settings

	Bits							
Register	$\mathbf{7}$	$\mathbf{6}$	$\mathbf{5}$	$\mathbf{4}$	$\mathbf{3}$	$\mathbf{2}$	$\mathbf{1}$	$\mathbf{0}$
ICRA	IRQ0	IRQ1	IRQ2	IRQ4	IRQ6	DTC	$\begin{array}{l}\text { Watchdog }\end{array}$	-
			IRQ3	IRQ5	IRQ7		timer	

5.2.3 IRQ Enable Register (IER)

Bit	$:$	7	6	5	4	3	2	1	0
	IRQ7E	IRQ6E	IRQ5E	IRQ4E	IRQ3E	IRQ2E	IRQ1E	IRQ0E	
	Initial value:	0	0	0	0	0	0	0	0
R/W	$:$	R/W							

IER is an 8-bit readable/writable register that controls enabling and disabling of interrupt requests IRQ7 to IRQ0.

IER is initialized to $\mathrm{H}^{\prime} 00$ by a reset and in hardware standby mode.
Bits 7 to 0—IRQ7 to IRQ0 Enable (IRQ7E to IRQ0E): These bits select whether IRQ7 to IRQ0 are enabled or disabled.

Bit n
IRQnE Description

0	IRQn interrupts disabled	(Initial value)
1	IRQn interrupts enabled	

Note: $\mathrm{n}=7$ to 0

5.2.4 IRQ Sense Control Registers H and L (ISCRH, ISCRL)

ISCRH

Bit	15	14	13	12	11	10	9	8
	IRQ7SCB	IRQ7SCA	IRQ6SCB	IRQ6SCA	IRQ5SCB	IRQ5SCA	IRQ4SCB	IRQ4SCA
Initial value:	0	0	0	0	0	0	0	0
R/W								

ISCRL

| Bit | $:$ | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | IRQ3SCB | IRQ3SCA | IRQ2SCB | IRQ2SCA | IRQ1SCB | IRQ1SCA | IRQ0SCB | IRQ0SCA | |
| | Initial value: | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| R/W | $:$ | R/W |

The ISCR registers are 16-bit readable/writable registers that select rising edge, falling edge, or both edge detection, or level sensing, for the input at pins $\overline{\mathrm{IRQ} 7}$ to $\overline{\mathrm{IRQ} 0}$.

The ISCR registers are initialized to $\mathrm{H}^{\prime} 0000$ by a reset and in hardware standby mode.

Bits 15 to 0: IRQ7 Sense Control A and B (IRQ7SCA, IRQ7SCB) to IRQ0 Sense Control A and B (IRQ0SCA, IRQ0SCB)

Bits 15 to 0

IRQ7SCB to IRQ0SCB	IRQ7SCA to IRQ0SCA	
0	0	Description

5.2.5 IRQ Status Register (ISR)

Bit	7	6	5	4	3	2	1	0
	IRQ7F	IRQ6F	IRQ5F	IRQ4F	IRQ3F	IRQ2F	IRQ1F	IRQ0F
Initial value:	0	0	0	0	0	0	0	0
R/W	$\mathrm{R} /(\mathrm{W})^{*}$							

Note: * Only 0 can be written, to clear the flag.

ISR is an 8-bit readable/writable register that indicates the status of IRQ7 to IRQ0 interrupt requests.

ISR is initialized to $\mathrm{H}^{\prime} 00$ by a reset and in hardware standby mode.

Bits 7 to 0—IRQ7 to IRQ0 flags (IRQ7F to IRQ0F): These bits indicate the status of IRQ7 to IRQ0 interrupt requests.

Bit n

IRQnF Description

$0 \quad$ [Clearing conditions]

- Cleared by reading IRQnF flag when $I R Q n F=1$, then writing 0 to IRQnF flag
- When IRQn interrupt exception handling is executed when low-level detection is set $(\operatorname{IRQnSCB}=\mathrm{IRQnSCA}=0)$ and $\overline{\mathrm{IRQn}}$ input is high
- When IRQn interrupt exception handling is executed when falling, rising, or both-edge detection is set (IRQnSCB = 1 or IRQnSCA =1)
- When DTC is activated by IRQn interrupt while DISEL bit of MRB in DTC is 0 .

1 [Setting conditions]

- When $\overline{\mathrm{IRQn}}$ input goes low when low-level detection is set (IRQnSCB $=\operatorname{IRQnSCA}=$ 0)
- When a falling edge occurs in $\overline{\mathrm{IRQn}}$ input when falling edge detection is set (IRQnSCB $=0$, IRQnSCA $=1$)
- When a rising edge occurs in $\overline{\mathrm{IRQn}}$ input when rising edge detection is set (IRQnSCB = 1, IRQnSCA = 0)
- When a falling or rising edge occurs in $\overline{\mathrm{IRQn}}$ input when both-edge detection is set $(\operatorname{IRQnSCB}=\mathrm{IRQnSCA}=1)$

[^1]
5.3 Interrupt Sources

Interrupt sources comprise external interrupts (NMI and IRQ7 to IRQ0) and internal interrupts (34 sources).

5.3.1 External Interrupts

There are nine external interrupts: NMI and IRQ7 to IRQ0. Of these, NMI and IRQ2 to IRQ0 can be used to restore the H8S/2245 Group from software standby mode.

NMI Interrupt: NMI is the highest-priority interrupt, and is always accepted by the CPU regardless of the status of the CPU interrupt mask bits. The NMIEG bit in SYSCR can be used to select whether an interrupt is requested at a rising edge or a falling edge on the NMI pin.

The vector number for NMI interrupt exception handling is 7 .
IRQ7 to IRQ0 Interrupts: Interrupts IRQ7 to IRQ0 are requested by an input signal at pins $\overline{\overline{R Q Q} 7}$ to $\overline{\mathrm{IRQ} 0}$. Interrupts IRQ7 to IRQ0 have the following features:

- Using ISCR, it is possible to select whether an interrupt is generated by a low level, falling edge, rising edge, or both edges, at pins $\overline{\text { IRQ7 }}$ to $\overline{\text { IRQ0 }}$.
- Enabling or disabling of interrupt requests IRQ7 to IRQ0 can be selected with IER.
- The interrupt control level can be set with ICR.
- The status of interrupt requests IRQ7 to IRQ0 is indicated in ISR. ISR flags can be cleared to 0 by software.

A block diagram of interrupts IRQ7 to IRQ0 is shown in figure 5.2.

Figure 5.2 Block Diagram of Interrupts IRQ7 to IRQ0
Figure 5.3 shows the timing of setting IRQnF.
ϕ \square

$\overline{\text { IRQn }}$ input pin

IRQnF \square
Note: $\mathrm{n}=7$ to 0

Figure 5.3 Timing of Setting IRQnF

The vector numbers for IRQ7 to IRQ0 interrupt exception handling are 23 to 16.
Detection of IRQ7 to IRQ0 interrupts does not depend on whether the relevant pin has been set for input or output. However, when a pin is used as an external interrupt input pin, do not clear the corresponding DDR to 0 and use the pin as an I/O pin for another function. Interrupt request flags IRQ7 to IRQ0 are set when the setting condition is met, regardless of the IER setting, and therefore only the necessary flags should be checked.

5.3.2 Internal Interrupts

There are 34 sources for internal interrupts from on-chip supporting modules.

- For each on-chip supporting module there are flags that indicate the interrupt request status, and enable bits that select enabling or disabling of these interrupts. If any one of these is set to 1 , an interrupt request is issued to the interrupt controller.
- The interrupt control level can be set by means of ICR.
- The DTC can be activated by a TPU, 8 -bit timer, SCI, or other interrupt request. When the DTC is activated by an interrupt, it is not affected by the interrupt control mode and interrupt mask bits.

5.3.3 Interrupt Exception Handling Vector Table

Table 5.4 shows interrupt exception handling sources, vector addresses, and interrupt priorities. For default priorities, the lower the vector number, the higher the priority.

Priorities among modules can be set by means of the ICR. The situation when two or more modules are set to the same priority, and priorities within a module, are fixed as shown in table 5.4.

Table 5.4 Interrupt Sources, Vector Addresses, and Interrupt Priorities

Interrupt Source	Origin of Interrupt Source	Vector Number	Vector Address*		ICR	Priority
			Normal Mode	Advanced Mode		
NMI	External pin	7	H'000E	H'001C		High
IRQ0		16	H'0020	H'0040	ICRA7	
IRQ1		17	H'0022	H'0044	ICRA6	
IRQ2		18	H'0024	H'0048	ICRA5	
IRQ3		19	H'0026	H'004C		
IRQ4		20	H'0028	H'0050	ICRA4	
IRQ5		21	H'002A	H'0054		
IRQ6		22	H'002C	H'0058	ICRA3	
IRQ7		23	H'002E	H'005C		
SWDTEND (software activation interrupt end)	DTC	24	H'0030	H'0060	ICRA2	
WOVI (interval timer)	Watchdog timer	25	H'0032	H'0064	ICRA1	
Reserved	-	26	H'0034	H'0068	ICRAO	
	-	27	H'0036	H'006C	ICRB7	
ADI (A/D conversion end)	A/D	28	H'0038	H'0070	ICRB6	
Reserved	-	29	H'003A	H'0074		
		30	H'003C	H'0078		
		31	H'003E	H'007C		
TGIOA (TGROA input capture/compare match)	TPU channel 0	32	H'0040	H'0080	ICRB5	
TGIOB (TGROB input capture/compare match)		33	H'0042	H'0084		
TGIOC (TGROC input capture/compare match)		34	H'0044	H'0088		
TGIOD (TGROD input capture/compare match)		35	H'0046	H'008C		
TCIOV (overflow 0)		36	H'0048	H'0090		
Reserved	-	37	H'004A	H'0094		
		38	H'004C	H'0098		
		39	H'004E	H'009C		Low

Interrupt Source	Origin of Interrupt Source	Vector Number	Vector Address*		ICR	Priority
			Normal Mode	Advanced Mode		
TGI1A (TGR1A input capture/compare match)	TPU channel 1	40	H'0050	H'00A0	ICRB4	High 4
TGI1B (TGR1B input capture/compare match)		41	H'0052	H'00A4		
TCI1V (overflow 1)		42	H'0054	H'00A8		
TCI1U (underflow 1)		43	H'0056	H'00AC		
TGI2A (TGR2A input capture/compare match)	TPU channel 2	44	H'0058	H'00B0	ICRB3	
TGI2B (TGR2B input capture/compare match)		45	H'005A	H'00B4		
TCI2V (overflow 2)		46	H'005C	H'00B8		
TCI2U (underflow 2)		47	H'005E	H'00BC		
Reserved	-	48	H'0060	H'00C0	ICRB2	
		49	H'0062	H'00C4		
		50	H'0064	H'00C8		
		51	H'0066	H'00CC		
		52	H'0068	H'00D0		
		53	H'006A	H'00D4		
		54	H'006C	H'00D8		
		55	H'006E	H'00DC		
	-	56	H'0070	H'00E0	ICRB1	
		57	H'0072	H'00E4		
		58	H'0074	H'00E8		
		59	H'0076	H'00EC		
	-	60	H'0078	H'00F0	ICRB0	
		61	H'007A	H'00F4		
		62	H'007C	H'00F8		
		63	H'007E	H'00FC		Low

Interrupt Source	Origin of Interrupt Source	Vector Number	Vector Address*		ICR	Priority
			Normal Mode	Advanced Mode		
CMIAO (compare match A)	8-bit timer channel 0	64	H'0080	H'0100	ICRC7	High
CMIB0 (compare match B)		65	H'0082	H'0104		
OVIO (overflow 0)		66	H'0084	H'0108		
Reserved	-	67	H'0086	H'010C		
CMIA1 (compare match A)	8-bit timer channel 1	68	H'0088	H'0110	ICRC6	
CMIB1 (compare match B)		69	H'008A	H'0114		
OVI1 (overflow 1)		70	H'008C	H'0118		
Reserved	-	71	H'008E	H'011C		
Reserved	-	72	H'0090	H'0120	ICRC5	
		73	H'0092	H'0124		
		74	H'0094	H'0128		
		75	H'0096	H'012C		
		76	H'0098	H'0130		
		77	H'009A	H'0134		
		78	H'009C	H'0138		
		79	H'009E	H'013C		
ERIO (receive error 0)	SCl channel 0	80	H'00A0	H'0140	ICRC4	
RXIO (reception completed 0)		81	H'00A2	H'0144		
TXIO (transmit data empty 0)		82	H'00A4	H'0148		
TEIO (transmission end 0)		83	H'00A6	H'014C		
ERI1 (receive error 1)	SCl channel 1	84	H'00A8	H'0150	ICRC3	
RXI1 (reception completed 1)		85	H'00AA	H'0154		
TXI1 (transmit data empty 1)		86	H'OOAC	H'0158		
TEI1 (transmission end 1)		87	H'OOAE	H'015C		
ERI2 (receive error 2)	SCl channel 2	88	H'00B0	H'0160	ICRC2	
RXI2 (reception completed 2)		89	H'00B2	H'0164		
TXI2 (transmit data empty 2)		90	H'00B4	H'0168		
TEI2 (transmission end 2)		91	H'00B6	H'016C		Low

Note: * Lower 16 bits of the start address.

5.4 Interrupt Operation

5.4.1 Interrupt Control Modes and Interrupt Operation

Interrupt operations in the H8S/2245 Group differ depending on the interrupt control mode.
NMI interrupts are accepted at all times except in the reset state and the hardware standby state. In the case of IRQ interrupts and on-chip supporting module interrupts, an enable bit is provided for each interrupt. Clearing an enable bit to 0 disables the corresponding interrupt request. Interrupt sources for which the enable bits are set to 1 are controlled by the interrupt controller.

Table 5.5 shows the interrupt control modes.
The interrupt controller performs interrupt control according to the interrupt control mode set by the INTM1 and INTM0 bits in SYSCR, the priorities set in ICR, and the masking state indicated by the I and UI bits in the CPU's CCR.

Table 5.5 Interrupt Control Modes

Interrupt Control Mode	SYSCR		Priority Setting Registers	Interrupt Mask Bits	Description
	INTM1	INTM0			
0	0	0	ICR	I	Interrupt mask control is performed by the I bit.
					Priority can be set with ICR.
1		1	ICR	I, UI	3-level interrupt mask control is performed by the I and UI bits.
					Priority can be set with ICR.

Figure 5.4 shows a block diagram of the priority decision circuit.

Figure 5.4 Block Diagram of Interrupt Control Operation
(1) Interrupt Acceptance Control and 3-Level Control

Interrupt acceptance control and 3-level mask control is performed by means of the I and UI bits in CCR, and ICR (control level).

Table 5.6 shows the interrupts selected in each interrupt control mode.
Table 5.6 Interrupts Selected in Each Interrupt Control Mode

	Interrupt Mask Bits		
Interrupt Control Mode	\mathbf{I}	Ul	Selected Interrupts
0	0	$*$	All interrupts (control level 1 has priority)
	1	$*$	NMI interrupts
1	0	$*$	All interrupts (control level 1 has priority)
	1	0	NMI and control level 1 interrupts

Legend:

*: Don't care

(2) Default Priority Determination

When an interrupt is selected its priority is determined and a vector number is generated.

If the same value is set for ICR, acceptance of multiple interrupts is enabled, and so only the interrupt source with the highest priority according to the table 5.4 and has a vector number generated.

Interrupt sources with a lower priority than the accepted interrupt source are held pending.
Table 5.7 shows operations and control signal functions in each interrupt control mode.
Table 5.7 Operations and Control Signal Functions in Each Interrupt Control Mode

Interrupt Control Mode	Setting		Interrupt Acceptance Control 3-Level Control				Default Priority Determination
	INTM1	INTM0		I	UI	ICR	
0	0	0	\bigcirc	IM	-	PR	\bigcirc
1		1	\bigcirc	IM	IM	PR	\bigcirc

Legend:
O: Interrupt operation control performed
IM: Used as interrupt mask bit
PR: Sets priority.
-: Not used.

5.4.2 Interrupt Control Mode 0

Enabling and disabling of IRQ interrupts and on-chip supporting module interrupts can be set by means of the I bit in the CPU's CCR, and ICR. Interrupts are enabled when the I bit is cleared to 0 , and disabled when set to 1 . Control level 1 interrupt sources have higher priority.

Figure 5.5 shows a flowchart of the interrupt acceptance operation in this case.
[1] If an interrupt source occurs when the corresponding interrupt enable bit is set to 1 , an interrupt request is sent to the interrupt controller.
[2] When interrupt requests are sent to the interrupt controller, a control level 1 interrupt, according to the control level set in ICR, has priority for selection, and other interrupt requests are held pending. If a number of interrupt requests with the same control level setting are generated at the same time, the interrupt request with the highest priority according to the priority system shown in table 5.4 is selected.
[3] The I bit is then referenced. If the I bit is cleared to 0 , the interrupt request is accepted. If the I bit is set to 1 , only an NMI interrupt is accepted, and other interrupt requests are held pending.
[4] When an interrupt request is accepted, interrupt exception handling starts after execution of the current instruction has been completed.
[5] The PC and CCR are saved to the stack area by interrupt exception handling. The PC saved on the stack shows the address of the first instruction to be executed after returning from the interrupt handling routine.
[6] Next, the I bit in CCR is set to 1 . This masks all interrupts except NMI.
[7] A vector address is generated for the accepted interrupt, and execution of the interrupt handling routine starts at the address indicated by the contents of that vector address.

Figure 5.5 Flowchart of Procedure Up to Interrupt Acceptance in Interrupt Control Mode 0

5.4.3 Interrupt Control Mode 1

Three-level masking is implemented for IRQ interrupts and on-chip supporting module interrupts by means of the I and UI bits in the CPU's CCR, and ICR.

- Control level 0 interrupt requests are enabled when the I bit is cleared to 0 , and disabled when set to 1 .
- Control level 1 interrupt requests are enabled when the I bit or UI bit is cleared to 0 , and disabled when both the I bit and the UI bit are set to 1 .

For example, if the interrupt enable bit for an interrupt request is set to 1 , and $\mathrm{H}^{\prime} 20, \mathrm{H}^{\prime} 00$, and $\mathrm{H}^{\prime} 00$ are set in ICRA, ICRB, and ICRC, respectively, (i.e. IRQ2 and IRQ3 interrupts are set to control level 1 and other interrupts to control level 0), the situation is as follows:

- When $\mathrm{I}=0$, all interrupts are enabled
(Priority order: NMI > IRQ2 > IRQ3 > IRQ0 ...)
- When $\mathrm{I}=1$ and $\mathrm{UI}=0$, only NMI, IRQ2, and IRQ3 interrupts are enabled
- When $\mathrm{I}=1$ and $\mathrm{UI}=1$, only NMI interrupts are enabled

Figure 5.6 shows the state transitions in these cases.

Figure 5.6 Example of State Transitions in Interrupt Control Mode 1
Figure 5.7 shows a flowchart of the interrupt acceptance operation in this case.
[1] If an interrupt source occurs when the corresponding interrupt enable bit is set to 1 , an interrupt request is sent to the interrupt controller.
[2] When interrupt requests are sent to the interrupt controller, a control level 1 interrupt, according to the control level set in ICR, has priority for selection, and other interrupt requests are held pending. If a number of interrupt requests with the same control level setting are generated at the same time, the interrupt request with the highest priority according to the priority system shown in table 5.4 is selected.
[3] The I bit is then referenced. If the I bit is cleared to 0 , it is not affected by the UI bit. An interrupt request set to interrupt control level 0 is accepted when the I bit is cleared to 0 . If the I bit is set to 1 , only an NMI interrupt is accepted, and other interrupt requests are held pending.

An interrupt request set to interrupt control level 1 has priority over an interrupt request set to interrupt control level 0 , and is accepted if the I bit is cleared to 0 , or if the I bits is set to 1 and the UI bit is cleared to 0 .
When both the I bit and the UI bit are set to 1, only an NMI interrupt is accepted, and other interrupt requests are held pending.
[4] When an interrupt request is accepted, interrupt exception handling starts after execution of the current instruction has been completed.
[5] The PC and CCR are saved to the stack area by interrupt exception handling. The PC saved on the stack shows the address of the first instruction to be executed after returning from the interrupt handling routine.
[6] Next, the I and UI bits in CCR are set to 1 . This masks all interrupts except NMI.
[7] A vector address is generated for the accepted interrupt, and execution of the interrupt handling routine starts at the address indicated by the contents of that vector address.

Figure 5.7 Flowchart of Procedure Up to Interrupt Acceptance in Interrupt Control Mode 1

5.4.4 Interrupt Exception Handling Sequence

Figure 5.8 shows the interrupt exception handling sequence. The example shown is for the case where interrupt control mode 0 is set in advanced mode, and the program area and stack area are in on-chip memory.

Figure 5.8 Interrupt Exception Handling

5.4.5 Interrupt Response Times

The H8S/2245 Group is capable of fast word transfer instruction to on-chip memory, and the program area is provided in on-chip ROM and the stack area in on-chip RAM, enabling highspeed processing.

Table 5.8 shows interrupt response times - the interval between generation of an interrupt request and execution of the first instruction in the interrupt handling routine. The execution status symbols used in table 5.8 are explained in table 5.9.

Table 5.8 Interrupt Response Times

	Normal Mode	Advanced Mode
No. Execution Status	INTM1 = 0	INTM1 = 0
1 Interrupt priority determination* ${ }^{1}$	3	3
2 Number of wait states until executing instruction ends* ${ }^{2}$	1 to $19+2 \cdot S_{\text {, }}$	1 to $19+2 \cdot \mathrm{~S}$
3 PC, CCR stack save	$2 \cdot \mathrm{~S}_{\mathrm{K}}$	$2 \cdot S_{\text {K }}$
4 Vector fetch	S_{1}	2.S
5 Instruction fetch* ${ }^{3}$	2.S	2.S
6 Internal processing* ${ }^{4}$	2	2
Total (using on-chip memory)	11 to 31	12 to 32

Notes: 1. Two states in case of internal interrupt.
2. Refers to MULXS and DIVXS instructions.
3. Prefetch after interrupt acceptance and interrupt handling routine prefetch.
4. Internal processing after interrupt acceptance and internal processing after vector fetch.

Table 5.9 Number of States in Interrupt Handling Routine Execution Statuses

Object of Access

Symbol		Internal Memory	External Device			
			8 Bit Bus		16 Bit Bus	
			2-State Access	3-State Access	2-State Access	3-State Access
Instruction fetch	S	1	4	6+2m	2	3+m
Branch address read	S					
Stack manipulation	S_{K}					

Legend:

m : Number of wait states in an external device access.

5.5 Usage Notes

5.5.1 Contention between Interrupt Generation and Disabling

When an interrupt enable bit is cleared to 0 to disable interrupt requests, the disabling becomes effective after execution of the instruction.

In other words, when an interrupt enable bit is cleared to 0 by an instruction such as BCLR or MOV, if an interrupt is generated during execution of the instruction, the interrupt concerned will still be enabled on completion of the instruction, and so interrupt exception handling for that interrupt will be executed on completion of the instruction. However, if there is an interrupt request of higher priority than that interrupt, interrupt exception handling will be executed for the higher-priority interrupt, and the lower-priority interrupt will be ignored.

The same also applies when an interrupt source flag is cleared.
Figure 5.9 shows and example in which the CMIEA bit in 8 -bit timer TCR is cleared to 0 .
The above contention will not occur if an enable bit or interrupt source flag is cleared to 0 while the interrupt is masked.

Figure 5.9 Contention between Interrupt Generation and Disabling

5.5.2 Instructions that Disable Interrupts

Instructions that disable interrupts are LDC, ANDC, ORC, and XORC. After any of these instructions is executed, all interrupts including NMI are disabled and the next instruction is always executed. When the I bit or UI bit is set by one of these instructions, the new value becomes valid two states after execution of the instruction ends.

5.5.3 Times when Interrupts Are Disabled

There are times when interrupt acceptance is disabled by the interrupt controller.
The interrupt controller disables interrupt acceptance for a 3-state period after the CPU has updated the mask level with an LDC, ANDC, ORC, or XORC instruction.

5.5.4 Interrupts during Execution of EEPMOV Instruction

Interrupt operation differs between the EEPMOV.B instruction and the EEPMOV.W instruction.
With the EEPMOV.B instruction, an interrupt request (including NMI) issued during the transfer is not accepted until the move is completed.

With the EEPMOV.W instruction, if an interrupt request is issued during the transfer, interrupt exception handling starts at a break in the transfer cycle. The PC value saved on the stack in this case is the address of the next instruction.

Therefore, if an interrupt is generated during execution of an EEPMOV.W instruction, the following coding should be used.

```
L1: EEPMOV.W
    MOV.W R4,R4
    BNE L1
```


5.5.5 IRQ Interrupt

When operating by clock input, acceptance of input to an IRQ is synchronized with the clock. In software standby mode, the input is accepted asynchronously. For details on the input conditions, see section 19.4.2, Control Signal Timing.

5.5.6 NMI Interrupt Usage Notes

The NMI interrupt is part of the exception processing performed cooperatively by the LSI's internal interrupt controller and the CPU when the system is operating normally under the specified electrical conditions. No operations, including NMI interrupts, are guaranteed when operation is not normal (runaway status) due to software problems or abnormal input to the LSI's pins. In such cases, the LSI may be restored to the normal program execution state by applying an external reset.

5.6 DTC Activation by Interrupt

5.6.1 Overview

The DTC can be activated by an interrupt. In this case, the following options are available:

- Interrupt request to CPU
- Activation request to DTC
- Selection of a number of the above

For details of interrupt requests that can be used with to activate the DTC, see section 7, Data Transfer Controller.

5.6.2 Block Diagram

Figure 5.10 shows a block diagram of the DTC and interrupt controller.

Figure 5.10 Interrupt Control for DTC

5.6.3 Operation

The interrupt controller has three main functions in DTC control.

(1) Selection of Interrupt Source

Interrupt sources can be specified as DTC activation requests or CPU interrupt requests by means of the DTCE bit of DTCEA to DTCEF in the DTC.

After a DTC data transfer, the DTCE bit can be cleared to 0 and an interrupt request sent to the CPU in accordance with the specification of the DISEL bit of MRB in the DTC.

When the DTC has performed the specified number of data transfers and the transfer counter value is zero, the DTCE bit is cleared to 0 and an interrupt request is sent to the CPU after the DTC data transfer.

(2) Determination of Priority

The DTC activation source is selected in accordance with the default priority order, and is not affected by mask or priority levels. See section 7.3.3, DTC Vector Table, for the respective priorities.

(3) Operation Order

If the same interrupt is selected as a DTC activation source and a CPU interrupt source, the DTC data transfer is performed first, followed by CPU interrupt exception handling.

Table 5.10 summarizes interrupt source selection and interrupt source clearance control according to the settings of the DTCE bit of DTCEA to DTCEF in the DTC and the DISEL bit of MRB in the DTC.

Table 5.10 Interrupt Source Selection and Clearing Control

	Settings			
	DTC		Interrupt Source Selection/Clearing Control	
DTCE	DISEL	DTC	CPU	
0	$*$	X	\triangle	
1	0	\triangle	X	
	1			\triangle

Legend:

\triangle : The relevant interrupt is used. Interrupt source clearing is performed. (The CPU should clear the source flag in the interrupt handling routine.)
O : The relevant interrupt is used. The interrupt source is not cleared.
X : The relevant bit cannot be used.

* : Don't care

(4) Usage Note

SCI and A/D converter interrupt sources are cleared when the appropriate DTC register is read or written to, and are independent of the DISEL bit.

Section 6 Bus Controller

6.1 Overview

The H8S/2245 Group has a built-in bus controller (BSC) that manages the external address space divided into eight areas. The bus specifications, such as bus width and number of access states, can be set independently for each area, enabling multiple memories to be connected easily.

The bus controller also has a bus arbitration function, and controls the operation of the internal bus masters: the CPU and the data transfer controller (DTC).

6.1.1 Features

The features of the bus controller are listed below.

- Manages external address space in area units
- In advanced mode, manages the external space as 8 areas of 128 -kbytes/2-Mbytes
- In normal mode, manages the external space as a single area
- Bus specifications can be set independently for each area
- Burst ROM interface can be set
- Basic bus interface
— Chip select ($\overline{\mathrm{CS} 0}$ to $\overline{\mathrm{CS} 3}$) can be output for areas 0 to 3
- 8-bit access or 16 -bit access can be selected for each area
- 2-state access or 3-state access can be selected for each area
- Program wait states can be inserted for each area
- Burst ROM interface
- Burst ROM interface can be set for area 0
- 1 -state or 2 -state burst access can be selected
- Idle cycle insertion
- An idle cycle can be inserted in case of an external read cycle between different areas
- An idle cycle can be inserted in case of an external write cycle immediately after an external read cycle
- Bus arbitration function
- Includes a bus arbiter that arbitrates bus mastership among the CPU, and DTC
- Other features
- External bus release function

6.1.2 Block Diagram

Figure 6.1 shows a block diagram of the bus controller.

Figure 6.1 Block Diagram of Bus Controller

6.1.3 Pin Configuration

Table 6.1 summarizes the pins of the bus controller.
Table 6.1 Bus Controller Pins

Name	Symbol	I/O	Function
Address strobe	$\overline{\mathrm{AS}}$	Output	Strobe signal indicating that address output on address bus is enabled.
Read	$\overline{\mathrm{RD}}$	Output	Strobe signal indicating that external space is being read.
High write	$\overline{\mathrm{HWR}}$	Output	Strobe signal indicating that external space is to be written, and upper half $\left(\mathrm{D}_{15}\right.$ to $\left.\mathrm{D}_{8}\right)$ of data bus is enabled.
Low write	$\overline{\mathrm{LWR}}$	Output	Strobe signal indicating that external space is to be written, and lower half (D_{7} to $\left.\mathrm{D}_{0}\right)$ of data bus is enabled.
Chip select 0	$\overline{\mathrm{CSO}}$	Output	Strobe signal indicating that area 0 is selected.
Chip select 1	$\overline{\mathrm{CS1}}$	Output	Strobe signal indicating that area 1 is selected.
Chip select 2	$\overline{\mathrm{CS2}}$	Output	Strobe signal indicating that area 2 is selected.

6.1.4 Register Configuration

Table 6.2 summarizes the registers of the bus controller.
Table 6.2 Bus Controller Registers

		Initial Value			
Name	Abbreviation	R/W	Power-On Reset	Manual Reset	Address*¹
Bus width control register	ABWCR	R/W	H'FF/H'00*²	Retained	H'FED0
Access state control register	ASTCR	R/W	H'FF	Retained	H'FED1
Wait control register H	WCRH	R/W	H'FF	Retained	H'FED2
Wait control register L	WCRL	R/W	H'FF	Retained	H'FED3
Bus control register H	BCRH	R/W	H'D0	Retained	H'FED4
Bus control register L	BCRL	R/W	H'3C	Retained	H'FED5

Notes: 1. Lower 16 bits of the address.
2. Determined by the MCU operating mode.

6.2 Register Descriptions

6.2.1 Bus Width Control Register (ABWCR)

Bit	:	7	6	5	4	3	2	1	0
		ABW7	ABW6	ABW5	ABW4	ABW3	ABW2	ABW1	ABW0
Modes 1, 2, 3, 5, 6, 7									
Initial value		1	1	1	1	1	1	1	1
R/W	:	R/W							
Mode 4									
Initial value		0	0	0	0	0	0	0	0
R/W	:	R/W							

ABWCR is an 8-bit readable/writable register that designates each area for either 8-bit access or 16-bit access.

ABWCR sets the data bus width for the external memory space. The bus width for on-chip memory and internal I/O registers is fixed regardless of the settings in ABWCR.

In normal mode, the settings of bits ABW7 to ABW1 have no effect on operation.
After a power-on reset and in hardware standby mode, ABWCR is initialized to H'FF in modes 1, 2,3 , and $5,6,7$, and to $\mathrm{H}^{\prime} 00$ in mode 4 . It is not initialized by a manual reset or in software standby mode.

Bits 7 to 0—Area 7 to 0 Bus Width Control (ABW7 to ABW0): These bits select whether the corresponding area is to be designated for 8 -bit access or 16 -bit access. In normal mode, only part of area 0 is enabled, and the ABW0 bit selects whether external space is to be designated for 8 -bit access or 16-bit access.

Bit n

ABWn	Description
0	Area n is designated for 16-bit access
1	Area n is designated for 8-bit access
Note:	$\mathrm{n}=7$ to 0

6.2.2 Access State Control Register (ASTCR)

Bit	$:$	7	6	5	4	3	2	1	0
	AST7	AST6	AST5	AST4	AST3	AST2	AST1	AST0	
	Initial value :	1	1	1	1	1	1	1	1
R/W	$:$	R/W							

ASTCR is an 8-bit readable/writable register that designates each area as either a 2 -state access space or a 3-state access space.

ASTCR sets the number of access states for the external memory space. The number of access states for on-chip memory and internal I/O registers is fixed regardless of the settings in ASTCR.

In normal mode, the settings of bits AST7 to AST1 have no effect on operation.

ASTCR is initialized to H'FF by a power-on reset and in hardware standby mode. It is not initialized by a manual reset or in software standby mode.

Bits 7 to 0—Area 7 to 0 Access State Control (AST7 to AST0): These bits select whether the corresponding area is to be designated as a 2-state access space or a 3-state access space. In normal mode, only part of area 0 is enabled, and the AST0 bit selects whether external space is to be designated for 2 -state access or 3 -state access.

Wait state insertion is enabled or disabled at the same time.
Bit n
ASTn Description

0	Area n is designated for 2-state access Wait state insertion in area n external space is disabled	
1	Area n is designated for 3-state access	(Initial value)
	Wait state insertion in area n external space is enabled	

Note: $\mathrm{n}=7$ to 0

6.2.3 Wait Control Registers H and L (WCRH, WCRL)

WCRH and WCRL are 8-bit readable/writable registers that select the number of program wait states for each area.

In normal mode, only part of area is 0 is enabled, and bits W01 and W00 select the number of program wait states for the external space. The settings of bits W71, W70 to W11, and W10 have no effect on operation.

Program waits are not inserted in the case of on-chip memory or internal I/O registers.
WCRH and WCRL are initialized to H'FF by a power-on reset and in hardware standby mode. They are not initialized by a manual reset or in software standby mode.

(1) WCRH

Bit	7	6	5	4	3	2	1	0
	W71	W70	W61	W60	W51	W50	W41	W40
Initial value	1	1	1	1	1	1	1	1
R/W								

Bits 7 and 6-Area 7 Wait Control 1 and $\mathbf{0}$ (W71, W70): These bits select the number of program wait states when area 7 in external space is accessed while the AST7 bit in ASTCR is set to 1 .

Bit $7 \quad$ Bit 6

W71	W70	Description
0	0	Program wait not inserted when external space area 7 is accessed
	1	1 program wait state inserted when external space area 7 is accessed
1	0	2 program wait states inserted when external space area 7 is accessed
	3 3 program wait states inserted when external space area 7 is accessed	
		(Initial value)

Bits 5 and 4—Area 6 Wait Control 1 and 0 (W61, W60): These bits select the number of program wait states when area 6 in external space is accessed while the AST6 bit in ASTCR is set to 1 .

Bit $5 \quad$ Bit 4

W61	W60	Description
0	0	Program wait not inserted when external space area 6 is accessed
	1	1 program wait state inserted when external space area 6 is accessed
1	0	2 program wait states inserted when external space area 6 is accessed
	3	3 program wait states inserted when external space area 6 is accessed
(Initial value)		

Bits 3 and 2—Area 5 Wait Control 1 and 0 (W51, W50): These bits select the number of program wait states when area 5 in external space is accessed while the AST5 bit in ASTCR is set to 1 .

Bit 3 Bit 2

W51	W50	Description
0	0	Program wait not inserted when external space area 5 is accessed
	1	1 program wait state inserted when external space area 5 is accessed
1	0	2 program wait states inserted when external space area 5 is accessed
	1	3 program wait states inserted when external space area 5 is accessed
(Initial value)		

Bits 1 and 0—Area 4 Wait Control 1 and 0 (W41, W40): These bits select the number of program wait states when area 4 in external space is accessed while the AST4 bit in ASTCR is set to 1 .

Bit 1	Bit 0	
W41	W40	Description

0	0	Program wait not inserted when external space area 4 is accessed
	1 program wait state inserted when external space area 4 is accessed	
1	2 program wait states inserted when external space area 4 is accessed 3 program wait states inserted when external space area 4 is accessed (Initial value)	

(2) WCRL

Bit	7	6	5	4	3	2	1	0
	W31	W30	W21	W20	W11	W10	W01	W00
Initial value	1	1	1	1	1	1	1	1
R/W								

Bits 7 and 6-Area 3 Wait Control 1 and $\mathbf{0}$ (W31, W30): These bits select the number of program wait states when area 3 in external space is accessed while the AST3 bit in ASTCR is set to 1 .

Bit 7 Bit 6

W31	W30	Description
0	0	Program wait not inserted when external space area 3 is accessed
	1	1 program wait state inserted when external space area 3 is accessed
1	0	2 program wait states inserted when external space area 3 is accessed

Bits 5 and 4—Area 2 Wait Control 1 and $\mathbf{0}$ (W21, W20): These bits select the number of program wait states when area 2 in external space is accessed while the AST2 bit in ASTCR is set to 1 .

Bit 5	Bit 4	Description
W21	W20	
0	0	Program wait not inserted when external space area 2 is accessed
	1	1 program wait state inserted when external space area 2 is accessed
1	0	2 program wait states inserted when external space area 2 is accessed
	1	3 program wait states inserted when external space area 2 is accessed (Initial value)

Bits 3 and 2—Area 1 Wait Control 1 and 0 (W11, W10): These bits select the number of program wait states when area 1 in external space is accessed while the AST1 bit in ASTCR is set to 1 .

Bit 3 Bit 2

W11	W10	Description
0	0	Program wait not inserted when external space area 1 is accessed
	1	1 program wait state inserted when external space area 1 is accessed
1	0	2 program wait states inserted when external space area 1 is accessed
1	3 program wait states inserted when external space area 1 is accessed	
(Initial value)		

Bits 1 and 0—Area 0 Wait Control 1 and 0 (W01, W00): These bits select the number of program wait states when area 0 in external space is accessed while the AST0 bit in ASTCR is set to 1 .

Bit 1 Bit 0

W01	W00	Description
0	0	Program wait not inserted when external space area 0 is accessed
	1	1 program wait state inserted when external space area 0 is accessed
1	0	2 program wait states inserted when external space area 0 is accessed
	3 program wait states inserted when external space area 0 is accessed	

6.2.4 Bus Control Register H (BCRH)

Bit	7	6	5	4	3	2	1	0
	ICIS1	ICIS0	BRSTRM	BRSTS1	BRSTS0	-	-	-
Initial value	1	1	0	1	0	0	0	0
R/W	R/W	R/W	R/W	R/W	R/W	(R/W)	(R/W)	(R/W)

BCRH is an 8-bit readable/writable register that selects enabling or disabling of idle cycle insertion, and the memory interface for area 0.

BCRH is initialized to H'D0 by a power-on reset and in hardware standby mode. It is not initialized by a manual reset or in software standby mode.

Bit 7—Idle Cycle Insert 1 (ICIS1): Selects whether or not one idle cycle state is to be inserted between bus cycles when successive external read cycles are performed in different areas.

Bit 7

ICIS1	Description
0	Idle cycle not inserted in case of successive external read cycles in different areas.
1	Idle cycle inserted in case of successive external read cycles in different areas.
	(Initial value)

Bit 6-Idle Cycle Insert 0 (ICIS0): Selects whether or not one idle cycle state is to be inserted between bus cycles when successive external read and external write cycles are performed.

Bit 6
ICIS0 Description

0	Idle cycle not inserted in case of successive external read and external write cycles.
1	Idle cycle inserted in case of successive external read and external write cycles.
(Initial value)	

Bit 5—Burst ROM Enable (BRSTRM): Selects whether area 0 is used as a burst ROM interface. In normal mode, the selection can be made from the entire external space.

Bit 5

BRSTRM	Description	
0	Area 0 is basic bus interface	(Initial value)
1	Area 0 is burst ROM interface	

Bit 4—Burst Cycle Select 1 (BRSTS1): Selects the number of burst cycles for the burst ROM interface.

Bit 4
BRSTS1 Description

0	Burst cycle comprises 1 state	
1	Burst cycle comprises 2 states	(Initial value)

Bit 3—Burst Cycle Select 0 (BRSTS0): Selects the number of words that can be accessed in a burst ROM interface burst access.

Bit 3
BRSTS0 Description

0	Max. 4 words in burst access	(Initial value)
1	Max. 8 words in burst access	

Bits 2 to 0—Reserved: Only 0 should be written to these bits.

6.2.5 Bus Control Register L (BCRL)

Bit	7	6	5	4	3	2	1	0
	BRLE	BREQOE	EAE	-	-	ASS	-	WAITE
Initial value	0	0	1	1	1	1	0	0
R/W	R/W	R/W	R/W	(R/W)	(R/W)	R/W	(R/W)	R/W

BCRL is an 8-bit readable/writable register that performs selection of the external bus release state protocol, selection of the area partition unit and enabling or disabling of $\overline{\text { WAIT }}$ pin input.

BCRL is initialized to $\mathrm{H}^{\prime} 3 \mathrm{C}$ by a power-on reset and in hardware standby mode. It is not initialized by a manual reset or in software standby mode.

Bit 7—Bus Release Enable (BRLE): Enables or disables external bus release.
Bit 7
BRLE Description

$0 \quad$ External bus release is disabled. $\overline{\mathrm{BREQ}}, \overline{\mathrm{BACK}}$, and $\overline{\mathrm{BREQO}}$ can be used as I/O ports.
(Initial value)

1 External bus release is enabled.

Bit 6-BREQO Pin Enable (BREQOE): Outputs a signal that requests the external bus master to drop the bus request signal ($\overline{\mathrm{BREQ}})$ in the external bus release state, when an internal bus master performs an external space access.

Bit 6
BREQOE Description

0	$\overline{B R E Q O}$ output disabled. $\overline{\mathrm{BREQO}}$ can be used as I/O port.	(Initial value)
1	$\overline{\mathrm{BREQO}}$ output enabled.	

Bit 5—External Address Enable (EAE): Selects whether addresses H'010000 to H'01FFFF are to be internal addresses or external addresses.

This setting is invalid in normal mode.
Bit 5
EAE Description

0	Addresses H'010000 to H'01FFFF are in on-chip ROM (H8S/2246 and H8S/2245) or a reserved area* (H8S/2244, H8S/2243, H8S/2242, and H8S/2241).
1	Addresses H'010000 to H'01FFFF are external addresses (external expansion mode) or a reserved area* (single-chip mode). (Initial value)

Note: * Reserved areas should not be accessed.

Bits 4 and 3-Reserved: Only 1 should be written to these bits.
Bit 2—Area Partition Unit Select (ASS): Selects the area partition unit.
Bit 2
ASS Description

0	Area partition unit is 128 kbytes (1 Mbit)	
1	Area partition unit is 2 Mbytes (16 Mbits)	(Initial value)

Bit 1—Reserved: Only 0 should be written to this bit.
Bit 0-WAIT Pin Enable (WAITE): Selects enabling or disabling of wait input by the $\overline{\text { WAIT }}$ pin.

Bit 0
WAITE Description

0	Wait input by $\overline{\text { WAIT }}$ pin disabled. $\overline{\text { WAIT }}$ pin can be used as I/O port.	(Initial value)
1	Wait input by $\overline{\text { WAIT }}$ pin enabled	

6.3 Overview of Bus Control

6.3.1 Area Partitioning

In advanced mode, the bus controller partitions the 16 Mbytes address space into eight areas, 0 to 7, in 128-kbyte or 2-Mbyte units, and performs bus control for external space in area units. In normal mode, it controls a 64 -kbyte address space comprising part of area 0 . Figure 6.2 shows an outline of the memory map.

Chip select signals ($\overline{\mathrm{CS} 0}$ to $\overline{\mathrm{CS} 3}$) can be output for areas 0 to 3 .

Figure 6.2 Overview of Area Partitioning

6.3.2 Bus Specifications

The external space bus specifications consist of three elements: (1) bus width, (2) number of access states, and (3) number of program wait states.

The bus width and number of access states for on-chip memory and internal I/O registers are fixed, and are not affected by the bus controller.
(1) Bus Width: A bus width of 8 or 16 bits can be selected with ABWCR. An area for which an 8 -bit bus is selected functions as an 8-bit access space, and an area for which a 16-bit bus is selected functions as a16-bit access space.

If all areas are designated for 8 -bit access, 8 -bit bus mode is set; if any area is designated for 16-bit access, 16 -bit bus mode is set. When the burst ROM interface is designated, 16 -bit bus mode is always set.
(2) Number of Access States: Two or three access states can be selected with ASTCR. An area for which 2-state access is selected functions as a 2-state access space, and an area for which 3state access is selected functions as a 3-state access space.

With the burst ROM interface, the number of states is one or two regardless of the ASTCR setting.
When 2-state access space is designated, wait insertion is disabled.
(3) Number of Program Wait States: When 3-state access space is designated by ASTCR, the number of program wait states to be inserted automatically is selected with WCRH and WCRL. From 0 to 3 program wait states can be selected.

Table 6.3 shows the bus specifications for each basic bus interface area.
Table 6.3 Bus Specifications for Each Area (Basic Bus Interface)

ABWCR	ASTCR	WCRH	WCRL	Bus Specifications (Basic Bus Interface)		
ABWn	ASTn	Wn1	Wno	Bus Width	Access States	Program Wait States
0	0	-	-	16	2	0
	1	0	0		3	0
			1			1
		1	0			2
			1			3
1	0	-	-	8	2	0
	1	0	0		3	0
			1			1
		1	0			2
			1			3

6.3.3 Memory Interfaces

The H8S/2245 Group memory interfaces comprise a basic bus interface that allows direct connection of ROM, SRAM, and so on; and a burst ROM interface that allows direct connection of burst ROM.

An area for which the basic bus interface is designated functions as normal space, and an area for which the burst ROM interface is designated functions as burst ROM space.

6.3.4 Advanced Mode

The initial state of each area is basic bus interface, 3-state access space. The initial bus width is selected according to the operating mode. The bus specifications described here cover basic items only, and the sections on each memory interface should be referred to for further details.

Area 0

Area 0 includes on-chip ROM, and in ROM-disabled expansion mode, all of area 0 is external space. In ROM-enabled expansion mode, the space excluding on-chip ROM is external space.

When area 0 external space is accessed, the $\overline{\mathrm{CSO}}$ signal can be output.
Either basic bus interface or burst ROM interface can be selected for area 0 .
The size of area 0 is switched between 128 kbytes and 2 Mbytes according to the state of the ASS bit.

Areas 1 to 6

In external expansion mode, all of area 1 to 6 is external space.
When area 1 to 3 external space is accessed, the $\overline{\mathrm{CS} 1}$ and $\overline{\mathrm{CS} 3}$ pin signals respectively can be output.

Only the basic bus interface can be used for areas 1 and 6.

The size of areas 1 to 6 is switched between 128 kbytes and 2 Mbytes according to the state of the ASS bit.

Area 7

Area 7 includes the on-chip RAM and internal I/O registers. In external expansion mode, the space excluding the on-chip RAM and internal I/O registers is external space. The on-chip RAM is enabled when the RAME bit in the system control register (SYSCR) is set to 1 ; when the RAME bit is cleared to 0 , the on-chip RAM is disabled and the corresponding space becomes external space.

Only the basic bus interface can be used for the area 7.
The size of area 7 is switched between 15 Mbytes and 2 Mbytes according to the state of the ASS bit.

6.3.5 Areas in Normal Mode

In normal mode, a 64-kbyte address space comprising part of area 0 is controlled. Area partitioning is not performed in normal mode. In ROM-disabled expansion mode, the space excluding the on-chip RAM and internal I/O registers is external space. In ROM-enabled expansion mode the space excluding the on-chip ROM, on-chip RAM, and internal I/O registers is external space. The on-chip RAM is enabled when the RAME bit in the system control register (SYSCR) is set to 1 ; when the RAME bit is cleared to 0 , the on-chip RAM is disabled and the corresponding addresses become external space.

When external space is accessed, the $\overline{\mathrm{CS} 0}$ signal can be output.

In normal mode, the basic bus interface or burst ROM interface can be selected.

6.3.6 Chip Select Signals

The H8S/2245 Group can output chip select signals ($\overline{\mathrm{CS} 0}$ to $\overline{\mathrm{CS} 3}$) to areas 0 to 3 , the signal being driven low when the corresponding external space area is accessed. In normal mode, only the $\overline{\mathrm{CS} 0}$ signal can be output.

Figure 6.3 shows an example of $\overline{\mathrm{CSn}}(\mathrm{n}=0$ to 3$)$ output timing.
Enabling or disabling of the $\overline{\mathrm{CSn}}$ signal is performed by setting the data direction register (DDR) for the port corresponding to the particular $\overline{\mathrm{CSn}}$ pin.

In ROM-disabled expansion mode, the $\overline{\mathrm{CS} 0}$ pin is placed in the output state after a power-on reset. Pins $\overline{\mathrm{CS} 1}$ to $\overline{\mathrm{CS} 3}$ are placed in the input state after a power-on reset, and so the corresponding DDR should be set to 1 when outputting signals $\overline{\mathrm{CS} 1}$ to $\overline{\mathrm{CS} 3}$.

In ROM-enabled expansion mode, pins $\overline{\mathrm{CS} 0}$ to $\overline{\mathrm{CS} 3}$ are all placed in the input state after a poweron reset, and so the corresponding DDR should be set to 1 when outputting signals $\overline{\mathrm{CS} 0}$ to $\overline{\mathrm{CS}} 3$.

For details, see section 8, I/O Ports.

Figure $6.3 \overline{\mathrm{CSn}}$ Signal Output Timing ($\mathrm{n}=0$ to 3)

6.4 Basic Timing

The CPU is driven by a system clock (ϕ), denoted by the symbol ϕ. The period from one rising edge of ϕ to the next is referred to as a "state." The memory cycle or bus cycle consists of one, two, or three states. Different methods are used to access on-chip memory, on-chip peripheral modules, and the external address space.

6.4.1 On-Chip Memory (ROM, RAM) Access Timing

On-chip memory is accessed in one state. The data bus is 16 bits wide, permitting both byte and word transfer instruction. Figure 6.4 shows the on-chip memory access cycle. Figure 6.5 shows the pin states.

Figure 6.4 On-Chip Memory Access Cycle

Figure 6.5 Pin States during On-Chip Memory Access

6.4.2 On-Chip Peripheral Module Access Timing

The on-chip peripheral modules are accessed in two states. The data bus is either 8 bits or 16 bits wide, depending on the particular internal I/O register being accessed. Figure 6.6 shows the access timing for the on-chip peripheral modules. Figure 6.7 shows the pin states.

Figure 6.6 On-Chip Peripheral Module Access Cycle

Figure 6.7 Pin States during On-Chip Peripheral Module Access

6.4.3 External Address Space Access Timing

The external address space is accessed with an 8-bit or 16-bit data bus width in a two-state or three-state bus cycle. In three-state access, wait states can be inserted. For further details, refer to section 6.5.4, Basic Timing.

6.5 Basic Bus Interface

6.5.1 Overview

The basic bus interface enables direct connection of ROM, SRAM, and so on.

The bus specifications can be selected with ABWCR, ASTCR, WCRH, and WCRL (see table 6.3).

6.5.2 Data Size and Data Alignment

Data sizes for the CPU and other internal bus masters are byte, word, and longword. The bus controller has a data alignment function, and when accessing external space, controls whether the upper data bus $\left(D_{15}\right.$ to $\left.D_{8}\right)$ or lower data bus $\left(D_{7}\right.$ to $\left.D_{0}\right)$ is used according to the bus specifications for the area being accessed (8-bit access space or 16-bit access space) and the data size.

8-Bit Access Space

Figure 6.8 illustrates data alignment control for the 8 -bit access space. With the 8 -bit access space, the upper data bus $\left(\mathrm{D}_{15}\right.$ to $\left.\mathrm{D}_{8}\right)$ is always used for accesses. The amount of data that can be accessed at one time is one byte: a word transfer instruction is performed as two byte accesses, and a longword transfer instruction, as four byte accesses.

		Upper data bus Lower data bus	
		$\mathrm{D}_{15} \quad \mathrm{D}_{81} \mathrm{D}_{7}$	D_{0}
Byte size		1 1 1 1	
Word size	$\left[\begin{array}{l}1 s t \\ \text { 2nd bus cycle } \\ \text { cycle }\end{array}\right.$	 Lla 	
Longword size	$\left[\begin{array}{l}\text { 1st bus cycle } \\ \text { 2nd bus cycle } \\ \text { 3rd bus cycle } \\ 4 \text { th bus cycle }\end{array}\right.$		

Figure 6.8 Access Sizes and Data Alignment Control (8-Bit Access Space)

16-Bit Access Space

Figure 6.9 illustrates data alignment control for the 16-bit access space. With the 16-bit access space, the upper data bus $\left(D_{15}\right.$ to $\left.D_{8}\right)$ and lower data bus $\left(D_{7}\right.$ to $\left.D_{0}\right)$ are used for accesses. The amount of data that can be accessed at one time is one byte or one word, and a longword transfer instruction is executed as two word transfer instructions.

In byte access, whether the upper or lower data bus is used is determined by whether the address is even or odd. The upper data bus is used for an even address, and the lower data bus for an odd address.

		Upper data bus Lower data bus		
		D_{15}	$\mathrm{D}_{8}, \mathrm{D}_{7}$	D_{0}
Byte size	- Even address			
Byte size	- Odd address			
Word size				
Longword size	$\left[\begin{array}{l}1 \text { st bus cycle } \\ \text { 2nd bus cycle }\end{array}\right.$	$1 \times$	\square	

Figure 6.9 Access Sizes and Data Alignment Control (16-Bit Access Space)

6.5.3 Valid Strobes

Table 6.4 shows the data buses used and valid strobes for the access spaces.
In a read, the $\overline{\mathrm{RD}}$ signal is valid without discrimination between the upper and lower halves of the data bus.

In a write, the $\overline{H W R}$ signal is valid for the upper half of the data bus, and the $\overline{\mathrm{LWR}}$ signal for the lower half.

Table 6.4 Data Buses Used and Valid Strobes

Area	Access Size	Read/ Write	Address	Valid Strobe	Upper Data Bus $\left(D_{15} \text { to } D_{8}\right)$	Lower data bus (D_{7} to D_{0})
8-bit access space	Byte	Read	-	$\overline{\mathrm{RD}}$	Valid	Invalid
		Write	-	$\overline{\text { HWR }}$		$\mathrm{Hi}-\mathrm{Z}$
16-bit access space	Byte	Read	Even	$\overline{\mathrm{RD}}$	Valid	Invalid
			Odd		Invalid	Valid
		Write	Even	$\overline{\text { HWR }}$	Valid	$\mathrm{Hi}-\mathrm{Z}$
			Odd	$\overline{\text { LWR }}$	$\mathrm{Hi}-\mathrm{Z}$	Valid
	Word	Read	-	$\overline{\mathrm{RD}}$	Valid	Valid
		Write	-	$\overline{\text { HWR, }} \overline{\text { LWR }}$	Valid	Valid

Note: Invalid: Input state; input value is ignored.
$\mathrm{Hi}-\mathrm{Z}:$ High impedance.

6.5.4 Basic Timing

(1) 8-Bit 2-State Access Space

Figure 6.10 shows the bus timing for an 8 -bit 2 -state access space. When an 8 -bit access space is accessed, the upper half $\left(D_{15}\right.$ to $\left.D_{8}\right)$ of the data bus is used.

The $\overline{\text { LWR }}$ pin is fixed high. Wait states cannot be inserted.

Note: $\mathrm{n}=0$ to 3
Figure 6.10 Bus Timing for 8-Bit 2-State Access Space

(2) 8-Bit 3-State Access Space

Figure 6.11 shows the bus timing for an 8 -bit 3-state access space. When an 8-bit access space is accessed, the upper half $\left(D_{15}\right.$ to $\left.D_{8}\right)$ of the data bus is used.

The $\overline{L W R}$ pin is fixed high. Wait states can be inserted.

Note: $\mathrm{n}=0$ to 3
Figure 6.11 Bus Timing for 8-Bit 3-State Access Space

(3) 16-Bit 2-State Access Space

Figures 6.12 to 6.14 show bus timings for a 16-bit 2-state access space. When a 16 -bit access space is accessed, the upper half $\left(\mathrm{D}_{15}\right.$ to $\left.\mathrm{D}_{8}\right)$ of the data bus is used for the even address, and the lower half $\left(\mathrm{D}_{7}\right.$ to $\left.\mathrm{D}_{0}\right)$ for the odd address.

Wait states cannot be inserted.

Note: $\mathrm{n}=0$ to 3
Figure 6.12 Bus Timing for 16-Bit 2-State Access Space (1) (Even Address Byte Access)

Note: $\mathrm{n}=0$ to 3
Figure 6.13 Bus Timing for 16-Bit 2-State Access Space (2) (Odd Address Byte Access)

Figure 6.14 Bus Timing for 16-Bit 2-State Access Space (3) (Word Access)

(4) 16-Bit 3-State Access Space

Figures 6.15 to 6.17 show bus timings for a 16-bit 3-state access space. When a 16-bit access space is accessed, the upper half $\left(\mathrm{D}_{15}\right.$ to $\left.\mathrm{D}_{8}\right)$ of the data bus is used for the odd address, and the lower half $\left(D_{7}\right.$ to $\left.D_{0}\right)$ for the even address.

Wait states can be inserted.

Note: $\mathrm{n}=0$ to 3
Figure 6.15 Bus Timing for 16-Bit 3-State Access Space (1) (Even Address Byte Access)

Note: $\mathrm{n}=0$ to 3

Figure 6.16 Bus Timing for 16-Bit 3-State Access Space (2) (Odd Address Byte Access)

Note: $\mathrm{n}=0$ to 3
Figure 6.17 Bus Timing for 16-Bit 3-State Access Space (3) (Word Access)

6.5.5 Wait Control

When accessing external space, the H8S/2245 Group can extend the bus cycle by inserting one or more wait states $\left(\mathrm{T}_{\mathrm{w}}\right)$. There are two ways of inserting wait states: (1) program wait insertion and (2) pin wait insertion using the $\overline{\text { WAIT }}$ pin.

(1) Program Wait Insertion

From 0 to 3 wait states can be inserted automatically between the T_{2} state and T_{3} state on an individual area basis in 3-state access space, according to the settings of WCRH and WCRL.

(2) Pin Wait Insertion Using WAIT Pin

Setting the WAITE bit in BCRL to 1 enables wait insertion by means of the $\overline{\mathrm{WAIT}}$ pin. Program wait insertion is first carried out according to the settings in WCRH and WCRL. Then, if the $\overline{\text { WAIT }}$ pin is low at the falling edge of ϕ in the last T_{2} or T_{w} state, a T_{w} state is inserted. If the $\overline{\text { WAIT }}$ pin is held low, T_{w} states are inserted until it goes high.

This is useful when inserting four or more T_{w} states, or when changing the number of T_{w} states for different external devices.

The WAITE bit setting applies to all areas.

Figure 6.18 shows an example of wait state insertion timing.

Note: $\not \subset$ indicates the timing of $\overline{\text { WAIT }}$ pin sampling.
Figure 6.18 Example of Wait State Insertion Timing
The settings after a power-on reset are: 3 -state access, 3 program wait state insertion, and WAIT input disabled. When a manual reset is performed, the contents of bus controller registers are retained, and the wait control settings remain the same as before the reset.

6.6 Burst ROM Interface

6.6.1 Overview

With the H8S/2245 Group, external space area 0 can be designated as burst ROM space, and burst ROM interfacing can be performed. The burst ROM space interface enables 16-bit configuration ROM with burst access capability to be accessed at high speed.

Area 0 can be designated as burst ROM space by means of the BRSTRM bit in BCRH. Consecutive burst accesses of a maximum of 4 words or 8 words can be performed for CPU instruction fetches only. One or two states can be selected for burst access.

6.6.2 Basic Timing

The number of states in the initial cycle (full access) of the burst ROM interface is in accordance with the setting of the AST0 bit in ASTCR. Also, when the AST0 bit is set to 1, wait state insertion is possible. One or two states can be selected for the burst cycle, according to the setting of the BRSTS1 bit in BCRH. Wait states cannot be inserted. When area 0 is designated as burst ROM space, it becomes 16-bit access space regardless of the setting of the ABW0 bit in ABWCR.

When the BRSTS0 bit in BCRH is cleared to 0 , burst access of up to 4 words is performed; when the BRSTS0 bit is set to 1 , burst access of up to 8 words is performed.

The basic access timing for burst ROM space is shown in figures 6.19 (a) and (b). The timing shown in figure 6.19 (a) is for the case where the AST0 and BRSTS1 bits are both set to 1 , and that in figure 6.19 (b) is for the case where both these bits are cleared to 0 .

Figure 6.19 (a) Example of Burst ROM Access Timing (When AST0 $=$ BRSTS1 = 1)

Figure 6.19 (b) Example of Burst ROM Access Timing (When AST0 = BRSTS1 = 0)

6.6.3 Wait Control

As with the basic bus interface, either program wait insertion or pin wait insertion using the WAIT pin can be used in the initial cycle (full access) of the burst ROM interface. See section 6.5.5, Wait Control.

Wait states cannot be inserted in a burst cycle.

6.7 Idle Cycle

6.7.1 Operation

When the H8S/2245 Group accesses external space, it can insert a 1 -state idle cycle (T_{t}) between bus cycles in the following two cases: (1) when read accesses between different areas occur consecutively, and (2) when a write cycle occurs immediately after a read cycle. By inserting an idle cycle it is possible, for example, to avoid data collisions between ROM, with a long output floating time, and high-speed memory, I/O interfaces, and so on.

(1) Consecutive Reads between Different Areas

If consecutive reads between different areas occur while the ICIS1 bit in BCRH is set to 1, an idle cycle is inserted at the start of the second read cycle. This is enabled in advanced mode.

Figure 6.20 shows an example of the operation in this case. In this example, bus cycle A is a read cycle from ROM with a long output floating time, and bus cycle B is a read cycle from SRAM, each being located in a different area. In (a), an idle cycle is not inserted, and a collision occurs in cycle B between the read data from ROM and that from SRAM. In (b), an idle cycle is inserted, and a data collision is prevented.

Figure 6.20 Example of Idle Cycle Operation (1)

(2) Write after Read

If an external write occurs after an external read while the ICIS0 bit in BCRH is set to 1 , an idle cycle is inserted at the start of the write cycle. This is enabled in advanced mode and normal mode.

Figure 6.21 shows an example of the operation in this case. In this example, bus cycle A is a read cycle from ROM with a long output floating time, and bus cycle B is a CPU write cycle. In (a), an idle cycle is not inserted, and a collision occurs in cycle B between the read data from ROM and the CPU write data. In (b), an idle cycle is inserted, and a data collision is prevented.

Figure 6.21 Example of Idle Cycle Operation (2)

(3) Relationship between Chip Select $(\overline{\mathrm{CS}})$ Signal and Read $(\overline{\mathrm{RD}})$ Signal

Depending on the system's load conditions, the $\overline{\mathrm{RD}}$ signal may lag behind the $\overline{\mathrm{CS}}$ signal. An example is shown in figure 6.22.

In this case, with the setting for no idle cycle insertion (a), there may be a period of overlap between the bus cycle $\mathrm{A} \overline{\mathrm{RD}}$ signal and the bus cycle $\mathrm{B} \overline{\mathrm{CS}}$ signal.

Setting idle cycle insertion, as in (b), however, will prevent any overlap between the $\overline{\mathrm{RD}}$ and $\overline{\mathrm{CS}}$ signals.

In the initial state after reset release, idle cycle insertion (b) is set.

Figure 6.22 Relationship between Chip Select ($\overline{\mathbf{C S}})$ and Read ($\overline{\mathrm{RD}})$

6.7.2 Pin States in Idle Cycle

Table 6.5 shows pin states in an idle cycle.
Table 6.5 Pin States in Idle Cycle

Pins	Pin State
A_{23} to A_{0}	Contents of next bus cycle
\bar{D}_{15} to D_{0}	High impedance
$\overline{\overline{C S n}}$	High
$\overline{\overline{\mathrm{AS}}}$	High
$\overline{\overline{\mathrm{RD}}}$	High
$\overline{\overline{\operatorname{WNR}}}$	High
$\overline{\mathrm{LWR}}$	High

6.8 Bus Release

6.8.1 Overview

The H8S/2245 Group can release the external bus in response to a bus request from an external device. In the external bus released state, the internal bus master continues to operate as long as there is no external access.

If an internal bus master wants to make an external access in the external bus released state, it can issue a bus request off-chip.

6.8.2 Operation

In external expansion mode, the bus can be released to an external device by setting the BRLE bit in BCRL to 1 . Driving the $\overline{\mathrm{BREQ}}$ pin low issues an external bus request to the H8S/2245 Group. When the $\overline{\mathrm{BREQ}}$ pin is sampled, at the prescribed timing the $\overline{\mathrm{BACK}}$ pin is driven low, and the address bus, data bus, and bus control signals are placed in the high-impedance state, establishing the external bus-released state.

In the external bus released state, an internal bus master can perform accesses using the internal bus. When an internal bus master wants to make an external access, it temporarily defers activation of the bus cycle, and waits for the bus request from the external bus master to be dropped.

If the BREQOE bit in BCRL is set to 1 , when an internal bus master wants to make an external access in the external bus released state, the $\overline{\mathrm{BREQO}}$ pin is driven low and a request can be made off-chip to drop the bus request.

When the $\overline{\mathrm{BREQ}}$ pin is driven high, the $\overline{\mathrm{BACK}}$ pin is driven high at the prescribed timing and the external bus released state is terminated.

In the event of simultaneous external bus release request, and external access request generation, the order of priority is as follows:
(High) External bus release > Internal bus master external access (Low)

6.8.3 Pin States in External Bus Released State

Table 6.6 shows pin states in the external bus released state.
Table 6.6 Pin States in Bus Released State

Pins	Pin State
A_{23} to A_{0}	High impedance
D_{15} to D_{0}	High impedance
$\overline{\mathrm{CSn}}$	High impedance
$\overline{\overline{\mathrm{AS}}}$	High impedance
$\overline{\overline{\mathrm{RD}}}$	High impedance
$\overline{\mathrm{HWR}}$	High impedance
$\overline{\overline{\mathrm{LWR}}}$	High impedance

6.8.4 Transition Timing

Figure 6.23 shows the timing for transition to the bus-released state.

Figure 6.23 Bus-Released State Transition Timing

6.8.5 Usage Note

When MSTPCR has been set to H'FFFF or H'EFFF and a transition has been made to sleep mode, the external bus release function is stopped. If the external bus release function is to be used in sleep mode, H'FFFF or H'EFFF should not be set in MSTPCR.

6.9 Bus Arbitration

6.9.1 Overview

The H8S/2245 Group has a bus arbiter that arbitrates bus master operations.
There are two bus masters, the CPU and DTC, which perform read/write operations when they have possession of the bus. Each bus master requests the bus by means of a bus request signal. The bus arbiter determines priorities at the prescribed timing, and permits use of the bus by means of a bus request acknowledge signal. The selected bus master then takes possession of the bus and begins its operation.

6.9.2 Operation

The bus arbiter detects the bus masters' bus request signals, and if the bus is requested, sends a bus request acknowledge signal to the bus master making the request. If there are bus requests from more than one bus master, the bus request acknowledge signal is sent to the one with the highest priority. When a bus master receives the bus request acknowledge signal, it takes possession of the bus until that signal is canceled.

The order of priority of the bus masters is as follows:
(High) DTC > CPU (Low)
An internal bus access by an internal bus master, and external bus release, can be executed in parallel.

In the event of simultaneous external bus release request, and internal bus master external access request generation, the order of priority is as follows:
(High) External bus release > Internal bus master external access (Low)

6.9.3 Bus Transfer Timing

Even if a bus request is received from a bus master with a higher priority than that of the bus master that has acquired the bus and is currently operating, the bus is not necessarily transferred immediately. There are specific times at which each bus master can relinquish the bus.

CPU

The CPU is the lowest-priority bus master, and if a bus request is received from the DTC, the bus arbiter transfers the bus to the bus master that issued the request. The timing for transfer of the bus is as follows:

- The bus is transferred at a break between bus cycles. However, if a bus cycle is executed in discrete operations, as in the case of a longword-size access, the bus is not transferred between the operations.
- If the CPU is in sleep mode, it transfers the bus immediately.

DTC

The DTC sends the bus arbiter a request for the bus when an activation request is generated.
The DTC can release the bus after a vector read, a register information read (3 states), a single data transfer, or a register information write (3 states). It does not release the bus during a register information read (3 states), a single data transfer, or a register information write (3 states).

6.9.4 External Bus Release Usage Note

External bus release can be performed on completion of an external bus cycle. The $\overline{\mathrm{RD}}$ signal remains low until the end of the external bus cycle. Therefore, when external bus release is performed, the $\overline{\mathrm{RD}}$ signal may change from the low level to the high-impedance state.

6.10 Resets and the Bus Controller

In a power-on reset, the $\mathrm{H} 8 \mathrm{~S} / 2245$, including the bus controller, enters the reset state at that point, and an executing bus cycle is discontinued.

In a manual reset, the bus controller's registers and internal state are maintained, and an executing external bus cycle is completed. In this case, $\overline{\text { WAIT }}$ input is ignored and write data is not guaranteed.

Section 7 Data Transfer Controller

7.1 Overview

The H8S/2245 Group includes a data transfer controller (DTC). The DTC can be activated by an interrupt or software, to transfer data.

7.1.1 Features

- Transfer possible over any number of channels
- Transfer information is stored in memory
- One activation source can trigger a number of data transfers (chain transfer)
- Wide range of transfer modes
- Normal, repeat, and block transfer modes available
- Incrementing, decrementing, and fixing of source and destination addresses can be selected
- Direct specification of $16-\mathrm{Mbyte}$ address space possible
- 24-bit transfer source and destination addresses can be specified
- Transfer can be set in byte or word units
- A CPU interrupt can be requested for the interrupt that activated the DTC
- An interrupt request can be issued to the CPU after one data transfer ends
- An interrupt request can be issued to the CPU after the specified data transfers have completely ended
- Activation by software is possible
- Module stop mode can be set
- The initial setting enables DTC registers to be accessed. DTC operation is halted by setting module stop mode.

7.1.2 Block Diagram

Figure 7.1 shows a block diagram of the DTC.
The DTC's register information is stored in the on-chip RAM*. A 32-bit bus connects the DTC to the on-chip RAM (1 kbyte), enabling 32-bit/1-state reading and writing of the DTC register information and hence helping to increase processing speed.

Note: * When the DTC is used, the RAME bit SYSCR must be set to 1 .

Figure 7.1 Block Diagram of DTC

7.1.3 Register Configuration

Table 7.1 summarizes the DTC registers.

Table 7.1 DTC Registers

Name	Abbreviation	R/W	Initial Value	Address*1
DTC mode register A	MRA	$-*^{2}$	Undefined	$-*^{3}$
DTC mode register B	MRB	$-*^{2}$	Undefined	$-*^{3}$
DTC source address register	SAR	$-*^{2}$	Undefined	$-*^{3}$
DTC destination address register	DAR	$-*^{2}$	Undefined	$-*^{3}$
DTC transfer count register A	CRA	$-*^{2}$	Undefined	$-*^{3}$
DTC transfer count register B	CRB	$-*^{2}$	Undefined	$-*^{3}$
DTC enable registers	DTCER	R/W	H'00	H'FF30 to H'FF35
DTC vector register	DTVECR	R/W	H'00	H'FF37
Module stop control register	MSTPCR	R/W	H'3FFF	H'FF3C

Notes: 1. Lower 16 bits of the address.
2. Registers within the DTC cannot be read or written to directly.
3. Register information is located in on-chip RAM addresses H'F800 to H'FBFF. It cannot be located in external space. When the DTC is used, do not clear the RAME bit in SYSCR to 0.

7.2 Register Descriptions

7.2.1 DTC Mode Register A (MRA)

Bit	7	6	5	4	3	2	1	0
	SM1	SM0	DM1	DM0	MD1	MDO	DTS	Sz
Initial value:	Undefined							
R/W	-	-	-	-	-	-	-	-

MRA is an 8-bit register that controls the DTC operating mode.

Bits 7 and 6-Source Address Mode 1 and 0 (SM1, SM0): These bits specify whether SAR is to be incremented, decremented, or left fixed after a data transfer.

Bit 7	Bit 6	
SM1	SM0	Description
0	-	SAR is fixed
1	0	SAR is incremented after a transfer $(b y+1$ when $\mathrm{Sz}=0 ;$ by +2 when $\mathrm{Sz}=1)$
	1	SAR is decremented after a transfer $(b y-1$ when $\mathrm{Sz}=0 ;$ by -2 when $\mathrm{Sz}=1)$

Bits 5 and 4-Destination Address Mode 1 and 0 (DM1, DM0): These bits specify whether DAR is to be incremented, decremented, or left fixed after a data transfer.

Bit 5	Bit 4	
DM1	DM0	Description
0	-	DAR is fixed
1	0	DAR is incremented after a transfer (by +1 when $\mathrm{Sz}=0$; by +2 when $\mathrm{Sz}=1$)
	1	DAR is decremented after a transfer (by -1 when $\mathrm{Sz}=0$; by -2 when $\mathrm{Sz}=1$)

Bits 3 and 2—DTC Mode (MD1, MD0): These bits specify the DTC transfer mode.

Bit 3	Bit $\mathbf{2}$	
MD1	MD0	Description
0	0	Normal mode
1	Repeat mode	
1	0	Block transfer mode
	1	-

Bit 1—DTC Transfer Mode Select (DTS): Specifies whether the source side or the destination side is set to be a repeat area or block area, in repeat mode or block transfer mode.

Bit 1

DTS Description

0	Destination side is repeat area or block area
1	Source side is repeat area or block area

Bit 0-DTC Data Transfer Size (Sz): Specifies the size of data to be transferred.
Bit 0

Sz	Description
0	Byte-size transfer
1	Word-size transfer

7.2.2 DTC Mode Register B (MRB)

Bit	7	6	5	4	3	2	1	0
	CHNE	DISEL	-	-	-	-	-	-
Initial value:	Undefined							
R/W	-	-	-	-	-	-	-	-

MRB is an 8-bit register that controls the DTC operating mode.
Bit 7—DTC Chain Transfer Enable (CHNE): Specifies chain transfer. With chain transfer, a number of data transfers can be performed consecutively in response to a single transfer request.

In data transfer with CHNE set to 1 , determination of the end of the specified number of transfers, clearing of the interrupt source flag, and clearing of DTCER is not performed.

Bit 7

CHNE	Description
0	End of DTC data transfer (activation waiting state is entered)
1	DTC chain transfer (new register information is read, then data is transferred)

Bit 6-DTC Interrupt Select (DISEL): Specifies whether interrupt requests to the CPU are disabled or enabled after a data transfer.

Bit 6

DISEL Description
$0 \quad$ After a data transfer ends, the CPU interrupt is disabled unless the transfer counter is 0 (the DTC clears the interrupt source flag of the activating interrupt to 0)
1 After a data transfer ends, the CPU interrupt is enabled (the DTC does not clear the interrupt source flag of the activating interrupt to 0)

Bits 5 to 0—Reserved: These bits have no effect on DTC operation, and should always be written with 0 in a write.

7.2.3 DTC Source Address Register (SAR)

Bit	23	22	21	20	19	---	4	3	2	1	0

Initial value:	Unde- Unde- Unde-Unde- Undefined fined fined fined fined					-- -	Unde- Unde-Unde- Unde-Undefined fined fined fined fined				
R/W	-	-	-	-	-	-- -	-	-	-	-	-

SAR is a 24-bit register that designates the source address of data to be transferred by the DTC.
For word-size transfer, specify an even source address.

7.2.4 DTC Destination Address Register (DAR)

Bit	23	22	21	20	19	---	4	3	2	1	0

Initial value:	Unde fined	Unde fined	Undefined	Unde fined	Unde fined	---					Undefined
R/W	-	-	-	-	-		-	-	-	-	-

DAR is a 24-bit register that designates the destination address of data to be transferred by the DTC. For word-size transfer, specify an even destination address.

7.2.5 DTC Transfer Count Register A (CRA)

Initial value: Unde- Unde-Unde-Unde-Unde-Unde-Unde-Unde-Unde-Unde-Unde-Unde-Unde-Unde- Unde-Undefined fined fined
R/W

CRA is a 16-bit register that designates the number of times data is to be transferred by the DTC.
In normal mode, the entire CRA functions as a 16-bit transfer counter (1 to 65536). It is decremented by 1 every time data is transferred, and transfer ends when the count reaches $\mathrm{H}^{\prime} 0000$.

In repeat mode or block transfer mode, the CRA is divided into two parts: the upper 8 bits (CRAH) and the lower 8 bits (CRAL). In repeat mode, CRAH holds the number of transfers while CRAL functions as an 8-bit transfer counter (1 to 256). In block transfer mode, CRAH holds the block size while CRAL functions as an 8-bit block size counter (1 to 256). CRAL is decremented by 1 every time data is transferred, and the contents of CRAH are sent when the count reaches $\mathrm{H}^{\prime} 00$. This operation is repeated.

7.2.6 DTC Transfer Count Register B (CRB)

Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

Initial value: Unde-Unde-Unde-Unde-Unde-Unde-Unde-Unde-Unde-Unde-Unde-Unde-Unde-Unde-Unde-Undefined fined fined
R/W : \quad W $\quad-\quad-\quad-\quad-\quad-\quad-\quad-\quad-\quad-\quad-\quad-\quad-\quad-\quad-\quad-$
CRB is a 16-bit register that designates the number of times data is to be transferred by the DTC in block transfer mode. It functions as a 16-bit transfer counter (1 to 65536) that is decremented by 1 every time data is transferred, and transfer ends when the count reaches H'0000.

7.2.7 DTC Enable Registers (DTCER)

Bit	$:$	7	6	5	4	3	2	1	0
	DTCE7	DTCE6	DTCE5	DTCE4	DTCE3	DTCE2	DTCE1	DTCE0	
	Initial value:	0	0	0	0	0	0	0	0
R/W	$:$	R/W							

The DTC enable registers comprise six 8-bit readable/writable registers, DTCERA to DTCERF, with bits corresponding to the interrupt sources that can activate the DTC. These bits enable or disable DTC service for the corresponding interrupt sources.

The DTC enable registers are initialized to $\mathrm{H}^{\prime} 00$ by a reset and in hardware standby mode.

Bit n-DTC Activation Enable (DTCEn)

Bit n
 DTCEn Description

0	DTC activation by this interrupt is disabled	(Initial value)
	[Clearing conditions]	

1. When DISEL $=1$ and data transfer ends
2. When the specified number of transfers end

1 DTC activation by this interrupt is enabled
[Holding condition]
When DISEL $=0$ and the specified number of transfers have not ended
Note: $\mathrm{n}=7$ to 0

A DTCE bit can be set for each interrupt source that can activate the DTC. The correspondence between interrupt sources and DTCE bits is shown in table 7.3, together with the vector number generated for each interrupt controller.

For DTCE bit setting, use bit manipulation instructions such as BSET and BCLR. If all interrupts are masked, multiple activation sources can be set at one time by writing data after executing a dummy read on the relevant register.

7.2.8 DTC Vector Register (DTVECR)

Bit	7		5	4	3	2	1	0
	SWDTE	DTVEC6	DTVEC5	DTVEC4	DTVEC3	DTVEC2	DTVEC1	DTVECO
Initial value:	0	0	0	0	0	0	0	0
R/W	$\mathrm{R} /(\mathrm{W})^{* 1}$	$\mathrm{R} /(\mathrm{W})^{* 2}$						

Notes: 1. A value of 1 can only be written to the SWDTE bit.
2. DTVEC6 to DTVEC0 bits can only be written when $\operatorname{SWDTE}=0$.

DTVECR is an 8-bit readable/writable register that enables or disables DTC activation by software, and sets a vector number for the software activation interrupt.

DTVECR is initialized to $\mathrm{H}^{\prime} 00$ by a reset and in hardware standby mode.

Bit 7—DTC Software Activation Enable (SWDTE): Enables or disables DTC activation by software.

Bit 7

SWDTE Description

$0 \quad$ DTC software activation is disabled
(Initial value)
[Clearing conditions]

1. When DISEL $=0$ and the specified number of transfers have not ended
2. When 0 is written to the DISEL bit after a software-activated data transfer end interrupt (SWDTEND) request has been sent to the CPU.
1 DTC software activation is enabled
[Holding conditions]
3. When DISEL $=1$ and data transfer ends
4. When the specified number of transfers end
5. During data transfer due to software activation

Bits 6 to 0—DTC Software Activation Vectors 6 to 0 (DTVEC6 to DTVEC0): These bits specify a vector number for DTC software activation.

The vector address is expressed as $\mathrm{H}^{\prime} 0400+(($ vector number $) \ll 1) . \ll 1$ indicates a one-bit leftshift. For example, when DTVEC6 to DTVEC0 $=\mathrm{H}^{\prime} 10$, the vector address is H'0420.

7.2.9 Module Stop Control Register (MSTPCR)

R/W : R/W R/W

MSTPCR is a 16-bit readable/writable register that performs module stop mode control.
When the MSTP14 bit in MSTPCR is set to 1 , the DTC operation stops at the end of the bus cycle and a transition is made to module stop mode. However, 1 cannot be written in the MSTP14 bit while the DTC is operating. For details, see section 18.5, Module Stop Mode.

MSTPCR is initialized to H'3FFF by a reset and in hardware standby mode. It is not initialized in software standby mode.

Bit 14—Module Stop (MSTP14): Specifies the DTC module stop mode.
Bit 14
MSTP14 Description

0	DTC module stop mode cleared	(Initial value)
1	DTC module stop mode set	

7.3 Operation

7.3.1 Overview

When activated, the DTC reads register information that is already stored in memory and transfers data on the basis of that register information. After the data transfer, it writes updated register information back to memory. Pre-storage of register information in memory makes it possible to transfer data over any required number of channels. Setting the CHNE bit to 1 makes it possible to perform a number of transfers with a single activation.

Figure 7.2 shows a flowchart of DTC operation.

Note: * For details on interrupt handling, see the sections dealing with the individual peripheral modules.
Figure 7.2 Flowchart of DTC Operation
The DTC transfer mode can be normal mode, repeat mode, or block transfer mode.
The 24-bit SAR designates the DTC transfer source address and the 24-bit DAR designates the transfer destination address. After each transfer, SAR and DAR are independently incremented, decremented, or left fixed.

Table 7.2 outlines the functions of the DTC.
Table 7.2 DTC Functions

Transfer Mode	Activation Source	Address Registers	
		Transfer Source	Transfer Destination
- Normal mode	- IRQ	24 bits	24 bits
- One transfer request transfers one	- TPU TGI		
byte or one word	- 8-bit timer CMI		
- Memory addresses are incremented	- SCI TXI or RXI		
or decremented by 1 or 2	- A/D converter ADI		
- Up to 65,536 transfers possible	- Software		
- Repeat mode			
- One transfer request transfers one byte or one word			
- Memory addresses are incremented or decremented by 1 or 2			
- After the specified number of transfers (1 to 256), the initial state resumes and operation continues			
- Block transfer mode			
- One transfer request transfers a block of the specified size			
- Block size is from 1 to 256 bytes or words			
- Up to 65,536 transfers possible			
- A block area can be designated at either the source or destination			

7.3.2 Activation Sources

The DTC operates when activated by an interrupt or by a write to DTVECR by software. An interrupt request can be directed to the CPU or DTC, as designated by the corresponding DTCER bit. An interrupt becomes a DTC activation source when the corresponding bit is set to 1 , and a CPU interrupt source when the bit is cleared to 0 .

At the end of a data transfer (or the last consecutive transfer in the case of chain transfer), the activation source or corresponding DTCER bit is cleared. Table 7.3 shows activation source and

[^2]DTCER clearance. The activation source flag, in the case of RXIO, for example, is the RDRF flag of SCIO. As there are a number of activation sources, the activation source flag is not cleared with the last byte (or word) transfer. Take appropriate measures at each interrupt.

Table 7.3 Activation Source and DTCER Clearance
\(\left.$$
\begin{array}{lll} & \begin{array}{l}\text { When the DISEL Bit Is } \mathbf{0} \text { and } \\
\text { the Specified Number of }\end{array} & \begin{array}{l}\text { When the DISEL Bit Is 1, or when } \\
\text { the Specified Number of Transfers } \\
\text { Have Ended }\end{array} \\
\text { Activation Source } & \text { Transfers Have Not Ended }\end{array}
$$ \quad $$
\begin{array}{ll}\text { Software activation } & \text { The SWDTE bit is cleared to } 0\end{array}
$$ \begin{array}{l}The SWDTE bit remains set to 1

An interrupt request is issued to the CPU\end{array}\right]\)| Interrupt activation | The corresponding DTCER bit
 remains set to 1 | The corresponding DTCER bit is cleared
 to 0 |
| :--- | :--- | :--- |
| | The activation source flag is
 cleared to 0 | The activation source flag remains set to 1
 A request is issued to the CPU for the
 activation source interrupt |

Figure 7.3 shows a block diagram of activation source control. For details see section 5, Interrupt Controller.

Figure 7.3 Block Diagram of DTC Activation Source Control

When an interrupt has been designated a DTC activation source, existing CPU mask level and interrupt controller priorities have no effect. If there is more than one activation source at the same time, the DTC operates in accordance with the default priorities.

7.3.3 DTC Vector Table

Figure 7.4 shows the correspondence between DTC vector addresses and register information.
Table 7.4 shows the correspondence between activation sources, vector addresses, and DTCER bits. When the DTC is activated by software, the vector address is obtained from: H'0400 + (DTVECR[6:0] << 1) (where << 1 indicates a 1-bit left shift). For example, if DTVECR is H'10, the vector address is $\mathrm{H}^{\prime} 0420$.

The DTC reads the start address of the register information from the vector address set for each activation source, and then reads the register information from that start address. The register information can be placed at predetermined addresses in the on-chip RAM. The start address of the register information should be an integral multiple of four.

The configuration of the vector address is the same in both normal and advanced modes, a 2-byte unit being used in both cases. These two bytes specify the lower bits of the address in the on-chip RAM.

Table 7.4 Interrupt Sources, DTC Vector Addresses, and Corresponding DTCEs

Interrupt Source	Origin of Interrupt Source	Vector Number	Vector Address	DTCE*	Priority
Write to DTVECR	Software	DTVECR	$\begin{aligned} & \text { H'0400+ } \\ & \text { DTVECR } \\ & {[6: 0] \ll 1} \end{aligned}$	-	
IRQ0	External pin	16	H'0420	DTCEA7	
IRQ1		17	H'0422	DTCEA6	
IRQ2		18	H'0424	DTCEA5	
IRQ3		19	H'0426	DTCEA4	
IRQ4		20	H'0428	DTCEA3	
IRQ5		21	H'042A	DTCEA2	
IRQ6		22	H'042C	DTCEA1	
IRQ7		23	H'042E	DTCEA0	
ADI (A/D conversion end)	A/D	28	H'0438	DTCEB6	
TGIOA (GROA compare match/ input capture)	TPU channel 0	32	H'0440	DTCEB5	
TGIOB (GROB compare match/ input capture)		33	H'0442	DTCEB4	
TGIOC (GROC compare match/ input capture)		34	H'0444	DTCEB3	
TGIOD (GROD compare match/ input capture)		35	H'0446	DTCEB2	
TGI1A (GR1A compare match/ input capture)	TPU channel 1	40	H'0450	DTCEB1	
TGI1B (GR1B compare match/ input capture)		41	H'0452	DTCEB0	
TGI2A (GR2A compare match/ input capture)	TPU channel 2	44	H'0458	DTCEC7	
TGI2B (GR2B compare match/ input capture)		45	H'045A	DTCEC6	

	Origin of Interrupt Source	Vector Number	Vector Address	DTCE*	Priority
CMIerrupt Source	8-bit timer				
channel 0					

Note: * DTCE bits with no corresponding interrupt are reserved, and should be written with 0 .

Figure 7.4 Correspondence between DTC Vector Address and Register Information

7.3.4 Location of Register Information in Address Space

Figure 7.5 shows how the register information should be located in the address space.
Locate the MRA, SAR, MRB, DAR, CRA, and CRB registers, in that order, from the start address of the register information (contents of the vector address). In the case of chain transfer, register information should be located in consecutive areas.

Locate the register information in the on-chip RAM (addresses: H'FFF800 to H'FFFBFF).

Figure 7.5 Location of DTC Register Information in Address Space

7.3.5 Normal Mode

In normal mode, one operation transfers one byte or one word of data.
From 1 to 65,536 transfers can be specified. Once the specified number of transfers have ended, a CPU interrupt can be requested.

Table 7.5 lists the register information in normal mode and figure 7.6 shows memory mapping in normal mode.

Table 7.5 Register Information in Normal Mode

Name	Abbreviation	Function
DTC source address register	SAR	Designates source address
DTC destination address register	DAR	Designates destination address
DTC transfer count register A	CRA	Designates transfer count
DTC transfer count register B	CRB	Not used

Figure 7.6 Memory Mapping in Normal Mode

7.3.6 Repeat Mode

In repeat mode, one operation transfers one byte or one word of data.
From 1 to 256 transfers can be specified. Once the specified number of transfers have ended, the initial states of the transfer counter and the address register specified as the repeat area are restored, and transfer is repeated. In repeat mode the transfer counter value does not reach $\mathrm{H}^{\prime} 00$, and therefore CPU interrupts cannot be requested when DISEL $=0$.

Table 7.6 lists the register information in repeat mode and figure 7.7 shows memory mapping in repeat mode.

Table 7.6 Register Information in Repeat Mode

Name	Abbreviation	Function
DTC source address register	SAR	Designates source address
DTC destination address register	DAR	Designates destination address
DTC transfer count register AH	CRAH	Holds number of transfers
DTC transfer count register AL	CRAL	Designates transfer count
DTC transfer count register B	CRB	Not used

Figure 7.7 Memory Mapping in Repeat Mode

7.3.7 Block Transfer Mode

In block transfer mode, one operation transfers one block of data. A block area is specified for either the transfer source or the transfer destination.

The block size is 1 to 256 . When the transfer of one block ends, the initial state of the block size counter and the address register specified as the block area is restored. The other address register is then incremented, decremented, or left fixed.

From 1 to 65,536 transfers can be specified. Once the specified number of transfers have ended, a CPU interrupt is requested.

Table 7.7 lists the register information in block transfer mode and figure 7.8 shows memory mapping in block transfer mode.

Table 7.7 Register Information in Block Transfer Mode

Name	Abbreviation	Function
DTC source address register	SAR	Designates source address
DTC destination address register	DAR	Designates destination address
DTC transfer count register AH	CRAH	Holds block size
DTC transfer count register AL	CRAL	Block size count
DTC transfer count register B	CRB	Transfer count

Figure 7.8 Memory Mapping in Block Transfer Mode

7.3.8 Chain Transfer

Setting the CHNE bit to 1 enables a number of data transfers to be performed consecutively in response to a single transfer request. SAR, DAR, CRA, CRB, MRA, and MRB, which define data transfers, can be set independently.

Figure 7.9 shows the memory map for chain transfer. When activated, the DTC reads the register information start address stored at the vector address, which corresponds to the activation request, and then reads the first register information at that start address. After the data transfer, the CHNE bit will be tested. When it has been set to 1 , DTC reads the next register information located in a consecutive area and performs the data transfer. These sequences are repeated until the CHNE bit is cleared to 0 .

Figure 7.9 Chain Transfer Memory Map

In the case of transfer with CHNE set to 1 , an interrupt request to the CPU is not generated at the end of the specified number of transfers or by setting of the DISEL bit to 1 , and the interrupt source flag for the activation source is not affected.

7.3.9 Operation Timing

Figures 7.10, 7.11, and 7.12 show examples of DTC operation timings.

Figure 7.10 DTC Operation Timing (Example in Normal Mode or Repeat Mode)

Figure 7.11 DTC Operation Timing (Example of Block Transfer Mode, with Block Size of 2)

Figure 7.12 DTC Operation Timing (Example of Chain Transfer)

7.3.10 Number of DTC Execution States

Table 7.8 lists execution statuses for a single DTC data transfer, and table 7.9 shows the number of states required for each execution status.

Table 7.8 DTC Execution Statuses
$\left.\begin{array}{llllll} & \begin{array}{l}\text { Vector Read }\end{array} & \begin{array}{l}\text { Register Information } \\ \text { Read/Write } \\ \text { Jode }\end{array} & \mathbf{I} & 6 & \begin{array}{l}\text { Data Read } \\ \text { K }\end{array}\end{array} \begin{array}{l}\text { Data Write } \\ \mathbf{L}\end{array} \quad \begin{array}{l}\text { Internal } \\ \text { Operations } \\ \mathbf{M}\end{array}\right]$

Legend:
N : Block size (initial setting of CRAH and CRAL)

Table 7.9 Number of States Required for Each Execution Status

Object to be Accessed			OnChip RAM	OnChip ROM	OnChip I/O Registers		External Devices			
Bus width			32	16	8	16	8		16	
Access states			1	1	2	2	2	3	2	3
Execution status	Vector read	S	-	1	-	-	4	6+2m	2	$3+\mathrm{m}$
	Register information read/write	S	1	-	-	-	-	-	-	-
	Byte data read	S_{K}	1	1	2	2	2	$3+\mathrm{m}$	2	$3+\mathrm{m}$
	Word data read	S_{K}	1	1	4	2	4	6+2m	2	$3+\mathrm{m}$
	Byte data write	S_{L}	1	1	2	2	2	3+m	2	$3+\mathrm{m}$
	Word data write	S_{L}	1	1	4	2	4	6+2m	2	$3+\mathrm{m}$
	Internal operation	S_{M}	1							

m : Number of wait states in external device access

The number of execution states is calculated from the formula below. Note that \sum means the sum of all transfers activated by one activation event (the number in which the CHNE bit is set to 1 , plus 1).

Number of execution states $=\mathrm{I} \cdot \mathrm{S}_{\mathrm{I}}+\sum\left(\mathrm{J} \cdot \mathrm{S}_{\mathrm{J}}+\mathrm{K} \cdot \mathrm{S}_{\mathrm{K}}+\mathrm{L} \cdot \mathrm{S}_{\mathrm{L}}\right)+\mathrm{M} \cdot \mathrm{S}_{\mathrm{M}}$
For example, when the DTC vector address table is located in on-chip ROM, normal mode is set, and data is transferred from the on-chip ROM to an internal I/O register, the time required for the DTC operation is 13 states. The time from activation to the end of the data write is 10 states.

7.3.11 Procedures for Using DTC

Activation by Interrupt

The procedure for using the DTC with interrupt activation is as follows:
[1] Set the MRA, MRB, SAR, DAR, CRA, and CRB register information in the on-chip RAM.
[2] Set the start address of the register information in the DTC vector address.
[3] Set the corresponding bit in DTCER to 1 .
[4] Set the enable bits for the interrupt sources to be used as the activation sources to 1 . The DTC is activated when an interrupt used as an activation source is generated.
[5] After the end of one data transfer, or after the specified number of data transfers have ended, the DTCE bit is cleared to 0 and a CPU interrupt is requested. If the DTC is to continue transferring data, set the DTCE bit to 1 .

Activation by Software

The procedure for using the DTC with software activation is as follows:
[1] Set the MRA, MRB, SAR, DAR, CRA, and CRB register information in the on-chip RAM.
[2] Set the start address of the register information in the DTC vector address.
[3] Check that the SWDTE bit is 0 .
[4] Write 1 to SWDTE bit and the vector number to DTVECR.
[5] Check the vector number written to DTVECR.
[6] After the end of one data transfer, if the DISEL bit is 0 and a CPU interrupt is not requested, the SWDTE bit is cleared to 0 . If the DTC is to continue transferring data, set the SWDTE bit to 1 . When the DISEL bit is 1 , or after the specified number of data transfers have ended, the SWDTE bit is held at 1 and a CPU interrupt is requested.

7.3.12 Examples of Use of the DTC

(1) Normal Mode

The first example shows how the DTC can be used to receive 128 bytes of data via the SCI.
[1] Set MRA to fixed source address $(S M 1=S M 0=0)$, incrementing destination address ($\mathrm{DM} 1=$ $1, \mathrm{DM} 0=0)$, normal mode ($\mathrm{MD} 1=\mathrm{MD} 0=0$), and byte size $(\mathrm{Sz}=0)$. The DTS bit can have any value. Set MRB for one data transfer by one interrupt $($ CHNE $=0$, DISEL $=0)$. Set the SCI RDR address in SAR, the start address of the RAM area where the data will be received in DAR, and 128 ($\mathrm{H}^{\prime} 0080$) in CRA. CRB can be set to any value.
[2] Set the start address of the register information at the DTC vector address.
[3] Set the corresponding bit in DTCER to 1 .
[4] Set the SCI to the appropriate receive mode. Set the RIE bit in SCR to 1 to enable the reception complete (RXI) interrupt. Since the generation of a receive error during the SCI reception operation will disable subsequent reception, the CPU should be enabled to accept receive error interrupts.
[5] Each time reception of one byte of data ends on the SCI, the RDRF flag in SSR is set to 1, an RXI interrupt is generated, and the DTC is activated. The receive data is transferred from RDR to RAM by the DTC, and then DAR is incremented and CRA is decremented. The RDRF flag is automatically cleared to 0 .
[6] When CRA becomes 0 after the 128 data transfers have ended, the RDRF flag is held at 1 , the DTCE bit is cleared to 0 , and an RXI interrupt request is sent to the CPU. The interrupt handling routine should perform wrap-up processing.

(2) Software Activation

The second example shows how the DTC can be used to transfer a block of 128 bytes of data by means of software activation. The transfer source address is $\mathrm{H}^{\prime} 1000$ and the destination address is $\mathrm{H}^{\prime} 2000$. The vector number is $\mathrm{H}^{\prime} 60$, so the vector address is $\mathrm{H}^{\prime} 04 \mathrm{C} 0$.
[1] Set MRA to incrementing source address ($\mathrm{SM} 1=1, \mathrm{SM} 0=0$), incrementing destination address $(\mathrm{DM} 1=1, \mathrm{DM} 0=0)$, block transfer mode $(\mathrm{MD} 1=1, \mathrm{MD} 0=0)$, and byte size $(\mathrm{Sz}=$ 0). The DTS bit can have any value. Set MRB for one block transfer by one interrupt ($\mathrm{CHNE}=$ $0)$. Set the transfer source address $\left(\mathrm{H}^{\prime} 1000\right)$ in SAR, the destination address $\left(\mathrm{H}^{\prime} 2000\right)$ in DAR, and 128 ($\mathrm{H}^{\prime} 8080$) in CRA. Set 1 ($\mathrm{H}^{\prime} 0001$) in CRB.
[2] Set the start address of the register information at the DTC vector address ($\left.\mathrm{H}^{\prime} 04 \mathrm{C} 0\right)$.
[3] Check that the SWDTE bit in DTVECR is 0 . Check that there is currently no transfer activated by software.
[4] Write 1 to the SWDTE bit and the vector number (H'60) to DTVECR. The write data is H'E0.
[5] Read DTVECR again and check that it is set to the vector number (H'60). If it is not, this indicates that the write failed. This is presumably because an interrupt occurred between steps 3 and 4 and led to a different software activation. To activate this transfer, go back to step 3.
[6] If the write was successful, the DTC is activated and a block of 128 bytes of data is transferred.
[7] After the transfer, an SWDTEND interrupt occurs. The interrupt handling routine should clear the SWDTE bit to 0 and perform other wrap-up processing.

7.4 Interrupts

An interrupt request is issued to the CPU when the DTC finishes the specified number of data transfers, or a data transfer for which the DISEL bit was set to 1 . In the case of interrupt activation, the interrupt set as the activation source is generated. These interrupts to the CPU are subject to CPU mask level and interrupt controller priority level control.

In the case of activation by software, a software activated data transfer end interrupt (SWDTE $\mathrm{ND})$ is generated.

When one data transfer ends, or the specified number of data transfers end, with the DISEL bit set to 1 , after the end of the data transfer the SWDTE bit remains set to 1 and an SWDTEND interrupt is generated.

The interrupt handling routine should clear the SWDTE bit to 0 .

When the DTC is activated by software, an SWDTEND interrupt is not generated during a data transfer wait or during data transfer even if the SWDTE bit is set to 1 .

7.5 Usage Notes

Module Stop: When the MSTP14 bit in MSTPCR is set to 1 , the DTC clock stops, and the DTC enters the module stop state. However, 1 cannot be written in the MSTP14 bit while the DTC is operating. See section 18, Power-Down Modes, for details.

On-Chip RAM: The MRA, MRB, SAR, DAR, CRA, and CRB registers are all located in on-chip RAM. When the DTC is used, the RAME bit in SYSCR must not be cleared to 0 .

DTCE Bit Setting: For DTCE bit setting, use bit manipulation instructions such as BSET and BCLR. If all interrupts are masked, multiple activation sources can be set at one time by writing data after executing a dummy read on the relevant register.

Section 8 I/O Ports

8.1 Overview

The H8S/2245 Group has 11 I/O ports (ports 1, 2, 3, 5, and A to G), and one input-only port (port 4).

Table 8.1 summarizes the port functions. The pins of each port also have other functions.
Each port includes a data direction register (DDR) that controls input/output (not provided for the input-only port), a data register (DR) that stores output data, and a port register (PORT) used to read the pin states.

Ports A to E have a built-in MOS input pull-up function, and in addition to DR and DDR, have a MOS input pull-up control register (PCR) to control the on/off state of MOS input pull-up.

Ports 3 and A include an open-drain control register (ODR) that controls the on/off state of the output buffer PMOS.

Ports 1 and A to F can drive a single TTL load and 90-pF capacitive load, and ports 2, 3, 5, and G can drive a single TTL load and $30-\mathrm{pF}$ capacitive load. All the I/O ports can drive a Darlington transistor when in output mode. Ports 1 , and A to C can drive an LED (10-mA sink current).

Port 2 and the interrupt input pins ($\overline{\mathrm{IRQ} 0}$ to $\overline{\mathrm{IRQ} 7})$ are Schmitt-triggered inputs.

Table 8.1 Port Functions

Port	Description	Pins	Mode 1 Mode 2*1 ${ }^{\text {M }}$ Mode 3*1	Mode 4	Mode 5	Mode 6*	Mode 7* ${ }^{*}$
Port 1	- 8-bit I/O port	$\begin{aligned} & \hline \mathrm{P} 1_{7} / \text { TIOCB } 2 / \mathrm{TCLKD} \\ & \mathrm{P} 1_{6} / \text { TIOCA2 } \\ & \mathrm{P} 1_{5} / \mathrm{TIOCB} 1 / \mathrm{TCLKC} \\ & \mathrm{P} 1_{4} \text { TIOCA1 } \\ & \hline \mathrm{P}_{3} / \text { TIOCD } 0 / \mathrm{TCLKB} / \mathrm{A}_{23} \\ & \mathrm{P} 1_{2} \text { /TIOCC0 } / \mathrm{TCLKA} / \mathrm{A}_{22} \\ & \mathrm{P} 1_{1} \text { /TIOCB0 } / \mathrm{A}_{21} \\ & \mathrm{P} 1_{0} \text { TIOCA0 } / \mathrm{A}_{20} \end{aligned}$	8-bit I/O port also functioning TCLKC, TCLKD, TIOCAO, TI TIOCB1, TIOCA2, TIOCB2)	as TPU I/ CBO, TIO When DD functionin (TCLKA, TIOCBO, When DD	pins (TCL CO, TIOC =0: Input as TPU I/ LKB, TIO OCCO, TI R= 1: Addre	KA, TCLK D0, TIOC ort also pins CAO, CDO) ss output	
Port 2	- 8-bit I/O port - Schmitttriggered input	$\begin{aligned} & \mathrm{P}_{2}^{7} / \mathrm{TMO1} \\ & \mathrm{P}_{6} / \mathrm{TMOO} \\ & \mathrm{P}_{5} / \mathrm{TMCl} 1 \\ & \mathrm{P}_{4} / \mathrm{TMRI} 1 \\ & \mathrm{P}_{3} / \mathrm{TMCIO} \\ & \mathrm{P}_{2} / \mathrm{TMRIO} \\ & \mathrm{P}_{1} \\ & \mathrm{P}_{1} \end{aligned}$	8 -bit I/O port also functioning as 8 -bit timer (channels 0 and 1) I/O pins (TMRIO, TMCIO, TMOO, TMRI1, TMCI1, TMO1)				
Port 3	- 6-bit I/O port - Open-drain output capability - Schmitttriggered input (류Q5, $\overline{\mathrm{IRQ4}})$	$\begin{aligned} & \mathrm{P3}_{5} / \mathrm{SCK} 1 / \overline{\mathrm{RQ} 5} \\ & \mathrm{P}_{4} / \mathrm{SCKO} / \overline{\mathrm{RQ} 4} \\ & \mathrm{P3}_{3} / \mathrm{RxD1} \\ & \mathrm{P} 3_{2} / \mathrm{RxD0} \\ & \mathrm{P} 3_{1} / \mathrm{TxD} 1 \\ & \mathrm{P} 3_{0} / \mathrm{TxD0} \end{aligned}$	6-bit I/O port also functioning as SCI (channels 0 and 1) I/O pins (TxD0, RxD0, SCK0, TxD1, RxD1, SCK1) and interrupt input pins ($\overline{\mathrm{RQQ5}}, \overline{\mathrm{IRQ} 4}$)				
Port 4	- 4-bit input port	$\begin{aligned} & \mathrm{P}_{3} / \mathrm{AN} 3 \\ & \mathrm{P}_{2} / \mathrm{AN} 2 \\ & \mathrm{P}_{4} / \mathrm{AN} 1 \\ & \mathrm{P} 4_{0} / \mathrm{ANO} \end{aligned}$	4-bit input port also functioning as A/D converter analog inputs (AN3 to ANO)				
Port 5	- 4-bit I/O port	$\begin{aligned} & \mathrm{P5}_{3} \\ & \mathrm{P5}_{2} / \mathrm{SCK} 2 \\ & \mathrm{P} 5_{1} / \mathrm{RxD} 2 \\ & \mathrm{P} 5_{0} / \mathrm{TxD2} \end{aligned}$	4-bit I/O port also functioning as SCI (channel 2) I/O pins (TxD2, RxD2, SCK2)				

Port	Description	Pins	Mode 1	Mode $\mathbf{2}^{* 1}$	Mode 3*1	Mode 4	Mode 5	Mode 6*1	Mode $\mathbf{7}^{* 1}$
Port A	- 4-bit I/O port - Built-in MOS input pull-up - Open-drain output capability	$\begin{aligned} & \mathrm{PA}_{3} / \mathrm{A}_{19} \\ & \text { to } \mathrm{PA}_{0} / \mathrm{A}_{16} \end{aligned}$	I/O port			Address output		When DDR = 0 (after reset): input ports When DDR $=1$: address output	I/O port
Port B	- 8-bit I/O port - Built-in MOS input pull-up	$\begin{aligned} & \mathrm{PB}_{7} / \mathrm{A}_{15} \\ & \text { to } \mathrm{PB}_{0} / \mathrm{A}_{8} \end{aligned}$	Address output	When DDR $=0$ (after reset): input port When DDR $=1$: address output	I/O port	Address output		When DDR = 0 (after reset): input port When DDR $=1$: address output	I/O port
Port C	- 8-bit I/O port - Built-in MOS input pull-up	$\begin{aligned} & \mathrm{PC}_{7} / \mathrm{A}_{7} \\ & \text { to } \mathrm{PC}_{0} / \mathrm{A}_{0} \end{aligned}$	Address output	When DDR = 0 (after reset): input port When DDR $=1$: address output	I/O port	Address output		When DDR = 0 (after reset): input port When DDR $=1$: address output	I/O port

Port	Description	Pins	Mode 1	Mode $2^{* 1}$	Mode 3*1	Mode 4	Mode 5	Mode 6*1	Mode $7^{* 1}$
Port D	- 8-bit I/O port - Built-in MOS input pull-up	$\begin{aligned} & \mathrm{PD}_{7} / \mathrm{D}_{15} \\ & \text { to } \mathrm{PD}_{0} / \mathrm{D}_{8} \end{aligned}$	Data bus input/output		I/O port	Data bus input/output			I/O port
Port E	- 8-bit I/O port - Built-in MOS input pull-up	$\begin{aligned} & \mathrm{PE}_{7} / \mathrm{D}_{7} \\ & \text { to } \mathrm{PE}_{0} / \mathrm{D}_{0} \end{aligned}$	In 8-bit bus mode: I/O port In 16-bit bus mode: data bus input/output		I/O port	In 8-bit bus mode: I/O port In 16-bit bus mode: data bus input/ output			I/O port
Port F	- 8-bit I/O port - Schmitttriggered input ($\overline{\mathrm{IRQ} 3}$ to $\overline{\mathrm{RQ} 0})$	$\mathrm{PF}_{7} / \mathrm{\phi}$	When DDR $=0$: input port When DDR = 1 (after reset): ϕ output		When DDR $=0$ (after reset): input port When DDR $=1$: ϕ output	When DDR $=0$: input port When DDR $=1$ (after reset): \varnothing output			When DDR = 0 (after reset): input port When DDR $=1$: ϕ output
		$\begin{aligned} & \mathrm{PF}_{6} / \overline{\mathrm{AS}} \\ & \mathrm{PF}_{5} / \overline{\mathrm{RD}} \\ & \mathrm{PF}_{4} / \overline{\mathrm{HWR}} \end{aligned}$	$\overline{\mathrm{AS}}, \overline{\mathrm{RD}}, \overline{\mathrm{HWR}}, \overline{\mathrm{LWR}}$ output		I/O port	$\overline{\text { AS }}, \overline{\mathrm{RD}}, \overline{\text { HWR }}$, $\overline{\text { LWR }}$ output			I/O port
		$\begin{aligned} & \frac{\mathrm{PF}_{3} / \overline{\mathrm{LWR}} /}{\mathrm{IRQ3}} \\ & \hline \end{aligned}$			I/O port also functioning as interrupt input pins (IRQ3 to $\overline{\mathrm{RQO}})$				I/O port also functioning as interrupt input pins ($\overline{\mathrm{RQ} 3}$ to $\overline{\mathrm{RQ} 0})$

Port	Description	Pins	Mode 1	Mode $\mathbf{2}^{* 1}$	Mode 3*1	Mode 4	Mode 5	Mode $6^{* 1}$	Mode ${ }^{* 1}$
Port F	- 8-bit I/O port - Schmitttriggered input (IRQ3 to $\overline{\mathrm{IRQO}}$)	$\begin{aligned} & \frac{\mathrm{PF}_{2} /}{} \mathrm{WAIT/} \\ & \frac{\mathrm{BREQO} /}{\mathrm{BRQ2}} \\ & \hline \text { IRQ2 } \end{aligned}$	When WAITE = 0 and BREQOE = 0 (after reset): I/O port also functioning as interrupt input pin (IRQ2)		I/O port also functioning as interrupt input pins (IRQ3 to IRQO)	When WAITE $=0$ and BREQOE $=0$ (after reset): I/O port also functioning as interrupt input pin (IRQ2)			I/O port also functioning as interrupt input pin (IRQ3 to IRQO)
			When WAITE $=1$ and BREQOE $=0$: $\overline{\text { WAIT }}$ input also functioning as interrupt input pin (IRQ2)			When WAITE $=1$ and BREQOE $=0$: WAIT input also functioning as interrupt input pin (IRQ2)			
			When WAITE $=0$ and BREQOE $=1: \overline{\text { BREQO }}$ output also functioning as interrupt input pin (IRQ2)			When WAITE $=0$ and BREQOE $=1$: BREQO output also functioning as interrupt input pin (IRQ2)			
		$\begin{array}{\|l} \hline \mathrm{PF}_{1} / \\ \hline \mathrm{BACK} / \\ \hline \mathrm{IRQ1} \\ \hline \mathrm{PF} / \\ \hline \mathrm{BREQ} / \\ \hline \mathrm{BRQ0} \\ \hline \end{array}$	When BRLE $=0$ (after reset): I/O port also functioning as interrupt input pins ($\overline{\mathrm{RQQ}}, \overline{\mathrm{RQQ}}$)			When BRLE $=0$ (after reset): $1 / \mathrm{O}$ port also functioning as interrupt input pins ($\overline{\mathrm{RQQ}}, \overline{\mathrm{IRQO}})$			
			When BRLE $=1: \overline{\mathrm{BREQ}}$ input, BACK output also functioning as interrupt input pins ((IRQ1, $\overline{\mathrm{RQQ}}$)			When $\operatorname{BRLE}=1$: $\overline{\mathrm{BREQ}}$ input, $\overline{\mathrm{BACK}}$ output also functioning as interrupt input pins ((IRQ1, $\overline{\mathrm{RQ} 0}$)			

Port	Description	Pins	Mode 1	Mode $\mathbf{2}^{* 1}$	Mode 3*1	Mode 4	Mode 5	Mode ${ }^{*}{ }^{\text {¹ }}$	Mode 7*1
Port G	- 5-bit I/O port - Schmitttriggered input ($\overline{\mathrm{IRQ}} 7, \overline{\mathrm{IRQ6}}$)	$\mathrm{PG}_{4} / \mathrm{CSO}$	When DDR $=0^{* 2}$: input port When DDR $=1^{* 3}: \overline{\mathrm{CSO}}$ output		I/O port also functioning as interrupt input pins (IRQ7, $\overline{\mathrm{RQ} 6}$) and A / D converter input pin (ADTRG)	When DDR $=0^{* 2}$: input port When DDR $=1^{* 3}: \overline{\mathrm{CSO}}$ output			I/O port also functioning as interrupt input pins (IRQ7, $\overline{\text { IRQ6 }})$ and A / D converter input pin (ADTRG)
		$\begin{aligned} & \mathrm{PG}_{3} / \overline{\mathrm{CS1}} \\ & \mathrm{PG}_{2} / \overline{\mathrm{CS} 2} \\ & \mathrm{PG}_{1} / \overline{\mathrm{CS3}} / \\ & \hline \mathrm{IRQ7} \end{aligned}$	I/O port also functioning as interrupt input pins (ㄴRQ6, $\overline{\mathrm{IRQ7}}$) and A / D converter input pin ($\overline{\text { ADTRG }}$)			When DDR = 0 (after reset): input port also functioning as interrupt input pin (IRQ7) When DDR $=1: \overline{\mathrm{CS}}, \overline{\mathrm{CS} 2}, \overline{\mathrm{CS3}}$ output also functioning as interrupt input pin (IRQ7)			
		$\begin{aligned} & \mathrm{PG}_{0} / \overline{\mathrm{RQ} 6} / \\ & \overline{\text { ADTRG }} \end{aligned}$			I/O port also functioning as interrupt input pin (IRQ6) and A/D converter input pin ($\overline{\text { ADTRG }}$)				
Notes: 1. Cannot be used in the H8S/2240. 2. After a reset in mode 2 or 6 . 3. After a reset in mode 1, 4 or 5 .									

8.2 Port 1

8.2.1 Overview

Port 1 is an 8 -bit I/O port. Port 1 pins also function as TPU I/O pins (TCLKA, TCLKB, TCLKC, TCLKD, TIOCA0, TIOCB0, TIOCC0, TIOCD0, TIOCA1, TIOCB1, TIOCA2, and TIOCB2) and an address bus output function. Port 1 pin functions change according to the operating mode.

Figure 8.1 shows the port 1 pin configuration.

Figure 8.1 Port 1 Pin Functions

8.2.2 Register Configuration

Table 8.2 shows the port 1 register configuration.
Table 8.2 Port 1 Registers

Name	Abbreviation	R/W	Initial Value	Address*
Port 1 data direction register	P1DDR	W	H'00	H'FEB0
Port 1 data register	P1DR	R/W	H'00	H'FF60
Port 1 register	PORT1	R	Undefined	H'FF50

Note: * Lower 16 bits of the address.

Port 1 Data Direction Register (P1DDR)

Bit	7	6	5	4	3	2	1	0
	P17DDR	P16DDR	P15DDR	P14DDR	P13DDR	P12DDR	P11DDR	P10DDR
Initial value	0	0	0	0	0	0	0	0
R/W	w	w	w	w	w	w	w	w

P1DDR is an 8-bit write-only register, the individual bits of which specify input or output for the pins of port 1. P1DDR cannot be read; if it is, an undefined value will be read.

This register is a write-only register, and cannot be written by bit manipulation instruction. For details, see section 2.10.4, Access Methods for Registers with Write-Only Bits.

P1DDR is initialized to $\mathrm{H}^{\prime} 00$ by a power-on reset, and in hardware standby mode. It retains its prior state after a manual reset, and in software standby mode. As the TPU is initialized by a manual reset, the pin states are determined by the P1DDR and P1DR specifications.

Whether the address output pins maintain their output state or go to the high-impedance state in a transition to software standby mode is selected by the OPE bit in SBYCR.

- Modes 1 to 3 and 7

The corresponding port 1 pins are output ports when P1DDR is set to 1 , and input ports when cleared to 0 .

Note: Modes 2, 3, and 7 cannot be used in the H8S/2240.

- Modes 4 to 6

The corresponding port 1 pins are address outputs when P13DDR to P10DDR are set to 1 , and input ports when cleared to 0 .
The corresponding port 1 pins are output ports when P17DDR to P14DDR are set to 1 , and input ports when cleared to 0 .

Note: Mode 6 cannot be used in the H8S/2240.

Port 1 Data Register (P1DR)

Bit	7	6	5	43		2	1	0
	P17DR	P16DR	P15DR	P14DR	P13DR	P12DR	P11DR	P10DR
Initial value	0	0	0	0	0	0	0	0
R/W								

P 1 DR is an 8 -bit readable/writable register that stores output data for the port 1 pins $\left(\mathrm{P}_{7}\right.$ to $\left.\mathrm{P} 1_{0}\right)$.
P1DR is initialized to H'00 by a power-on reset, and in hardware standby mode. It retains its prior state after a manual reset, and in software standby mode.

Port 1 Register (PORT1)

Bit	7	6	5	4	3	2	1	0
	P17	P16	P15	P14	P13	P12	P11	P10
Initial value	*	-*	-*	—*	—*	-*	—*	—*
R/W	R	R	R	R	R	R	R	R

Note: * Determined by state of pins P 17 to P 10 .

PORT1 is an 8-bit read-only register that shows the pin states. It cannot be written to. Writing of output data for the port 1 pins $\left(\mathrm{P} 1_{7}\right.$ to $\left.\mathrm{P}_{0}\right)$ must always be performed on P 1 DR .

If a port 1 read is performed while P1DDR bits are set to 1 , the P 1 DR values are read. If a port 1 read is performed while P1DDR bits are cleared to 0 , the pin states are read.

After a power-on reset and in hardware standby mode, PORT1 contents are determined by the pin states, as P1DDR and P1DR are initialized. PORT1 retains its prior state after a manual reset, and in software standby mode.

8.2.3 Pin Functions

Port 1 pins also function as TPU I/O pins (TCLKA, TCLKB, TCLKC, TCLKD, TIOCA0, TIOCB0, TIOCC0, TIOCD0, TIOCA1, TIOCB1, TIOCA2, and TIOCB2), and address output pins (A_{23} to A_{20}). Port 1 pin functions are shown in table 8.3.

Table 8.3 Port 1 Pin Functions
Pin Selection Method and Pin Functions

P1 ${ }_{7}$ /TIOCB2/
TCLKD

The pin function is switched as shown below according to the combination of the TPU channel 2 setting (by bits MD3 to MDO in TMDR2, bits IOB3 to IOB0 in TIOR2, and bits CCLR2 to CCLR0 in TCR2), bits TPSC2 to TPSC0 in TCRO, and bit P17DDR.

TPU Channel 2 Setting	Table Below (1)	Table Below (2)	
P17DDR	-	0	1
Pin function	TIOCB2 output	P 17 input	$\mathrm{P} 1{ }_{7}$ output
		TIOCB2 input**	
	TCLKD input** ${ }^{2}$		

Notes: 1. TIOCB2 input when input capture is set (IOB3 to IOB0 = B'10xx) in normal operating mode (MD3 to MD0 = B'0000).
2. TCLKD input when the TCR0 setting is: TPSC2 to TPSCO $=B^{\prime} 111$. TCLKD input when channel 2 is set to phase counting mode (MD3 to MD0 $=\mathrm{B}^{\prime} 01 \mathrm{xx}$).

TPU Channel 2 Setting	(2)	(1)	(2)	(2)	(1)	(2)
MD3 to MD0	B'0000, B'01xx		B'0010	B'0011		
IOB3 to IOB0	$\begin{aligned} & \hline \text { B'0000 } \\ & \text { B'0100 } \\ & \text { B'1xxx } \end{aligned}$	B'0001 to B'0011 B'0101 to B'0111	-	B'xx00	Other tha	B'xx00
CCLR2 to CCLRO	-	-	-	-	Other than B'010	B'010
Output function	-	Output compare output	-	-	PWM mode 2 output	-

Legend: x: Don't care

Pin
 Selection Method and Pin Functions

P1/TIOCA2
The pin function is switched as shown below according to the combination of the TPU channel 2 setting (by bits MD3 to MD0 in TMDR2, bits IOA3 to IOA0 in TIOR2, and bits CCLR2 to CCLR0 in TCR2), and bit P16DDR.

TPU Channel 2 Setting	Table Below (1)	Table Below (2)	
P16DDR	-	0	1
Pin function	TIOCA2 output	$\mathrm{P} 1_{6}$ input	$\mathrm{P} 1_{6}$ output
		TIOCA2 input* ${ }^{*}$	

Note: 1. TIOCA2 input when input capture is set (IOA3 to IOA0 $=\mathrm{B}^{\prime} 10 \mathrm{xx}$) in normal operating mode (MD3 to MD0 $=\mathrm{B}^{\prime} 0000$).

TPU Channel 2 Setting	(2)	(1)	(2)	(1)	(1)	(2)
MD3 to MD0	B'0000, B'01xx		B'001x	B'0010		
IOA3 to IOA0	$\begin{aligned} & \hline \mathrm{B}^{\prime} 0000 \\ & \mathrm{~B}^{\prime} 0100 \\ & \mathrm{~B}^{\prime} 1 \mathrm{xxx} \end{aligned}$	B'0001 to B'0011 B'0101 to B'0111	B'xx00	Other than B'xx00		
CCLR2 to CCLRO	-	-	-	-	Other than B'001	B'001
Output function	-	Output compare output	-	PWM mode 1 output** ${ }^{2}$	PWM mode 2 output	-

Legend: x: Don't care

Note: 2. TIOCB2 output is disabled.
Pin Selection Method and Pin Functions

P1/5IOCB1/
TCLKC

The pin function is switched as shown below according to the combination of the TPU channel 1 setting (by bits MD3 to MD0 in TMDR1, bits IOB3 to IOB0 in TIOR1, and bits CCLR2 to CCLR0 in TCR1), bits TPSC2 to TPSC0 in TCR0 and TCR2, and bit P15DDR.

TPU Channel 1 Setting	Table Below (1)	Table Below (2)	
P15DDR	-	0	1
Pin function	TIOCB1 output	$\mathrm{P1}_{5}$ input	$\mathrm{P1}_{5}$ output
		TIOCB1 input*1	
		TCLKC input* ${ }^{2}$	

Notes: 1. TIOCB1 input when input capture is set (IOB3 to IOB0 = B'10xx) in normal operating mode (MD3 to MD0 = B'0000).
2. TCLKC input when either the TCR0 or TCR2 setting is: TPSC2 to TPSC0 = B'110.
TCLKC input when channel 2 is set to phase counting mode (MD3 to MD0 = B'01xx).

TPU Channel 1 Setting	(2)	(1)	(2)	(2)	(1)	(2)
MD3 to MD0	$\mathrm{B}^{\prime} 0000, \mathrm{~B}^{\prime} 01 \mathrm{xx}$		$\mathrm{B}^{\prime} 0010$	$\mathrm{~B}^{\prime} 0011$		
IOB3 to IOB0	$\mathrm{B}^{\prime} 0000$ $\mathrm{~B}^{\prime} 0100$ $\mathrm{~B}^{\prime} 1 \mathrm{xxx}$	$\mathrm{B}^{\prime} 0001$ to $\mathrm{B}^{\prime} 0011$ $\mathrm{~B}^{\prime} 0101$ to $\mathrm{B}^{\prime} 0111$	-	$\mathrm{B}^{\prime} \mathrm{xx00}$	Other than B'xx00	
CCLR2 to CCLR0	-	-	-	-	Other than $B^{\prime} 010$	B'010 $^{\prime}$
Output function	-	Output compare output	-	-	PWM mode 2 output	-

Legend: x: Don't care

Pin Selection Method and Pin Functions

$\mathrm{P}_{4} /$ TIOCA1 \quad The pin function is switched as shown below according to the combination of the TPU channel 1 setting (by bits MD3 to MD0 in TMDR1, bits IOA3 to IOA0 in TIOR1, and bits CCLR2 to CCLR0 in TCR1), and bit P14DDR.

TPU Channel 1 Setting	Table Below (1)	Table Below (2)	
P14DDR	-	0	1
Pin function	TIOCA1 output	$\mathrm{P} 1_{4}$ input	$\mathrm{P} 1_{4}$ output
		TIOCA1 input* ${ }^{*}$	

Note: 1. TIOCA1 input when input capture is set (IOA3 to IOA0 $=\mathrm{B}^{\prime} 10 \mathrm{xx}$) in normal operating mode (MD3 to MD0 $=\mathrm{B}^{\prime} 0000$).

TPU Channel 1 Setting	(2)	(1)	(2)	(1)	(1)	(2)
MD3 to MD0	B'0000, B'01xx		B'001x	B'0010		
IOA3 to IOA0	$\begin{aligned} & \hline \mathrm{B}^{\prime} 0000 \\ & \text { B'0100 }^{B^{\prime} 1 \mathrm{xxx}} \end{aligned}$	B'0001 to B'0011 B'0101 to B'0111	B'xx00	Other than B'xx00		
CCLR2 to CCLRO	-	-	-	-	Other than B'001	B'001
Output function	-	Output compare output	-	PWM mode 1 output**	PWM mode 2 output	-

Legend: x: Don't care

Note: 2. TIOCB1 output is disabled.
Pin Selection Method and Pin Functions
$\mathrm{P}_{3} /$ TIOCD0/ TCLKB/A ${ }_{23}$

The pin function is switched as shown below according to the combination of the operating mode, TPU channel 0 setting (by bits MD3 to MD0 in TMDR0, bits IOD3 to IOD0 in TIOROL, and bits CCLR2 to CCLR0 in TCR0), bits TPSC2 to TPSC0 in TCR0 to TCR2, and bit P13DDR.

Operating Mode	Modes 1, 2, 3, ** 1			Modes 4, 5, 6*1			
TPU Channel 0 Setting	Table Below (1)	Table Below (2)		Table Below (1)		Table Below (2)	
P13DDR	-	0	1	0	1	0	1
Pin function	TIOCDO output	P_{3} input	P1 ${ }_{3}$ outpu	TIOCDO output	A_{23} output	P_{3} input	A_{23} output
		$\begin{aligned} & \text { TIOCDO } \\ & \text { input*** } \end{aligned}$				$\begin{aligned} & \text { TIOCDO } \\ & \text { input**2 } \end{aligned}$	
	TCLKB input**						

Notes: 1. Modes 2, 3, 6, and 7 cannot be used in the H8S/2240.
2. TIOCD0 input when input capture is set (IOD3 to IOD0 = $\mathrm{B}^{\prime} 10 \mathrm{xx}$) in normal operating mode (MD3 to MD0 = B'0000).
3. TCLKB input when the TCR0, TCR1, or TCR2 setting is: TPSC2 to TPSC0 = B'101.
TCLKB input when channel 1 is set to phase counting mode (MD3 to MD0 = B'01xx).

TPU Channel 0 Setting	(2)	(1)	(2)	(2)	(1)	(2)
MD3 to MD0	B'0000		B'0010	B'0011		
IOD3 to IOD0		B'0001 to B'0011 B'0101 to B'0111	-	B'xx00	Other th	B'xx00
CCLR2 to CCLRO	-	-	-	-	Other than B'110	B'110
Output function	-	Output compare output	-	-	PWM mode 2 output	-

[^3]
Pin
 P1 ${ }_{2} / \mathrm{TIOCC0} /$
 TCLKA/A ${ }_{22}$

Selection Method and Pin Functions

The pin function is switched as shown below according to the combination of the operating mode, TPU channel 0 setting (by bits MD3 to MD0 in TMDR0, bits IOC3 to IOC0 in TIOROL, and bits CCLR2 to CCLR0 in TCR0), bits TPSC2 to TPSC0 in TCR0 to TCR2, and bit P12DDR.

Operating Mode	Modes 1, 2, 3, 7*1			Modes 4, 5, 6*1			
TPU Channel 0 Setting	Table Below (1)	$\begin{gathered} \text { Table } \\ \text { Below (2) } \end{gathered}$		TableBelow (1)		$\begin{gathered} \text { Table } \\ \text { Below (2) } \end{gathered}$	
P12DDR	-	0	1	0	1	0	1
Pin function	TIOCCO output	$\begin{gathered} \mathrm{P}_{2} \\ \text { input } \end{gathered}$	P1 output	$\begin{array}{\|c\|} \hline \text { TIOCCO } \\ \text { output } \end{array}$	$\begin{gathered} \mathrm{A}_{22} \\ \text { output } \end{gathered}$	$\begin{gathered} \mathrm{P}_{2} \\ \text { input } \end{gathered}$	A_{22} output
		$\begin{gathered} \text { TIOCCO } \\ \text { input** } \end{gathered}$				TIOCCO input* ${ }^{2}$	
	TCLKA inpu** ${ }^{3}$						

Notes: 1. Modes 2, 3, 6, and 7 cannot be used in the H8S/2240.
2. TIOCCO input when input capture is set (IOC3 to IOCO = $\mathrm{B}^{\prime} 10 \mathrm{xx}$) in normal operating mode (MD3 to MD0 = B'0000).
3. TCLKA input when the TCR0, TCR1, or TCR2 setting is: TPSC2 to TPSC0 = B'100.
TCLKA input when channel 1 is set to phase counting mode (MD3 to $\mathrm{MDO}=\mathrm{B}^{\prime} 01 \mathrm{xx}$).

TPU Channel 0 Setting	(2)	(1)	(2)	(1)	(1)	(2)
MD3 to MD0	B'0000		B'001x	B'0010		
IOC3 to IOC0	B'0000 B'0100 B'1xxx	B'0001 to B'0011 B'0101 to B'0111	B'xx00	Other than B'xx00		
CCLR2 to CCLRO	-	-	-	-	Other than B'101	B'101
Output function	-	Output compare output	-	PWM mode 1 output* ${ }^{4}$	PWM mode 2 output	-

Legend: x: Don't care

Note: 4. TIOCDO output is disabled.
When $\mathrm{BFA}=1$ or $\mathrm{BFB}=1$ in TMDR0, output is disabled and setting (2) applies.
Pin Selection Method and Pin Functions
$\mathrm{P} 1_{1} / \mathrm{TIOCB} 0 / \quad$ The pin function is switched as shown below according to the combination of A_{21} the operating mode, TPU channel 0 setting (by bits MD3 to MD0 in TMDR0, bits IOB3 to IOB0 in TIOROH, and bits CCLR2 to CCLR0 in TCRO), and bit P11DDR.

Operating Mode	Modes 1, 2, 3, 7*1			Modes 4, 5, 6*1			
TPU Channel 0 Setting	Table Below (1)	Table Below (2)		Table Below (1)		Table Below (2)	
P11DDR	-	0	1	0	1	0	1
Pin function	$\begin{aligned} & \text { TIOCBO } \\ & \text { output } \end{aligned}$	$\begin{gathered} \mathrm{P} 1_{1} \\ \text { input } \end{gathered}$	P1, output	TIOCBO output	A_{21} output	$\mathrm{P} 1_{1}$ input	A_{21} output
		TIOCBO input* ${ }^{2}$				TIOCBO input* ${ }^{2}$	

Notes: 1. Modes 2, 3, 6, and 7 cannot be used in the H8S/2240.
2. TIOCB0 input when input capture is set ($I O B 3$ to $I O B 0=B^{\prime} 10 x x$) in normal operating mode (MD3 to MD0 = B'0000).

TPU Channel 0 Setting	(2)	(1)	(2)	(2)	(1)	(2)
MD3 to MD0	B'0000		B'0010	B'0011		
IOB3 to IOB0		B'0001 to B'0011 B'0101 to B'0111	-	B'xx00	Other th	B'xx00
CCLR2 to CCLRO	-	-	-	-	Other than B'010	B'010
Output function	-	Output compare output	-	-	PWM mode 2 output	-

Legend: x: Don't care

Selection Method and Pin Functions

P10/TIOCA0/
A_{20}
The pin function is switched as shown below according to the combination of the operating mode, TPU channel 0 setting (by bits MD3 to MD0 in TMDR0, bits IOA3 to IOAO in TIOROH, and bits CCLR2 to CCLRO in TCRO), and bit P10DDR.

Operating Mode	Modes 1, 2, 3, 7*1			Modes 4, 5, 6*1			

Notes: 1. Modes 2, 3, 6, and 7 cannot be used in the H8S/2240.
2. TIOCAO input when input capture is set (IOA3 to IOAO $\left.=B^{\prime} 10 x x\right)$ in normal operating mode (MD3 to MD0 $=\mathrm{B}^{\prime} 0000$).

TPU Channel 0 Setting	(2)	(1)	(2)	(1)	(1)	(2)
MD3 to MD0	B'0000		B'001x	B'0010		
IOA3 to IOA0	$\begin{aligned} & \hline \mathrm{B}^{\prime} 0000 \\ & \mathrm{~B}^{\prime} 0100 \\ & \mathrm{~B}^{\prime} 1 \mathrm{xxx} \end{aligned}$	B'0001 to B'0011 B'0101 to B'0111	B'xx00	Other than B'xx00		
CCLR2 to CCLRO	-	-	-	-	Other than B'001	B'001
Output function	-	Output compare output	-	PWM mode 1 output* ${ }^{3}$	PWM mode 2 output	-

Legend: x: Don't care
Note: 3. TIOCBO output is disabled.

8.3 Port 2

8.3.1 Overview

Port 2 is an 8-bit I/O port. Port 2 pins also function as 8-bit timer I/O pins (TMRI0, TMCI0, TMO0, TMRI1, TMCI1, and TMO1). Port 2 pin functions are the same in all operating modes. Port 2 uses Schmitt-triggered input.

Figure 8.2 shows the port 2 pin configuration.

Figure 8.2 Port 2 Pin Functions

8.3.2 Register Configuration

Table 8.4 shows the port 2 register configuration.
Table 8.4 Port 2 Registers

Name	Abbreviation	R/W	Initial Value	Address*
Port 2 data direction register	P2DDR	W	H'00 $^{\prime}$	H'FEB1
Port 2 data register	P2DR	R/W	H'00 $^{\text {H'FF61 }}$	
Port 2 register	PORT2	R	Undefined	H'FF51

Note: * Lower 16 bits of the address.

Port 2 Data Direction Register (P2DDR)

| Bit | $:$ | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | | P27DDR | P26DDR | P25DDR | P24DDR | P23DDR | P22DDR | P21DDR | P20DDR |
| Initial value | $:$ | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| R/W | $:$ | W | W |

P2DDR is an 8-bit write-only register, the individual bits of which specify input or output for the pins of port 2. P2DDR cannot be read; if it is, an undefined value will be read.

Setting a P2DDR bit to 1 makes the corresponding port 2 pin an output pin, while clearing the bit to 0 makes the pin an input pin.

This register is a write-only register, and cannot be written by bit manipulation instruction. For details, see section 2.10.4, Access Methods for Registers with Write-Only Bits.

P2DDR is initialized to $\mathrm{H}^{\prime} 00$ by a power-on reset, and in hardware standby mode. It retains its prior state after a manual reset, and in software standby mode. As the 8 -bit timer is initialized by a manual reset, the pin states are determined by the P2DDR and P2DR specifications.

Port 2 Data Register (P2DR)

Bit	7	6	5	4	3	2	1	0
	P27DR	P26DR	P25DR	P24DR	P23DR	P22DR	P21DR	P20DR
Initial value	0	0	0	0	0	0	0	0
R/W								

P 2 DR is an 8-bit readable/writable register that stores output data for the port 2 pins $\left(\mathrm{P} 2_{7}\right.$ to $\left.\mathrm{P} 2_{0}\right)$.
P2DR is initialized to $\mathrm{H}^{\prime} 00$ by a power-on reset, and in hardware standby mode. It retains its prior state after a manual reset, and in software standby mode.

Port 2 Register (PORT2)

Bit	7	6	5	4	3	2	1	0
	P27	P26	P25	P24	P23	P22	P21	P20
Initial value	—*	—*	—*	—*	—*	—*	—*	—*
R/W	R	R	R	R	R	R	R	R

Note: * Determined by state of pins $\mathrm{P} 2_{7}$ to $\mathrm{P} 2_{0}$.

PORT2 is an 8-bit read-only register that shows the pin states. It cannot be written to. Writing of output data for the port 2 pins $\left(\mathrm{P} 2_{7}\right.$ to $\left.\mathrm{P} 2_{0}\right)$ must always be performed on P 2 DR .

If a port 2 read is performed while P 2 DDR bits are set to 1 , the P 2 DR values are read. If a port 2 read is performed while P2DDR bits are cleared to 0 , the pin states are read.

After a power-on reset and in hardware standby mode, PORT2 contents are determined by the pin states, as P2DDR and P2DR are initialized. PORT2 retains its prior state after a manual reset, and in software standby mode.

8.3.3 Pin Functions

Port 2 pins also function as 8-bit timer I/O pins (TMRI0, TMCI0, TMO0, TMRI1, TMCI1, and TMO1). Port 2 pin functions are shown in table 8.5.

Table 8.5 Port 2 Pin Functions
Pin Selection Method and Pin Functions
P2/TMO1
The pin function is switched as shown below according to the combination of the bits OS3 to OS0 in TCSR1 of the 8-bit timer, and bit P27DDR.

OS3 to OS0	All 0		Any 1
P27DDR	0	1	-
Pin function	P_{7} input	P_{7} output	TMO1 output

$\mathrm{P}_{6} / \mathrm{TMO} \quad$ The pin function is switched as shown below according to the combination of bits OS3 to OS0 in TCSR0, and bit P26DDR.

OS3 to OS0	All 0		Any 1
P26DDR	0	1	-
Pin function	P_{6} input	P_{6} output	TMO0 output

$\mathrm{P}_{5} / \mathrm{TMCl} 1 \quad$ This pin is used as the 8-bit timer external clock input pin when external clock is selected with bits CKS2 to CKS0 in TCR1.
The pin function is switched as shown below according to the combination of bit P25DDR.

P25DDR	0	1	
Pin function	P_{5} input	P_{5} output	
	TMCl1 input		

Pin	Selection Method and Pin Functions
P2/TMRI1	This pin is used as the 8-bit timer counter reset pin when bits CCLR1 and CCLR0 in TCR1 are both set to 1. The pin function is switched as shown below according to the combination of bit P24DDR.
P24DDR 0 1 Pin function P_{4} input $\mathrm{P} 2_{4}$ output 	

$\mathrm{P}_{3} / \mathrm{TMCl}_{0} \quad$ This pin is used as the 8-bit timer external clock input pin when external clock is selected with bits CKS2 to CKS0 in TCR0.
The pin function is switched as shown below according to the combination of bit P23DDR.

P23DDR	0	1
Pin function	P_{3} input	P_{3} output
	TMCIO input	

P2/TMRIO This pin is used as the 8-bit timer counter reset pin when bits CCLR1 and CCLRO in TCR0 are both set to 1 .
The pin function is switched as shown below according to the combination of bit P22DDR.

P22DDR	0	1
Pin function	P_{2} input	P_{2} output
	TMRIO input	

The pin function is switched as shown below according to the combination of bit P21DDR.

P21DDR	0	1
Pin function	P_{1} input	$\mathrm{P} 2_{1}$ output

P2 ${ }_{0} \quad$ The pin function is switched as shown below according to the combination of bit P20DDR.

P20DDR	0	1
Pin function	P_{2} input	P_{0} output

8.4 Port 3

8.4.1 Overview

Port 3 is a 6-bit I/O port. Port 3 pins also function as SCI I/O pins (TxD0, RxD0, SCK0, TxD1, RxD1, and SCK1) and interrupt input pins ($\overline{\mathrm{IRQ}} 4, \overline{\mathrm{IRQ} 5}$). Port 3 pin functions are the same in all operating modes. The interrupt input pins ($\overline{\mathrm{IRQ} 4}, \overline{\mathrm{IRQ} 5})$ are Schmitt-triggered inputs.

Figure 8.3 shows the port 3 pin configuration.

Figure 8.3 Port 3 Pin Functions

8.4.2 Register Configuration

Table 8.6 shows the port 3 register configuration.

Table 8.6 Port 3 Registers

Name	Abbreviation	R/W	Initial Value* ${ }^{1}$	Address* ${ }^{2}$
Port 3 data direction register	P3DDR	W	H'00	H'FEB2
Port 3 data register	P3DR	R/W	H'00	H'FF62
Port 3 register	PORT3	R	Undefined	H'FF52
Port 3 open drain control register	P3ODR	R/W	H'00	H'FF76

Notes: 1. Value of bits 5 to 0.
2. Lower 16 bits of the address.

Port 3 Data Direction Register (P3DDR)

Bit	7	6	5	4	3	2	1	0
	-	-	P35DDR	P34DDR	P33DDR	P32DDR	P31DDR	P30DDR
Initial value	Undefined	Indefined	0	0	0	0	0	0
R/W	-	-	w	w	W	W	w	W

P3DDR is an 8-bit write-only register, the individual bits of which specify input or output for the pins of port 3. Bits 7 and 6 are reserved. P3DDR cannot be read; if it is, an undefined value will be read. P3DDR cannot be modified.

Setting a P3DDR bit to 1 makes the corresponding port 3 pin an output pin, while clearing the bit to 0 makes the pin an input pin.

This register is a write-only register, and cannot be written by bit manipulation instruction. For details, see section 2.10.4, Access Methods for Registers with Write-Only Bits.

P3DDR is initialized to $\mathrm{H}^{\prime} 00$ (bits 5 to 0) by a power-on reset, and in hardware standby mode. It retains its prior state after a manual reset, and in software standby mode. As the SCI is initialized by a reset and in standby mode, the pin states are determined by the P3DDR and P3DR specifications.

Port 3 Data Register (P3DR)

Bit	$:$	7	6	5	4	3	2	1	0
	-	-	P35DR	P34DR	P33DR	P32DR	P31DR	P30DR	
		-	-	0	0	0	0		
Initial value :	Undefined	Undefined	0	0	0	0			
R/W	$:$	-	-	R/W	R/W	R/W	R/W	R/W	R/W

P3DR is an 8-bit readable/writable register that stores output data for the port 3 pins $\left(\mathrm{P}_{5}\right.$ to $\left.\mathrm{P}_{0}\right)$.
Bits 7 and 6 are reserved; they return an undetermined value if read, and cannot be modified.
P3DR is initialized to $\mathrm{H}^{\prime} 00$ (bits 5 to 0) by a power-on reset, and in hardware standby mode. It retains its prior state after a manual reset, and in software standby mode.

Port 3 Register (PORT3)

Bit	7	6	5	4	3	2	1	0
	-	-	P35	P34	P33	P32	P31	P30
Initial value	Undefined Undefined		-*	-*	-*	一*	-*	*
R/W	-	-	R	R	R	R	R	R

Note: * Determined by state of pins P 35 to $\mathrm{P} 3_{0}$.

PORT3 is an 8-bit read-only register that shows the pin states. Writing of output data for the port 3 pins ($\mathrm{P} 3_{5}$ to P_{0}) must always be performed on P3DR.

Bits 7 and 6 are reserved; they return an undetermined value if read, and cannot be modified.
If a port 3 read is performed while P3DDR bits are set to 1 , the P3DR values are read. If a port 3 read is performed while P3DDR bits are cleared to 0 , the pin states are read.

After a power-on reset and in hardware standby mode, PORT3 contents are determined by the pin states, as P3DDR and P3DR are initialized. PORT3 retains its prior state after a manual reset, and in software standby mode.

Port 3 Open Drain Control Register (P3ODR)

Bit	7	6	5	4	3	2	1	0
	-	-	P35ODR	P34ODR	P33ODR	P320DR	P310DR	P300DR
Initial value	Undefined	Undefined	0	0	0	0	0	0
R/W	-	-	R/w	R/W	R/W	R/W	R/W	R/W

P3ODR is an 8-bit readable/writable register that controls the PMOS on/off status for each port 3 pin $\left(\mathrm{P}_{5}\right.$ to $\left.\mathrm{P} 3_{0}\right)$.

Bits 7 and 6 are reserved; they return an undetermined value if read, and cannot be modified.
Setting a P3ODR bit to 1 makes the corresponding port 3 pin an NMOS open-drain output pin, while clearing the bit to 0 makes the pin a CMOS output pin.

P3ODR is initialized to $\mathrm{H}^{\prime} 00$ (bits 5 to 0) by a power-on reset, and in hardware standby mode. It retains its prior state after a manual reset, and in software standby mode.

8.4.3 Pin Functions

Port 3 pins also function as SCI I/O pins (TxD0, RxD0, SCK0, TxD1, RxD1, and SCK1) and interrupt input pins ($\overline{\mathrm{IRQ} 4}, \overline{\mathrm{IRQ} 5})$. Port 3 pin functions are shown in table 8.7.

Table 8.7 Port 3 Pin Functions
Pin Selection Method and Pin Functions
$\mathrm{P}_{5} / \mathrm{SCK} 1 / \overline{\mathrm{RQ}} 5$
The pin function is switched as shown below according to the combination of bit C/A in the SCI1 SMR, bits CKE0 and CKE1 in SCR, and bit P35DDR.

CKE1	0				1
C//̄	0			1	-
CKE0	0		-		
P35DDR	0	1	-	-	-
Pin function	$\mathrm{P3}_{5}$ input pin	$\mathrm{P3}_{5}$ output pin*'	SCK1 Sutput pin*'	SCK1 output pin*'	SCK1 input pin
	$\overline{\text { RQ5 }}$ interrupt input pin*²				

Notes: 1. When P35ODR = 1, the pin becomes on NMOS open-drain output.
2. When this pin is used as an external interrupt input, it should not be used as an input/output pin with other functions.
$\mathrm{P}_{4} /$ SCK0/IRQ4
The pin function is switched as shown below according to the combination of bit C/A in the SCIO SMR, bits CKE0 and CKE1 in SCR, and bit P34DDR.

CKE1	0				1
C/A	0			1	-
CKE0	0		1	-	-
P34DDR	0	1	-	-	-
Pin function	$\begin{gathered} \mathrm{P3}_{4} \\ \text { input pin } \end{gathered}$	P_{4} output pin*	SCKO output pin*	SCKO output pin*1	SCKO input pin

Notes: 1. When P34ODR = 1, the pin becomes an NMOS open-drain output.
2. When this pin is used as an external interrupt input, it should not be used as an input/output pin with other functions.

Pin	Selection Method and Pin Functions			
$\mathrm{P}_{3} / \mathrm{RxD} 1$	The pin function is switched as shown below according to the combination of bit RE in the SCI1 SCR, and bit P33DDR.			
	RE	0		1
	P33DDR	0	1	-
	Pin function	$\mathrm{P} 33^{\text {input pin }}$	P3 ${ }_{3}$ output pin*	RxD1 input pin
	Note: * When P33ODR = 1, the pin becomes an NMOS open drain output.			
$\overline{\mathrm{P} 3 / \mathrm{RxD} 0}$	The pin function is switched as shown below according to the combination of bit RE in the SCIO SCR, and bit P32DDR.			
	RE	0		1
	P32DDR	0	1	-
	Pin function	P_{2} input pin	P 32 output pin*	RxD0 input pin
	Note: * When P32ODR = 1, the pin becomes an NMOS open drain output.			
P3/TxD1	The pin function is switched as shown below according to the combination of bit TE in the SCI1 SCR, and bit P31DDR.			
	TE	0		1
	P31DDR	0	1	-
	Pin function	P3, input pin	P3, output pin*	TxD1 output pin*
	Note: * When P31ODR = 1, the pin becomes an NMOS open drain output.			
P3/TxD0	The pin function is switched as shown below according to the combination of bit TE in the SCIO SCR, and bit P30DDR.			
	TE	0		1
	P30DDR	0	1	-
	Pin function	P3 input pin	P3 ${ }_{0}$ output pin*	TxD0 output pin*
	Note: * W	300DR = 1, th	becomes an NN	open drain output.

8.5 Port 4

8.5.1 Overview

Port 4 is an 8-bit input-only port. Port 4 pins also function as A/D converter analog input pins (AN0 to AN3). Port 4 pin functions are the same in all operating modes. Figure 8.4 shows the port 4 pin configuration.

Figure 8.4 Port 4 Pin Functions

8.5.2 Register Configuration

Table 8.8 shows the port 4 register configuration. Port 4 is an input-only port, and does not have a data direction register or data register.

Table 8.8 Port 4 Registers

Name	Abbreviation	R/W	Initial Value	Address*
Port 4 register	PORT4	R	Undefined	H'FF53

Note: * Lower 16 bits of the address.

Port 4 Register (PORT4)

Bit	7	6	5	4	3	2	1	0
	-	-	-	-	P43	P42	P41	P40
Initial value	Undefined Undefined Undefined Undefined				-*	-*	-*	-*
R/W	-	-	-	-	R	R	R	R

Note: * Determined by state of pins P 43 to P 40 .

PORT4 is an 8 -bit read-only register that shows port 4 pin states. PORT4 cannot be modified.
Bits 7 to 4 are reserved; they return an undetermined value if read.

8.5.3 Pin Functions

Port 4 pins also function as A/D converter analog input pins (AN0 to AN3).

8.6 Port 5

8.6.1 Overview

Port 5 is a 4-bit I/O port. Port 5 pins also function as SCI I/O pins (TxD2, RxD2, and SCK2). Port 5 pin functions are the same in all operating modes. Figure 8.5 shows the port 5 pin configuration.

Figure 8.5 Port 5 Pin Functions

8.6.2 Register Configuration

Table 8.9 shows the port 5 register configuration.
Table 8.9 Port 5 Registers

Name	Abbreviation	R/W	Initial Value* ${ }^{1}$	Address* $^{{ }^{2}}$
Port 5 data direction register	P5DDR	W	H'0	H'FEB4
Port 5 data register	P5DR	R/W	H'0	H'FF64
Port 5 register	PORT5	R	Undefined	H'FF54

Notes: 1. Value of bits 3 to 0.
2. Lower 16 bits of the address.

Port 5 Data Direction Register (P5DDR)

Bit	$:$	7	6	5	4	3	2	1	0	
		-	-	-	-	P53DDR	P52DDR	P51DDR	P50DDR	
	Initial value	$:$		Undefined	Undefined	Undefined	Undefined	0	0	0
0										
R/W	$:$	-	-	-	-	W	W	W	W	

P5DDR is an 8-bit write-only register, the individual bits of which specify input or output for the pins of port 5. Bits 7 to 4 are reserved. P5DDR cannot be read; if it is, an undefined value will be read. P5DDR cannot be modified.

Setting a P5DDR bit to 1 makes the corresponding port 5 pin an output pin, while clearing the bit to 0 makes the pin an input pin.

This register is a write-only register, and cannot be written by bit manipulation instruction. For details, see section 2.10.4, Access Methods for Registers with Write-Only Bits.

P5DDR is initialized to $\mathrm{H}^{\prime} 0$ (bits 3 to 0) by a power-on reset, and in hardware standby mode. It retains its prior state after a manual reset, and in software standby mode. As the SCI is initialized by a reset and in standby mode, the pin states are determined by the P5DDR and P5DR specifications.

Port 5 Data Register (P5DR)

Bit	7	6	5	4	3	2	1	0
	-	-	-	-	P53DR	P52DR	P51DR	P50DR
Initial value	Undefined Undefined Undefined Undefined				0	0	0	0
R/W	-	-	-	-	R/W	R/W	R/W	R/W

P5DR is an 8-bit readable/writable register that stores output data for the port 5 pins $\left(\mathrm{P5}_{3}\right.$ to $\left.\mathrm{P5}_{0}\right)$.
Bits 7 to 4 are reserved; they return an undetermined value if read, and cannot be modified.
P5DR is initialized to $\mathrm{H}^{\prime} 0$ (bits 3 to 0) by a power-on reset, and in hardware standby mode. It retains its prior state after a manual reset, and in software standby mode.

Port 5 Register (PORT5)

Bit	7	6	5	4	3	2	1	0
	-	-	-	-	P53	P52	P51	P50
Initial value	Undefined Undefined Undefined Undefined				-*	—*	—*	-*
R/W	-	-	-	-	R	R	R	R

Note: * Determined by state of pins P_{3} to P 50 .

PORT5 is an 8-bit read-only register that shows the pin states. It cannot be written to. Writing of output data for the port 5 pins $\left(\mathrm{P}_{3}\right.$ to $\left.\mathrm{P5}_{0}\right)$ must always be performed on P5DR.

Bits 7 to 4 are reserved; they return an undetermined value if read, and cannot be modified.

If a port 5 read is performed while P5DDR bits are set to 1 , the P5DR values are read. If a port 5 read is performed while P5DDR bits are cleared to 0 , the pin states are read.

After a power-on reset and in hardware standby mode, PORT5 contents are determined by the pin states, as P5DDR and P5DR are initialized. PORT5 retains its prior state after a manual reset, and in software standby mode.

8.6.3 Pin Functions

Port 5 pins also function as SCI I/O pins (TxD2, RxD2, and SCK2). Port 5 pin functions are shown in table 8.10.

Table 8.10 Port 5 Pin Functions

Pin Selection Method and Pin Functions
P_{3}
The pin function is switched as shown below according to bit P53DDR.

P53DDR	0	1
Pin function	$\mathrm{P5}_{3}$ input pin	$\mathrm{P5}_{3}$ output pin

P5//SCK2
The pin function is switched as shown below according to the combination of bit C//̄ in the SCI2 SMR, bits CKE0 and CKE1 in SCR, and bit P52DDR.

CKE1	0				1
C//	0			1	-
CKE0	0		-		
P52DDR	0	1	-	-	-
Pin function	$\mathrm{P5}_{2}$ input pin	$\mathrm{P} 5_{2}$ output pin	SCK2 output pin	SCK2 output pin	SCK2 input pin

$\overline{P 5, / R x D 2}$
The pin function is switched as shown below according to the combination of bit RE in the SCI2 SCR, and bit P51DDR.

RE	0		1
P51DDR	0	1	-
Pin function	P5, input pin	P5, output pin	RxD2 input pin

$\overline{P 5} / \mathrm{TxD2}$
The pin function is switched as shown below according to the combination of bit TE in the SCI2 SCR, and bit P50DDR.

TE	0		1
P50DDR	0	1	-
Pin function	P5 input pin	$\mathrm{P} 5_{0}$ output pin	TxD2 output pin

8.7 Port A

8.7.1 Overview

Port A is an 4-bit I/O port. Port A pins also function as address bus outputs. The pin functions change according to the operating mode.

Port A has a built-in MOS input pull-up function that can be controlled by software.

Figure 8.6 shows the port A pin configuration.

Figure 8.6 Port A Pin Functions

8.7.2 Register Configuration

Table 8.11 shows the port A register configuration.

Table 8.11 Port A Registers

Name	Abbreviation	R/W	Initial Value*'	Address* ${ }^{2}$
Port A data direction register	PADDR	W	H'0	H'FEB9
Port A data register	PADR	R/W	H^{\prime}	H'FF69
Port A register	PORTA	R	Undefined	H'FF59
Port A MOS pull-up control register	PAPCR	R/W	H'0	H'FF70
Port A open-drain control register	PAODR	R/W	$\mathrm{H}^{\prime} \mathrm{O}$	H'FF77

Notes: 1. Value of bits 3 to 0 .
2. Lower 16 bits of the address.

Port A Data Direction Register (PADDR)

Bit	7	6	5	4	3	2	1	0
	-	-	-	-	PA3DDR	PA2DDR	PA1DDR	PAODDR
Initial value	Undefined Undefined Undefined Undefined				0	0	0	0
R/W	-	-	-	-	W	W	W	W

PADDR is an 8-bit write-only register, the individual bits of which specify input or output for the pins of port A. Bits 7 to 4 are reserved. PADDR cannot be read; if it is, an undefined value will be read. PADDR cannot be modified.

This register is a write-only register, and cannot be written by bit manipulation instruction. For details, see section 2.10.4, Access Methods for Registers with Write-Only Bits.

PADDR is initialized to $\mathrm{H}^{\prime} 0$ (bits 3 to 0) by a power-on reset and in hardware standby mode. It retains its prior state after a manual reset, and in software standby mode. The OPE bit in SBYCR is used to select whether the address output pins retain their output state or become highimpedance when a transition is made to software standby mode.

- Modes 1, 2, 3, and 7

Setting a PADDR bit to 1 makes the corresponding port A pin an output port, while clearing the bit to 0 makes the pin an input port.

Note: Modes 2, 3, and 7 cannot be used in the H8S/2240.

- Modes 4 and 5

The corresponding port A pins are address outputs irrespective of the value of bits PA3DDR to PA0DDR.

- Mode 6

Setting a PADDR bit to 1 makes the corresponding port A pin an address output while clearing the bit to 0 makes the pin an input port.

Note: Mode 6 cannot be used in the H8S/2240.

Port A Data Register (PADR)

Bit	7	6	5	4	3	2	1	0
	-	-	-	-	PA3DR	PA2DR	PA1DR	PAODR
Initial value	Undefined Undefined Undefined Undefined				0	0	0	0
R/W	-	-	-	-	R/W	R/W	R/W	R/W

PADR is an 8-bit readable/writable register that stores output data for the port A pins $\left(\mathrm{PA}_{3}\right.$ to $\left.\mathrm{PA}_{0}\right)$.
Bits 7 to 4 are reserved; they return an undetermined value if read, and cannot be modified.
PADR is initialized to $\mathrm{H}^{\prime} 0$ (bits 3 to 0) by a power-on reset, and in hardware standby mode. It retains its prior state after a manual reset, and in software standby mode.

Port A Register (PORTA)

Bit	7	6	5	4	3	2	1	0
	-	-	-	-	PA3	PA2	PA1	PAO
Initial value	Undefined Undefined Undefined Undefined				—*	—*	—*	—*
R/W	-	-	-	-	R	R	R	R

Note: * Determined by state of pins PA_{3} to PA_{0}.

PORTA is an 8-bit read-only register that shows the pin states. It cannot be written to. Writing of output data for the port A pins $\left(\mathrm{PA}_{3}\right.$ to $\left.\mathrm{PA}_{0}\right)$ must always be performed on PADR.

Bits 7 to 4 are reserved; they return an undetermined value if read, and cannot be modified.
If a port A read is performed while PADDR bits are set to 1 , the PADR values are read. If a port A read is performed while PADDR bits are cleared to 0 , the pin states are read.

After a power-on reset and in hardware standby mode, PORTA contents are determined by the pin states, as PADDR and PADR are initialized. PORTA retains its prior state after a manual reset, and in software standby mode.

Port A MOS Pull-Up Control Register (PAPCR)

Bit	7	6	5	4	3	2	1	0
	-	-	-	-	PA3PCR	PA2PCR	PA1PCR	PAOPCR
Initial value	Undefin	defir	defin	defin	0	0	0	0
R/W	-	-	-	-	R/W	R/W	R/W	R/W

PAPCR is an 8-bit readable/writable register that controls the MOS input pull-up function incorporated into port A on an individual bit basis.

Bits 7 to 4 are reserved; they return an undetermined value if read, and cannot be modified.
Bits 3 to 0 are valid in modes $1,2,3,6$, and 7 , and all the bits are invalid in modes 4 and 5 . When a PADDR bit is cleared to 0 (input port setting), setting the corresponding PAPCR bit to 1 turns on the MOS input pull-up for the corresponding pin.

PAPCR is initialized to $\mathrm{H}^{\prime} 0$ (bits 3 to 0) by a power-on reset, and in hardware standby mode. It retains its prior state after a manual reset, and in software standby mode.

Port A Open Drain Control Register (PAODR)

Bit	7	6	5	4	3	2	1	0
	-	-	-	-	PA3ODR	PA2ODR	PA1ODR	PA0ODR
Initial value	Undefin	defin	defin	defin	0	0	0	0
R/W	-	-	-	-	R/W	R/W	R/W	R/W

PAODR is an 8-bit readable/writable register that controls whether PMOS is on or off for each port A pin $\left(\mathrm{PA}_{3}\right.$ to $\left.\mathrm{PA}_{0}\right)$.

Bits 7 to 4 are reserved; they return an undetermined value if read, and cannot be modified.
All bits are valid in modes $1,2,3$, and 7 .
Setting a PAODR bit to 1 makes the corresponding port A pin an NMOS open-drain output, while clearing the bit to 0 makes the pin a CMOS output.

PAODR is initialized to $\mathrm{H}^{\prime} 0$ (bits 3 to 0) by a power-on reset, and in hardware standby mode. It retains its prior state after a manual reset, and in software standby mode.

8.7.3 Pin Functions

Modes 1, 2, 3 and 7

In mode $1,2,3$, and 7 , port A pins function as I/O ports. Input or output can be specified for each pin on an individual bit basis. Setting a PADDR bit to 1 makes the corresponding port A pin an output port, while clearing the bit to 0 makes the pin an input port.

Note: Modes 2, 3, and 7 cannot be used in the H8S/2240.
Port A pin functions in modes $1,2,3$, and 7 are shown in figure 8.7.

Figure 8.7 Port A Pin Functions (Modes 1, 2, 3, and 7)

Modes 4 and 5

In modes 4 and 5, the lower 4 bits of port A are designated as address outputs automatically.
Port A pin functions in modes 4 and 5 are shown in figure 8.8.

Figure 8.8 Port A Pin Functions (Modes 4 and 5)

Mode 6

In mode 6, port A pins function as address outputs or input ports. Input or output can be specified on an individual bit basis. Setting a PADDR bit to 1 makes the corresponding port A pin an address output, while clearing the bit to 0 makes the pin an input port.

Note: Mode 6 cannot be used in the H8S/2240.
Port A pin functions in mode 6 are shown in figure 8.9.

Figure 8.9 Port A Pin Functions (Mode 6)

8.7.4 MOS Input Pull-Up Function

Port A has a built-in MOS input pull-up function that can be controlled by software. This MOS input pull-up function can be used in modes $1,2,3,6$, and 7 , and cannot be used in modes 4 and 5. MOS input pull-up can be specified as on or off on an individual bit basis.

When a PADDR bit is cleared to 0 , setting the corresponding PAPCR bit to 1 turns on the MOS input pull-up for that pin.

The MOS input pull-up function is in the off state after a power-on reset, and in hardware standby mode. The prior state is retained after a manual reset, and in software standby mode.

Note: Modes 2, 3, 6, and 7 cannot be used in the H8S/2240.
Table 8.12 summarizes the MOS input pull-up states.
Table 8.12 MOS Input Pull-Up States (Port A)
$\left.\begin{array}{llllll}\text { Modes } & & \begin{array}{l}\text { Power-On } \\ \text { Reset }\end{array} & \begin{array}{l}\text { Hardware } \\ \text { Standby Mode }\end{array} & \begin{array}{l}\text { Manual } \\ \text { Reset }\end{array} & \begin{array}{l}\text { Software } \\ \text { Standby Mode }\end{array}\end{array} \begin{array}{l}\text { In Other } \\ \text { Operations }\end{array}\right]$

Legend:
OFF: MOS input pull-up is always off.
ON/OFF: On when PADDR $=0$ and $\operatorname{PAPCR}=1$; otherwise off.

8.8 Port B

8.8.1 Overview

Port B is an 8-bit I/O port. Port B has an address bus output function, and the pin functions change according to the operating mode.

Port B has a built-in MOS input pull-up function that can be controlled by software.
Figure 8.10 shows the port B pin configuration.

	Pin functions in modes 1, 4, and 5 A_{15} (output) A_{14} (output) A_{13} (output) A_{12} (output) A_{11} (output) A_{10} (output) A_{9} (output) A_{8} (output)
Pin functions in modes 2 and 6*	Pin functions in modes 3 and 7*
PB_{7} (input)/ A_{15} (output)	$\mathrm{PB}_{7}(\mathrm{l} / \mathrm{O})$
PB_{6} (input)/ A_{14} (output)	$\mathrm{PB}_{6}(1 / 0)$
PB_{5} (input)/ $/ \mathrm{A}_{13}$ (output)	$\mathrm{PB}_{5}(1 / 0)$
PB_{4} (input)/ A_{12} (output)	$\mathrm{PB}_{4}(1 / 0)$
PB_{3} (input)/ $/ \mathrm{A}_{11}$ (output)	$\mathrm{PB}_{3}(1 / 0)$
PB_{2} (input)/ A_{10} (output)	$\mathrm{PB}_{2}(1 / 0)$
PB_{1} (input)/ A_{9} (output)	$\mathrm{PB}_{1}(1 / 0)$
PB_{0} (input)/ $/ \mathrm{A}_{8}$ (output)	$\mathrm{PB}_{0}(1 / 0)$

Figure 8.10 Port B Pin Functions

8.8.2 Register Configuration

Table 8.13 shows the port B register configuration.
Table 8.13 Port B Registers

Name	Abbreviation	R/W	Initial Value	Address*
Port B data direction register	PBDDR	W	H'00 $^{\prime}$	H'FEBA
Port B data register	PBDR	R/W	H'00 $^{\text {H'FF6A }}$	
Port B register	PORTB	R	Undefined	H'FF5A
Port B MOS pull-up control register	PBPCR	R/W	H'00 $^{\text {H'O }}$	H'FF71

Note: * Lower 16 bits of the address.

Port B Data Direction Register (PBDDR)

| Bit | $:$ | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | | PB7DDR | PB6DDR | PB5DDR | PB4DDR | PB3DDR | PB2DDR | PB1DDR | PB0DDR |
| Initial value | $:$ | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| R/W | $:$ | W |

PBDDR is an 8-bit write-only register, the individual bits of which specify input or output for the pins of port B. PBDDR cannot be read; if it is, an undefined value will be read.

This register is a write-only register, and cannot be written by bit manipulation instruction. For details, see section 2.10.4, Access Methods for Registers with Write-Only Bits.

PBDDR is initialized to $\mathrm{H}^{\prime} 00$ by a power-on reset and in hardware standby mode. It retains its prior state after a manual reset, and in software standby mode. The OPE bit in SBYCR is used to select whether the address output pins retain their output state or become high-impedance when a transition is made to software standby mode.

- Modes 1, 4, and 5

The corresponding port B pins are address outputs irrespective of the value of the PBDDR bits.

- Modes 2 and 6

Setting a PBDDR bit to 1 makes the corresponding port B pin an address output, while clearing the bit to 0 makes the pin an input port.

Note: Modes 2 and 6 cannot be used in the H8S/2240.

- Modes 3 and 7

Setting a PBDDR bit to 1 makes the corresponding port B pin an output port, while clearing the bit to 0 makes the pin an input port.

Note: Modes 3 and 7 cannot be used in the H8S/2240.

Port B Data Register (PBDR)

| Bit | | $:$ | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | PB7DR | PB6DR | PB5DR | PB4DR | PB3DR | PB2DR | PB1DR | PB0DR | | |
| Initial value : | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | |
| R/W | $:$ | R/W | |

PBDR is an 8-bit readable/writable register that stores output data for the port B pins $\left(\mathrm{PB}_{7}\right.$ to $\left.\mathrm{PB}_{0}\right)$. PBDR is initialized to $\mathrm{H}^{\prime} 00$ by a power-on reset, and in hardware standby mode. It retains its prior state after a manual reset, and in software standby mode.

Port B Register (PORTB)

Bit	7	6	5	4	3	2	1	0
	PB7	PB6	PB5	PB4	PB3	PB2	PB1	PB0
Initial value	—*	*	-*	—*	—*	—*	—*	—*
R/W	R	R	R	R	R	R	R	R

Note: * Determined by state of pins PB_{7} to PB_{0}.

PORTB is an 8-bit read-only register that shows the pin states. It cannot be written to. Writing of output data for the port B pins $\left(\mathrm{PB}_{7}\right.$ to $\left.\mathrm{PB}_{0}\right)$ must always be performed on PBDR.

If a port B read is performed while PBDDR bits are set to 1 , the PBDR values are read. If a port B read is performed while PBDDR bits are cleared to 0 , the pin states are read.

After a power-on reset and in hardware standby mode, PORTB contents are determined by the pin states, as PBDDR and PBDR are initialized. PORTB retains its prior state after a manual reset, and in software standby mode.

Port B MOS Pull-Up Control Register (PBPCR)

Bit	$:$	7	6	5	4	3	2	1	0
	PB7PCR	PB6PCR	PB5PCR	PB4PCR	PB3PCR	PB2PCR	PB1PCR	PB0PCR	
	Initial value $:$	0	0	0	0	0	0	0	0
R/W	$:$	R/W							

PBPCR is an 8-bit readable/writable register that controls the MOS input pull-up function incorporated into port B on an individual bit basis.

When a PBDDR bit is cleared to 0 (input port setting) in mode 2, 3, 6 , or 7 , setting the corresponding PBPCR bit to 1 turns on the MOS input pull-up for the corresponding pin.

PBPCR is initialized to $\mathrm{H}^{\prime} 00$ by a power-on reset, and in hardware standby mode. It retains its prior state after a manual reset, and in software standby mode.

8.8.3 Pin Functions

Modes 1, 4, and 5

In modes 1, 4, and 5, port B pins are automatically designated as address outputs.
Port B pin functions in modes 1, 4, and 5 are shown in figure 8.11.

| | $\longrightarrow \mathrm{A}_{15}$ (output) | |
| :---: | :---: | :---: | :---: |
| | $\longrightarrow \mathrm{A}_{14}$ (output) | |
| Port B | $\longrightarrow \mathrm{A}_{13}$ (output) | |
| | $\longrightarrow \mathrm{A}_{12}$ (output) | |
| | $\longrightarrow \mathrm{A}_{11}$ (output) | |
| | $\longrightarrow \mathrm{A}_{10}$ (output) | |
| | $\longrightarrow \mathrm{A}_{9}$ (output) | |
| | | A_{8} (output) |

Figure 8.11 Port B Pin Functions (Modes 1, 4, and 5)

Modes 2 and 6

In modes 2 and 6 , port B pins function as address outputs or input ports. Input or output can be specified on an individual bit basis. Setting a PBDDR bit to 1 makes the corresponding port B pin an address output, while clearing the bit to 0 makes the pin an input port.

Note: Modes 2 and 6 cannot be used in the H8S/2240.
Port B pin functions in modes 2 and 6 are shown in figure 8.12.

Figure 8.12 Port B Pin Functions (Modes 2 and 6)

Modes 3 and 7

In modes 3 and 7, port B pins function as I/O ports. Input or output can be specified for each pin on an individual bit basis. Setting a PBDDR bit to 1 makes the corresponding port B pin an output port, while clearing the bit to 0 makes the pin an input port.

Note: Modes 3 and 7 cannot be used in the H8S/2240.
Port B pin functions in modes 3 and 7 are shown in figure 8.13.

Figure 8.13 Port B Pin Functions (Modes 3 and 7)

8.8.4 MOS Input Pull-Up Function

Port B has a built-in MOS input pull-up function that can be controlled by software. This MOS input pull-up function can be used in modes $2,3,6$, and 7 , and can be specified as on or off on an individual bit basis.

When a PBDDR bit is cleared to 0 in mode 2,3,6, or 7 , setting the corresponding PBPCR bit to 1 turns on the MOS input pull-up for that pin.

The MOS input pull-up function is in the off state after a power-on reset, and in hardware standby mode. The prior state is retained after a manual reset, and in software standby mode.

Note: Modes 2, 3, 6, and 7 cannot be used in the H8S/2240.
Table 8.14 summarizes the MOS input pull-up states.
Table 8.14 MOS Input Pull-Up States (Port B)

Modes	Power-On Reset	Hardware Standby Mode	Manual Reset	Software Standby Mode	In Other Operations
$1,4,5$	OFF	OFF	OFF	OFF	OFF
$2,3,6,7$			ON/OFF	ON/OFF	ON/OFF

Legend:
OFF: MOS input pull-up is always off.
ON/OFF: On when PBDDR $=0$ and $\operatorname{PBPCR}=1$; otherwise off.

8.9 Port C

8.9.1 Overview

Port C is an 8 -bit I / O port. Port C has an address bus output function, and the pin functions change according to the operating mode.

Port C has a built-in MOS input pull-up function that can be controlled by software.
Figure 8.14 shows the port C pin configuration.

Pin functions in modes 1,4 , and 5
A_{7} (output)
A_{6} (output)
A_{5} (output)
A_{4} (output)
A_{3} (output)
A_{2} (output)
A_{1} (output)
A_{0} (output)

Pin functions in modes 2 and 6*
PC_{7} (input)/ A_{7} (output)
PC_{6} (input)/ A_{6} (output)
PC_{5} (input)/ A_{5} (output)
PC_{4} (input)/ A_{4} (output)
PC_{3} (input) $/ \mathrm{A}_{3}$ (output)
PC_{2} (input)/ A_{2} (output)
PC_{1} (input)/ A_{1} (output)
PC_{0} (input)/ A_{0} (output)

Pin functions in modes 3 and 7*
$\mathrm{PC}_{7}(\mathrm{I} / \mathrm{O})$
$\mathrm{PC}_{6}(\mathrm{I} / \mathrm{O})$
$\mathrm{PC}_{5}(\mathrm{I} / \mathrm{O})$
$\mathrm{PC}_{4}(\mathrm{I} / \mathrm{O})$
$\mathrm{PC}_{3}(\mathrm{I} / \mathrm{O})$
$\mathrm{PC}_{2}(\mathrm{I} / \mathrm{O})$
$\mathrm{PC}_{1}(\mathrm{I} / \mathrm{O})$
$\mathrm{PC}_{0}(\mathrm{I} / \mathrm{O})$

Note: * Modes 2, 3, 6, and 7 cannot be used in the H8S/2240.
Figure 8.14 Port C Pin Functions

8.9.2 Register Configuration

Table 8.15 shows the port C register configuration.
Table 8.15 Port C Registers

Name	Abbreviation	R/W	Initial Value	Address*
Port C data direction register	PCDDR	W	H'00	H'FEBB
Port C data register	PCDR	R/W	H'00	H'FF6B
Port C register	PORTC	R	Undefined	H'FF5B
Port C MOS pull-up control register	PCPCR	R/W	H'00	H'FF72

Note: * Lower 16 bits of the address.

Port C Data Direction Register (PCDDR)

| Bit | $:$ | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | | PC7DDR | PC6DDR | PC5DDR | PC4DDR | PC3DDR | PC2DDR | PC1DDR | PC0DDR |
| Initial value | $:$ | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| R/W | $:$ | W |

PCDDR is an 8-bit write-only register, the individual bits of which specify input or output for the pins of port C. PCDDR cannot be read; if it is, an undefined value will be read.

This register is a write-only register, and cannot be written by bit manipulation instruction. For details, see section 2.10.4, Access Methods for Registers with Write-Only Bits.

PCDDR is initialized to $\mathrm{H}^{\prime} 00$ by a power-on reset and in hardware standby mode. It retains its prior state after a manual reset, and in software standby mode. The OPE bit in SBYCR is used to select whether the address output pins retain their output state or become high-impedance when a transition is made to software standby mode.

- Modes 1, 4, and 5

The corresponding port C pins are address outputs irrespective of the value of the PCDDR bits.

- Modes 2 and 6

Setting a PCDDR bit to 1 makes the corresponding port C pin an address output, while clearing the bit to 0 makes the pin an input port.

Note: Modes 2 and 6 cannot be used in the H8S/2240.

- Modes 3 and 7

Setting a PCDDR bit to 1 makes the corresponding port C pin an output port, while clearing the bit to 0 makes the pin an input port.

Note: Modes 3 and 7 cannot be used in the H8S/2240.

Port C Data Register (PCDR)

Bit	7	5		4	3	21		0
	PC7DR	PC6DR	PC5DR	PC4DR	PC3DR	PC2DR	PC1DR	PC0DR
Initial value	0	0	0	0	0	0	0	0
R/W								

PCDR is an 8-bit readable/writable register that stores output data for the port C pins $\left(\mathrm{PC}_{7}\right.$ to $\left.\mathrm{PC}_{0}\right)$.
PCDR is initialized to $\mathrm{H}^{\prime} 00$ by a power-on reset, and in hardware standby mode. It retains its prior state after a manual reset, and in software standby mode.

Port C Register (PORTC)

Bit	7	6	5	4	3	2	1	0
	PC7	PC6	PC5	PC4	PC3	PC2	PC1	PC0
Initial value	—*	-*	*	—*	—*	—*	-*	—*
R/W	R	R	R	R	R	R	R	R

Note: * Determined by state of pins PC_{7} to PC_{0}.

PORTC is an 8-bit read-only register that shows the pin states. It cannot be written to. Writing of output data for the port C pins $\left(\mathrm{PC}_{7}\right.$ to $\left.\mathrm{PC}_{0}\right)$ must always be performed on PCDR.

If a port C read is performed while PCDDR bits are set to 1 , the PCDR values are read. If a port C read is performed while PCDDR bits are cleared to 0 , the pin states are read.

After a power-on reset and in hardware standby mode, PORTC contents are determined by the pin states, as PCDDR and PCDR are initialized. PORTC retains its prior state after a manual reset, and in software standby mode.

Port C MOS Pull-Up Control Register (PCPCR)

Bit	$:$	7	6	5	4	3	2	1	0
		PC7PCR	PC6PCR	PC5PCR	PC4PCR	PC3PCR	PC2PCR	PC1PCR	PCOPCR

PCPCR is an 8-bit readable/writable register that controls the MOS input pull-up function incorporated into port C on an individual bit basis.

When a PCDDR bit is cleared to 0 (input port setting) in mode 2, 3, 6 , or 7 , setting the corresponding PCPCR bit to 1 turns on the MOS input pull-up for the corresponding pin.

PCPCR is initialized to $\mathrm{H}^{\prime} 00$ by a power-on reset, and in hardware standby mode. It retains its prior state after a manual reset, and in software standby mode.

8.9.3 Pin Functions

Modes 1, 4, and 5

In modes 1,4 , and 5 , port C pins are automatically designated as address outputs.
Port C pin functions in modes 1,4 , and 5 are shown in figure 8.15.

Figure 8.15 Port C Pin Functions (Modes 1, 4, and 5)

Modes 2 and 6

In modes 2 and 6 , port C pins function as address outputs or input ports. Input or output can be specified on an individual bit basis. Setting a PCDDR bit to 1 makes the corresponding port C pin an address output, while clearing the bit to 0 makes the pin an input port.

Note: Modes 2 and 6 cannot be used in the H8S/2240.
Port C pin functions in modes 2 and 6 are shown in figure 8.16.

Figure 8.16 Port C Pin Functions (Modes 2 and 6)

Modes 3 and 7

In modes 3 and 7, port C pins function as I/O ports. Input or output can be specified for each pin on an individual bit basis. Setting a PCDDR bit to 1 makes the corresponding port C pin an output port, while clearing the bit to 0 makes the pin an input port.

Note: Modes 3 and 7 cannot be used in the H8S/2240.

Port C pin functions in modes 3 and 7 are shown in figure 8.17.

Figure 8.17 Port C Pin Functions (Modes 3 and 7)

8.9.4 MOS Input Pull-Up Function

Port C has a built-in MOS input pull-up function that can be controlled by software. This MOS input pull-up function can be used in modes $2,3,6$, and 7 , and can be specified as on or off on an individual bit basis.

When a PCDDR bit is cleared to 0 in mode 2,3,6, or 7 , setting the corresponding PCPCR bit to 1 turns on the MOS input pull-up for that pin.

The MOS input pull-up function is in the off state after a power-on reset, and in hardware standby mode. The prior state is retained after a manual reset, and in software standby mode.

Note: Modes 2, 3, 6, and 7 cannot be used in the H8S/2240.
Table 8.16 summarizes the MOS input pull-up states.
Table 8.16 MOS Input Pull-Up States (Port C)

Modes	Power-On Reset	Hardware Standby Mode	Manual Reset	Software Standby Mode	In Other Operations
$1,4,5$	OFF	OFF	OFF	OFF	OFF
$2,3,6,7$		ON/OFF	ON/OFF	ON/OFF	

Legend:

OFF: MOS input pull-up is always off.
ON/OFF: On when PCDDR $=0$ and $\operatorname{PCPCR}=1$; otherwise off.

8.10 Port D

8.10.1 Overview

Port D is an 8 -bit I/O port. Port D has a data bus I/O function, and the pin functions change according to the operating mode.

Port D has a built-in MOS input pull-up function that can be controlled by software.
Figure 8.18 shows the port D pin configuration.

Figure 8.18 Port D Pin Functions

8.10.2 Register Configuration

Table 8.17 shows the port D register configuration.

Table 8.17 Port D Registers

Name	Abbreviation	R/w	Initial Value	Address*
Port D data direction register	PDDDR	W	H''00 $^{\prime}$	H'FEBC
Port D data register	PDDR	R/W	H'00	H'FF6C $^{\text {Port D register }}$
PORTD	R	Undefined	H'FF5C $^{\text {Port D MOS pull-up control register }}$	PDPCR

Note: * Lower 16 bits of the address.

Port D Data Direction Register (PDDDR)

Bit	7	6	5	4	3	2	1	0
	PD7DDR	PD6DDR	PD5DDR	PD4DDR	PD3DDR	PD2DDR	PD1DDR	PDODDR
Initial value	0	0	0	0	0	0	0	0
R/W	W	W	W	W	W	W	W	W

PDDDR is an 8-bit write-only register, the individual bits of which specify input or output for the pins of port D. PDDDR cannot be read; if it is, an undefined value will be read.

This register is a write-only register, and cannot be written by bit manipulation instruction. For details, see section 2.10.4, Access Methods for Registers with Write-Only Bits.

PDDDR is initialized to $\mathrm{H}^{\prime} 00$ by a power-on reset, and in hardware standby mode. It retains its prior state after a manual reset, and in software standby mode.

- Modes $1,2,4,5$, and 6

The input/output direction specification by PDDDR is ignored, and port D is automatically designated for data I/O.

Note: Modes 2 and 6 cannot be used in the H8S/2240.

- Modes 3 and 7

Setting a PDDDR bit to 1 makes the corresponding port D pin an output port, while clearing the bit to 0 makes the pin an input port.

Note: Modes 3 and 7 cannot be used in the H8S/2240.

Port D Data Register (PDDR)

Bit	$:$	7	6	5	4	3	2	1	0
	PD7DR	PD6DR	PD5DR	PD4DR	PD3DR	PD2DR	PD1DR	PDODR	
	Initial value	:	0	0	0	0	0	0	0
0									
R/W	$:$	R/W							

PDDR is an 8 -bit readable/writable register that stores output data for the port D pins $\left(\mathrm{PD}_{7}\right.$ to $\left.\mathrm{PD}_{0}\right)$.
PDDR is initialized to $\mathrm{H}^{\prime} 00$ by a power-on reset, and in hardware standby mode. It retains its prior state after a manual reset, and in software standby mode.

Port D Register (PORTD)

Bit	7	6	5	4	3	2	1	0
	PD7	PD6	PD5	PD4	PD3	PD2	PD1	PD0
Initial value	—*	—*	—*	—*	—*	—*	—*	—*
R/W	R	R	R	R	R	R	R	R

Note: * Determined by state of pins PD_{7} to PD_{0}.

PORTD is an 8 -bit read-only register that shows the pin states. It cannot be written to. Writing of output data for the port D pins $\left(\mathrm{PD}_{7}\right.$ to $\left.\mathrm{PD}_{0}\right)$ must always be performed on PDDR.

If a port D read is performed while PDDDR bits are set to 1 , the PDDR values are read. If a port D read is performed while PDDDR bits are cleared to 0 , the pin states are read.

After a power-on reset and in hardware standby mode, PORTD contents are determined by the pin states, as PDDDR and PDDR are initialized. PORTD retains its prior state after a manual reset, and in software standby mode.

Port D MOS Pull-Up Control Register (PDPCR)

Bit	7	6	5	4	3	2	1	0
	PD7PCR	PD6PCR	PD5PCR	PD4PCR	PD3PCR	PD2PCR	PD1PCR	PDOPCR
Initial value	0	0	0	0	0	0	0	0
R/W								

PDPCR is an 8-bit readable/writable register that controls the MOS input pull-up function incorporated into port D on an individual bit basis.

When a PDDDR bit is cleared to 0 (input port setting) in mode 3 or 7 , setting the corresponding PDPCR bit to 1 turns on the MOS input pull-up for the corresponding pin.

PDPCR is initialized to $\mathrm{H}^{\prime} 00$ by a power-on reset, and in hardware standby mode. It retains its prior state after a manual reset, and in software standby mode.

8.10.3 Pin Functions

Modes 1, 2, 4, 5, and 6

In modes $1,2,4,5$, and 6 , port D pins are automatically designated as data I/O pins.
Note: Modes 2 and 6 cannot be used in the H8S/2240.
Port D pin functions in modes $1,2,4,5$, and 6 are shown in figure 8.19.

Figure 8.19 Port D Pin Functions (Modes 1, 2, 4, 5, and 6)

Modes 3 and 7

In modes 3 and 7, port D pins function as I/O ports. Input or output can be specified for each pin on an individual bit basis. Setting a PDDDR bit to 1 makes the corresponding port D pin an output port, while clearing the bit to 0 makes the pin an input port.

Note: Modes 3 and 7 cannot be used in the H8S/2240.
Port D pin functions in modes 3 and 7 are shown in figure 8.20.
\square
Figure 8.20 Port D Pin Functions (Modes 3 and 7)

8.10.4 MOS Input Pull-Up Function

Port D has a built-in MOS input pull-up function that can be controlled by software. This MOS input pull-up function can be used in modes 3 and 7 , and can be specified as on or off on an individual bit basis.

When a PDDDR bit is cleared to 0 in mode 3 or 7 , setting the corresponding PDPCR bit to 1 turns on the MOS input pull-up for that pin.

The MOS input pull-up function is in the off state after a power-on reset, and in hardware standby mode. The prior state is retained after a manual reset, and in software standby mode.

Note: Modes 2, 3, 6, and 7 cannot be used in the $\mathrm{H} 8 \mathrm{~S} / 2240$.
Table 8.18 summarizes the MOS input pull-up states.
Table 8.18 MOS Input Pull-Up States (Port D)

Modes	Power-On Reset	Hardware Standby Mode	Manual Reset	Software Standby Mode	In Other Operations
$1,2,4$ to 6	OFF	OFF	OFF	OFF	OFF
3,7			ON/OFF	ON/OFF	ON/OFF

Legend:
OFF: MOS input pull-up is always off.
ON/OFF: On when PDDDR $=0$ and $\operatorname{PDPCR}=1$; otherwise off.

8.11 Port E

8.11.1 Overview

Port E is an 8 -bit I/O port. Port E has a data bus I/O function, and the pin functions change according to the operating mode and whether 8 -bit or 16 -bit bus mode is selected.

Port E has a built-in MOS input pull-up function that can be controlled by software.
Figure 8.21 shows the port E pin configuration.

Figure 8.21 Port E Pin Functions

8.11.2 Register Configuration

Table 8.19 shows the port E register configuration.
Table 8.19 Port E Registers

Name	Abbreviation	R/W	Initial Value	Address*
Port E data direction register	PEDDR	W	H'00	H'FEBD
Port E data register	PEDR	R/W	H'00	H'FF6D
Port E register	PORTE	R	Undefined	H'FF5D
Port E MOS pull-up control register	PEPCR	R/W	H'00	H'FF74

Note: * Lower 16 bits of the address.

Port E Data Direction Register (PEDDR)

Bit	$:$	7	6	5	4	3	2	1	0	
	PE7DDR	PE6DDR	PE5DDR	PE4DDR	PE3DDR	PE2DDR	PE1DDR	PE0DDR		
	Initial value	$:$	0	0	0	0	0	0	0	0
R/W	$:$	W	W	W	W	W	W	W	W	

PEDDR is an 8-bit write-only register, the individual bits of which specify input or output for the pins of port E. PEDDR cannot be read; if it is, an undefined value will be read.

This register is a write-only register, and cannot be written by bit manipulation instruction. For details, see section 2.10.4, Access Methods for Registers with Write-Only Bits.

PEDDR is initialized to $\mathrm{H}^{\prime} 00$ by a power-on reset, and in hardware standby mode. It retains its prior state after a manual reset, and in software standby mode.

- Modes 1, 2, 4, 5, and 6

When 8 -bit bus mode has been selected, port E pins function as I/O ports. Setting a PEDDR bit to 1 makes the corresponding port E pin an output port, while clearing the bit to 0 makes the pin an input port.
When 16-bit bus mode has been selected, the input/output direction specification by PEDDR is ignored, and port E is designated for data I / O.
For details of 8-bit and 16-bit bus modes, see section 6, Bus Controller.

Note: Modes 2 and 6 cannot be used in the H8S/2240.

- Modes 3 and 7

Setting a PEDDR bit to 1 makes the corresponding port E pin an output port, while clearing the bit to 0 makes the pin an input port.

Note: Modes 3 and 7 cannot be used in the H8S/2240.

Port E Data Register (PEDR)

Bit	7	6	5	4	3	2	1	0
	PE7DR	PE6DR	PE5DR	PE4DR	PE3DR	PE2DR	PE1DR	PE0DR
Initial value :	0	0	0	0	0	0	0	0
R/W								

PEDR is an 8-bit readable/writable register that stores output data for the port E pins $\left(\mathrm{PE}_{7}\right.$ to $\left.\mathrm{PE}_{0}\right)$.
PEDR is initialized to H'00 by a power-on reset, and in hardware standby mode. It retains its prior state after a manual reset, and in software standby mode.

Port E Register (PORTE)

Bit	7	6	5	4	3	2	1	0
	PE7	PE6	PE5	PE4	PE3	PE2	PE1	PEO
Initial value	—*	—*	—*	—*	*	*	-*	—*
R/W	R	R	R	R	R	R	R	R

Note: * Determined by state of pins PE_{7} to PE_{0}.

PORTE is an 8-bit read-only register that shows the pin states. It cannot be written to. Writing of output data for the port E pins $\left(\mathrm{PE}_{7}\right.$ to $\left.\mathrm{PE}_{0}\right)$ must always be performed on PEDR.

If a port E read is performed while PEDDR bits are set to 1 , the PEDR values are read. If a port E read is performed while PEDDR bits are cleared to 0 , the pin states are read.

After a power-on reset and in hardware standby mode, PORTE contents are determined by the pin states, as PEDDR and PEDR are initialized. PORTE retains its prior state after a manual reset, and in software standby mode.

Port E MOS Pull-Up Control Register (PEPCR)

Bit	7	6	5	4	3	2	1	0
	PE7PCR	PE6PCR	PE5PCR	PE4PCR	PE3PCR	PE2PCR	PE1PCR	PEOPCR
Initial value	0	0	0	0	0	0	0	0
R/W								

PEPCR is an 8-bit readable/writable register that controls the MOS input pull-up function incorporated into port E on an individual bit basis.

When a PEDDR bit is cleared to 0 (input port setting) when 8 -bit bus mode is selected in mode 1 , $2,4,5$, or 6 , or in mode 3 or 7 , setting the corresponding PEPCR bit to 1 turns on the MOS input pull-up for the corresponding pin.

PEPCR is initialized to $\mathrm{H}^{\prime} 00$ by a power-on reset, and in hardware standby mode. It retains its prior state after a manual reset, and in software standby mode.

8.11.3 Pin Functions

Modes 1, 2, 4, 5, and 6

In modes $1,2,4,5$, and 6 , when 8 -bit access is designated and 8 -bit bus mode is selected, port E pins are automatically designated as I/O ports. Setting a PEDDR bit to 1 makes the corresponding port E pin an output port, while clearing the bit to 0 makes the pin an input port.

When 16-bit bus mode is selected, the input/output direction specification by PEDDR is ignored, and port E is designated for data I/O.

Note: Modes 2 and 6 cannot be used in the H8S/2240.
Port E pin functions in modes $1,2,4,5$, and 6 are shown in figure 8.22.

Figure 8.22 Port E Pin Functions (Modes 1, 2, 4, 5, and 6)

Modes 3 and 7

In modes 3 and 7, port E pins function as I/O ports. Input or output can be specified for each pin on a bit-by-bit basis. Setting a PEDDR bit to 1 makes the corresponding port E pin an output port, while clearing the bit to 0 makes the pin an input port.

Note: Modes 3 and 7 cannot be used in the H8S/2240.

Port E pin functions in modes 3 and 7 are shown in figure 8.23.

Port E	$\begin{aligned} & \longleftrightarrow \mathrm{PE}_{7}(\mathrm{I} / \mathrm{O}) \\ & \longleftrightarrow \mathrm{PE}_{6}(\mathrm{I} / \mathrm{O}) \\ & \longleftrightarrow \mathrm{PE}_{5}(\mathrm{I} / \mathrm{O}) \\ & \longleftrightarrow \mathrm{PE}_{4}(\mathrm{I} / \mathrm{O}) \\ & \longleftrightarrow \mathrm{PE}_{3}(\mathrm{I} / \mathrm{O}) \\ & \longleftrightarrow \mathrm{PE}_{2}(\mathrm{I} / \mathrm{O}) \\ & \longleftrightarrow \mathrm{PE}_{1}(\mathrm{I} / \mathrm{O}) \\ & \longleftrightarrow \mathrm{PE}_{0}(\mathrm{I} / \mathrm{O}) \end{aligned}$

Figure 8.23 Port E Pin Functions (Modes 3 and 7)

8.11.4 MOS Input Pull-Up Function

Port E has a built-in MOS input pull-up function that can be controlled by software. This MOS input pull-up function can be used in modes $1,2,4,5$, and 6 when 8 -bit bus mode is selected, or in mode 3 or 7 , and can be specified as on or off on an individual bit basis.

When a PEDDR bit is cleared to 0 in mode $1,2,4,5$, or 6 when 8 -bit bus mode is selected, or in mode 3 or 7 , setting the corresponding PEPCR bit to 1 turns on the MOS input pull-up for that pin.

The MOS input pull-up function is in the off state after a power-on reset, and in hardware standby mode. The prior state is retained after a manual reset, and in software standby mode.

Note: Modes 2, 3, 6, and 7 cannot be used in the H8S/2240.
Table 8.20 summarizes the MOS input pull-up states.
Table 8.20 MOS Input Pull-Up States (Port E)
$\left.\begin{array}{llllll}\text { Modes } & & \begin{array}{l}\text { Power-On } \\ \text { Reset }\end{array} & \begin{array}{l}\text { Hardware } \\ \text { Standby Mode }\end{array} & \begin{array}{l}\text { Manual } \\ \text { Reset }\end{array} & \begin{array}{l}\text { Software } \\ \text { Standby Mode }\end{array}\end{array} \begin{array}{l}\text { In Other } \\ \text { Operations }\end{array}\right]$

Legend:
OFF: MOS input pull-up is always off.
ON/OFF: On when PEDDR $=0$ and $\operatorname{PEPCR}=1$; otherwise off.

8.12 Port F

8.12.1 Overview

Port F is an 8-bit I/O port. Port F pins also function as bus control signal input/output pins ($\overline{\mathrm{AS}}$, $\overline{\mathrm{RD}}, \overline{\mathrm{HWR}}, \overline{\mathrm{LWR}}, \overline{\mathrm{WAIT}}, \overline{\mathrm{BREQO}}, \overline{\mathrm{BREQ}}$, and $\overline{\mathrm{BACK}})$, the system clock (ϕ) output pin and interrupt input pins ($\overline{\mathrm{IRQ} 0}$ to $\overline{\mathrm{IRQ} 3})$.

The interrupt input pins ($\overline{\mathrm{IRQ} 0}$ to $\overline{\mathrm{IRQ} 3})$ are Schmitt-triggered inputs.
Figure 8.24 shows the port F pin configuration.

Note: * Modes 2, 3, 6, and 7 cannot be used in the H8S/2240.
Figure 8.24 Port F Pin Functions

8.12.2 Register Configuration

Table 8.21 shows the port F register configuration.

Table 8.21 Port F Registers

Name	Abbreviation	R/w	Initial Value	Address* ${ }^{1}$
Port F data direction register	PFDDR	W	H $^{\prime} 80 / H^{\prime} 00^{* 2}$	H'FEBE $^{\prime}$
Port F data register	PFDR	R/W	H'0 $^{\prime} 00$	H'FF6E $^{\prime}$
Port F register	PORTF	R	Undefined	H'FF5E

Notes: 1. Lower 16 bits of the address.
2. Initial value depends on the mode.

Port F Data Direction Register (PFDDR)

Bit	7	6	5	4	3	2	1	0
	PF7DDR	PF6DDR	PF5DDR	PF4DDR	PF3DDR	PF2DDR	PF1DDR	PFODDR
Modes 1, 2, 4, 5, 6								
Initial value	1	0	0	0	0	0	0	0
R/W	W	W	W	W	W	W	W	W
Modes 3 and 7								
Initial value	0	0	0	0	0	0	0	0
R/W	w	W	W	w	w	W	W	W

PFDDR is an 8-bit write-only register, the individual bits of which specify input or output for the pins of port F. PFDDR cannot be read; if it is, an undefined value will be read.

This register is a write-only register, and cannot be written by bit manipulation instruction. For details, see section 2.10.4, Access Methods for Registers with Write-Only Bits.

PFDDR is initialized by a power-on reset, and in hardware standby mode, to $\mathrm{H}^{\prime} 80$ in modes 1,2 , 4,5 , and 6 , and to $\mathrm{H}^{\prime} 00$ in modes 3 and 7. It retains its prior state after a manual reset, and in software standby mode. The OPE bit in SBYCR is used to select whether the bus control output pins retain their output state or become high-impedance when a transition is made to software standby mode.

- Modes 1, 2, 4, 5, and 6

Pin PF_{7} functions as the ϕ output pin when the corresponding PFDDR bit is set to 1 , and as an input port when the bit is cleared to 0 .

The input/output direction specified by PFDDR is ignored for pins PF_{6} to PF_{3}, which are automatically designated as bus control outputs ($\overline{\mathrm{AS}}, \overline{\mathrm{RD}}, \overline{\mathrm{HWR}}$, and $\overline{\mathrm{LWR}})$.
For pins PF_{2} to PF_{0}, setting a PFDDR bit to 1 makes the corresponding port F pin an output port, while clearing the bit to 0 makes the pin an input port.

Note: Modes 2 and 6 cannot be used in the H8S/2240.

- Modes 3 and 7

Setting a PFDDR bit to 1 makes the corresponding port F pin PF_{6} to PF_{0} an output port, or in the case of pin PF_{7}, the ϕ output pin. Clearing the bit to 0 makes the pin an input port.

Note: Modes 3 and 7 cannot be used in the H8S/2240.

Port F Data Register (PFDR)

Bit	7	6	5	4	3	2	1	0
	PF7DR	PF6DR	PF5DR	PF4DR	PF3DR	PF2DR	PF1DR	PF0DR
Initial value	0	0	0	0	0	0	0	0
R/W								

PFDR is an 8-bit readable/writable register that stores output data for the port F pins $\left(\mathrm{PF}_{7}\right.$ to $\left.\mathrm{PF}_{0}\right)$.
PFDR is initialized to H'00 by a power-on reset, and in hardware standby mode. It retains its prior state after a manual reset, and in software standby mode.

Port F Register (PORTF)

Bit	7	6	5	4	3	2	1	0
	PF7	PF6	PF5	PF4	PF3	PF2	PF1	PFO
Initial value	—*	—*	—*	—*	—*	—*	—*	—*
R/W	R	R	R	R	R	R	R	R

Note: * Determined by state of pins PF_{7} to PF_{0}.

PORTF is an 8-bit read-only register that shows the pin states. Writing of output data for the port F pins $\left(\mathrm{PF}_{7}\right.$ to $\left.\mathrm{PF}_{0}\right)$ must always be performed on PFDR .

If a port F read is performed while PFDDR bits are set to 1 , the PFDR values are read. If a port F read is performed while PFDDR bits are cleared to 0 , the pin states are read.

After a power-on reset and in hardware standby mode, PORTF contents are determined by the pin states, as PFDDR and PFDR are initialized. PORTF retains its prior state after a manual reset, and in software standby mode.

8.12.3 Pin Functions

Port F pins also function as bus control signal input/output pins ($\overline{\mathrm{AS}}, \overline{\mathrm{RD}}, \overline{\mathrm{HWR}}, \overline{\mathrm{LWR}}, \overline{\mathrm{WAIT}}$, $\overline{\mathrm{BREQO}}, \overline{\mathrm{BREQ}}$, and $\overline{\mathrm{BACK}}$), the system clock (ϕ) output pin and interrupt input pins ($\overline{\mathrm{IRQ} 0}$ to $\overline{\mathrm{IRQ}} \overline{3}$). The pin functions differ between modes $1,2,4,5$, and 6 , and modes 3 and 7. Port F pin functions are shown in table 8.22.

Table 8.22 Port F Pin Functions

Pin Selection Method and Pin Functions
$\mathrm{PF}_{7} / \phi \quad$ The pin function is switched as shown below according to bit PF7DDR.

PF7DDR	0	1
Pin function	PF_{7} input pin	ϕ output pin

$\overline{\mathrm{PF}_{6} / \overline{\mathrm{AS}} \quad \text { The pin function is switched as shown below according to the operating mode }}$ and bit PF6DDR.

Operating Mode	Modes 1, 2, 4, 5, 6*	Modes 3 and 7*	
PF6DDR	-	0	1
Pin function	$\overline{\text { AS }}$ output pin	PF_{6} input pin	PF_{6} output pin

Note: * Modes 2, 3, 6, and 7 cannot be used in the H8S/2240.
$\overline{\mathrm{PF}_{5} / \overline{\mathrm{RD}} \quad \text { The pin function is switched as shown below according to the operating mode }}$ and bit PF5DDR.

Operating Mode	Modes 1, 2, 4, 5, 6*	Modes 3 and 7*	
PF5DDR	-	0	1
Pin function	$\overline{\text { RD }}$ output pin	PF_{5} input pin	PF_{5} output pin

Note: * Modes 2, 3, 6, and 7 cannot be used in the H8S/2240.

Pin	Selection Method and Pin Functions			
$\overline{\mathrm{PF}_{4} / \overline{\mathrm{HWR}}}$	The pin function is switched as shown below according to the operating mode and bit PF4DDR.			
	Operating Mode	Modes 1, 2, 4, 5, 6*	Modes 3 and 7*	
	PF4DDR	-	0	1
	Pin function	$\overline{\text { HWR output pin }}$	PF_{4} input pin	PF_{4} output pin

Note: * Modes 2, 3, 6, and 7 cannot be used in the H8S/2240.
$\mathrm{PF}_{3} / \overline{\mathrm{LWR}} / \overline{\mathrm{IRQ3}}$ The pin function is switched as shown below according to the operating mode and bit PF3DDR.

Operating Mode	Modes	Modes Mond $7 *^{2}$	
PF3DDR	$1,2,4,5,6 *^{2}$	3 and	
Pin function	-	0	1
	LWR output pin	PF_{3} input pin	PF_{3} output pin
	$\overline{\text { RQS }}$ interrupt input pin*		

Notes: 1. When this pin is used as an external interrupt input, it should not be used as an input/output pin with other functions.
2. Modes 2, 3, 6, and 7 cannot be used in the H8S/2240.
$\mathrm{PF}_{2} / \overline{\mathrm{WAIT}} /$
$\overline{\mathrm{BREQO}} / \overline{\mathrm{RQ} 2}$

The pin function is switched as shown below according to the operating mode, and the BREQOE bit, WAITE bit in BCRL, and PF2DDR bit.

Operating Mode	Modes 1, 2, 4, 5, 6* ${ }^{\text {2 }}$				Modes 3 and 7*²	
BREQOE	0			1	-	
WAITE	0		1	-	-	
PF2DDR	0	1	-	-	0	1
Pin function	PF_{2} input pin	PF_{2} output pin	$\overline{\text { WAIT }}$ input pin	$\overline{\overline{\text { BREQO }}}$ output pin	PF_{2} input pin	PF_{2} output pin
	IRQ2 interrupt input pin* ${ }^{1}$					

Notes: 1. When this pin is used as an external interrupt input, it should not be used as an input/output pin with other functions.
2. Modes 2, 3, 6, and 7 cannot be used in the H8S/2240.

Pin Selection Method and Pin Functions

$\mathrm{PF}_{1} / \overline{\mathrm{BACK}} / \overline{\mathrm{RQQ}}$

The pin function is switched as shown below according to the operating mode, and the BRLE bit in BCRL and PF1DDR bit.

Operating Mode	Modes 1, 2, 4, 5, $6 *^{2}$			Modes 3 and $7 *^{2}$	
BRLE	0		1	-	
PF1DDR	0	1	-	0	1
Pin function	PF_{1} input pin	PF_{1} output pin	$\overline{\mathrm{BACK}}$ output pin	PF_{1} input pin	PF_{1} output pin
	$\overline{\text { IRQ1 }}$ interrupt input pin*1				

Notes: 1. When this pin is used as an external interrupt input, it should not be used as an input/output pin with other functions.
2. Modes 2, 3, 6, and 7 cannot be used in the H8S/2240.
$\overline{\mathrm{PF}} / \overline{\mathrm{BREQ}} / \overline{\mathrm{IRQ0}} \quad$ The pin function is switched as shown below according to the operating mode, and the BRLE bit in BCRL and PFODDR bit.

Operating Mode	Modes $1,2,4,5,6 *^{2}$			Modes 3 and $7 *^{2}$	
BRLE	0		1	-	
PF0DDR	0	1	-	0	1
Pin function	PF_{0} input pin	PF_{0} output pin	BREQ input pin	PF_{0} input pin	PF_{0} output pin
	$\overline{\mathrm{IRQO}}$ interrupt input pin*1				

Notes: 1. When this pin is used as an external interrupt input, it should not be used as an input/output pin with other functions.
2. Modes 2, 3, 6, and 7 cannot be used in the H8S/2240.

8.13 Port G

8.13.1 Overview

Port G is a 5-bit I/O port. Port G pins also function as bus control signal output pins ($\overline{\mathrm{CS} 0}$ to $\overline{\mathrm{CS} 3}$). The A/D converter input pin ($\overline{\text { ADTRG }})$, and interrupt input pins ($\overline{\text { IRQ6, }} \overline{\text { IRQ7 }})$. The interrupt input pins ($\overline{\mathrm{IRQ6}}, \overline{\mathrm{IRQ} 7}$) are Schmitt-triggered inputs.

Figure 8.25 shows the port G pin configuration.

Pin functions in modes 3 and 7*
$\mathrm{PG}_{4}(\mathrm{I} / \mathrm{O})$
$\mathrm{PG}_{3}(\mathrm{I} / \mathrm{O})$
$\mathrm{PG}_{2}(\mathrm{I} / \mathrm{O})$
$\mathrm{PG}_{1}(\mathrm{I} / \mathrm{O}) / \overline{\mathrm{RQQ7}}$ (input)
$\mathrm{PG}_{0}(\mathrm{I} / \mathrm{O}) / \overline{\text { ADTRG }}$ (input)// $\overline{\mathrm{RQ} 6}$ (input)

Pin functions in modes 1 and 2*
PG_{4} (input)/ $\overline{\mathrm{CSO}}$ (output)
$\mathrm{PG}_{3}(\mathrm{I} / \mathrm{O})$
$\mathrm{PG}_{2}(\mathrm{I} / \mathrm{O})$
$\mathrm{PG}_{1}(\mathrm{I} / \mathrm{O}) / \overline{\mathrm{RQ} 7}$ (input)
$\mathrm{PG}_{0}(\mathrm{I} / \mathrm{O}) / \overline{\mathrm{ADTRG}}$ (input)// $\overline{\mathrm{RQ6}}$ (input)

Pin functions in modes 4 to 6*
PG_{4} (input)/ $\overline{\mathrm{CSO}}$ (output)
PG_{3} (input)/ $\overline{\mathrm{CS} 1}$ (output)
PG_{2} (input)/ $\overline{\mathrm{CS} 2}$ (output)
PG_{1} (input)/ $\overline{\mathrm{CS3}}$ (output)///RQ7 (input)
$\mathrm{PG}_{0}(\mathrm{I} / \mathrm{O}) / \overline{\mathrm{ADTRG}}$ (input)//]RQ6 (input)

Note: * Modes 2, 3, 6, and 7 cannot be used in the H8S/2240.
Figure 8.25 Port G Pin Functions

8.13.2 Register Configuration

Table 8.23 shows the port G register configuration.

Table 8.23 Port G Registers

Name	Abbreviation	R/W	Initial Value* ${ }^{1}$	Address* ${ }^{2}$
Port G data direction register	PGDDR	W	$\mathrm{H}^{\prime} 00 / \mathrm{H}^{\prime} 10{ }^{3}$	H'FEBF
Port G data register	PGDR	R/W	H'00	H'FF6F
Port G register	PORTG	R	Undefined	H'FF5F

Notes: 1. Value of bits 4 to 0 .
2. Lower 16 bits of the address.
3. Initial value depends on the mode.

Port G Data Direction Register (PGDDR)

Bit	7	6	5	4	3	2	1	0
	-	-	-	PG4DDR	PG3DDR	PG2DDR	PG1DDR	PGODDR
Modes 1, 4, 5								
Initial value	Undefined	Undefined	defined	1	0	0	0	0
R/W	-	-	-	W	W	W	W	W
Modes 2, 3, 6, 7								
Initial value	Undefined	Undefined	defined	0	0	0	0	0
R/W	-	-	-	W	W	W	W	W

PGDDR is an 8-bit write-only register, the individual bits of which specify input or output for the pins of port G. PGDDR cannot be read, and bits 7 to 5 are reserved. If PGDDR is read, an undefined value will be read. PGDDR cannot be modified.

This register is a write-only register, and cannot be written by bit manipulation instruction. For details, see section 2.10.4, Access Methods for Registers with Write-Only Bits.

PGDDR is initialized by a power-on reset, and in hardware standby mode, to H'10 (bits 4 to 0) in modes 1,4 , and 5 , and to $\mathrm{H}^{\prime} 00$ (bits 4 to 0) in modes $2,3,6$, and 7 . It retains its prior state after a manual reset, and in software standby mode. The OPE bit in SBYCR is used to select whether the bus control output pins retain their output state or become high-impedance when a transition is made to software standby mode.

Note: Modes 2, 3, 6, and 7 cannot be used in the H8S/2240.

- Modes 1, 2, 4, 5, and 6

Pins PG_{4} to PG_{1} function as bus control output pins ($\overline{\mathrm{CS} 0}$ to $\overline{\mathrm{CS} 3}$) when the corresponding PGDDR bits are set to 1 , and as input ports when the bits are cleared to 0 .
Pin PG_{0} is an output port when the corresponding PGDDR bit is set to 1 , and an input port when the bit is cleared to 0 .

Note: Modes 2 and 6 cannot be used in the H8S/2240.

- Modes 3 and 7

Setting a PGDDR bit to 1 makes the corresponding port G pin an output port, while clearing the bit to 0 makes the pin an input port.

Note: Modes 3 and 7 cannot be used in the H8S/2240.

Port G Data Register (PGDR)

Bit	7	6	5	4	3	2	1	0
	-	-	-	PG4DR	PG3DR	PG2DR	PG1DR	PGODR
Initial value	Undefined Undefined Undefined			0	0	0	0	0
R/W	-	-	-	R/W	R/W	R/W	R/W	R/W

PGDR is an 8 -bit readable/writable register that stores output data for the port G pins $\left(\mathrm{PG}_{4}\right.$ to $\left.\mathrm{PG}_{0}\right)$.
Bits 7 to 5 are reserved; they return an undetermined value if read, and cannot be modified.
PGDR is initialized to $\mathrm{H}^{\prime} 00$ (bits 4 to 0) by a power-on reset, and in hardware standby mode. It retains its prior state after a manual reset, and in software standby mode.

Port G Register (PORTG)

Bit	7	6	5	4	3	2	1	0
	-	-	-	PG4	PG3	PG2	PG1	PG0
Initial value	Undefin	defin	defin	-*	*	—*	-*	—*
R/W	-	-	-	R	R	R	R	R

Note: * Determined by state of pins PG_{4} to PG_{0}.

PORTG is an 8-bit read-only register that shows the pin states. It cannot be written to. Writing of output data for the port G pins $\left(\mathrm{PG}_{4}\right.$ to $\left.\mathrm{PG}_{0}\right)$ must always be performed on PGDR.

Bits 7 to 5 are reserved; they return an undetermined value if read, and cannot be modified.
If a port G read is performed while PGDDR bits are set to 1 , the PGDR values are read. If a port G read is performed while PGDDR bits are cleared to 0 , the pin states are read.

After a power-on reset and in hardware standby mode, PORTG contents are determined by the pin states, as PGDDR and PGDR are initialized. PORTG retains its prior state after a manual reset, and in software standby mode.

8.13.3 Pin Functions

Port G pins also function as bus control signal output pins ($\overline{\mathrm{CS} 0}$ to $\overline{\mathrm{CS}}$) the A / D converter input pin ($\overline{\mathrm{ADTRG}}$), and interrupt input pins ($\overline{\mathrm{IRQ6}}, \overline{\mathrm{IRQ7}}$). The pin functions are different in modes 1 and 2 , modes 3 and 7 , and modes 4 to 6 . Port G pin functions are shown in table 8.24.

Table 8.24 Port G Pin Functions
Pin Selection Method and Pin Functions
$\mathrm{PG}_{4} / \overline{\mathrm{CSO}} \quad$ The pin function is switched as shown below according to the operating mode and bit PG4DDR.

Operating Mode	Modes 1, 2, 4, 5, 6*		Modes 3 and 7*	
PG4DDR	0	1	0	1
Pin function	PG_{4} input pin	$\overline{\mathrm{CSO}}$ output pin	PG_{4} input pin	PG_{4} output pin

Note: * Modes 2, 3, 6, and 7 cannot be used in the H8S/2240.
$\overline{\mathrm{PG}_{3} / \overline{\mathrm{CS1}}}$
The pin function is switched as shown below according to the operating mode and bit PG3DDR.

Operating Mode	Modes 1, 2, 3, 7*		Modes 4 to 6*	
PG3DDR	0	1	0	1
Pin function	PG_{3} input pin	PG_{3} output pin	PG_{3} input pin	$\overline{\mathrm{CS}}$ output pin

Note: * Modes 2, 3, 6, and 7 cannot be used in the H8S/2240.
The pin function is switched as shown below according to the operating mode and bit PG2DDR.

Operating Mode	Modes 1, 2, 3, 7*		Modes 4 to 6*	
PG2DDR	0	1	0	1
Pin function	PG_{2} input pin	PG_{2} output pin	PG_{2} input pin	$\overline{\mathrm{CS}}$ output pin

Note: * Modes 2, 3, 6, and 7 cannot be used in the H8S/2240.
Pin Selection Method and Pin Functions
$\overline{\mathrm{PG}} / \overline{\mathrm{CS}} / \overline{\mathrm{IRQ}} \quad$ The pin function is switched as shown below according to the combination of operating mode and bit PG1DDR.

Operating Mode	Modes 1, 2, 3, $7 *^{2}$		Modes 4 to $6 *^{2}$	
PG1DDR	0	1	0	1
Pin function	PG input pin	PG $_{1}$ output pin	PG $_{1}$ input pin	$\overline{\text { CS3 }}$ output pin
	IRQ7 interrupt input pin* ${ }^{1}$			

Notes: 1. When this pin is used as an external interrupt input, it should not be used as an input/output pin with other functions.
2. Modes 2, 3, 6, and 7 cannot be used in the H8S/2240.
$\mathrm{PG}_{0} / \overline{\mathrm{ADTRG}} / \overline{\mathrm{IRQ} 6}$ The pin function is switched as shown below according to the combination of bits TRGS1 and TRGS0 in the A/D ADCR and bit PGODDR.

PGODDR	0	1
Pin function	PG $_{0}$ input	PG $_{0}$ output
	$\overline{\text { ADTRG input pin*¹ }}$	
	$\overline{\text { IRQ6 interrupt input pin* }}{ }^{2}$	

Notes: 1. $\overline{\text { ADTRG }}$ input when TRGS0 $=$ TRGS1 $=1$.
2. When this pin is used as an external interrupt input, it should not be used as an input/output pin with other functions.

8.14 Handling of Unused Pins

Unused input pins should be fixed high or low. Generally, the input pins of CMOS products are high-impedance. Leaving unused pins open can cause the generation of intermediate levels due to peripheral noise induction. This can result in shoot-through current inside the device and cause it to malfunction. Table 8.25 lists examples of ways to handle unused pins.

Table 8.25 Examples of Ways to Handle Unused Input Pins
Port Name Pin Handling Example

Port $1 \quad$ Connect each pin to Vcc (pull-up) or to Vss (pull-down) via a resistor.

Port 2

Port 3
Port 4 Connect each pin to AVcc (pull-up) or to AVss (pull-down) via a resistor.
Port 5 Connect each pin to Vcc (pull-up) or to Vss (pull-down) via a resistor.

Port A
Port B
Port C

Port D
Port E
Port F

Port G

Section 9 16-Bit Timer Pulse Unit (TPU)

9.1 Overview

The H8S/2245 Group has an on-chip 16-bit timer pulse unit (TPU) that comprises three 16-bit timer channels.

9.1.1 Features

- Maximum 8-pulse input/output
- A total of 8 timer general registers (TGRs) are provided (four for channel 0 and two each for channels 1 , and 2), each of which can be set independently as an output compare/input capture register
TGRC and TGRD for channel 0 can also be used as buffer registers
- Selection of 7 or 8 counter input clocks for each channel
- The following operations can be set for each channel:
- Waveform output at compare match: Selection of 0,1 , or toggle output
- Input capture function: Selection of rising edge, falling edge, or both edge detection
- Counter clear operation: Counter clearing possible by compare match or input capture
- Synchronous operation: Multiple timer counters (TCNT) can be written to simultaneously Simultaneous clearing by compare match and input capture possible
Register simultaneous input/output possible by counter synchronous operation
- PWM mode: Any PWM output duty can be set

Maximum of 7-phase PWM output possible by combination with synchronous operation

- Buffer operation settable for channel 0
- Input capture register double-buffering possible
- Automatic rewriting of output compare register possible
- Phase counting mode settable independently for each of channels 1 , and 2
- Two-phase encoder pulse up/down-count possible
- Fast access via internal 16-bit bus
- Fast access is possible via a 16-bit bus interface
- 13 interrupt sources
- For channel 0 four compare match/input capture dual-function interrupts and one overflow interrupt can be requested independently
- For channels 1, and 2, two compare match/input capture dual-function interrupts, one overflow interrupt, and one underflow interrupt can be requested independently
- Automatic transfer of register data
- Block transfer, 1-word data transfer, and 1-byte data transfer possible by data transfer controller (DTC) activation
- A/D converter conversion start trigger can be generated
- Channel 2 to 0 compare match $\mathrm{A} /$ input capture A signals can be used as A / D converter conversion start trigger
- Module stop mode can be set
- As the initial setting, TPU operation is halted. Register access is enabled by exiting module stop mode.

Table 9.1 lists the functions of the TPU.

Table 9.1 TPU Functions (1)

Item	Channel 0	Channel 1	Channel 2
Count clock	$\phi / 1$	¢/1	$\phi / 1$
	$\phi / 4$	$\phi / 4$	$\phi / 4$
	$\phi / 16$	$\phi / 16$	$\phi / 16$
	¢/64	¢/64	¢/64
	TCLKA	¢/256	¢/1024
	TCLKB	TCLKA	TCLKA
	TCLKC	TCLKB	TCLKB
	TCLKD		TCLKC
General registers	TGR0A	TGR1A	TGR2A
	TGR0B	TGR1B	TGR2B
General registers/ buffer registers	$\begin{aligned} & \text { TGROC } \\ & \text { TGROD } \end{aligned}$	-	-
I/O pins	TIOCA0	TIOCA1	TIOCA2
	TIOCB0	TIOCB1	TIOCB2
	TIOCC0		
	TIOCD0		
Counter clear function	TGR compare match or input capture	TGR compare match or input capture	TGR compare match or input capture
Compare match output	\bigcirc	\bigcirc	\bigcirc
	\bigcirc	\bigcirc	\bigcirc
	\bigcirc	\bigcirc	\bigcirc

Input capture function

Synchronous

O
O
\bigcirc
operation

PWM mode	\bigcirc	\bigcirc	\bigcirc
Phase counting mode	-	\bigcirc	\bigcirc
Buffer operation	\bigcirc	-	-

Legend:
\bigcirc : Possible
-: Not possible

Table 9.1 TPU Functions (2)

Item	Channel 0	Channel 1	Channel 2
DTC activation	TGR compare match or input capture	TGR compare match or input capture	TGR compare match or input capture
A/D converter trigger	TGR0A compare match or input capture	TGR1A compare match or input capture	TGR2A compare match or input capture
Interrupt sources	5 sources	4 sources	4 sources
	• Compare match or input capture 0A	- Compare match or input capture 1A	• Compare match or
input capture 2A			

9.1.2 Block Diagram

Figure 9.1 shows a block diagram of the TPU.

Figure 9.1 Block Diagram of TPU

9.1.3 Pin Configuration

Table 9.2 shows the pin configuration of the TPU.
Table 9.2 TPU Pins

Channel	Name	Symbol	I/O	Function

All	Clock input A	TCLKA	Input	External clock A input pin (Channel 1 phase counting mode A phase input)
	Clock input B	TCLKB	Input	External clock B input pin (Channel 1 phase counting mode B phase input)
	Clock input C	TCLKC	Input	External clock C input pin (Channel 2 phase counting mode A phase input)
	Clock input D	TCLKD	Input	External clock D input pin (Channel 2 phase counting mode B phase input)
0	Input capture/output compare match A0	TIOCA0	I/O	TGROA input capture input/output compare output/PWM output pin
	Input capture/output compare match B0	TIOCB0	I/O	TGROB input capture input/output compare output/PWM output pin
	Input capture/output compare match C0	TIOCC0	I/O	TGROC input capture input/output compare output/PWM output pin
	Input capture/output compare match D0	TIOCD0	I/O	TGROD input capture input/output compare output/PWM output pin
1	Input capture/output compare match A1	TIOCA1	I/O	TGR1A input capture input/output compare output/PWM output pin
	Input capture/output compare match B1	TIOCB1	I/O	TGR1B input capture input/output compare output/PWM output pin
2	Input capture/output compare match A2	TIOCA2	I/O	TGR2A input capture input/output compare output/PWM output pin
	Input capture/output compare match B2	TIOCB2	I/O	TGR2B input capture input/output compare output/PWM output pin

9.1.4 Register Configuration

Table 9.3 summarizes the TPU registers.
Table 9.3 TPU Registers

Channel	Name	Abbreviation	R/W	Initial Value	Address* ${ }^{1}$
0	Timer control register 0	TCR0	R/W	H'00	H'FFD0
	Timer mode register 0	TMDR0	R/W	H'C0	H'FFD1
	Timer I/O control register 0 H	TIOROH	R/W	H'00	H'FFD2
	Timer I/O control register 0L	TIOROL	R/W	H'00	H'FFD3
	Timer interrupt enable register 0	TIER0	R/W	H'40	H'FFD4
	Timer status register 0	TSR0	R/(W)**	H'C0	H'FFD5
	Timer counter 0	TCNT0	R/W	H'0000	H'FFD6
	Timer general register 0A	TGROA	R/W	H'FFFF	H'FFD8
	Timer general register 0B	TGROB	R/W	H'FFFF	H'FFDA
	Timer general register 0C	TGROC	R/W	H'FFFF	H'FFDC
	Timer general register 0D	TGROD	R/W	H'FFFF	H'FFDE
1	Timer control register 1	TCR1	R/W	H'00	H'FFE0
	Timer mode register 1	TMDR1	R/W	H'C0	H'FFE1
	Timer I/O control register 1	TIOR1	R/W	H'00	H'FFE2
	Timer interrupt enable register 1	TIER1	R/W	H'40	H'FFE4
	Timer status register 1	TSR1	$\mathrm{R} /(\mathrm{W})$ * 2	H'C0	H'FFE5
	Timer counter 1	TCNT1	R/W	H'0000	H'FFE6
	Timer general register 1A	TGR1A	R/W	H'FFFF	H'FFE8
	Timer general register 1B	TGR1B	R/W	H'FFFF	H'FFEA
2	Timer control register 2	TCR2	R/W	H'00	H'FFF0
	Timer mode register 2	TMDR2	R/W	H'C0	H'FFF1
	Timer I/O control register 2	TIOR2	R/W	H'00	H'FFF2
	Timer interrupt enable register 2	TIER2	R/W	H'40	H'FFF4
	Timer status register 2	TSR2	$\mathrm{R} /(\mathrm{W})$ * 2	H'C0	H'FFF5
	Timer counter 2	TCNT2	R/W	H'0000	H'FFF6
	Timer general register 2A	TGR2A	R/W	H'FFFF	H'FFF8
	Timer general register 2B	TGR2B	R/W	H'FFFF	H'FFFA

Section 9 16-Bit Timer Pulse Unit (TPU)

Channel	Name	Abbreviation	R/W	Initial Value	Address*1
All	Timer start register	TSTR	R/W	H'00	H'FFC0
	Timer synchro register	TSYR	R/W	H'00	H'FFC1
	Module stop control register	MSTPCR	R/W	H'3FFF	H'FF3C

Notes: 1. Lower 16 bits of the address.
2. Can only be written with 0 for flag clearing.

9.2 Register Descriptions

9.2.1 Timer Control Register (TCR)

Channel 0: TCRO

Bit	7	6	5	4	3	2	1	0
	CCLR2	CCLR1	CCLR0	CKEG1	CKEGO	TPSC2	TPSC1	TPSC0
Initial value	0	0	0	0	0	0	0	0
R/W								

Channel 1: TCR1
Channel 2: TCR2

Bit	7	6	5	4	2		1	0
	-	CCLR1	CCLRO	CKEG1	CKEGO	TPSC2	TPSC1	TPSC0
Initial value	0	0	0	0	0	0	0	0
R/W	-	R/W						

The TCR registers are 8 -bit registers that control the TCNT channels. The TPU has three TCR registers, one for each of channels 0 to 2 . The TCR registers are initialized to $\mathrm{H}^{\prime} 00$ by a reset, and in hardware standby mode.

TCNT operation should be stopped when making TCR settings.

Bits 7, 6, 5-Counter Clear 2, 1, and $\mathbf{0}$ (CCLR2, CCLR1, CCLR0): These bits select the TCNT counter clearing source.

Channel	Bit 7	Bit 6	Bit 5	Description
	CCLR2	CCLR1	CCLRO	
0	0	0	0	TCNT clearing disabled (Initial value)
			1	TCNT cleared by TGRA compare match/input capture
		1	0	TCNT cleared by TGRB compare match/input capture
			1	TCNT cleared by counter clearing for another channel performing synchronous clearing/synchronous operation*
	1	0	0	TCNT clearing disabled
			1	TCNT cleared by TGRC compare match/input capture* ${ }^{2}$
		1	0	TCNT cleared by TGRD compare match/input capture*2
			1	TCNT cleared by counter clearing for another channel performing synchronous clearing/synchronous operation*

Channel	Bit 7	Bit 6	Bit 5	Description
	Reserved**	CCLR1	CCLRO	
1,2	0	0	0	TCNT clearing disabled (Initial value)
			1	TCNT cleared by TGRA compare match/input capture
		1	0	TCNT cleared by TGRB compare match/input capture
			1	TCNT cleared by counter clearing for another channel performing synchronous clearing/ synchronous operation*'

Notes: 1. Synchronous operation setting is performed by setting the SYNC bit in TSYR to 1.
2. When TGRC or TGRD is used as a buffer register, TCNT is not cleared because the buffer register setting has priority, and compare match/input capture does not occur.
3. Bit 7 is reserved in channels 1 and 2 . It is always read as 0 and cannot be modified.

Bits 4 and 3-Clock Edge 1 and 0 (CKEG1, CKEG0): These bits select the input clock edge. When a both-edges count is selected, a clock divided by two from the input clock can be selected. (e.g. $\phi / 4$ both edges $=\phi / 2$ rising edge). If phase counting mode is used on channels 1 , and 2 , this setting is ignored and the phase counting mode setting has priority.

| Bit $\mathbf{4}$ | Bit 3 | | |
| :--- | :--- | :--- | :--- | :--- |
| CKEG1 | CKEG0 | Description | (Initial value) |
| 0 | 0 | Count at rising edge | |
| | 1 | Count at falling edge | |
| 1 | - | Count at both edges | |

Note: Internal clock edge selection is valid when the input clock is $\phi / 4$ or slower. If $\phi / 1$ is selected as the input clock, this setting is ignored and count at falling edge of ϕ is selected.

Bits 2, 1, and 0-Time Prescaler 2, 1, and 0 (TPSC2 to TPSC0): These bits select the TCNT counter clock. The clock source can be selected independently for each channel. Table 9.4 shows the clock sources that can be set for each channel.

Table 9.4 TPU Clock Sources

	Internal Clock						External Clock			
Channel	$\phi / 1$	\$/4	\$/16	\$/64	\$/256	¢/1024	TCLKA	TCLKB	TCLKC	TCLKD
0	\bigcirc	\bigcirc	\bigcirc	\bigcirc			\bigcirc	\bigcirc	\bigcirc	\bigcirc
1	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc		\bigcirc	\bigcirc		
2	\bigcirc	\bigcirc	\bigcirc	\bigcirc		\bigcirc	\bigcirc	\bigcirc	\bigcirc	

Legend:
O: Setting
Blank: No setting

Channel	Bit 2	Bit 1	Bit 0	Description
	TPSC2	TPSC1	TPSC0	
0	0	0	0	Internal clock: counts on $\phi / 1$ (Initial value)
			1	Internal clock: counts on $\phi / 4$
		1	0	Internal clock: counts on $\phi / 16$
			1	Internal clock: counts on $\phi / 64$
	1	0	0	External clock: counts on TCLKA pin input
			1	External clock: counts on TCLKB pin input
		1	0	External clock: counts on TCLKC pin input
			1	External clock: counts on TCLKD pin input
	Bit 2	Bit 1	Bit 0	
Channel	TPSC2	TPSC1	TPSC0	Description
1	0	0	0	Internal clock: counts on $\phi / 1 \quad$ (Initial value)
			1	Internal clock: counts on $\phi / 4$
		1	0	Internal clock: counts on $\phi / 16$
			1	Internal clock: counts on $\phi / 64$
	1	0	0	External clock: counts on TCLKA pin input
			1	External clock: counts on TCLKB pin input
		1	0	Internal clock: counts on $\phi / 256$
			1	Setting prohibited

Note: This setting is ignored when channel 1 is in phase counting mode.

Channel	$\frac{\text { Bit } 2}{\text { TPSC2 }}$	$\begin{aligned} & \text { Bit } 1 \\ & \hline \text { TPSC1 } \end{aligned}$	$\begin{aligned} & \text { Bit } 0 \\ & \hline \text { TPSC0 } \end{aligned}$	Description
2	0	0	0	Internal clock: counts on $\phi / 1 \quad$ (Initial value)
			1	Internal clock: counts on $\phi / 4$
		1	0	Internal clock: counts on $\phi / 16$
			1	Internal clock: counts on $\phi / 64$
	1	0	0	External clock: counts on TCLKA pin input
			1	External clock: counts on TCLKB pin input
		1	0	External clock: counts on TCLKC pin input
			1	Internal clock: counts on $\phi / 1024$

Note: This setting is ignored when channel 2 is in phase counting mode.

9.2.2 Timer Mode Register (TMDR)

Channel 0: TMDRO

Bit	$:$	7	6	5	4	3	2	1	0
		-	-	BFB	BFA	MD3	MD2	MD1	MD0
Initial value	$:$	1	1	0	0	0	0	0	0
	$:$	-	-	R/W	R/W	R/W	R/W	R/W	R/W

Channel 1: TMDR1

Channel 2: TMDR2

Bit	$:$	7	6	5	4	3	2	1	0
		-	-	-	-	MD3	MD2	MD1	MD0
Initial value	$:$	1	1	0	0	0	0	0	0
	$:$	-	-	-	-	R/W	R/W	R/W	R/W

The TMDR registers are 8 -bit readable/writable registers that are used to set the operating mode for each channel. The TPU has three TMDR registers, one for each channel. The TMDR registers are initialized to $\mathrm{H}^{\prime} \mathrm{C} 0$ by a reset, and in hardware standby mode.

TCNT operation should be stopped when making TMDR settings.
Bits 7 and 6-Reserved: Read-only bits, always read as 1.
Bit 5-Buffer Operation B (BFB): Specifies whether TGRB is to operate in the normal way, or TGRB and TGRD are to be used together for buffer operation. When TGRD is used as a buffer register, TGRD input capture/output compare is not generated.

In channels 1 and 2 , which have no TGRD, bit 5 is reserved. It is always read as 0 and cannot be modified.

Bit 5

BFB	Description	
0	TGRB operates normally	(Initial value)
1	TGRB and TGRD used together for buffer operation	

Bit 4-Buffer Operation A (BFA): Specifies whether TGRA is to operate in the normal way, or TGRA and TGRC are to be used together for buffer operation. When TGRC is used as a buffer register, TGRC input capture/output compare is not generated.

In channels 1 , and 2 , which have no TGRC, bit 4 is reserved. It is always read as 0 and cannot be modified.

Bit 4

BFA	Description	
0	TGRA operates normally	(Initial value)
1	TGRA and TGRC used together for buffer operation	

Bits 3 to 0—Modes $\mathbf{3}$ to $\mathbf{0}$ (MD3 to MD0): These bits are used to set the timer operating mode.

Bit 3	Bit 2	Bit 1	Bit 0	
MD3* ${ }^{1}$	MD2 $^{* 2}$	MD1	MD0	Description

0	0	0	0	Normal operation	(Initial value)
		1	Reserved		
			0	PWM mode 1	
		0	0	PWM mode 2	
		1	Phase counting mode 1		
		0	Phase counting mode 2		
		$*$	$*$	-	Phase counting mode 4

Legend: *: Don't care
Notes: 1. MD3 is a reserved bit. In a write, it should always be written with 0 .
2. Phase counting mode cannot be set for channel 0 . In this case, 0 should always be written to MD2.

9.2.3 Timer I/O Control Register (TIOR)

Channel 0: TIOROH

Channel 1: TIOR1
Channel 2: TIOR2

Bit	$:$	7	6	5	4	3	2	1	0
	IOB3	IOB2	IOB1	IOB0	IOA3	IOA2	IOA1	IOA0	
	Initial value	$:$	0	0	0	0	0	0	0
R/W	$:$	R/W							

Channel 0: TIOROL

Bit	$:$	7	6	5	4	3	2	1	0
	IOD3	IOD2	IOD1	IOD0	IOC3	IOC2	IOC1	IOC0	
	Initial value	$:$	0	0	0	0	0	0	0
R/W	$:$	R/W							

Note: When TGRC or TGRD is designated for buffer operation, this setting is invalid and the register operates as a buffer register.

The TIOR registers are 8 -bit registers that control the TGR registers. The TPU has four TIOR registers, two for channel 0 and one each for channels 1 , and 2. The TIOR registers are initialized to $\mathrm{H}^{\prime} 00$ by a reset, and in hardware standby mode.

Care is required since TIOR is affected by the TMDR setting. The initial output specified by TIOR is valid when the counter is stopped (the CST bit in TSTR is cleared to 0). Note also that, in PWM mode 2 , the output at the point at which the counter is cleared to 0 is specified.

Bits 7 to 4-I/O Control B3 to B0 (IOB3 to IOB0)
I/O Control D3 to D0 (IOD3 to IOD0):
Bits IOB3 to IOB0 specify the function of TGRB.
Bits IOD3 to IOD0 specify the function of TGRD.

TIOROH

	Bit 7	Bit 6	Bit 5	Bit 4			
Channel	IOB3	IOB2	IOB1	IOB0	Description		
0	0	0	0	0	TGROB is output compare register	Output disabled	(Initial value)
				1		Initial output is 0	0 output at compare match
			1	0		output	1 output at compare match
				1			Toggle output at compare match
		1	0	0		Output disabled	
				1		Initial output is 1 output	0 output at compare match
			1	0			1 output at compare match
				1			Toggle output at compare match
	1	0	0	0	TGROB is input capture register	Capture input source is TIOCBO pin	Input capture at rising edge
				1			Input capture at falling edge
			1	*			Input capture at both edges
		1	*	*		Setting prohibited	

[^4]TIOROL

Channel	Bit 7	Bit 6	Bit 5	Bit 4	Description		
	IOD3	IOD2	IOD1	IOD0			
0	0	0	0	0	TGROD is output compare register*'	Output disabled Initial output is 0 output	(Initial value)
				1			0 output at compare match
			1	0			1 output at compare match
				1			Toggle output at compare match
		1	0	0		Output disabled	
				1		Initial output is 1 output	0 output at compare match
			1	0			1 output at compare match
				1			Toggle output at compare match
	1	0	0	0	TGROD is input capture register* ${ }^{1}$	Capture input source is TIOCDO pin	Input capture at rising edge
				1			Input capture at falling edge
			1	*			Input capture at both edges
		1	*	*		Setting prohibited	

Legend: *: Don't care
Note: 1. When the BFB bit in TMDR0 is set to 1 and TGROD is used as a buffer register, this setting is invalid and input capture/output compare is not generated.

TIOR1

	Bit 7	Bit 6	Bit 5	Bit 4			
Channel	IOB3	IOB2	IOB1	IOB0	Description		
1	0	0	0	0	TGR1B is output compare register	$\begin{aligned} & \text { Output disabled } \\ & \hline \text { Initial output is } 0 \\ & \text { output } \end{aligned}$	(Initial value)
				1			0 output at compare match
			1	0			1 output at compare match
				1			Toggle output at compare match
		1	0	0		Output disabled	
				1		Initial output is 1 output	0 output at compare match
			1	0			1 output at compare match
				1			Toggle output at compare match
	1	0	0	0	TGR1B is input capture register	Capture input source is TIOCB1 pin	Input capture at rising edge
				1			Input capture at falling edge
			1	*			Input capture at both edges
		1	*	*		Setting prohibited	

Legend: *: Don't care

TIOR2

Bit 7 Bit 6 Bit 5 Bit 4

Channel IOB3 IOB2 IOB1 IOB0 Description

2	0	0	0	0	TGR2B is output compare register	Output disabled	(Initial value)
				1		Initial output is 0 output	0 output at compare match
			1	0			1 output at compare match
				1			Toggle output at compare match
		1	0	0		Output disabled	
				1		Initial output is 1 output	0 output at compare match
			1	0			1 output at compare match
				1			Toggle output at compare match
	1	*	0	0	TGR2B is input capture register	Capture input source is TIOCB2 pin	Input capture at rising edge
				1			Input capture at falling edge
			1	*			Input capture at both edges

Legend: *: Don't care

Bits 3 to 0-I/O Control A3 to A0 (IOA3 to IOA0)
I/O Control C3 to C0 (IOC3 to IOC0):
IOA3 to IOA0 specify the function of TGRA.
IOC3 to IOC0 specify the function of TGRC.

TIOROH

	Bit 3	Bit 2	Bit 1	Bit 0	Description		
Channel	IOA3	IOA2	IOA1	IOAO			
0	0	0	0	0	TGROA is output compare register	Output disabled	(Initial value)
				1		Initial output is 0	0 output at compare match
			1	0		output	1 output at compare match
				1			Toggle output at compare match
		1	0	0		Output disabled	
				1		Initial output is 1 output	0 output at compare match
			1	0			1 output at compare match
				1			Toggle output at compare match
	1	0	0	0	TGROA is input capture register	Capture input source is TIOCAO pin	Input capture at rising edge
				1			Input capture at falling edge
			1	*			Input capture at both edges
		1	*	*		Setting prohibited	

[^5]TIOROL

Bit 3 Bit 2 Bit 1 Bit 0

Channel IOC3 IOC2 IOC1 IOCO Description

0	0	0	0	0	TGROC is output compare register* ${ }^{*}$	Output disabled	(Initial value)
				1		Initial output is 0 output	0 output at compare match
			1	0			1 output at compare match
				1			Toggle output at compare match
		1	0	0		Output disabled	
				1		Initial output is 1 output	0 output at compare match
			1	0			1 output at compare match
				1			Toggle output at compare match
	1	0	0	0	TGROC is input capture register*	Capture input source is TIOCCO pin	Input capture at rising edge
				1			Input capture at falling edge
			1	*			Input capture at both edges
		1	*	*		Setting prohibited	

Legend: *: Don't care
Note: 1. When the BFA bit in TMDR0 is set to 1 and TGROC is used as a buffer register, this setting is invalid and input capture/output compare is not generated.

TIOR1

Bit 3 Bit 2 Bit 1 Bit 0

Channel IOA3 IOA2 IOA1 IOAO Description

1	0	0	0	0	TGR1A is output compare register	Output disabled	(Initial value)
				1		Initial output is 0 output	0 output at compare match
			1	0			1 output at compare match
				1			Toggle output at compare match
		1	0	0		Output disabled	
				1		Initial output is 1 output	0 output at compare match
			1	0			1 output at compare match
				1			Toggle output at compare match
	1	0	0	0	TGR1A is input capture register	Capture input source is TIOCA1 pin	Input capture at rising edge
				1			Input capture at falling edge
			1	*			Input capture at both edges
		1	*	*		Setting prohibited	

Legend: *: Don't care

TIOR2

Bit 3 Bit 2 Bit 1 Bit 0

Channel IOA3 IOA2 IOA1 IOAO Description

2	0	0	0	0	TGR2A is output compare register	Output disabled	(Initial value
				1		Initial output is 0 output	0 output at compare match
			1	0			1 output at compare match
				1			Toggle output at compare match
		1	0	0		Output disabled	
				1		Initial output is 1 output	0 output at compare match
			1	0			1 output at compare match
				1			Toggle output at compare match
	1	*	0	0	TGR2A is input capture register	Capture input source is TIOCA2 pin	Input capture at rising edge
				1			Input capture at falling edge
			1	*			Input capture at both edges

Legend: *: Don't care

9.2.4 Timer Interrupt Enable Register (TIER)

Channel 0: TIERO

Bit	7	6	5	4	3	2	1	0
	TTGE	-	-	TCIEV	TGIED	TGIEC	TGIEB	TGIEA
Initial value	0	1	0	0	0	0	0	0
R/W	R/W	-	-	R/W	R/W	R/W	R/W	R/W

Channel 1: TIER1

Channel 2: TIER2

Bit	7	6	5	4	3	2	1	0
	TTGE	-	TCIEU	TCIEV	-	-	TGIEB	TGIEA
Initial value	0	1	0	0	0	0	0	0
R/W	R/W	-	R/W	R/W	-	-	R/W	R/W

The TIER registers are 8 -bit registers that control enabling or disabling of interrupt requests for each channel. The TPU has three TIER registers, one for each channel. The TIER registers are initialized to H'40 by a reset, and in hardware standby mode.

Bit 7—A/D Conversion Start Request Enable (TTGE): Enables or disables generation of A/D conversion start requests by TGRA input capture/compare match.

Bit 7

TTGE	Description	
0	A/D conversion start request generation disabled	(Initial value)
1	A/D conversion start request generation enabled	

Bit 6-Reserved: Read-only bit, always read as 1.

Bit 5-Underflow Interrupt Enable (TCIEU): Enables or disables interrupt requests (TCIU) by the TCFU flag when the TCFU flag in TSR is set to 1 in channels 1 and 2.

In channel 0 bit 5 is reserved. It is always read as 0 and cannot be modified.
Bit 5
TCIEU Description

0	Interrupt requests (TCIU) by TCFU disabled	(Initial value)
1	Interrupt requests (TCIU) by TCFU enabled	

Bit 4-Overflow Interrupt Enable (TCIEV): Enables or disables interrupt requests (TCIV) by the TCFV flag when the TCFV flag in TSR is set to 1 .

Bit 4

TCIEV	Description	
0	Interrupt requests (TCIV) by TCFV disabled	(Initial value)
1	Interrupt requests (TCIV) by TCFV enabled	

Bit 3-TGR Interrupt Enable D (TGIED): Enables or disables interrupt requests (TGID) by the TGFD bit when the TGFD bit in TSR is set to 1 in channel 0 .

In channels 1 , and 2 , bit 3 is reserved. It is always read as 0 and cannot be modified.

Bit 3

TGIED Description

0	Interrupt requests (TGID) by TGFD bit disabled	(Initial value)
1	Interrupt requests (TGID) by TGFD bit enabled	

Bit 2-TGR Interrupt Enable C (TGIEC): Enables or disables interrupt requests (TGIC) by the TGFC bit when the TGFC bit in TSR is set to 1 in channel 0 .

In channels 1 , and 2 , bit 2 is reserved. It is always read as 0 and cannot be modified.
Bit 2

TGIEC	Description	
0	Interrupt requests (TGIC) by TGFC bit disabled	(Initial value)
1	Interrupt requests (TGIC) by TGFC bit enabled	

Bit 1—TGR Interrupt Enable B (TGIEB): Enables or disables interrupt requests (TGIB) by the TGFB bit when the TGFB bit in TSR is set to 1 .

Bit 1
TGIEB Description

0	Interrupt requests (TGIB) by TGFB bit disabled	(Initial value)
1	Interrupt requests (TGIB) by TGFB bit enabled	

Bit 0-TGR Interrupt Enable A (TGIEA): Enables or disables interrupt requests (TGIA) by the TGFA bit when the TGFA bit in TSR is set to 1 .

Bit 0
TGIEA Description

0	Interrupt requests (TGIA) by TGFA bit disabled	(Initial value)
1	Interrupt requests (TGIA) by TGFA bit enabled	

9.2.5 Timer Status Register (TSR)

Channel 0: TSRO

Bit	7	6	5	4	3	2	1	0
	-	-	-	TCFV	TGFD	TGFC	TGFB	TGFA
Initial value	1	1	0	0	0	0	0	0
R/W	-	-	-	R/(W)*	$\mathrm{R} / \mathrm{W})^{*}$	R/(W)*	$\mathrm{R} / \mathrm{W})^{*}$	R/(W)*

Note: * Can only be written with 0 for flag clearing.

Channel 1: TSR1

Channel 2: TSR2

Bit	7	6	5	4	3	2	1	0
	TCFD	-	TCFU	TCFV	-	-	TGFB	TGFA
Initial value	1	1	0	0	0	0	0	0
R/W	R	-	R/(W)*	R/(W)*	-	-	$\mathrm{R} /(\mathrm{W})^{*}$	$\mathrm{R} /(\mathrm{W})^{*}$

Note: * Can only be written with 0 for flag clearing.

The TSR registers are 8 -bit registers that indicate the status of each channel. The TPU has three TSR registers, one for each channel. The TSR registers are initialized to H'C0 by a reset, and in hardware standby mode.

Bit 7—Count Direction Flag (TCFD): Status flag that shows the direction in which TCNT counts in channels 1 , and 2.

In channel 0 bit 7 is reserved. It is always read as 1 and cannot be modified.

$\frac{\text { Bit } 7}{}$		
TCFD	Description	
0	TCNT counts down	(Initial value)
1	TCNT counts up	

Bit 6-Reserved: Read-only bit, always read as 1.
Bit 5-Underflow Flag (TCFU): Status flag that indicates that TCNT underflow has occurred when channels 1 and 2 are set to phase counting mode.

In channel 0 bit 5 is reserved. It is always read as 0 and cannot be modified.

Bit $\mathbf{5}$		
TCFU	Description	(Initial value)
0	[Clearing condition]	
	When 0 is written to TCFU after reading TCFU $=1$	
1	[Setting condition]	When the TCNT value underflows (changes from H'0000 to H'FFFF)

Bit 4—Overflow Flag (TCFV): Status flag that indicates that TCNT overflow has occurred.

Bit 4

TCFV	Description	(Initial value)
0	[Clearing condition]	
	When 0 is written to TCFV after reading TCFV =1	
1	[Setting condition]	
	When the TCNT value overflows (changes from H'FFFF to H'0000)	

Bit 3—Input Capture/Output Compare Flag D (TGFD): Status flag that indicates the occurrence of TGRD input capture or compare match in channel 0 .

In channels 1 , and 2, bit 3 is reserved. It is always read as 0 and cannot be modified.
Bit 3

| TGFD | Description |
| :--- | :--- | :--- |
| 0 | [Clearing conditions] |
| | - When DTC is activated by TGID interrupt while DISEL bit of MRB in DTC is 0 with |
| | the transfer counter not being 0 |
| | - When 0 is written to TGFD after reading TGFD = 1 |
| 1 | [Setting conditions] |
| | $\bullet \quad$ When TCNT = TGRD while TGRD is functioning as output compare register |
| | - When TCNT value is transferred to TGRD by input capture signal while TGRD is |
| | |
| | functioning as input capture register |

Bit 2—Input Capture/Output Compare Flag C (TGFC): Status flag that indicates the occurrence of TGRC input capture or compare match in channel 0.

In channels 1 , and 2, bit 2 is reserved. It is always read as 0 and cannot be modified.

Bit 2

TGFC Description
$0 \quad$ [Clearing conditions]

- When DTC is activated by TGIC interrupt while DISEL bit of MRB in DTC is 0 with the transfer counter not being 0
- When 0 is written to TGFC after reading TGFC = 1
[Setting conditions]
- When TCNT = TGRC while TGRC is functioning as output compare register
- When TCNT value is transferred to TGRC by input capture signal while TGRC is functioning as input capture register

Bit 1—Input Capture/Output Compare Flag B (TGFB): Status flag that indicates the occurrence of TGRB input capture or compare match.

Bit 1

TGFB Description
$0 \quad$ [Clearing conditions] \quad (Initial value)

- When DTC is activated by TGIB interrupt while DISEL bit of MRB in DTC is 0 with the transfer counter not being 0
- When 0 is written to TGFB after reading TGFB $=1$

1 [Setting conditions]

- When TCNT = TGRB while TGRB is functioning as output compare register
- When TCNT value is transferred to TGRB by input capture signal while TGRB is functioning as input capture register

Bit 0-Input Capture/Output Compare Flag A (TGFA): Status flag that indicates the occurrence of TGRA input capture or compare match.

Bit 0
TGFA Description

0
[Clearing conditions]
(Initial value)

- When DTC is activated by TGIA interrupt while DISEL bit of MRB in DTC is 0 with the transfer counter not being 0
- When 0 is written to TGFA after reading TGFA $=1$
[Setting conditions]
- When TCNT = TGRA while TGRA is functioning as output compare register
- When TCNT value is transferred to TGRA by input capture signal while TGRA is functioning as input capture register

9.2.6 Timer Counter (TCNT)

Channel 0: TCNTO (up-counter)
 Channel 1: TCNT1 (up/down-counter*)
 Channel 2: TCNT2 (up/down-counter*)

Bit

Initial value :

| 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
| :--- |
| | | | | | | | | | | | | | | | |
| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |

R/W : R/W R/W

Note: * These counters can be used as up/down-counters only in phase counting mode. In other cases they function as up-counters.

The TCNT registers are 16-bit counters. The TPU has three TCNT counters, one for each channel.

The TCNT counters are initialized to H'0000 by a reset, and in hardware standby mode.

The TCNT counters cannot be accessed in 8-bit units; they must always be accessed as a 16-bit unit.

9.2.7 Timer General Register (TGR)

R/W : R/W R/W

The TGR registers are 16-bit registers with a dual function as output compare and input capture registers. The TPU has 8 TGR registers, four for channel 0 and two each for channels 1 , and 2. TGRC and TGRD for channel 0 can also be designated for operation as buffer registers*. The TGR registers are initialized to H'FFFF by a reset, and in hardware standby mode.

The TGR registers cannot be accessed in 8-bit units; they must always be accessed as a 16-bit unit.
Note: * TGR buffer register combinations are TGRA—TGRC and TGRB——TGRD.

9.2.8 Timer Start Register (TSTR)

Bit	$:$
	7
	7

TSTR is an 8-bit readable/writable register that selects operation/stoppage for channels 0 to 2 .
TSTR is initialized to $\mathrm{H}^{\prime} 00$ by a reset, and in hardware standby mode.

TCNT counter operation should be stopped when setting the operating mode in TMDR or the TCNT count clock in TCR.

Bits 7 and 3—Reserved: Should always be written with 0.

Bits 2 to 0—Counter Start 2 to 0 (CST2 to CST0): These bits select operation or stoppage for TCNT.

Bit n

CSTn	Description	
0	TCNTn count operation is stopped	(Initial value)
1	TCNTn performs count operation	
$\mathrm{n}=2$ to 0		

Note: If 0 is written to the CST bit during operation with the TIOC pin designated for output, the counter stops but the TIOC pin output compare output level is retained. If TIOR is written to when the CST bit is cleared to 0 , the pin output level will be changed to the set initial output value.

9.2.9 Timer Synchro Register (TSYR)

Bit	7	6	5	4	3	2	1	0
	-	-	-	-	-	SYNC2	SYNC1	SYNC0
Initial value	0	0	0	0	0	0	0	0
R/W	-	-	-	-	-	R/W	R/W	R/W

TSYR is an 8-bit readable/writable register that selects independent operation or synchronous operation for the channel 0 to 2 TCNT counters. A channel performs synchronous operation when the corresponding bit in TSYR is set to 1 .

TSYR is initialized to $\mathrm{H}^{\prime} 00$ by a reset, and in hardware standby mode.
Bits 7 and 3—Reserved: Should always be written with 0 .
Bits 2 to 0-Timer Synchro 2 to 0 (SYNC2 to SYNC0): These bits select whether operation is independent of or synchronized with other channels.

When synchronous operation is selected, synchronous presetting of multiple channels*1 ${ }^{1}$, and synchronous clearing through counter clearing on another channel* ${ }^{2}$ are possible.

Notes: 1. To set synchronous operation, the SYNC bits for at least two channels must be set to 1 .
2. To set synchronous clearing, in addition to the SYNC bit, the TCNT clearing source must also be set by means of bits CCLR2 to CCLR0 in TCR.

Bit n
SYNCn Description
$0 \quad$ TCNTn operates independently (TCNT presetting/clearing is unrelated to other channels)
(Initial value)
1 TCNTn performs synchronous operation
TCNT synchronous presetting/synchronous clearing is possible
Note: $\mathrm{n}=2$ to 0

9.2.10 Module Stop Control Register (MSTPCR)

R/W : R/W R/W

MSTPCR is a 16-bit readable/writable register that performs module stop mode control.

When the MSTP13 bit in MSTPCR is set to 1, TPU operation stops at the end of the bus cycle and a transition is made to module stop mode. For details, see section 18.5, Module Stop Mode.

MSTPCR is initialized to H'3FFF by a reset and in hardware standby mode. It is not initialized in software standby mode.

Bit 13-Module Stop (MSTP13): Specifies the TPU module stop mode.
Bit 13
MSTP13 Description

0	TPU module stop mode cleared	
1	TPU module stop mode set	(Initial value)

9.3 Interface to Bus Master

9.3.1 16-Bit Registers

TCNT and TGR are 16-bit registers. As the data bus to the bus master is 16 bits wide, these registers can be read and written to in 16-bit units.

These registers cannot be read or written to in 8-bit units; 16-bit access must always be used.
An example of 16-bit register access operation is shown in figure 9.2.

Figure 9.2 16-Bit Register Access Operation [Bus Master \leftrightarrow TCNT (16 Bits)]

9.3.2 8-Bit Registers

Registers other than TCNT and TGR are 8 -bit. As the data bus to the CPU is 16 bits wide, these registers can be read and written to in 16 -bit units. They can also be read and written to in 8 -bit units.

Examples of 8 -bit register access operation are shown in figures 9.3 to 9.5 .

Figure 9.3 8-Bit Register Access Operation [Bus Master \leftrightarrow TCR (Upper 8 Bits)]

Figure 9.4 8-Bit Register Access Operation [Bus Master \leftrightarrow TMDR (Lower 8 Bits)]

Figure 9.5 8-Bit Register Access Operation [Bus Master \leftrightarrow TCR and TMDR (16 Bits)]

9.4 Operation

9.4.1 Overview

Operation in each mode is outlined below.

Normal Operation

Each channel has a TCNT and TGR register. TCNT performs up-counting, and is also capable of free-running operation, synchronous counting, and external event counting.

Each TGR can be used as an input capture register or output compare register.

Synchronous Operation

When synchronous operation is designated for a channel, TCNT for that channel performs synchronous presetting. That is, when TCNT for a channel designated for synchronous operation is rewritten, the TCNT counters for the other channels are also rewritten at the same time. Synchronous clearing of the TCNT counters is also possible by setting the timer synchronization bits in TSYR for channels designated for synchronous operation.

Buffer Operation

- When TGR is an output compare register

When a compare match occurs, the value in the buffer register for the relevant channel is transferred to TGR.

- When TGR is an input capture register When input capture occurs, the value in TCNT is transfer to TGR and the value previously held in TGR is transferred to the buffer register.

PWM Mode

In this mode, a PWM waveform is output. The output level can be set by means of TIOR. A PWM waveform with a duty of between 0% and 100% can be output, according to the setting of each TGR register.

Phase Counting Mode

In this mode, TCNT is incremented or decremented by detecting the phases of two clocks input from the external clock input pins in channels 1 , and 2 . When phase counting mode is set, the corresponding TCLK pin functions as the clock pin, and TCNT performs up- or down-counting.

This can be used for two-phase encoder pulse input.

9.4.2 Basic Functions

Counter Operation

When one of bits CST0 to CST2 is set to 1 in TSTR, the TCNT counter for the corresponding channel starts counting. TCNT can operate as a free-running counter, periodic counter, and so on.

Example of count operation setting procedure: Figure 9.6 shows an example of the count operation setting procedure.

Figure 9.6 Example of Counter Operation Setting Procedure

Free-running count operation and periodic count operation: Immediately after a reset, the TPU's TCNT counters are all designated as free-running counters. When the relevant bit in TSTR is set to 1 the corresponding TCNT counter starts up-count operation as a free-running counter. When TCNT overflows (from H'FFFF to H'0000), the TCFV bit in TSR is set to 1 . If the value of the corresponding TCIEV bit in TIER is 1 at this point, the TPU requests an interrupt. After overflow, TCNT starts counting up again from H'0000.

Figure 9.7 illustrates free-running counter operation.

Figure 9.7 Free-Running Counter Operation
When compare match is selected as the TCNT clearing source, the TCNT counter for the relevant channel performs periodic count operation. The TGR register for setting the period is designated as an output compare register, and counter clearing by compare match is selected by means of bits CCLR2 to CCLR0 in TCR. After the settings have been made, TCNT starts up-count operation as periodic counter when the corresponding bit in TSTR is set to 1 . When the count value matches the value in TGR, the TGF bit in TSR is set to 1 and TCNT is cleared to $\mathrm{H}^{\prime} 0000$.

If the value of the corresponding TGIE bit in TIER is 1 at this point, the TPU requests an interrupt. After a compare match, TCNT starts counting up again from $\mathrm{H}^{\prime} 0000$.

Figure 9.8 illustrates periodic counter operation.

Figure 9.8 Periodic Counter Operation

Waveform Output by Compare Match

The TPU can perform 0,1 , or toggle output from the corresponding output pin using compare match.

Example of setting procedure for waveform output by compare match: Figure 9.9 shows an example of the setting procedure for waveform output by compare match

Figure 9.9 Example Of Setting Procedure For Waveform Output By Compare Match

Examples of waveform output operation: Figure 9.10 shows an example of 0 output/1 output.
In this example TCNT has been designated as a free-running counter, and settings have been made so that 1 is output by compare match A , and 0 is output by compare match B . When the set level and the pin level coincide, the pin level does not change.

Figure 9.10 Example of $\mathbf{0}$ Output/1 Output Operation
Figure 9.11 shows an example of toggle output.
In this example TCNT has been designated as a periodic counter (with counter clearing performed by compare match B), and settings have been made so that output is toggled by both compare match A and compare match B.

Figure 9.11 Example of Toggle Output Operation

Input Capture Function

The TCNT value can be transferred to TGR on detection of the TIOC pin input edge.

Rising edge, falling edge, or both edges can be selected as the detected edge.
Example of input capture operation setting procedure: Figure 9.12 shows an example of the input capture operation setting procedure.

Figure 9.12 Example of Input Capture Operation Setting Procedure

Example of input capture operation: Figure 9.13 shows an example of input capture operation.
In this example both rising and falling edges have been selected as the TIOCA pin input capture input edge, falling edge has been selected as the TIOCB pin input capture input edge, and counter clearing by TGRB input capture has been designated for TCNT.

Figure 9.13 Example of Input Capture Operation

9.4.3 Synchronous Operation

In synchronous operation, the values in a number of TCNT counters can be rewritten simultaneously (synchronous presetting). Also, a number of TCNT counters can be cleared simultaneously by making the appropriate setting in TCR (synchronous clearing).

Synchronous operation enables TGR to be incremented with respect to a single time base.
Channels 0 to 2 can all be designated for synchronous operation.

Example of Synchronous Operation Setting Procedure

Figure 9.14 shows an example of the synchronous operation setting procedure.

Figure 9.14 Example of Synchronous Operation Setting Procedure

Example of Synchronous Operation

Figure 9.15 shows an example of synchronous operation.
In this example, synchronous operation and PWM mode 1 have been designated for channels 0 to 2, TGR0B compare match has been set as the channel 0 counter clearing source, and synchronous clearing has been set for the channel 1 and 2 counter clearing source.

Three-phase PWM waveforms are output from pins TIOC0A, TIOC1A, and TIOC2A. At this time, synchronous presetting, and synchronous clearing by TGR0B compare match, is performed for channel 0 to 2 TCNT counters, and the data set in TGR0B is used as the PWM cycle.

For details of PWM modes, see section 9.4.5, PWM Modes.

Figure 9.15 Example of Synchronous Operation

9.4.4 Buffer Operation

Buffer operation, provided for channel 0 enables TGRC and TGRD to be used as buffer registers.
Buffer operation differs depending on whether TGR has been designated as an input capture register or as a compare match register.

Table 9.5 shows the register combinations used in buffer operation.
Table 9.5 Register Combinations in Buffer Operation

Channel	Timer General Register	Buffer Register
0	TGR0A	TGR0C
	TGR0B	TGR0D

When TGR is an output compare register: When a compare match occurs, the value in the buffer register for the corresponding channel is transferred to the timer general register.

This operation is illustrated in figure 9.16.

Figure 9.16 Compare Match Buffer Operation
When TGR is an input capture register: When input capture occurs, the value in TCNT is transferred to TGR and the value previously held in the timer general register is transferred to the buffer register.

This operation is illustrated in figure 9.17.

Figure 9.17 Input Capture Buffer Operation

Example of Buffer Operation Setting Procedure

Figure 9.18 shows an example of the buffer operation setting procedure.

Figure 9.18 Example of Buffer Operation Setting Procedure

Examples of Buffer Operation

When TGR is an output compare register: Figure 9.19 shows an operation example in which PWM mode 1 has been designated for channel 0 , and buffer operation has been designated for TGRA and TGRC. The settings used in this example are TCNT clearing by compare match B, 1 output at compare match A , and 0 output at compare match B .

As buffer operation has been set, when compare match A occurs the output changes and the value in buffer register TGRC is simultaneously transferred to timer general register TGRA. This operation is repeated each time compare match A occurs.

For details of PWM modes, see section 9.4.5, PWM Modes.

Figure 9.19 Example of Buffer Operation (1)

When TGR is an input capture register: Figure 9.20 shows an operation example in which TGRA has been designated as an input capture register, and buffer operation has been designated for TGRA and TGRC.

Counter clearing by TGRA input capture has been set for TCNT, and both rising and falling edges have been selected as the TIOCA pin input capture input edge.

As buffer operation has been set, when the TCNT value is stored in TGRA upon occurrence of input capture A, the value previously stored in TGRA is simultaneously transferred to TGRC.

Figure 9.20 Example of Buffer Operation (2)

9.4.5 PWM Modes

In PWM mode, PWM waveforms are output from the output pins. 0,1 , or toggle output can be selected as the output level in response to compare match of each TGR.

Designating TGR compare match as the counter clearing source enables the period to be set in that register. All channels can be designated for PWM mode independently. Synchronous operation is also possible.

There are two PWM modes, as described below.

- PWM mode 1

PWM output is generated from the TIOCA and TIOCC pins by pairing TGRA with TGRB and TGRC with TGRD. The output specified by bits IOA3 to IOA0 and IOC3 to IOC0 in TIOR is output from the TIOCA and TIOCC pins at compare matches A and C, and the output specified by bits IOB3 to IOB0 and IOD3 to IOD0 in TIOR is output at compare matches B and D . The initial output value is the value set in TGRA or TGRC. If the set values of paired TGRs are identical, the output value does not change when a compare match occurs.
In PWM mode 1, a maximum 4-phase PWM output is possible.

- PWM mode 2

PWM output is generated using one TGR as the cycle register and the others as duty registers. The output specified in TIOR is performed by means of compare matches. Upon counter clearing by a synchronization register compare match, the output value of each pin is the initial value set in TIOR. If the set values of the cycle and duty registers are identical, the output value does not change when a compare match occurs.
In PWM mode 2, a maximum 7-phase PWM output is possible by combined use with synchronous operation.

The correspondence between PWM output pins and registers is shown in table 9.6.
Table 9.6 PWM Output Registers and Output Pins

Channel	Registers	Output Pins	
		PWM Mode 1	PWM Mode 2
0	TGR0A	TIOCA0	TIOCA0
	TGR0B		TIOCB0
	TGR0C	TIOCC0	TIOCC0
	TGR0D		TIOCD0
1	TGR1A	TIOCA1	TIOCA1
	TGR1B		TIOCB1
2	TGR2A	TIOCA2	TIOCA2
	TGR2B		TIOCB2

Note: In PWM mode 2, PWM output is not possible for the TGR register in which the period is set.

Example of PWM Mode Setting Procedure

Figure 9.21 shows an example of the PWM mode setting procedure.

Figure 9.21 Example of PWM Mode Setting Procedure

Examples of PWM Mode Operation

Figure 9.22 shows an example of PWM mode 1 operation.
In this example, TGRA compare match is set as the TCNT clearing source, 0 is set for the TGRA initial output value and output value, and 1 output is set as the TGRB output value.

In this case, the value set in TGRA is used as the period, and the values set in TGRB registers as the duty.

Figure 9.22 Example of PWM Mode Operation (1)
Figure 9.23 shows an example of PWM mode 2 operation.
In this example, synchronous operation is designated for channels 0 and 1, TGR1B compare match is set as the TCNT clearing source, and 0 is set for the initial output value and 1 for the output value of the other TGR registers, to output a 5-phase PWM waveform.

In this case, the value set in TGR1B is used as the cycle, and the values set in the other TGRs as the duty.

Figure 9.23 Example of PWM Mode Operation (2)

Figure 9.24 shows examples of PWM waveform output with 0% duty and 100% duty in PWM mode.

Output does not change when cycle register and duty register compare matches occur simultaneously

Output does not change when cycle register and duty register compare matches occur simultaneously

Figure 9.24 Example of PWM Mode Operation (3)

9.4.6 Phase Counting Mode

In phase counting mode, the phase difference between two external clock inputs is detected and TCNT is incremented/decremented accordingly. This mode can be set for channels 1 , and 2.

When phase counting mode is set, an external clock is selected as the counter input clock and TCNT operates as an up/down-counter regardless of the setting of bits TPSC2 to TPSC0 and bits CKEG1 and CKEG0 in TCR. However, the functions of bits CCLR1 and CCLR0 in TCR, and of TIOR, TIER, and TGR are valid, and input capture/compare match and interrupt functions can be used.

When overflow occurs while TCNT is counting up, the TCFV flag in TSR is set; when underflow occurs while TCNT is counting down, the TCFU flag is set.

The TCFD bit in TSR is the count direction flag. Reading the TCFD flag provides an indication of whether TCNT is counting up or down.

Table 9.7 shows the correspondence between external clock pins and channels.
Table 9.7 Phase Counting Mode Clock Input Pins

	External Clock Pins	
Channels	A-Phase	B-Phase
When channel 1 is set to phase counting mode	TCLKA	TCLKB
When channel 2 is set to phase counting mode	TCLKC	TCLKD

Example of Phase Counting Mode Setting Procedure

Figure 9.25 shows an example of the phase counting mode setting procedure.

Figure 9.25 Example of Phase Counting Mode Setting Procedure

Examples of Phase Counting Mode Operation

In phase counting mode, TCNT counts up or down according to the phase difference between two external clocks. There are four modes, according to the count conditions.

Phase counting mode 1: Figure 9.26 shows an example of phase counting mode 1 operation, and table 9.8 summarizes the TCNT up/down-count conditions.

Figure 9.26 Example of Phase Counting Mode 1 Operation

Table 9.8 Up/Down-Count Conditions in Phase Counting Mode 1

TCLKA (Channel 1) TCLKC (Channel 2)	TCLKB (Channel 1) TCLKD (Channel 2)	Operation
High level	\checkmark	Up-count
Low level	\downarrow	
5	Low level	
7	High level	
High level	\downarrow	Down-count
Low level	\leqslant	
4	High level	
\downarrow	Low level	

Legend:
手: Rising edge
₹: Falling edge

Phase counting mode 2: Figure 9.27 shows an example of phase counting mode 2 operation, and table 9.9 summarizes the TCNT up/down-count conditions.

Figure 9.27 Example of Phase Counting Mode 2 Operation
Table 9.9 Up/Down-Count Conditions in Phase Counting Mode 2

TCLKA (Channel 1) TCLKC (Channel 2)	TCLKB (Channel 1) TCLKD (Channel 2)	Operation
High level	\checkmark	Don't care
Low level	を	
$\stackrel{ }{ }$	Low level	
Z	High level	Up-count
High level	を	Don't care
Low level	\checkmark	
F	High level	
\downarrow	Low level	Down-count

Legend:
\uparrow : Rising edge
Z: Falling edge

Phase counting mode 3: Figure 9.28 shows an example of phase counting mode 3 operation, and table 9.10 summarizes the TCNT up/down-count conditions.

Figure 9.28 Example of Phase Counting Mode 3 Operation
Table 9.10 Up/Down-Count Conditions in Phase Counting Mode 3

TCLKA (Channel 1) TCLKC (Channel 2)	TCLKB (Channel 1) TCLKD (Channel 2)	Operation
High level	5	Don't care
Low level	7	
5	Low level	
V	High level	Up-count
High level	V	Down-count
Low level	\checkmark	Don't care
\uparrow	High level	
V	Low level	

Legend:
F: Rising edge
Z: Falling edge

Phase counting mode 4: Figure 9.29 shows an example of phase counting mode 4 operation, and table 9.11 summarizes the TCNT up/down-count conditions.

Figure 9.29 Example of Phase Counting Mode 4 Operation
Table 9.11 Up/Down-Count Conditions in Phase Counting Mode 4

TCLKA (Channel 1) TCLKC (Channel 2)	TCLKB (Channel 1) TCLKD (Channel 2)	Operation
High level	\checkmark	Up-count
Low level	を	
F	Low level	Don't care
Z	High level	
High level	を	Down-count
Low level	$\stackrel{4}{4}$	
$\stackrel{5}{5}$	High level	Don't care
\downarrow	Low level	

Legend:
F: Rising edge
Z: Falling edge

9.5 Interrupts

9.5.1 Interrupt Sources and Priorities

There are three kinds of TPU interrupt source: TGR input capture/compare match, TCNT overflow, and TCNT underflow. Each interrupt source has its own status flag and enable/disabled bit, allowing generation of interrupt request signals to be enabled or disabled individually.

When an interrupt request is generated, the corresponding status flag in TSR is set to 1 . If the corresponding enable/disable bit in TIER is set to 1 at this time, an interrupt is requested. The interrupt request is cleared by clearing the status flag to 0 .

Relative channel priorities can be changed by the interrupt controller, but the priority order within a channel is fixed. For details, see section 5, Interrupt Controller.

Table 9.12 lists the TPU interrupt sources.
Table 9.12 TPU Interrupts

Channel	Interrupt Source	Description	DTC Activation	Priority
0	TGIOA	TGR0A input capture/compare match	Possible	High
	TGIOB	TGROB input capture/compare match	Possible	
	TGIOC	TGR0C input capture/compare match	Possible	
	TGIOD	TGROD input capture/compare match	Possible	
	TCIOV	TCNT0 overflow	Not possible	
1	TGI1A	TGR1A input capture/compare match	Possible	
	TGI1B	TGR1B input capture/compare match	Possible	
	TCI1V	TCNT1 overflow	Not possible	
	TCI1U	TCNT1 underflow	Not possible	
2	TGI2A	TGR2A input capture/compare match	Possible	
	TGI2B	TGR2B input capture/compare match	Possible	
	TCI2V	TCNT2 overflow	Not possible	
	TCI2U	TCNT2 underflow	Not possible	Low

Note: This table shows the initial state immediately after a reset. The relative channel priorities can be changed by the interrupt controller.

Input Capture/Compare Match Interrupt: An interrupt is requested if the TGIE bit in TIER is set to 1 when the TGF flag in TSR is set to 1 by the occurrence of a TGR input capture/compare match on a particular channel. The interrupt request is cleared by clearing the TGF flag to 0 . The TPU has 8 input capture/compare match interrupts, four for channel 0 , and two each for channels 1 , and 2.

Overflow Interrupt: An interrupt is requested if the TCIEV bit in TIER is set to 1 when the TCFV flag in TSR is set to 1 by the occurrence of TCNT overflow on a particular channel. The interrupt request is cleared by clearing the TCFV flag to 0 . The TPU has three overflow interrupts, one for each channel.

Underflow Interrupt: An interrupt is requested if the TCIEU bit in TIER is set to 1 when the TCFU flag in TSR is set to 1 by the occurrence of TCNT underflow on channel. The interrupt request is cleared by clearing the TCFU flag to 0 . The TPU has two underflow interrupts, one each for channels 1 , and 2.

9.5.2 DTC Activation

DTC Activation: The DTC can be activated by the TGR input capture/compare match interrupt for a channel. For details, see section 7, Data Transfer Controller.

A total of 8 TPU input capture/compare match interrupts can be used as DTC activation sources, four for channels 0 , and two each for channels 1 , and 2 .

9.5.3 A/D Converter Activation

The A/D converter can be activated by the TGRA input capture/compare match for a channel.
If the TTGE bit in TIER is set to 1 when the TFGA flag in TSR is set to 1 by the occurrence of a TGRA input capture/compare match on a particular channel, a request to start A/D conversion is sent to the A/D converter. If the TPU conversion start trigger has been selected on the A/D converter side at this time, A/D conversion is started.

In the TPU, a total of three TGRA input capture/compare match interrupts can be used as A/D converter conversion start sources, one for each channel.

9.6 Operation Timing

9.6.1 Input/Output Timing

TCNT Count Timing

Figure 9.30 shows TCNT count timing in internal clock operation, and figure 9.31 shows TCNT count timing in external clock operation.

Figure 9.30 Count Timing in Internal Clock Operation

Figure 9.31 Count Timing in External Clock Operation

Output Compare Output Timing

A compare match signal is generated in the final state in which TCNT and TGR match (the point at which the count value matched by TCNT is updated). When a compare match signal is generated, the output value set in TIOR is output at the output compare output pin (TIOC pin). After a match between TCNT and TGR, the compare match signal is not generated until the TCNT input clock is generated.

Figure 9.32 shows output compare output timing.

Figure 9.32 Output Compare Output Timing

Input Capture Signal Timing

Figure 9.33 shows input capture signal timing.

Figure 9.33 Input Capture Input Signal Timing

Timing for Counter Clearing by Compare Match/Input Capture

Figure 9.34 shows the timing when counter clearing by compare match occurrence is specified, and figure 9.35 shows the timing when counter clearing by input capture occurrence is specified.

Figure 9.34 Counter Clear Timing (Compare Match)

Figure 9.35 Counter Clear Timing (Input Capture)

Buffer Operation Timing

Figures 9.36 and 9.37 show the timing in buffer operation.

Figure 9.36 Buffer Operation Timing (Compare Match)

Figure 9.37 Buffer Operation Timing (Input Capture)

9.6.2 Interrupt Signal Timing

TGF Flag Setting Timing in Case of Compare Match

Figure 9.38 shows the timing for setting of the TGF flag in TSR by compare match occurrence, and TGI interrupt request signal timing.

Figure 9.38 TGI Interrupt Timing (Compare Match)

TGF Flag Setting Timing in Case of Input Capture

Figure 9.39 shows the timing for setting of the TGF flag in TSR by input capture occurrence, and TGI interrupt request signal timing.
ϕ

Input capture signal

TGF flag

TGI interrupt

Figure 9.39 TGI Interrupt Timing (Input Capture)

TCFV Flag/TCFU Flag Setting Timing

Figure 9.40 shows the timing for setting of the TCFV flag in TSR by overflow occurrence, and TCIV interrupt request signal timing.

Figure 9.41 shows the timing for setting of the TCFU flag in TSR by underflow occurrence, and TCIU interrupt request signal timing.

Figure 9.40 TCIV Interrupt Setting Timing

Figure 9.41 TCIU Interrupt Setting Timing

Status Flag Clearing Timing

After a status flag is read as 1 by the CPU, it is cleared by writing 0 to it. When the DTC is activated, the flag is cleared automatically. Figure 9.42 shows the timing for status flag clearing by the CPU, and figure 9.43 shows the timing for status flag clearing by the DTC.

Figure 9.42 Timing for Status Flag Clearing by CPU

Figure 9.43 Timing for Status Flag Clearing by DTC Activation

9.7 Usage Notes

Note that the kinds of operation and contention described below occur during TPU operation.

Module Stop Mode Setting

TPU operation can be disabled or enabled using the module stop control register. The initial setting is for TPU operation to be halted. Register access is enabled by clearing module stop mode. For details, refer to section 18, Power-Down Modes.

Input Clock Restrictions

The input clock pulse width must be at least 1.5 states in the case of single-edge detection, and at least 2.5 states in the case of both-edge detection. The TPU will not operate properly with a narrower pulse width.

In phase counting mode, the phase difference and overlap between the two input clocks must be at least 1.5 states, and the pulse width must be at least 2.5 states. Figure 9.44 shows the input clock conditions in phase counting mode.

Figure 9.44 Phase Difference, Overlap, and Pulse Width in Phase Counting Mode

Caution on Period Setting

When counter clearing by compare match is set, TCNT is cleared in the final state in which it matches the TGR value (the point at which the count value matched by TCNT is updated). Consequently, the actual counter frequency is given by the following formula:

$$
f=\frac{\phi}{(N+1)}
$$

Where f: Counter frequency
ϕ : Operating frequency
N : TGR set value

Contention between TCNT Write and Clear Operations

If the counter clear signal is generated in the T2 state of a TCNT write cycle, TCNT clearing takes precedence and the TCNT write is not performed.

Figure 9.45 shows the timing in this case.

Figure 9.45 Contention between TCNT Write and Clear Operations

Contention between TCNT Write and Increment Operations

If incrementing occurs in the T 2 state of a TCNT write cycle, the TCNT write takes precedence and TCNT is not incremented.

Figure 9.46 shows the timing in this case.

Figure 9.46 Contention between TCNT Write and Increment Operations

Contention between TGR Write and Compare Match

If a compare match occurs in the T2 state of a TGR write cycle, the TGR write takes precedence and the compare match signal is prohibited. A compare match does not occur even if the same value as before is written.

Figure 9.47 shows the timing in this case.

Figure 9.47 Contention between TGR Write and Compare Match

Contention between Buffer Register Write and Compare Match

If a compare match occurs in the T 2 state of a TGR write cycle, the data transferred to TGR by the buffer operation will be the data prior to the write.

Figure 9.48 shows the timing in this case.

Figure 9.48 Contention between Buffer Register Write and Compare Match

Contention between TGR Read and Input Capture

If the input capture signal is generated in the T1 state of a TGR read cycle, the data that is read will be the data after input capture transfer.

Figure 9.49 shows the timing in this case.

Figure 9.49 Contention between TGR Read and Input Capture

Contention between TGR Write and Input Capture

If the input capture signal is generated in the T2 state of a TGR write cycle, the input capture operation takes precedence and the write to TGR is not performed.

Figure 9.50 shows the timing in this case.

Figure 9.50 Contention between TGR Write and Input Capture

Contention between Buffer Register Write and Input Capture

If the input capture signal is generated in the T 2 state of a buffer write cycle, the buffer operation takes precedence and the write to the buffer register is not performed.

Figure 9.51 shows the timing in this case.

Figure 9.51 Contention between Buffer Register Write and Input Capture

Contention between Overflow/Underflow and Counter Clearing

If overflow/underflow and counter clearing occur simultaneously, the TCFV/TCFU flag in TSR is not set and TCNT clearing takes precedence.

Figure 9.52 shows the operation timing when a TGR compare match is specified as the clearing source, and H'FFFF is set in TGR.

Figure 9.52 Contention between Overflow and Counter Clearing

Contention between TCNT Write and Overflow/Underflow

If there is an up-count or down-count in the T2 state of a TCNT write cycle, and overflow/underflow occurs, the TCNT write takes precedence and the TCFV/TCFU flag in TSR is not set.

Figure 9.53 shows the operation timing in the case of contention between a TCNT write and overflow.

Figure 9.53 Contention between TCNT Write and Overflow

Multiplexing of I/O Pins

In the H8S/2245 Group, the TCLKA input pin is multiplexed with the TIOCC0 I/O pin, the TCLKB input pin with the TIOCD0 I/O pin, the TCLKC input pin with the TIOCB1 I/O pin, and the TCLKD input pin with the TIOCB2 I/O pin. When an external clock is input, compare match output should not be performed from a multiplexed pin.

Interrupts and Module Stop Mode

If module stop mode is entered when an interrupt has been requested, it will not be possible to clear the CPU interrupt source or DTC activation source. Interrupts should therefore be disabled before entering module stop mode.

Section 10 8-Bit Timers

10.1 Overview

The H8S/2245 Group includes an 8-bit timer module with two channels (TMR0 and TMR1). Each channel has an 8 -bit counter (TCNT) and two time constant registers (TCORA and TCORB) that are constantly compared with the TCNT value to detect compare match events. The 8 -bit timer module can thus be used for a variety of functions, including pulse output with an arbitrary duty cycle.

10.1.1 Features

- Selection of four clock sources

The counters can be driven by one of three internal clock signals ($\phi / 8, \phi / 64$, or $\phi / 8192$) or an external clock input (enabling use as an external event counter).

- Selection of three ways to clear the counters

The counters can be cleared on compare match A or B, or by an external reset signal.

- Timer output control by a combination of two compare match signals

The timer output signal in each channel is controlled by a combination of two independent compare match signals, enabling the timer to generate output waveforms with an arbitrary duty cycle or PWM output.

- Provision for cascading of two channels
- Operation as a 16 -bit timer is possible, using channel 0 for the upper 8 bits and channel 1 for the lower 8 bits (16 -bit count mode).
- Channel 1 can be used to count channel 0 compare matches (compare match count mode).
- Three independent interrupts

Compare match A and B and overflow interrupts can be requested independently.

- Module stop mode can be set
- As the initial setting, 8 -bit timer operation is halted. Register access is enabled by exiting module stop mode.

10.1.2 Block Diagram

Figure 10.1 shows a block diagram of the 8 -bit timer module.

Figure 10.1 Block Diagram of 8-Bit Timer

10.1.3 Pin Configuration

Table 10.1 summarizes the input and output pins of the 8 -bit timer.
Table 10.1 Input and Output Pins of 8-Bit Timer

Channel	Name	Symbol	I/O	Function
0	Timer output pin 0	TMO0	Output	Outputs at compare match
	Timer clock input pin 0	TMCI0	Input	Inputs external clock for counter
	Timer reset input pin 0	TMRI0	Input	Inputs external reset to counter
1	Timer output pin 1	TMO1	Output	Outputs at compare match
	Timer clock input pin 1	TMCI1	Input	Inputs external clock for counter
	Timer reset input pin 1	TMRI1	Input	Inputs external reset to counter

10.1.4 Register Configuration

Table 10.2 summarizes the registers of the 8 -bit timer module.
Table 10.2 8-Bit Timer Registers

Channel	Name	Abbreviation	R/W	Initial Value	Address* ${ }^{1}$
0	Timer control register 0	TCR0	R/W	H'00	H'FFB0
	Timer control/status register 0	TCSR0	$\mathrm{R} /(\mathrm{W})$ * 2	H'00	H'FFB2
	Time constant register A0	TCORA0	R/W	H'FF	H'FFB4
	Time constant register B0	TCORB0	R/W	H'FF	H'FFB6
	Timer counter 0	TCNT0	R/W	$\mathrm{H}^{\prime} 00$	H'FFB8
1	Timer control register 1	TCR1	R/W	H'00	H'FFB1
	Timer control/status register 1	TCSR1	R/(W)*2	H'10	H'FFB3
	Time constant register A1	TCORA1	R/W	H'FF	H'FFB5
	Time constant register B1	TCORB1	R/W	H'FF	H'FFB7
	Timer counter 1	TCNT1	R/W	$\mathrm{H}^{\prime} 00$	H'FFB9
All	Module stop control register	MSTPCR	R/W	H'3FFF	H'FF3C

Notes: 1. Lower 16 bits of the address
2. Only 0 can be written to bits 7 to 5 , to clear these flags.

Each pair of registers for channel 0 and channel 1 is a 16-bit register with the upper 8 bits for channel 0 and the lower 8 bits for channel 1 , so they can be accessed together by word transfer instruction.

10.2 Register Descriptions

10.2.1 Timer Counters 0 and 1 (TCNT0, TCNT1)

	TCNTO								TCNT1							
Bit :	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Initial value:	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

R/W : R/W R/W

TCNT0 and TCNT1 are 8-bit readable/writable up-counters that increment on pulses generated from an internal or external clock source. This clock source is selected by clock select bits CKS2 to CKS0 of TCR. The CPU can read or write to TCNT0 and TCNT1 at all times.

TCNT0 and TCNT1 comprise a single 16-bit register, so they can be accessed together by word transfer instruction.

TCNT0 and TCNT1 can be cleared by an external reset input or by a compare match signal.
Which signal is to be used for clearing is selected by clock clear bits CCLR1 and CCLR0 of TCR.
When a timer counter overflows from H'FF to $\mathrm{H}^{\prime} 00$, OVF in TCSR is set to 1 .

TCNT0 and TCNT1 are each initialized to H'00 by a reset and in hardware standby mode.

10.2.2 Time Constant Registers A0 and A1 (TCORA0, TCORA1)

R/W : R/W R/W

TCORA0 and TCORA1 are 8 -bit readable/writable registers. TCORA0 and TCORA1 comprise a single 16-bit register so they can be accessed together by word transfer instruction.

TCORA is continually compared with the value in TCNT. When a match is detected, the corresponding CMFA flag of TCSR is set. Note, however, that comparison is disabled during the T2 state of a TCORA write cycle.

The timer output can be freely controlled by these compare match signals and the settings of output select bits OS1 and OS0 of TCSR.

TCORA0 and TCORA1 are each initialized to H'FF by a reset and in hardware standby mode.

10.2.3 Time Constant Registers B0 and B1 (TCORB0, TCORB1)

R/W : R/W R/W

TCORB0 and TCORB1 are 8-bit readable/writable registers. TCORB0 and TCORB1 comprise a single 16-bit register so they can be accessed together by word transfer instruction.

TCORB is continually compared with the value in TCNT. When a match is detected, the corresponding CMFB flag of TCSR is set. Note, however, that comparison is disabled during the T2 state of a TCORB write cycle.

The timer output can be freely controlled by these compare match signals and the settings of output select bits OS3 and OS2 of TCSR.

TCORB0 and TCORB1 are each initialized to H'FF by a reset and in hardware standby mode.

10.2.4 Time Control Registers 0 and 1 (TCR0, TCR1)

| Bit | $:$ | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | CMIEB | CMIEA | OVIE | CCLR1 | CCLR0 | CKS2 | CKS1 | CKS0 | |
|
 Initial value: 0 0 0 0 0 0 0
 R/W $:$ R/W R/W R/W R/W R/W R/W
 R/W/W R/W | | | | | | | | | |

TCR0 and TCR1 are 8-bit readable/writable registers that select the clock source and the time at which TCNT is cleared, and enable interrupts.

TCR0 and TCR1 are each initialized to $\mathrm{H}^{\prime} 00$ by a reset and in hardware standby mode.
For details of this timing, see section 10.3, Operation.
Bit 7—Compare Match Interrupt Enable B (CMIEB): Selects whether CMFB interrupt requests (CMIB) are enabled or disabled when the CMFB flag of TCSR is set to 1 .

Bit 7

CMIEB	Description	
0	CMFB interrupt requests (CMIB) are disabled	(Initial value)
1	CMFB interrupt requests (CMIB) are enabled	

Bit 6—Compare Match Interrupt Enable A (CMIEA): Selects whether CMFA interrupt requests (CMIA) are enabled or disabled when the CMFA flag of TCSR is set to 1 .

Bit 6

CMIEA Description

0	CMFA interrupt requests (CMIA) are disabled	(Initial value)
1	CMFA interrupt requests (CMIA) are enabled	

Bit 5—Timer Overflow Interrupt Enable (OVIE): Selects whether OVF interrupt requests (OVI) are enabled or disabled when the OVF flag of TCSR is set to 1 .

Bit 5

OVIE	Description	
0	OVF interrupt requests (OVI) are disabled	(Initial value)
1	OVF interrupt requests (OVI) are enabled	

Bits 4 and 3-Counter Clear 1 and 0 (CCLR1 and CCLR0): These bits select the method by which TCNT is cleared: by compare match A or B, or by an external reset input.

Bit $\mathbf{4}$	Bit $\mathbf{3}$		
CCLR1	CCLR $\mathbf{0}$	Description	(Initial value)
0	0	Clear is disabled	
1	Clear by compare match A		
1	0	Clear by compare match B	
1	Clear by rising edge of external reset input		

Bits 2 to 0—Clock Select $\mathbf{2}$ to 0 (CKS2 to CKS0): These bits select whether the clock input to TCNT is an internal or external clock.

Three internal clocks can be selected, all divided from the system clock (ϕ): $\phi / 8, \phi / 64$, and $\phi / 8192$. The falling edge of the selected internal clock triggers the count.

When use of an external clock is selected, three types of count can be selected: at the rising edge, the falling edge, and both rising and falling edges.

Some functions differ between channel 0 and channel 1.

Bit 2	Bit 1	Bit 0	
CKS2	CKS1	CKSO	Description
0	0	0	Clock input disabled (Initial value)
		1	Internal clock, counted at falling edge of $\phi / 8$
	1	0	Internal clock, counted at falling edge of $\phi / 64$
		1	Internal clock, counted at falling edge of $\phi / 8192$
1	0	0	For channel 0: count at TCNT1 overflow signal*
			For channel 1: count at TCNT0 compare match A*
		1	External clock, counted at rising edge
	1	0	External clock, counted at falling edge
		1	External clock, counted at both rising and falling edges

Note: * If the count input of channel 0 is the TCNT1 overflow signal and that of channel 1 is the TCNTO compare match signal, no incrementing clock is generated. Do not use this setting.

10.2.5 Timer Control/Status Registers 0 and 1 (TCSR0, TCSR1)

TCSRO

Bit	7	6	5	4	3	2	1	0
	CMFB	CMFA	OVF	ADTE	OS3	OS2	OS1	OSO
Initial value :	0	0	0	0	0	0	0	0
R/W	$\mathrm{R} / \mathrm{W})^{*}$	R/(W)*	R/(W)*	R/W	R/W	R/W	R/W	R/W

TCSR1

Bit	7	6	5	4	3	2	1	0
	CMFB	CMFA	OVF	-	OS3	OS2	OS1	OSO
Initial value	0	0	0	1	0	0	0	0
R/W	R/(W)*	R/(W)*	R/(W)*	-	R/W	R/W	R/W	R/W

Note: * Only 0 can be written to bits 7 to 5 , to clear these flags.

TCSR0 and TCSR1 are 8-bit registers that display compare match and overflow statuses, and control compare match output.

TCSR0 is initialized to $\mathrm{H}^{\prime} 00$, and TCSR1 to $\mathrm{H}^{\prime} 10$, by a reset and in hardware standby mode.
Bit 7—Compare Match Flag B (CMFB): Status flag indicating whether the values of TCNT and TCORB match.

Bit 7

CMFB Description
0 [Clearing conditions] (Initial value)

- Cleared by reading CMFB when CMFB $=1$, then writing 0 to CMFB
- When DTC is activated by CMIB interrupt while DISEL bit of MRB in DTC is 0 with the transfer counter not being 0

1 [Setting condition] | Set when TCNT matches TCORB |
| :--- |

Bit 6-Compare Match Flag A (CMFA): Status flag indicating whether the values of TCNT and TCORA match.

Bit 6

CMFA	Description	(Initial value)
0	[Clearing conditions]	
	- Cleared by reading CMFA when CMFA $=1$, then writing 0 to CMFA	
	- When DTC is activated by CMIA interrupt while DISEL bit of MRB in DTC is 0 with	
	the transfer counter not being 0	
1	[Setting condition]	
	Set when TCNT matches TCORA	

Bit 5-Timer Overflow Flag (OVF): Status flag indicating that TCNT has overflowed (changed from $\mathrm{H}^{\prime} \mathrm{FF}$ to $\mathrm{H}^{\prime} 00$).

Bit $\mathbf{5}$ OVF Description		
0	[Clearing condition]	(Initial value)
	Cleared by reading OVF when OVF $=1$, then writing 0 to OVF	
1	[Setting condition]	
	Set when TCNT overflows from H'FF to H'00	

Bit 4—A/D Trigger Enable (ADTE) (TCSR0 Only): Selects enabling or disabling of A/D converter start requests by compare-match A.

In TCSR1, this bit is reserved: it is always read as 1 and cannot be modified.
Bit 4

| ADTE | Description | |
| :--- | :--- | :--- | :--- |
| 0 | A/D converter start requests by compare match A are disabled | (Initial value) |
| 1 | A/D converter start requests by compare match A are enabled | |

Bits 3 to 0-Output Select 3 to 0 (OS3 to OSO): These bits specify how the timer output level is to be changed by a compare match of TCOR and TCNT.

Bits OS3 and OS2 select the effect of compare match B on the output level, bits OS1 and OS0 select the effect of compare match A on the output level, and both of them can be controlled independently.

Note, however, that priorities are set such that: toggle output >1 output >0 output. If compare matches occur simultaneously, the output changes according to the compare match with the higher priority.

Timer output is disabled when bits OS3 to OS0 are all 0.
After a reset, the timer output is 0 until the first compare match event occurs.

Bit 3	Bit 2		
OS3	OS2	Description	(Initial value)
0	0	No change when compare match B occurs	
1	0	is output when compare match B occurs	1 is output when compare match B occurs
1	0	Output is inverted when compare match B occurs (toggle output)	

Bit 1	Bit $\mathbf{0}$		
OS1	OS0	Description	(Initial value)
0	0	No change when compare match A occurs	
	1	0 is output when compare match A occurs	
1	0	1 is output when compare match A occurs	
1	Output is inverted when compare match A occurs (toggle output)		

10.2.6 Module Stop Control Register (MSTPCR)

R/W : R/W R/W

MSTPCR is a 16-bit readable/writable register that performs module stop mode control.
When the MSTP12 bit in MSTPCR is set to 1 , the 8 -bit timer operation stops at the end of the bus cycle and a transition is made to module stop mode. Registers cannot be read or written to in module stop mode. For details, see section 18.5, Module Stop Mode.

MSTPCR is initialized to H'3FFF by a reset and in hardware standby mode. It is not initialized in software standby mode.

Bit 12—Module Stop (MSTP12): Specifies the 8-bit timer stop mode.

Bit 12

MSTP12 Description

0	8-bit timer module stop mode cleared	
1	8-bit timer module stop mode set	(Initial value)

10.3 Operation

10.3.1 TCNT Incrementation Timing

TCNT is incremented by input clock pulses (either internal or external).

Internal Clock

Three different internal clock signals ($\phi / 8, \phi / 64$, or $\phi / 8192$) divided from the system clock (ϕ) can be selected, by setting bits CKS2 to CKS0 in TCR. Figure 10.2 shows the count timing.

Figure 10.2 Count Timing for Internal Clock Input

External Clock

Three incrementation methods can be selected by setting bits CKS2 to CKS0 in TCR: at the rising edge, the falling edge, and both rising and falling edges.

Note that the external clock pulse width must be at least 1.5 states for incrementation at a single edge, and at least 2.5 states for incrementation at both edges. The counter will not increment correctly if the pulse width is less than these values.

Figure 10.3 shows the timing of incrementation at both edges of an external clock signal.

Figure 10.3 Count Timing for External Clock Input

10.3.2 Compare Match Timing

Setting of Compare Match Flags A and B (CMFA, CMFB)

The CMFA and CMFB flags in TCSR are set to 1 by a compare match signal generated when the TCOR and TCNT values match. The compare match signal is generated at the last state in which the match is true, just before the timer counter is updated.

Therefore, when TCOR and TCNT match, the compare match signal is not generated until the next incrementation clock input. Figure 10.4 shows this timing.
TCNT

TCOR
Compare match signal
CMF

Figure 10.4 Timing of CMF Setting

Timer output timing

When compare match A or B occurs, the timer output changes a specified by bits OS3 to OS0 in TCSR. Depending on these bits, the output can remain the same, change to 0 , change to 1 , or toggle.

Figure 10.5 shows the timing when the output is set to toggle at compare match A.

Figure 10.5 Timing of Timer Output

Timing of Compare Match Clear

The timer counter is cleared when compare match A or B occurs, depending on the setting of the CCLR1 and CCLR0 bits in TCR. Figure 10.6 shows the timing of this operation.

Figure 10.6 Timing of Compare Match Clear

10.3.3 Timing of External RESET on TCNT

TCNT is cleared at the rising edge of an external reset input, depending on the settings of the CCLR1 and CCLR0 bits in TCR. The clear pulse width must be at least 1.5 states. Figure 10.7 shows the timing of this operation.

Figure 10.7 Timing of External Reset

10.3.4 Timing of Overflow Flag (OVF) Setting

The OVF in TCSR is set to 1 when the timer count overflows (changes from $\mathrm{H}^{\prime} \mathrm{FF}$ to $\mathrm{H}^{\prime} 00$). Figure 10.8 shows the timing of this operation.

Figure 10.8 Timing of OVF Setting

10.3.5 Operation with Cascaded Connection

If bits CKS2 to CKS0 in either TCR0 or TCR1 are set to B'100, the 8 -bit timers of the two channels are cascaded. With this configuration, a single 16 -bit timer could be used (16-bit timer mode) or compare matches of the 8 -bit channel 0 could be counted by the timer of channel 1 (compare match counter mode). In this case, the timer operates as below.

16-Bit Counter Mode

When bits CKS2 to CKS0 in TCR0 are set to B'100, the timer functions as a single 16-bit timer with channel 0 occupying the upper 8 bits and channel 1 occupying the lower 8 bits.

- Setting of compare match flags
- The CMF flag in TCSR0 is set to 1 when a 16 -bit compare match event occurs.
- The CMF flag in TCSR1 is set to 1 when a lower 8-bit compare match event occurs.
- Counter clear specification
- If the CCLR1 and CCLR0 bits in TCR0 have been set for counter clear at compare match, the 16 -bit counter (TCNT0 and TCNT1 together) is cleared when a 16 -bit compare match event occurs. The 16 -bit counter (TCNT0 and TCNT1 together) is cleared even if counter clear by the TMRI0 pin has also been set.
- The settings of the CCLR1 and CCLR0 bits in TCR1 are ignored. The lower 8 bits cannot be cleared independently.
- Pin output
- Control of output from the TMO0 pin by bits OS3 to OS0 in TCSR0 is in accordance with the 16 -bit compare match conditions.
- Control of output from the TMO1 pin by bits OS3 to OS0 in TCSR1 is in accordance with the lower 8-bit compare match conditions.

Compare Match Counter Mode

When bits CKS2 to CKS0 in TCR1 are B'100, TCNT1 counts compare match A's for channel 0 .
Channels 1 and 0 are controlled independently. Conditions such as setting of the CMF flag, generation of interrupts, output from the TMO pin, and counter clear are in accordance with the settings for each channel.

Note on Usage

If the 16 -bit counter mode and compare match counter mode are set simultaneously, the input clock pulses for TCNT0 and TCNT1 are not generated and thus the counters will stop operating. Software should therefore avoid using both these modes.

10.4 Interrupt Sources

10.4.1 Interrupt Sources and DTC Activation

There are three 8-bit timer interrupt sources: CMIA, CMIB, and OVI. Their relative priorities are shown in table 10.3 . Each interrupt source is set as enabled or disabled by the corresponding interrupt enable bit in TCR, and independent interrupt requests are sent for each to the interrupt controller. It is also possible to activate the DTC by means of CMIA and CMIB interrupts.

Table 10.3 8-Bit Timer Interrupt Sources

Channel	Interrupt Source	Description	DTC Activation	Priority
0	CMIA0	Interrupt by CMFA	Possible	High
	CMIB0	Interrupt by CMFB	Possible	
OVI0	Interrupt by OVF	Not possible		
1	CMIA1	Interrupt by CMFA	Possible	
CMIB1	Interrupt by CMFB	Possible		
OVI1	Interrupt by OVF	Not possible	Low	

Note: This table shows the initial state immediately after a reset. The relative channel priorities can be changed by the interrupt controller.

10.4.2 A/D Converter Activation

The A/D converter can be activated only by channel 0 compare match A.
If the ADTE bit in TCSR0 is set to 1 when the CMFA flag is set to 1 by the occurrence of channel 0 compare match A , a request to start A / D conversion is sent to the A / D converter. If the 8 -bit timer conversion start trigger has been selected on the A/D converter side at this time, A/D conversion is started.

10.5 Sample Application

In the example below, the 8 -bit timer is used to generate a pulse output with a selected duty cycle, as shown in figure 10.9. The control bits are set as follows:
[1] In TCR, bit CCLR1 is cleared to 0 and bit CCLR0 is set to 1 so that the timer counter is cleared when its value matches the constant in TCORA.
[2] In TCSR, bits OS3 to OS0 are set to B' 0110 , causing the output to change to 1 at a TCORA compare match and to 0 at a TCORB compare match.

With these settings, the 8 -bit timer provides output of pulses at a rate determined by TCORA with a pulse width determined by TCORB. No software intervention is required.

Figure 10.9 Example of Pulse Output

10.6 Usage Notes

Application programmers should note that the following kinds of contention can occur in the 8-bit timer.

10.6.1 Setting Module Stop Mode

The TMR is enabled or disabled by setting the module stop control register. In the initial state, the TMR is disabled. After the module stop mode is canceled, registers can be accessed. For details, see section 18, Power-Down Modes.

10.6.2 Contention between TCNT Write and Clear

If a timer counter clock pulse is generated during the T2 state of a TCNT write cycle, the clear takes priority, so that the counter is cleared and the write is not performed.

Figure 10.10 shows this operation.

Figure 10.10 Contention between TCNT Write and Clear

10.6.3 Contention between TCNT Write and Increment

If a timer counter clock pulse is generated during the T2 state of a TCNT write cycle, the write takes priority and the counter is not incremented.

Figure 10.11 shows this operation.

Figure 10.11 Contention between TCNT Write and Increment

10.6.4 Contention between TCOR Write and Compare Match

During the T2 state of a TCOR write cycle, the TCOR write has priority even if a compare match event occurs.

Figure 10.12 shows this operation.

Figure 10.12 Contention between TCOR Write and Compare Match

10.6.5 Contention between Compare Matches A and B

If compare match events A and B occur at the same time, the 8 -bit timer operates in accordance with the priorities for the output statuses set for compare match A and compare match B, as shown in table 10.4.

Table 10.4 Timer Output Priorities

Output Setting	Priority
Toggle output	High
1 output	
0 output	Low
No change	

10.6.6 Switching of Internal Clocks and TCNT Operation

TCNT may increment erroneously when the internal clock is switched over. Table 10.5 shows the relationship between the timing at which the internal clock is switched (by writing to the CKS1 and CKSO bits) and the TCNT operation.

When the TCNT clock is generated from an internal clock, the falling edge of the internal clock pulse is detected. If clock switching causes a change from high to low level, as shown in case 3 in table 10.5 , a TCNT clock pulse is generated on the assumption that the switchover is a falling edge. This increments TCNT.

The erroneous incrementation can also happen when switching between internal and external clocks.

Table 10.5 Switching of Internal Clock and TCNT Operation
Timing of Switchover by Means of CKS1
No. and CKSO Bits
1
Switching from low to low*'

2 Switching from low to high**

3 Switching from high to low ${ }^{* 3}$

Notes: 1. Includes switching from low to stop, and from stop to low.
2. Includes switching from stop to high.
3. Includes switching from high to stop.
4. Generated on the assumption that the switchover is a falling edge; TCNT is incremented.

10.6.7 Interrupts and Module Stop Mode

If module stop mode is entered when an interrupt has been requested, it will not be possible to clear the CPU interrupt source or DTC activation source. Interrupts should therefore be disabled before entering module stop mode.

Section 11 Watchdog Timer

11.1 Overview

The H8S/2245 Group has a single-channel on-chip watchdog timer (WDT) for monitoring system operation. The WDT outputs an overflow signal (WDTOVF) if a system crash prevents the CPU from writing to the timer counter, allowing it to overflow. At the same time, the WDT can also generate an internal reset signal for the H8S/2245 Group.

When this watchdog function is not needed, the WDT can be used as an interval timer. In interval timer operation, an interval timer interrupt is generated each time the counter overflows.

11.1.1 Features

WDT features are listed below.

- Switchable between watchdog timer mode and interval timer mode
- $\overline{\mathrm{WDTOVF}}$ output when in watchdog timer mode If the counter overflows, the WDT outputs $\overline{\mathrm{WDTOVF}}$. It is possible to select whether or not the entire H8S/2245 Group is reset at the same time. This internal reset can be a power-on reset or a manual reset.
- Interrupt generation when in interval timer mode

If the counter overflows, the WDT generates an interval timer interrupt.

- Choice of eight counter clock sources.

11.1.2 Block Diagram

Figure 11.1 shows a block diagram of the WDT.

Figure 11.1 Block Diagram of WDT

11.1.3 Pin Configuration

Table 11.1 describes the WDT output pin.
Table 11.1 WDT Pin

Name	Symbol	I/O	Function
Watchdog timer overflow	$\overline{\text { WDTOVF }}$	Output	Outputs counter overflow signal in watchdog timer mode

11.1.4 Register Configuration

The WDT has three registers, as summarized in table 11.2. These registers control clock selection, WDT mode switching, and the reset signal.

Table 11.2 WDT Registers

Name	Abbreviation	R/W	Initial Value	Address* ${ }^{1}$	
				Write* ${ }^{\text {2 }}$	Read
Timer control/status register	TCSR	R/(W)* ${ }^{3}$	H'18	H'FFBC	H'FFBC
Timer counter	TCNT	R/W	H'00	H'FFBC	H'FFBD
Reset control/status register	RSTCSR	R/(W)*3	H'1F	H'FFBE	H'FFBF

Notes: 1. Lower 16 bits of the address.
2. For details of write operations, see section 11.2.4, Notes on Register Access.
3. Only a write of 0 is permitted to bit 7 , to clear the flag.

11.2 Register Descriptions

11.2.1 Timer Counter (TCNT)

Bit	7	6	5	4	3	2	1	0
Initial value :	0	0	0	0	0	0	0	0
R/W								

TCNT is an 8-bit readable/writable* up-counter.

When the TME bit is set to 1 in TCSR, TCNT starts counting pulses generated from the internal clock source selected by bits CKS2 to CKS0 in TCSR. When the count overflows (changes from H'FF to H'00), either the watchdog timer overflow signal ($\overline{\mathrm{WDTOVF}}$) or an interval timer interrupt (WOVI) is generated, depending on the mode selected by the WT/IT bit in TCSR.

TCNT is initialized to H'00 by a reset, in hardware standby mode, or when the TME bit is cleared to 0 . It is not initialized in software standby mode.

Note: * TCNT is write-protected by a password to prevent accidental overwriting. For details see section 11.2.4, Notes on Register Access.

11.2.2 Timer Control/Status Register (TCSR)

Bit	7	6	5	4	3	2	1	0
	OVF	WT/IT	TME	-	-	CKS2	CKS1	CKS0
Initial value:	0	0	0	1	1	0	0	0
R/W	$\mathrm{R} /(\mathrm{W})^{*}$	R/W	R/W	-	-	R/W	R/W	R/W

Note: * Can only be written with 0 for flag clearing.

TCSR is an 8-bit readable/writable* register. Its functions include selecting the clock source to be input to TCNT, and the timer mode.

TCR is initialized to H'18 by a reset and in hardware standby mode. It is not initialized in software standby mode.

Note: * TCSR is write-protected by a password to prevent accidental overwriting. For details see section 11.2.4, Notes on Register Access.

Bit 7—Overflow Flag (OVF): Indicates that TCNT has overflowed from $\mathrm{H}^{\prime} \mathrm{FF}$ to $\mathrm{H}^{\prime} 00$, when in interval timer mode. This flag cannot be set during watchdog timer operation.

Bit 7
OVF Description

0	[Clearing condition]	
	Cleared by reading TCSR when OVF $=1$, then writing 0 to OVF*	(Initial value)

1 [Setting condition]

Set when TCNT overflows (changes from H'FF to $\mathrm{H}^{\prime} \mathrm{OO}$) in interval timer mode
Note: * When OVF is polled and the interval timer interrupt is disabled, OVF = 1 must be read at least twice.

Bit 6-Timer Mode Select (WT/IT): Selects whether the WDT is used as a watchdog timer or interval timer. If used as an interval timer, the WDT generates an interval timer interrupt request (WOVI) when TCNT overflows. If used as a watchdog timer, the WDT generates the WDTOVF signal when TCNT overflows.

Bit 6

WT/IT	Description
0	Interval timer: Sends the CPU an interval timer interrupt request (WOVI) when TCNT overflows (Initial value)
1	Watchdog timer: Generates the WDTOVF signal when TCNT overflows*
Note:	For details of the case where TCNT overflows in watchdog timer mode, see section 11.2.3, Reset Control/Status Register (RSTCSR).

Bit 5—Timer Enable (TME): Selects whether TCNT runs or is halted.

Bit 5		
TME	Description	(Initial value)
0	TCNT is initialized to H'00 and halted	
1	TCNT counts	

Bits 4 and 3-Reserved: Read-only bits, always read as 1.

Bits 2 to 0: Clock Select 2 to 0 (CKS2 to CKSO): These bits select one of eight internal clock sources, obtained by dividing the system clock (ϕ), for input to TCNT.

Bit 2	Bit 1	Bit 0	Description	
CKS2	CKS1	CKS0	Clock	Overflow period (when $\phi=\mathbf{2 0} \mathbf{~ M H z}$) ${ }^{\text {* }}$
0	0	0	$\phi / 2$ (initial value)	25.6 ¢
		1	¢/64	819.2 ¢
	1	0	¢/128	1.6 ms
		1	¢/512	6.6 ms
1	0	0	¢/2048	26.2 ms
		1	¢/8192	104.9 ms
	1	0	\$/32768	419.4 ms
		1	$\phi / 131072$	1.68 s

Note: * The overflow period is the time from when TCNT starts counting up from H'00 until overflow occurs.

11.2.3 Reset Control/Status Register (RSTCSR)

Bit	7	6	5	4	3	2	1	0
	WOVF	RSTE	RSTS	-	-	-	-	-
Initial value:	0	0	0	1	1	1	1	1
R/W	$\mathrm{R} /(\mathrm{W})^{*}$	R/W	R/W	-	-	-	-	-

Note: * Can only be written with 0 for flag clearing.

RSTCSR is an 8-bit readable/writable* register that controls the generation of the internal reset signal when TCNT overflows, and selects the type of internal reset signal.

RSTCSR is initialized to H'1F by a reset signal from the $\overline{\mathrm{RES}}$ pin, but not by the WDT internal reset signal caused by overflows.

Note: * RSTCSR is write-protected by a password to prevent accidental overwriting. For details see section 11.2.4, Notes on Register Access.

Bit 7—Watchdog Timer Overflow Flag (WOVF): Indicates that TCNT has overflowed (changed from H'FF to $\mathrm{H}^{\prime} 00$) during watchdog timer operation. This bit is not set in interval timer mode.

Bit 7

WOVF	Description
0	[Clearing condition]
Cleared by reading RSTCSR when WOVF = 1, then writing 0 to WOVF	
1	[Setting condition] Set when TCNT overflows (changes from H'FF to H'00) during watchdog timer operation

Bit 6-Reset Enable (RSTE): Specifies whether or not a reset signal is generated in the H8S/2245 Group if TCNT overflows during watchdog timer operation.

Bit 6

RSTE Description

0	Reset signal is not generated if TCNT overflows*	(Initial value)
1		Reset signal is generated if TCNT overflows
Note:	$*$	The modules within the H8S/2245 Group are not reset, but TCNT and TCSR within the
	WDT are reset.	

Bit 5—Reset Select (RSTS): Selects the type of internal reset generated if TCNT overflows during watchdog timer operation.

For details of the types of resets, see section 4, Exception Handling.
Bit 5
RSTS Description

0	Power-on reset	(Initial value)
1	Manual reset	

Bits 4 to 0—Reserved: Read-only bits, always read as 1.

11.2.4 Notes on Register Access

The watchdog timer's TCNT, TCSR, and RSTCSR registers differ from other registers in being more difficult to write to. The procedures for writing to and reading these registers are given below.

Writing to TCNT and TCSR

These registers must be written to by a word transfer instruction. They cannot be written to with byte instructions.

Figure 11.2 shows the format of data written to TCNT and TCSR. TCNT and TCSR both have the same write address. For a write to TCNT, the upper byte of the written word must contain H'5A and the lower byte must contain the write data. For a write to TCSR, the upper byte of the written word must contain H'A5 and the lower byte must contain the write data. This transfers the write data from the lower byte to TCNT or TCSR (see figure 11.2).

TCNT write					
	15	87			0
Address: H'FFBC		H'5A		Write data	
TCSR write					
	15		8		0
Address: H'FFBC		H'A5		Write data	

Figure 11.2 Format of Data Written to TCNT and TCSR

Writing to RSTCSR

RSTCSR must be written to by word transfer instruction to address H'FFBE. It cannot be written to with byte instructions.

Figure 11.3 shows the format of data written to RSTCSR. The method of writing 0 to the WOVF bit differs from that for writing to the RSTE and RSTS bits.

To write 0 to the WOVF flag, the write data must have H'A5 in the upper byte and $\mathrm{H}^{\prime} 00$ in the lower byte. This clears the WOVF bit to 0, but has no effect on the RSTE and RSTS bits. To write to the RSTE and RSTS bits, the upper byte must contain H'5A and the lower byte must contain the write data. This writes the values in bits 6 and 5 of the lower byte into the RSTE and RSTS bits, but has no effect on the WOVF flag.

Figure 11.3 Format of Data Written to RSTCSR

Reading TCNT, TCSR, and RSTCSR

These registers are read in the same way as other registers. The read addresses are H'FFBC for TCSR, H'FFBD for TCNT, and H'FFBF for RSTCSR.

11.3 Operation

11.3.1 Watchdog Timer Operation

To use the WDT as a watchdog timer, set the WT/ITT and TME bits to 1 . Software must prevent TCNT overflows by rewriting the TCNT value (normally be writing H'00) before overflows occurs. This ensures that TCNT does not overflow while the system is operating normally. If TCNT overflows without being rewritten because of a system crash or other error, the $\overline{\text { WDTOVF }}$ signal is output. This is shown in figure 11.4. This WDTOVF signal can be used to reset the system. The $\overline{\mathrm{WDTOVF}}$ signal is output for 132 states when $\operatorname{RSTE}=1$, and for 130 states when RSTE $=0$.

If TCNT overflows when 1 is set in the RSTE bit in RSTCSR, a signal that resets the H8S/2245 Group internally is generated at the same time as the $\overline{\text { WDTOVF }}$ signal. This reset can be selected as a power-on reset or a manual reset, depending on the setting of the RSTS bit in RSTCSR. The internal reset signal is output for 518 states.

If a reset caused by a signal input to the $\overline{\mathrm{RES}}$ pin occurs at the same time as a reset caused by a WDT overflow, the $\overline{\operatorname{RES}}$ pin reset has priority and the WOVF flag in RSTCSR is cleared to 0 .

Figure 11.4 Watchdog Timer Operation

11.3.2 Interval Timer Operation

To use the WDT as an interval timer, clear the WT/IT bit in TCSR to 0 and set the TME bit to 1 . An interval timer interrupt (WOVI) is generated each time TCNT overflows, provided that the WDT is operating as an interval timer, as shown in figure 11.5. This function can be used to generate interrupt requests at regular intervals.

Figure 11.5 Interval Timer Operation

11.3.3 Timing of Setting Overflow Flag (OVF)

The OVF flag is set to 1 if TCNT overflows during interval timer operation. At the same time, an interval timer interrupt (WOVI) is requested. This timing is shown in figure 11.6.

Figure 11.6 Timing of Setting of OVF

11.3.4 Timing of Setting of Watchdog Timer Overflow Flag (WOVF)

The WOVF flag is set to 1 if TCNT overflows during watchdog timer operation. At the same time, the $\overline{\text { WDTOVF }}$ signal goes low. If TCNT overflows while the RSTE bit in RSTCSR is set to 1 , an internal reset signal is generated for the entire H8S/2245 Group chip. Figure 11.7 shows the timing in this case.

Figure 11.7 Timing of Setting of WOVF

11.4 Interrupts

During interval timer mode operation, an overflow generates an interval timer interrupt (WOVI). The interval timer interrupt is requested whenever the OVF flag is set to 1 in TCSR. OVF must be cleared to 0 in the interrupt handling routine.

11.5 Usage Notes

11.5.1 Contention between Timer Counter (TCNT) Write and Increment

If a timer counter clock pulse is generated during the T2 state of a TCNT write cycle, the write takes priority and the timer counter is not incremented. Figure 11.8 shows this operation.

Figure 11.8 Contention between TCNT Write and Increment

11.5.2 Changing Value of CKS2 to CKS0

If bits CKS2 to CKS0 in TCSR are written to while the WDT is operating, errors could occur in the incrementation. Software must stop the watchdog timer (by clearing the TME bit to 0) before changing the value of bits CKS2 to CKS0.

11.5.3 Switching between Watchdog Timer Mode and Interval Timer Mode

If the mode is switched from watchdog timer to interval timer, or vice versa, while the WDT is operating, errors could occur in the incrementation. Software must stop the watchdog timer (by clearing the TME bit to 0) before switching the mode.

11.5.4 System Reset by $\overline{\text { WDTOVF }}$ Signal

If the $\overline{\text { WDTOVF }}$ output signal is input to the $\overline{\mathrm{RES}}$ pin of the H8S/2245 Group, the H8S/2245 Group will not be initialized correctly. Make sure that the $\overline{\text { WDTOVF signal is not input logically }}$ to the $\overline{\mathrm{RES}}$ pin. To reset the entire system by means of the $\overline{\mathrm{WDTOVF}}$ signal, use the circuit shown in figure 11.9 .

Figure 11.9 Circuit for System Reset by $\overline{\text { WDTOVF }}$ Signal (Example)

11.5.5 Internal Reset in Watchdog Timer Mode

The H8S/2245 Group is not reset internally if TCNT overflows while the RSTE bit is cleared to 0 during watchdog timer operation, but TCNT and TSCR of the WDT are reset.

TCNT, TCSR, and RSTCR cannot be written to while the $\overline{\text { WDTOVF }}$ signal is low. Also note that a read of the WOVF flag is not recognized during this period. To clear the WOVF flag, therefore, read TCSR after the $\overline{\mathrm{WDTOVF}}$ signal goes high, then write 0 to the WOVF flag.

11.5.6 OVF Flag Clearing in Interval Timer Mode

When the OVF flag setting conflicts with the OVF flag reading in interval timer mode, writing 0 to the OVF bit may not clear the flag even though the OVF bit has been read while it is 1 . If there is a possibility that the OVF flag setting and reading will conflict, such as when the OVF flag is polled with the interval timer interrupt disabled, read the OVF bit while it is 1 at least twice before writing 0 to the OVF bit to clear the flag.

Section 12 Serial Communication Interface (SCI)

12.1 Overview

The H8S/2245 Group is equipped with a 3-channel serial communication interface (SCI). All three channels have the same functions. The SCI can handle both asynchronous and clocked synchronous serial communication. A function is also provided for serial communication between processors (multiprocessor communication function).

12.1.1 Features

SCI features are listed below.

- Choice of asynchronous or clocked synchronous serial communication mode

Asynchronous mode

- Serial data communication executed using asynchronous system in which synchronization is achieved character by character
Serial data communication can be carried out with standard asynchronous communication chips such as a Universal Asynchronous Receiver/Transmitter (UART) or Asynchronous Communication Interface Adapter (ACIA)
- A multiprocessor communication function is provided that enables serial data communication with a number of processors
- Choice of 12 serial data transfer formats

Data length: $\quad 7$ or 8 bits
Stop bit length: $\quad 1$ or 2 bits
Parity: Even, odd, or none
Multiprocessor bit: $\quad 1$ or 0

- Receive error detection: Parity, overrun, and framing errors
- Break detection: \quad Break can be detected by reading the RxD pin level directly in case of a framing error

Clocked Synchronous mode

- Serial data communication synchronized with a clock

Serial data communication can be carried out with other chips that have a synchronous communication function

- One serial data transfer format

Data length: 8 bits

- Receive error detection: Overrun errors detected
- Full-duplex communication capability
- The transmitter and receiver are mutually independent, enabling transmission and reception to be executed simultaneously
- Double-buffering is used in both the transmitter and the receiver, enabling continuous transmission and continuous reception of serial data
- On-chip baud rate generator allows any bit rate to be selected
- Choice of LSB-first or MSB-first transfer (8 bits length)
- Can be selected regardless of the communication mode*

Note: * Descriptions in this section refer to LSB-first transfer.

- Choice of serial clock source: internal clock from baud rate generator or external clock from SCK pin
- Four interrupt sources
- Four interrupt sources - transmit-data-empty, transmit-end, receive-data-full, and receive error - that can issue requests independently
- The transmit-data-empty interrupt and receive data full interrupts can activate data transfer controller (DTC) to execute data transfer
- Module stop mode can be set
- As the initial setting, SCI operation is halted. Register access is enabled by exiting module stop mode.

12.1.2 Block Diagram

Figure 12.1 shows a block diagram of the SCI.

Figure 12.1 Block Diagram of SCI

12.1.3 Pin Configuration

Table 12.1 shows the serial pins for each SCI channel.
Table 12.1 SCI Pins

Channel	Pin Name	Symbol	I/O	Function
0	Serial clock pin 0	SCK0	I/O	SCIO clock input/output
	Receive data pin 0	RxD0	Input	SCIO receive data input
	Transmit data pin 0	TxD0	Output	SCIO transmit data output
1	Serial clock pin 1	SCK1	I/O	SCl1 clock input/output
	Receive data pin 1	RxD1	Input	SCl1 receive data input
	Transmit data pin 1	TxD1	Output	SCl1 transmit data output
2	Serial clock pin 2	SCK2	I/O	SCl2 clock input/output
	Receive data pin 2	RxD2	Input	SCl2 receive data input
	Transmit data pin 2	TxD2	Output	SCl2 transmit data output

12.1.4 Register Configuration

The SCI has the internal registers shown in table 12.2. These registers are used to specify asynchronous mode or clocked synchronous mode, the data format, and the bit rate, and to control transmitter/receiver.

Table 12.2 SCI Registers

Channel	Name	Abbreviation	R/W	Initial Value	Address**
0	Serial mode register 0	SMR 0	R/W	$\mathrm{H}^{\prime} 00$	H'FF78
	Bit rate register 0	BRR 0	R/W	H'FF	H'FF79
	Serial control register 0	SCR 0	R/W	$\mathrm{H}^{\prime} 00$	H'FF7A
	Transmit data register 0	TDR 0	R/W	H'FF	H'FF7B
	Serial status register 0	SSR 0	$\mathrm{R} /(\mathrm{W})^{*}{ }^{2}$	H'84	H'FF7C
	Receive data register 0	RDR 0	R	H'00	H'FF7D
	Smart card mode register 0	SCMR0	R/W	H'F2	H'FF7E
1	Serial mode register 1	SMR1	R/W	H'00	H'FF80
	Bit rate register 1	BRR1	R/W	H'FF	H'FF81
	Serial control register 1	SCR1	R/W	$\mathrm{H}^{\prime} 00$	H'FF82
	Transmit data register 1	TDR1	R/W	H'FF	H'FF83
	Serial status register 1	SSR1	$\mathrm{R} /(\mathrm{W})^{*}{ }^{2}$	H'84	H'FF84
	Receive data register 1	RDR1	R	$\mathrm{H}^{\prime} 00$	H'FF85
	Smart card mode register 1	SCMR1	R/W	H'F2	H'FF86
2	Serial mode register 2	SMR2	R/W	$\mathrm{H}^{\prime} 00$	H'FF88
	Bit rate register 2	BRR2	R/W	H'FF	H'FF89
	Serial control register 2	SCR2	R/W	$\mathrm{H}^{\prime} 00$	H'FF8A
	Transmit data register 2	TDR2	R/W	H'FF	H'FF8B
	Serial status register 2	SSR2	$\mathrm{R} / \mathrm{W})^{*}{ }^{2}$	H'84	H'FF8C
	Receive data register 2	RDR2	R	H'00	H'FF8D
	Smart card mode register 2	SCMR2	R/W	H'F2	H'FF8E
All	Module stop control register	MSTPCR	R/W	H'3FFF	H'FF3C

Notes: 1. Lower 16 bits of the address.
2. Can only be written with 0 for flag clearing.

12.2 Register Descriptions

12.2.1 Receive Shift Register (RSR)

RSR is a register used to receive serial data.

The SCI sets serial data input from the RxD pin in RSR in the order received, starting with the LSB (bit 0), and converts it to parallel data. When one byte of data has been received, it is transferred to RDR automatically.

RSR cannot be directly read or written to by the CPU.

12.2.2 Receive Data Register (RDR)

Bit	7	6	5	4	3	2	1	0
Initial value	0	0	0	0	0	0	0	0
R/W	R	R	R	R	R	R	R	R

RDR is a register that stores received serial data.

When the SCI has received one byte of serial data, it transfers the received serial data from RSR to RDR where it is stored, and completes the receive operation. After this, RSR is receive-enabled.

Since RSR and RDR function as a double buffer in this way, enables continuous receive operations to be performed.

RDR is a read-only register, and cannot be written to by the CPU.

RDR is initialized to $\mathrm{H}^{\prime} 00$ by a reset, and in standby mode or module stop mode.

12.2.3 Transmit Shift Register (TSR)

TSR is a register used to transmit serial data.
To perform serial data transmission, the SCI first transfers transmit data from TDR to TSR, then sends the data to the TxD pin starting with the LSB (bit 0).

When transmission of one byte is completed, the next transmit data is transferred from TDR to TSR, and transmission started, automatically. However, data transfer from TDR to TSR is not performed if the TDRE bit in SSR is set to 1 .

TSR cannot be directly read or written to by the CPU .

12.2.4 Transmit Data Register (TDR)

Bit	7	6	5	4	3	2	1	0
Initial value	1	1	1	1	1	1	1	1
R/W								

TDR is an 8-bit register that stores data for serial transmission.
When the SCI detects that TSR is empty, it transfers the transmit data written in TDR to TSR and starts serial transmission. Continuous serial transmission can be carried out by writing the next transmit data to TDR during serial transmission of the data in TSR.

TDR can be read or written to by the CPU at all times.
TDR is initialized to H'FF by a reset, and in standby mode or module stop mode.

12.2.5 Serial Mode Register (SMR)

Bit	7	6	5	4	3	2	1	0
	C/A	CHR	PE	O/E	STOP	MP	CKS1	CKSO
Initial value	0	0	0	0	0	0	0	0
R/W								

SMR is an 8-bit register used to set the SCI's serial transfer format and select the baud rate generator clock source.

SMR can be read or written to by the CPU at all times.
SMR is initialized to $\mathrm{H}^{\prime} 00$ by a reset, and in standby mode or module stop mode.
Bit 7—Communication Mode (C/ $\overline{\mathbf{A}}$): Selects asynchronous mode or clocked synchronous mode as the SCI operating mode.

Bit 7

$\mathbf{C} / \overline{\mathbf{A}}$	Description	
0	Asynchronous mode	(Initial value)
1	Clocked synchronous mode	

Bit 6—Character Length (CHR): Selects 7 or 8 bits as the data length in asynchronous mode. In clocked synchronous mode, a fixed data length of 8 bits is used regardless of the CHR setting.

Bit 6

CHR	Description	
0	8-bit data	(Initial value)
1	7-bit data*	
Note:	*	When 7-bit data is selected, the MSB (bit 7) of TDR is not transmitted, and it is not possible to choose between LSB-first or MSB-first transfer.

Bit 5—Parity Enable (PE): In asynchronous mode, selects whether or not parity bit addition is performed in transmission, and parity bit checking in reception. In clocked synchronous mode, parity bit addition and checking is not performed, regardless of the PE bit setting.

Bit 5

PE	Description	
0	Parity bit addition and checking disabled	(Initial value)
1	Parity bit addition and checking enabled*	
Note:	*When the PE bit is set to 1, the parity (even or odd) specified by the O/E bit is added to transmit data before transmission. In reception, the parity bit is checked for the parity (even or odd) specified by the $\mathrm{O} / \overline{\mathrm{E}}$ bit.	

Bit 4—Parity Mode (O/ $\overline{\mathrm{E}}$): Selects either even or odd parity for use in parity addition and checking.

The $\mathrm{O} / \overline{\mathrm{E}}$ bit setting is only valid when the PE bit is set to 1 , enabling parity bit addition and checking, in asynchronous mode. The $\mathrm{O} / \overline{\mathrm{E}}$ bit setting is invalid in clocked synchronous mode, and when parity addition and checking is disabled in asynchronous mode.

Bit 4

$\overline{0 / \bar{E}}$ Description

0	Even parity** (Initial value)
1	Odd parity*2
Notes: 1.	When even parity is set, parity bit addition is performed in transmission so that the total number of 1 bits in the transmit character plus the parity bit is even. In reception, a check is performed to see if the total number of 1 bits in the receive character plus the parity bit is even.

2. When odd parity is set, parity bit addition is performed in transmission so that the total number of 1 bits in the transmit character plus the parity bit is odd.
In reception, a check is performed to see if the total number of 1 bits in the receive character plus the parity bit is odd.

Bit 3-Stop Bit Length (STOP): Selects 1 or 2 bits as the stop bit length in asynchronous mode. The STOP bits setting is only valid in asynchronous mode. If clocked synchronous mode is set the STOP bit setting is invalid since stop bits are not added.

Bit 3

STOP	Description
0	1 stop bit: In transmission, a single 1 bit (stop bit) is added to the end of a transmit character before it is sent.
1	2 stop bits: In transmission, two 1 bits (stop bits) are added to the end of a transmit character before it is sent.

In reception, only the first stop bit is checked, regardless of the STOP bit setting. If the second stop bit is 1 , it is treated as a stop bit; if it is 0 , it is treated as the start bit of the next transmit character.

Bit 2—Multiprocessor Mode (MP): Selects multiprocessor format. When multiprocessor format is selected, the PE bit and $\mathrm{O} / \overline{\mathrm{E}}$ bit parity settings are invalid. The MP bit setting is only valid in asynchronous mode; it is invalid in clocked synchronous mode.

For details of the multiprocessor communication function, see section 12.3.3, Multiprocessor Communication Function.

Bit 2

MP	Description	
0	Multiprocessor function disabled	(Initial value)
1	Multiprocessor format selected	

Bits 1 and 0—Clock Select 1 and 0 (CKS1, CKS0): These bits select the clock source for the baud rate generator. The clock source can be selected from $\phi, \phi / 4, \phi / 16$, and $\phi / 64$, according to the setting of bits CKS1 and CKS0.

For the relation between the clock source, the bit rate register setting, and the baud rate, see section 12.2.8, Bit Rate Register (BRR).

Bit $\mathbf{1}$	Bit $\mathbf{0}$		
CKS1	CKS0	Description	
0	0	ϕ clock	(Initial value)
	1	$\phi / 4$ clock	
1	0	$\phi / 16$ clock	
1	$\phi / 64$ clock		

12.2.6 Serial Control Register (SCR)

Bit	$:$	7	6	5	4	3	2	1	0
		TIE	RIE	TE	RE	MPIE	TEIE	CKE1	CKE0
	Initial value :	0	0	0	0	0	0	0	0
R/W	$:$	R/W							

SCR is a register that performs enabling or disabling of SCI transfer operations, serial clock output in asynchronous mode, and interrupt requests, and selection of the serial clock source.

SCR can be read or written to by the CPU at all times.
SCR is initialized to $\mathrm{H}^{\prime} 00$ by a reset, and in standby mode or module stop mode.
Bit 7—Transmit Interrupt Enable (TIE): Enables or disables transmit data empty interrupt (TXI) request generation when serial transmit data is transferred from TDR to TSR and the TDRE flag in SSR is set to 1 .

Bit 7

TIE Description

0	Transmit data empty interrupt (TXI) requests disabled*	(Initial value)	
1		Transmit data empty interrupt (TXI) requests enabled	
Note:	$*$	TXI interrupt request cancellation can be performed by reading 1 from the TDRE flag, then clearing it to 0, or clearing the TIE bit to 0.	

Bit 6-Receive Interrupt Enable (RIE): Enables or disables receive data full interrupt (RXI) request and receive error interrupt (ERI) request generation when serial receive data is transferred from RSR to RDR and the RDRF flag in SSR is set to 1.

Bit 6

RIE	Description
0	Receive data full interrupt (RXI) request and receive error interrupt (ERI) request disabled*
1	Receive data full interrupt (RXI) request and receive error interrupt (ERI) request enabled
Note:	*
	RXI and ERI interrupt request cancellation can be performed by reading 1 from the RDRF flag, or the FER, PER, or ORER flag, then clearing the flag to 0 , or clearing the RIE bit to 0.

Bit 5-Transmit Enable (TE): Enables or disables the start of serial transmission by the SCI.

Bit 5

Bit 4—Receive Enable (RE): Enables or disables the start of serial reception by the SCI.

Bit 4

RE Description

0	Reception disabled*1	(Initial value)
1	Reception enabled* ${ }^{2}$	

Notes: 1. Clearing the RE bit to 0 does not affect the RDRF, FER, PER, and ORER flags, which retain their states.
2. Serial reception is started in this state when a start bit is detected in asynchronous mode or serial clock input is detected in clocked synchronous mode.
SMR setting must be performed to decide the transfer format before setting the RE bit to 1 .

Bit 3—Multiprocessor Interrupt Enable (MPIE): Enables or disables multiprocessor interrupts. The MPIE bit setting is only valid in asynchronous mode when the MP bit in SMR is set to 1 .

The MPIE bit setting is invalid in clocked synchronous mode or when the MP bit is cleared to 0 .
Bit 3
MPIE Description

0	Multiprocessor interrupts disabled (normal reception performed)	(Initial value)
[Clearing conditions]		

- When the MPIE bit is cleared to 0
- When MPB = 1 data is received

1 Multiprocessor interrupts enabled*
Receive interrupt (RXI) requests, receive error interrupt (ERI) requests, and setting of the RDRF, FER, and ORER flags in SSR are disabled until data with the multiprocessor bit set to 1 is received.
Note: * When receive data including MPB $=0$ is received, receive data transfer from RSR to RDR, receive error detection, and setting of the RDRF, FER, and ORER flags in SSR, is not performed. When receive data including MPB $=1$ is received, the MPB bit in SSR is set to 1 , the MPIE bit is cleared to 0 automatically, and generation of RXI and ERI interrupts (when the TIE and RIE bits in SCR are set to 1) and FER and ORER flag setting is enabled.

Bit 2—Transmit End Interrupt Enable (TEIE): Enables or disables transmit end interrupt (TEI) request generation when there is no valid transmit data in TDR in MSB data transmission.

Bit 2
TEIE Description

0	Transmit end interrupt (TEI) request disabled*	(Initial value)
1	Transmit end interrupt (TEI) request enabled	
Note:	*	TEI cancellation can be performed by reading 1 from the TDRE flag in SSR, then clearing it to 0 and clearing the TEND flag to 0, or clearing the TEIE bit to 0.

Bits 1 and 0-Clock Enable 1 and $\mathbf{0}$ (CKE1, CKE0): These bits are used to select the SCI clock source and enable or disable clock output from the SCK pin. The combination of the CKE1 and CKE0 bits determines whether the SCK pin functions as an I/O port, the serial clock output pin, or the serial clock input pin.

The setting of the CKE0 bit, however, is only valid for internal clock operation $($ CKE1 $=0)$ in asynchronous mode. The CKE0 bit setting is invalid in clocked synchronous mode, and in the case of external clock operation (CKE1 = 1). Note that the SCI's operating mode must be decided using SMR before setting the CKE1 and CKE0 bits.

For details of clock source selection, see table 12.9.

Bit 1	Bit $\mathbf{0}$				
CKE1	CKE0	Description			
0	0	Asynchronous mode	Clocked synchronous mode		Internal clock/SCK pin functions as I/O port*1
:---					

Notes: 1. Initial value
2. Outputs a clock of the same frequency as the bit rate.
3. Inputs a clock with a frequency 16 times the bit rate.

12.2.7 Serial Status Register (SSR)

Bit	7 6		5	4	3	2	1	0
	TDRE	RDRF	ORER	FER	PER	TEND	MPB	MPBT
Initial value	1	0	0	0	0	1	0	0
R/W	R/(W)*	$\mathrm{R} / \mathrm{W})^{*}$	R/(W)*	$\mathrm{R} / \mathrm{W})^{*}$	$\mathrm{R} /(\mathrm{W})^{*}$	R	R	R/W

Note: * Only 0 can be written, to clear the flag.

SSR is an 8-bit register containing status flags that indicate the operating status of the SCI, and multiprocessor bits.

SSR can be read or written to by the CPU at all times. However, 1 cannot be written to flags TDRE, RDRF, ORER, PER, and FER. Also note that in order to clear these flags they must be read as 1 beforehand. The TEND flag and MPB flag are read-only flags and cannot be modified.

SSR is initialized to $\mathrm{H}^{\prime} 84$ by a reset, and in standby mode or module stop mode.
Bit 7—Transmit Data Register Empty (TDRE): Indicates that data has been transferred from TDR to TSR and the next serial data can be written to TDR.

Bit 7
TDRE Description
0 [Clearing conditions]

- When 0 is written to TDRE after reading TDRE $=1$
- When the DTC* is activated by a TXI interrupt and write data to TDR
[Setting conditions]
(Initial value)
- When the TE bit in SCR is 0
- When data is transferred from TDR to TSR and data can be written to TDR

Note: * DTC can clear this bit only when DISEL is 0 with the transfer counter not being 0 .

Bit 6-Receive Data Register Full (RDRF): Indicates that the received data is stored in RDR.

Bit 6

RDRF Description
0 [Clearing conditions]

- When 0 is written to RDRF after reading RDRF $=1$
- When the DTC* is activated by an RXI interrupt and read data from RDR
1 [Setting condition]

When serial reception ends normally and receive data is transferred from RSR to RDR
Notes: RDR and the RDRF flag are not affected and retain their previous values when an error is detected during reception or when the RE bit in SCR is cleared to 0 .
If reception of the next data is completed while the RDRF flag is still set to 1 , an overrun error will occur and the receive data will be lost.

* DTC can clear this bit only when DISEL is 0 with the transfer counter not being 0 .

Bit 5—Overrun Error (ORER): Indicates that an overrun error occurred during reception, causing abnormal termination.

Bit 5

ORER Description

0	[Clearing condition]	(Initial value)**
	When 0 is written to ORER after reading ORER $=1$	
1	[Setting condition]	
	When the next serial reception is completed while RDRF $=1 *^{2}$	

Notes: 1. The ORER flag is not affected and retains its previous state when the RE bit in SCR is cleared to 0 .
2. The receive data prior to the overrun error is retained in RDR, and the data received subsequently is lost. Also, subsequent serial reception cannot be continued while the ORER flag is set to 1 . In clocked synchronous mode, serial transmission cannot be continued, either.

Bit 4-Framing Error (FER): Indicates that a framing error occurred during reception in asynchronous mode, causing abnormal termination.

Bit 4

$\overline{\text { FER Description }}$

0	[Clearing condition]	(Initial value)*1
	When 0 is written to FER after reading FER $=1$	
1	[Setting condition]	
	When the SCl checks the stop bit at the end of the receive data when reception ends, and the stop bit is $0 *^{2}$	

Notes: 1. The FER flag is not affected and retains its previous state when the RE bit in SCR is cleared to 0 .
2. In 2-stop-bit mode, only the first stop bit is checked for a value of 0 ; the second stop bit is not checked. If a framing error occurs, the receive data is transferred to RDR but the RDRF flag is not set. Also, subsequent serial reception cannot be continued while the FER flag is set to 1 . In clocked synchronous mode, serial transmission cannot be continued, either.

Bit 3-Parity Error (PER): Indicates that a parity error occurred during reception using parity addition in asynchronous mode, causing abnormal termination.

Bit 3

PER Description
0 [Clearing condition]

When 0 is written to PER after reading PER $=1$
1 [Setting condition]
When, in reception, the number of 1 bits in the receive data plus the parity bit does not match the parity setting (even or odd) specified by the O/E bit in SMR*2
Notes: 1. The PER flag is not affected and retains its previous state when the RE bit in SCR is cleared to 0 .
2. If a parity error occurs, the receive data is transferred to RDR but the RDRF flag is not set. Also, subsequent serial reception cannot be continued while the PER flag is set to 1. In clocked synchronous mode, serial transmission cannot be continued, either.

Bit 2-Transmit End (TEND): Indicates that there is no valid data in TDR when the last bit of the transmit character is sent, and transmission has been ended.

The TEND flag is read-only and cannot be modified.

Bit 2

TEND Description
0 [Clearing conditions]

- When 0 is written to TDRE after reading TDRE $=1$
- When the DTC* is activated by a TXI interrupt and write data to TDR
[Setting conditions]
(Initial value)
- When the TE bit in SCR is 0
- When TDRE $=1$ at transmission of the last bit of a 1 -byte serial transmit character

Note: * DTC can clear this bit only when DISEL is 0 with the transfer counter not being 0 .

Bit 1—Multiprocessor bit (MPB): When reception is performed using multiprocessor format in asynchronous mode, MPB stores the multiprocessor bit in the receive data.

MPB is a read-only bit, and cannot be modified.

Bit 1

MPB Description

0	[Clearing condition]	(Initial value)*
	When data with a 0 multiprocessor bit is received	
1	[Setting condition]	
Note:	*hen data with a 1 multiprocessor bit is received	Retains its previous state when the RE bit in SCR is cleared to 0 with multiprocessor format.

Bit 0-Multiprocessor Bit Transfer (MPBT): When transmission is performed using multiprocessor format in asynchronous mode, MPBT stores the multiprocessor bit to be added to the transmit data.

The MPBT bit setting is invalid in clocked synchronous mode, when multiprocessor format is not used, and when the operation is not transmission.

Bit 0
MPBT Description

0	Data with a 0 multiprocessor bit is transmitted	(Initial value)
1	Data with a 1 multiprocessor bit is transmitted	

12.2.8 Bit Rate Register (BRR)

Bit	7	6	5	4	3	2	1	0
Initial value	1	1	1	1	1	1	1	1
R/W								

BRR is an 8-bit register that sets the serial transfer bit rate in accordance with the baud rate generator operating clock selected by bits CKS1 and CKS0 in SMR.

BRR can be read or written to by the CPU at all times.
BRR is initialized to H'FF by a reset, and in standby mode or module stop mode.

As baud rate generator control is performed independently for each channel, different values can be set for each channel.

Table 12.3 shows sample BRR settings in asynchronous mode, and table 12.4 shows sample BRR settings in clocked synchronous mode.

Section 12 Serial Communication Interface (SCI)
Table 12.3 BRR Settings for Various Bit Rates (Asynchronous Mode)

Bit Rate (bit/s)	$\phi(\mathrm{MHz})$											
	2			2.097152			2.4576			3		
	n	N	Error (\%)									
110	1	141	0.03	1	148	-0.04	1	174	-0.26	1	212	0.03
150	1	103	0.16	1	108	0.21	1	127	0.00	1	155	0.16
300	0	207	0.16	0	217	0.21	0	255	0.00	1	77	0.16
600	0	103	0.16	0	108	0.21	0	127	0.00	0	155	0.16
1200	0	51	0.16	0	54	-0.70	0	63	0.00	0	77	0.16
2400	0	25	0.16	0	26	1.14	0	31	0.00	0	38	0.16
4800	0	12	0.16	0	13	-2.48	0	15	0.00	0	19	-2.34
9600	-	-	-	0	6	-2.48	0	7	0.00	0	9	-2.34
19200	-	-	-	-	-	-	0	3	0.00	0	4	-2.34
31250	0	1	0.00	-	-	-	-	-	-	0	2	0.00
38400	-	-	-	-	-	-	0	1	0.00	-	-	-

Bit Rate (bit/s)	ϕ (MHz)											
	3.6864			4			4.9152			5		
	n	N	Error (\%)									
110	2	64	0.70	2	70	0.03	2	86	0.31	2	88	-0.25
150	1	191	0.00	1	207	0.16	1	255	0.00	2	64	0.16
300	1	95	0.00	1	103	0.16	1	127	0.00	1	129	0.16
600	0	191	0.00	0	207	0.16	0	255	0.00	1	64	0.16
1200	0	95	0.00	0	103	0.16	0	127	0.00	0	129	0.16
2400	0	47	0.00	0	51	0.16	0	63	0.00	0	64	0.16
4800	0	23	0.00	0	25	0.16	0	31	0.00	0	32	-1.36
9600	0	11	0.00	0	12	0.16	0	15	0.00	0	15	1.73
19200	0	5	0.00	-	-	-	0	7	0.00	0	7	1.73
31250	-	-	-	0	3	0.00	0	4	-1.70	0	4	0.00
38400	0	2	0.00	-	-	-	0	3	0.00	0	3	1.73

Rev.3.00 Mar. 26, 2007 Page 422 of 772
REJ09B0355-0300
$\phi(\mathrm{MHz})$

	6			6.144			7.3728			8		
Bit Rate (bit/s)	n	N	Error (\%)	n	N	Error (\%)	n	N	Error (\%)	n	N	Error (\%)
110	2	106	-0.44	2	108	0.08	2	130	-0.07	2	141	0.03
150	2	77	0.16	2	79	0.00	2	95	0.00	2	103	0.16
300	1	155	0.16	1	159	0.00	1	191	0.00	1	207	0.16
600	1	77	0.16	1	79	0.00	1	95	0.00	1	103	0.16
1200	0	155	0.16	0	159	0.00	0	191	0.00	0	207	0.16
2400	0	77	0.16	0	79	0.00	0	95	0.00	0	103	0.16
4800	0	38	0.16	0	39	0.00	0	47	0.00	0	51	0.16
9600	0	19	-2.34	0	19	0.00	0	23	0.00	0	25	0.16
19200	0	9	-2.34	0	9	0.00	0	11	0.00	0	12	0.16
31250	0	5	0.00	0	5	2.40	-	-	-	0	7	0.00
38400	0	4	-2.34	0	4	0.00	0	5	0.00	-	-	-

$\phi(\mathrm{MHz})$

Bit Rate (bit/s)	9.8304			10			12			12.288		
	n	N	Error (\%)									
110	2	174	-0.26	2	177	-0.25	2	212	0.03	2	217	0.08
150	2	127	0.00	2	129	0.16	2	155	0.16	2	159	0.00
300	1	255	0.00	2	64	0.16	2	77	0.16	2	79	0.00
600	1	127	0.00	1	129	0.16	1	155	0.16	1	159	0.00
1200	0	255	0.00	1	64	0.16	1	77	0.16	1	79	0.00
2400	0	127	0.00	0	129	0.16	0	155	0.16	0	159	0.00
4800	0	63	0.00	0	64	0.16	0	77	0.16	0	79	0.00
9600	0	31	0.00	0	32	-1.36	0	38	0.16	0	39	0.00
19200	0	15	0.00	0	15	1.73	0	19	-2.34	0	19	0.00
31250	0	9	-1.70	0	9	0.00	0	11	0.00	0	11	2.40
38400	0	7	0.00	0	7	1.73	0	9	-2.34	0	9	0.00

Section 12 Serial Communication Interface (SCI)
$\phi(\mathrm{MHz})$

Bit Rate (bit/s)	14			14.7456			16			17.2032		
	n	N	Error (\%)									
110	2	248	-0.17	3	64	0.70	3	70	0.03	3	75	0.48
150	2	181	0.16	2	191	0.00	2	207	0.16	2	223	0.00
300	2	90	0.16	2	95	0.00	2	103	0.16	2	111	0.00
600	1	181	0.16	1	191	0.00	1	207	0.16	1	223	0.00
1200	1	90	0.16	1	95	0.00	1	103	0.16	1	111	0.00
2400	0	181	0.16	0	191	0.00	0	207	0.16	0	223	0.00
4800	0	90	0.16	0	95	0.00	0	103	0.16	0	111	0.00
9600	0	45	-0.93	0	47	0.00	0	51	0.16	0	55	0.00
19200	0	22	-0.93	0	23	0.00	0	25	0.16	0	27	0.00
31250	0	13	0.00	0	14	-1.70	0	15	0.00	0	16	1.20
38400	-	-	-	0	11	0.00	0	12	0.16	0	13	0.00

Bit Rate (bit/s)	$\phi(\mathrm{MHz})$								
	18			19.6608			20		
	n	N	Error (\%)	n	N	Error (\%)	n	N	Error (\%)
110	3	79	-0.12	3	86	0.31	3	88	-0.25
150	2	233	0.16	2	255	0.00	3	64	0.16
300	2	116	0.16	2	127	0.00	2	129	0.16
600	1	233	0.16	1	255	0.00	2	64	0.16
1200	1	116	0.16	1	127	0.00	1	129	0.16
2400	0	233	0.16	0	255	0.00	1	64	0.16
4800	0	116	0.16	0	127	0.00	0	129	0.16
9600	0	58	-0.69	0	63	0.00	0	64	0.16
19200	0	28	1.02	0	31	0.00	0	32	-1.36
31250	0	17	0.00	0	19	-1.70	0	19	0.00
38400	0	14	-2.34	0	15	0.00	0	15	1.73

Legend:

-: Can be set, but there will be a degree of error.
Note: As far as possible, the setting should be made so that the error is no more than 1%.

Table 12.4 BRR Settings for Various Bit Rates (Clocked Synchronous Mode)

Bit Rate (bit/s)	$\phi(\mathrm{MHz})$											
	2		4		8		10		16		20	
	n	N	n	N	n	N	n	N	n	N	n	N
110	3	70	-	-	-	-	-	-	-	-	-	-
250	2	124	2	249	3	124	-	-	3	249	-	-
500	1	249	2	124	2	249	-	-	3	124	-	-
1 k	1	124	1	249	2	124	-	-	2	249	-	-
2.5 k	0	199	1	99	1	199	1	249	2	99	2	124
5 k	0	99	0	199	1	99	1	124	1	199	1	249
10 k	0	49	0	99	0	199	0	249	1	99	1	124
25 k	0	19	0	39	0	79	0	99	0	159	0	199
50 k	0	9	0	19	0	39	0	49	0	79	0	99
100 k	0	4	0	9	0	19	0	24	0	39	0	49
250 k	0	1	0	3	0	7	0	9	0	15	0	19
500 k	0	0*	0	1	0	3	0	4	0	7	0	9
1 M			0	0*	0	1	-	-	0	3	0	4
2.5 M					-	-	0	0*	-	-	0	1
5 M									-	-	0	0*

Legend:
Blank: Cannot be set.
-: Can be set, but there will be a degree of error.
*: Continuous transmission/reception is not possible.
Note: As far as possible, the setting should be made so that the error is no more than 1%.

The BRR setting is found from the following formulas.

Asynchronous mode:

$$
\mathrm{N}=\frac{\phi}{64 \times 2^{2 \mathrm{n}-1} \times \mathrm{B}} \times 10^{6}-1
$$

Clocked synchronous mode:

$$
\mathrm{N}=\frac{\phi}{8 \times 2^{2 \mathrm{n}-1} \times \mathrm{B}} \times 10^{6}-1
$$

Where
B: Bit rate (bit/s)
N : BRR setting for baud rate generator $(0 \leq \mathrm{N} \leq 255)$
ϕ : Operating frequency (MHz)
n : Baud rate generator input clock $(\mathrm{n}=0$ to 3)
(See the table below for the relation between n and the clock.)

		SMR Setting	
n	Clock	CKS1	CKS0
0	ϕ	0	0
1	$\phi / 4$	0	1
2	$\phi / 16$	1	0
3	$\phi / 64$	1	1

The bit rate error in asynchronous mode is found from the following formula:
Error $(\%)=\left\{\frac{\phi \times 10^{6}}{(N+1) \times B \times 64 \times 2^{2 n-1}}-1\right\} \times 100$

Table 12.5 shows the maximum bit rate for each frequency in asynchronous mode. Tables 12.6 and 12.7 show the maximum bit rates with external clock input.

Table 12.5 Maximum Bit Rate for Each Frequency (Asynchronous Mode)

ϕ (MHz)	Maximum Bit Rate (bit/s)	n	N
2	62500	0	0
2.097152	65536	0	0
2.4576	76800	0	0
3	93750	0	0
3.6864	115200	0	0
4	125000	0	0
4.9152	153600	0	0
5	156250	0	0
6	187500	0	0
6.144	192000	0	0
7.3728	230400	0	0
8	250000	0	0
9.8304	307200	0	0
10	312500	0	0
12	375000	0	0
12.288	384000	0	0
14	437500	0	0
14.7456	460800	0	0
16	500000	0	0
17.2032	537600	0	0
18	562500	0	0
19.6608	614400	0	0
20	625000	0	0

Section 12 Serial Communication Interface (SCI)
Table 12.6 Maximum Bit Rate with External Clock Input (Asynchronous Mode)

$\boldsymbol{\text { (MHz) }}$	External Input Clock (MHz)	Maximum Bit Rate (bit/s)
2	0.5000	31250
2.097152	0.5243	32768
2.4576	0.6144	38400
3	0.7500	46875
3.6864	0.9216	57600
4	1.0000	62500
4.9152	1.2288	76800
5	1.2500	78125
6	1.5000	93750
6.144	1.5360	96000
7.3728	1.8432	115200
8	2.0000	125000
9.8304	2.4576	153600
10	2.5000	156250
12	3.0000	187500
12.288	3.0720	192000
14	3.5000	218750
14.7456	3.6864	230400
16	4.0000	250000
17.2032	4.3008	268800
18	4.5000	281250
19.6608	4.9152	307200
20	5.0000	312500

Rev.3.00 Mar. 26, 2007 Page 428 of 772
REJ09B0355-0300

Table 12.7 Maximum Bit Rate with External Clock Input (Clocked Synchronous Mode)

$\boldsymbol{\phi}(\mathbf{M H z})$	External Input Clock (MHz)	Maximum Bit Rate (bit/s)
2	0.3333	333333.3
4	0.6667	666666.7
6	1.0000	1000000.0
8	1.3333	1333333.3
10	1.6667	1666666.7
12	2.0000	2000000.0
14	2.3333	2333333.3
16	2.6667	2666666.7
18	3.0000	3000000.0
20	3.3333	3333333.3

12.2.9 Smart Card Mode Register (SCMR)

Bit	7	6	5	4	3	2	1	0
	-	-	-	-	SDIR	SINV	-	SMIF
Initial value	1	1	1	1	0	0	1	0
R/W	-	-	-	-	R/W	R/W	-	R/W

SCMR selects LSB-first or MSB-first by means of bit SDIR. With an 8-bit length, LSB-first or MSB-first transfer can be selected regardless of the serial communication mode. The descriptions in this chapter refer to LSB-first transfer.

For details of the other bits in SCMR, see 13.2.1, Smart Card Mode Register (SCMR).

SCMR is initialized to H'F2 by a reset, and in standby mode or module stop mode.
Bits 7 to 4—Reserved: Read-only bits, always read as 1.
Bit 3—Smart Card Data Transfer Direction (SDIR): Selects the serial/parallel conversion format.

The transfer format is valid for 8-bit data.

Bit 3

SDIR	Description	(Initial value)
0	TDR contents are transmitted LSB-first	
1	Receive data is stored in RDR LSB-first	
	TDR contents are transmitted MSB-first	
	Receive data is stored in RDR MSB-first	

Bit 2—Smart Card Data Invert (SINV): When the smart card interface operates as a normal SCI, 0 should be written in this bit.

Bit 1—Reserved: Read-only bit, always read as 1.
Bit 0—Smart Card Interface Mode Select (SMIF): When the smart card interface operates as a normal SCI, 0 should be written in this bit.

12.2.10 Module Stop Control Register (MSTPCR)

R/W : R/W R/W

MSTPCR is a 16-bit readable/writable register that performs module stop mode control.
When the corresponding bit of bits MSTP7 to MSTP5 is set to 1, SCI operation stops at the end of the bus cycle and a transition is made to module stop mode. For details, see section 18.5, Module Stop Mode.

MSTPCR is initialized to H'3FFF by a reset and in hardware standby mode. It is not initialized in software standby mode.

Bit 7—Module Stop (MSTP7): Specifies the SCI channel 2 module stop mode.
Bit 7

MSTP7	Description	
0	SCI channel 2 module stop mode cleared	
1	SCI channel 2 module stop mode set	(Initial value)

Bit 6—Module Stop (MSTP6): Specifies the SCI channel 1 module stop mode.

Bit 6

MSTP6 Description

0	SCI channel 1 module stop mode cleared	
1	SCI channel 1 module stop mode set	(Initial value)

Bit 5—Module Stop (MSTP5): Specifies the SCI channel 0 module stop mode.

Bit 5

MSTP5	Description	
0	SCI channel 0 module stop mode cleared	
1	SCI channel 0 module stop mode set	(Initial value)

12.3 Operation

12.3.1 Overview

The SCI can carry out serial communication in two modes: asynchronous mode in which synchronization is achieved character by character, and clocked synchronous mode in which synchronization is achieved with clock pulses.

Selection of asynchronous or clocked synchronous mode and the transmission format is made using SMR as shown in table 12.8 . The SCI clock is determined by a combination of the C/ $\overline{\mathrm{A}}$ bit in SMR and the CKE1 and CKE0 bits in SCR, as shown in table 12.9.

Asynchronous mode:

- Data length: Choice of 7 or 8 bits
- Choice of parity addition, multiprocessor bit addition, and addition of 1 or 2 stop bits (the combination of these parameters determines the transfer format and character length)
- Detection of framing, parity, and overrun errors, and breaks, during reception
- Choice of internal or external clock as SCI clock source
- When internal clock is selected:

The SCI operates on the baud rate generator clock and a clock with the same frequency as the bit rate can be output

- When external clock is selected:

A clock with a frequency of 16 times the bit rate must be input (the on-chip baud rate generator is not used)

Clocked synchronous mode:

- Transfer format: Fixed 8-bit data
- Detection of overrun errors during reception
- Choice of internal or external clock as SCI clock source
- When internal clock is selected:

The SCI operates on the baud rate generator clock and a serial clock is output off-chip

- When external clock is selected:

The on-chip baud rate generator is not used, and the SCI operates on the input serial clock

Table 12.8 SMR Settings and Serial Transfer Format Selection

SMR Settings					Mode	SCI Transfer Format			
Bit 7	Bit 6	Bit 2	Bit 5	Bit 3		Data Length	Multiprocessor Bit	Parity Bit	Stop Bit Length
C/ \bar{A}	CHR	MP	PE	STOP					
0	0	0	0	0	Asynchronous mode	8-bit data	No	No	1 bit
				1					2 bits
			1	0				Yes	1 bit
				1					2 bits
	1		0	0		7-bit data		No	1 bit
				1					2 bits
			1	0				Yes	1 bit
				1					2 bits
	0	1	-	0	Asynchronous mode (multiprocessor format)	8-bit data	Yes	No	1 bit
			-	1					2 bits
	1		-	0		7-bit data			1 bit
			-	1					2 bits
1	-	-	-	-	Clocked synchronous mode	8-bit data	No		None

Table 12.9 SMR and SCR Settings and SCI Clock Source Selection

SMR	SCR Setting		Mode	SCI Transmit/Receive clock	
Bit 7	Bit 1	Bit 0		Clock Source	SCK Pin Function
$\bar{C} / \overline{\text { A }}$	CKE1	CKEO			
0	0	0	Asynchronous mode	Internal	SCI does not use SCK pin
		1			Outputs clock with same frequency as bit rate
	1	0		External	Inputs clock with frequency of 16 times the bit rate
		1			
1	0	0	Clocked synchronous mode	Internal	Outputs the serial clock
		1			
	1	0		External	Inputs the serial clock
		1			

12.3.2 Operation in Asynchronous Mode

In asynchronous mode, characters are sent or received, each preceded by a start bit indicating the start of communication and one or two stop bits indicating the end of communication. Serial communication is thus carried out with synchronization established on a character-by-character basis.

Inside the SCI, the transmitter and receiver are independent units, enabling full-duplex communication. Both the transmitter and the receiver also have a double-buffered structure, so that data can be read or written during transmission or reception, enabling continuous data transfer.

Figure 12.2 shows the general format for asynchronous serial communication.
In asynchronous serial communication, the transmission line is usually held in the mark state (high level). The SCI monitors the transmission line, and when it goes to the space state (low level), recognizes a start bit and starts serial communication.

One serial communication character consists of a start bit (low level), followed by data (in LSBfirst order), a parity bit (high or low level), and finally one or two stop bits (high level).

In asynchronous mode, the SCI performs synchronization at the falling edge of the start bit in reception. The SCI samples the data on the 8th pulse of a clock with a frequency of 16 times the length of one bit, so that the transfer data is latched at the center of each bit.

Figure 12.2 Data Format in Asynchronous Communication (Example with 8-Bit Data, Parity, Two Stop Bits)

Data Transfer Format

Table 12.10 shows the data transfer formats that can be used in asynchronous mode. Any of 12 transfer formats can be selected according to the SMR setting.

Table 12.10 Serial Transfer Formats (Asynchronous Mode)

Legend:
S: Start bit
STOP: Stop bit
P: Parity bit
MPB: Multiprocessor bit

Clock

Either an internal clock generated by the on-chip baud rate generator or an external clock input at the SCK pin can be selected as the SCI's serial clock, according to the setting of the C/ $\overline{\mathrm{A}}$ bit in SMR and the CKE1 and CKE0 bits in SCR. For details of SCI clock source selection, see table 12.9.

When an external clock is input at the SCK pin, the clock frequency should be 16 times the bit rate used.

When the SCI is operated on an internal clock, the clock can be output from the SCK pin. The frequency of the clock output in this case is equal to the bit rate, and the phase is such that the rising edge of the clock is in the middle of the transmit data, as shown in figure 12.3.

Figure 12.3 Relation between Output Clock and Transfer Data Phase (Asynchronous Mode)

Data Transfer Operations

SCI initialization (asynchronous mode): Before transmitting and receiving data, you should first clear the TE and RE bits in SCR to 0 , then initialize the SCI as described below.

When the operating mode, transfer format, etc., is changed, the TE and RE bits must be cleared to 0 before making the change using the following procedure. When the TE bit is cleared to 0 , the TDRE flag is set to 1 and TSR is initialized. Note that clearing the RE bit to 0 does not change the contents of the RDRF, PER, FER, and ORER flags, or the contents of RDR.

When an external clock is used the clock should not be stopped during operation, including initialization, since operation is uncertain.

Figure 12.4 shows a sample SCI initialization flowchart.

Figure 12.4 Sample SCI Initialization Flowchart

Serial data transmission (asynchronous mode): Figure 12.5 shows a sample flowchart for serial transmission.

The following procedure should be used for serial data transmission.

Figure 12.5 Sample Serial Transmission Flowchart

In serial transmission, the SCI operates as described below.
[1] The SCI monitors the TDRE flag in SSR, and if is 0 , recognizes that data has been written to TDR, and transfers the data from TDR to TSR.
[2] After transferring data from TDR to TSR, the SCI sets the TDRE flag to 1 and starts transmission.

If the TIE bit is set to 1 at this time, a transmit data empty interrupt (TXI) is generated.
The serial transmit data is sent from the TxD pin in the following order.
[a] Start bit:
One 0-bit is output.
[b] Transmit data:
8-bit or 7-bit data is output in LSB-first order.
[c] Parity bit or multiprocessor bit:
One parity bit (even or odd parity), or one multiprocessor bit is output.
A format in which neither a parity bit nor a multiprocessor bit is output can also be selected.
[d] Stop bit(s):
One or two 1-bits (stop bits) are output.
[e] Mark state:
1 is output continuously until the start bit that starts the next transmission is sent.
[3] The SCI checks the TDRE flag at the timing for sending the stop bit.
If the TDRE flag is cleared to 0 , the data is transferred from TDR to TSR, the stop bit is sent, and then serial transmission of the next frame is started.
If the TDRE flag is set to 1 , the TEND flag in SSR is set to 1 , the stop bit is sent, and then the "mark state" is entered in which 1 is output continuously. If the TEIE bit in SCR is set to 1 at this time, a TEI interrupt request is generated.

Figure 12.6 shows an example of the operation for transmission in asynchronous mode.

Figure 12.6 Example of Operation in Transmission in Asynchronous Mode (Example with 8-Bit Data, Parity, One Stop Bit)

Serial data reception (asynchronous mode): Figure 12.7 shows a sample flowchart for serial reception.

The following procedure should be used for serial data reception.

Note: * The case, in which the DTC automatically clears the RDRF flag, occurs only when DISEL in DTC is 0 with the transfer counter not being 0 . Therefore, the RDRF flag should be cleared by CPU when DISEL is 1 , or when DISEL is 0 with the transfer counter being 0 .

Figure 12.7 Sample Serial Reception Data Flowchart

Figure 12.7 Sample Serial Reception Data Flowchart (cont)

In serial reception, the SCI operates as described below.
[1] The SCI monitors the transmission line, and if a 0 stop bit is detected, performs internal synchronization and starts reception.
[2] The received data is stored in RSR in LSB-to-MSB order.
[3] The parity bit and stop bit are received.
After receiving these bits, the SCI carries out the following checks.
[a] Parity check:
The SCI checks whether the number of 1 bits in the receive data agrees with the parity (even or odd) set in the O / \bar{E} bit in SMR.
[b] Stop bit check:
The SCI checks whether the stop bit is 1 .
If there are two stop bits, only the first is checked.
[c] Status check:
The SCI checks whether the RDRF flag is 0 , indicating that the receive data can be transferred from RSR to RDR.

If all the above checks are passed, the RDRF flag is set to 1 , and the receive data is stored in RDR.

If a receive error* is detected in the error check, the operation is as shown in table 12.11 .

Note: * Subsequent receive operations cannot be performed when a receive error has occurred. Also note that the RDRF flag is not set to 1 in reception, and so the error flags must be cleared to 0 .
[4] If the RIE bit in SCR is set to 1 when the RDRF flag changes to 1 , a receive data full interrupt (RXI) request is generated.
Also, if the RIE bit in SCR is set to 1 when the ORER, PER, or FER flag changes to 1 , a receive error interrupt (ERI) request is generated.

Table 12.11 Receive Errors and Conditions for Occurrence

Receive Error	Abbreviation	Occurrence Condition	Data Transfer
Overrun error	ORER	When the next data reception is completed while the RDRF flag in SSR is set to 1	Receive data is not transferred from RSR to
Framing error	FER	When the stop bit is 0	Receive data is transferred from RSR to RDR.
Parity error	PER	When the received data differs from the parity (even or odd) set in SMR	Receive data is transferred from RSR to RDR.

Figure 12.8 shows an example of the operation for reception in asynchronous mode.

Figure 12.8 Example of SCI Operation in Reception (Example with 8-Bit Data, Parity, One Stop Bit)

12.3.3 Multiprocessor Communication Function

The multiprocessor communication function performs serial communication using the multiprocessor format, in which a multiprocessor bit is added to the transfer data, in asynchronous mode. Use of this function enables data transfer to be performed among a number of processors sharing transmission lines.

When multiprocessor communication is carried out, each receiving station is addressed by a unique ID code.

The serial communication cycle consists of two component cycles: an ID transmission cycle which specifies the receiving station, and a data transmission cycle. The multiprocessor bit is used to differentiate between the ID transmission cycle and the data transmission cycle.

The transmitting station first sends the ID of the receiving station with which it wants to perform serial communication as data with a 1 multiprocessor bit added. It then sends transmit data as data with a 0 multiprocessor bit added.

The receiving station skips the data until data with a 1 multiprocessor bit is sent.
When data with a 1 multiprocessor bit is received, the receiving station compares that data with its own ID. The station whose ID matches then receives the data sent next. Stations whose ID does not match continue to skip the data until data with a 1 multiprocessor bit is again received. In this way, data communication is carried out among a number of processors.

Figure 12.9 shows an example of inter-processor communication using the multiprocessor format.

Data Transfer Format

There are four data transfer formats.
When the multiprocessor format is specified, the parity bit specification is invalid.
For details, see table 12.10.

Clock

See the section on asynchronous mode.

Figure 12.9 Example of Inter-Processor Communication Using Multiprocessor Format (Transmission of Data H'AA to Receiving Station A)

Data Transfer Operations

Multiprocessor serial data transmission: Figure 12.10 shows a sample flowchart for multiprocessor serial data transmission.

The following procedure should be used for multiprocessor serial data transmission.

[2] SCl status check and transmit data write:
Read SSR and check that the TDRE flag is set to 1 , then write transmit data to TDR. Set the MPBT bit in SSR to 0 or 1. Finally, clear the TDRE flag to 0 .
[3] Serial transmission continuation procedure:
To continue serial transmission, be sure to read 1 from the TDRE flag to confirm that writing is possible, then write data to TDR, and then clear the TDRE flag to 0 . Checking and clearing of the TDRE flag is automatic when the DTC* is activated by a transmit data empty interrupt (TXI) request, and data is written to TDR.
[4] Break output at the end of serial transmission:
To output a break in serial transmission, set the port DDR to 1 , clear DR to 0, then clear the TE bit in SCR to 0 .

Note: * The case, in which the DTC automatically clears the TDRE flag, occurs only when DISEL in DTC is 0 with the transfer counter not being 0 . Therefore, the TDRE flag should be cleared by CPU when DISEL is 1 , or when DISEL is 0 with the transfer counter being 0 .

Figure 12.10 Sample Multiprocessor Serial Transmission Flowchart

In serial transmission, the SCI operates as described below.
[1] The SCI monitors the TDRE flag in SSR, and if is 0 , recognizes that data has been written to TDR, and transfers the data from TDR to TSR.
[2] After transferring data from TDR to TSR, the SCI sets the TDRE flag to 1 and starts transmission.

If the TIE bit is set to 1 at this time, a transmit data empty interrupt (TXI) request is generated. The serial transmit data is sent from the TxD pin in the following order.
[a] Start bit:
One 0-bit is output.
[b] Transmit data:
8-bit or 7-bit data is output in LSB-first order.
[c] Multiprocessor bit
One multiprocessor bit (MPBT value) is output.
[d] Stop bit(s):
One or two 1-bits (stop bits) are output.
[e] Mark state:
1 is output continuously until the start bit that starts the next transmission is sent.
[3] The SCI checks the TDRE flag at the timing for sending the stop bit.
If the TDRE flag is cleared to 0 , data is transferred from TDR to TSR, the stop bit is sent, and then serial transmission of the next frame is started.
If the TDRE flag is set to 1 , the TEND flag in SSR is set to 1 , the stop bit is sent, and then the mark state is entered in which 1 is output continuously. If the TEIE bit in SCR is set to 1 at this time, a transmission end interrupt (TEI) request is generated.

Figure 12.11 shows an example of SCI operation for transmission using the multiprocessor format.

Figure $\mathbf{1 2 . 1 1}$ Example of SCI Operation in Transmission (Example with 8-Bit Data, Multiprocessor Bit, One Stop Bit)

Multiprocessor serial data reception: Figure 12.12 shows a sample flowchart for multiprocessor serial reception.

The following procedure should be used for multiprocessor serial data reception.

Figure 12.12 Sample Multiprocessor Serial Reception Flowchart

Figure 12.12 Sample Multiprocessor Serial Reception Flowchart (cont)

Figure 12.13 shows an example of SCI operation for multiprocessor format reception.

Figure 12.13 Example of SCI Operation in Reception (Example with 8-Bit Data, Multiprocessor Bit, One Stop Bit)

12.3.4 Operation in Clocked Synchronous Mode

In clocked synchronous mode, data is transmitted or received in synchronization with clock pulses, making it suitable for high-speed serial communication.

Inside the SCI, the transmitter and receiver are independent units, enabling full-duplex communication by use of a common clock. Both the transmitter and the receiver also have a double-buffered structure, so that data can be read or written during transmission or reception, enabling continuous data transfer.

Figure 12.14 shows the general format for clocked synchronous serial communication.

Figure 12.14 Data Format in Synchronous Communication
In clocked synchronous serial communication, data on the transmission line is output from one falling edge of the serial clock to the next. Data confirmation is guaranteed at the rising edge of the serial clock.

In clocked serial communication, one character consists of data output starting with the LSB and ending with the MSB. After the MSB is output, the transmission line holds the MSB state.

In clocked synchronous mode, the SCI receives data in synchronization with the rising edge of the serial clock.

Data Transfer Format

A fixed 8-bit data format is used.

No parity or multiprocessor bits are added.

Clock

Either an internal clock generated by the on-chip baud rate generator or an external serial clock input at the SCK pin can be selected, according to the setting of the C/A bit in SMR and the CKE1 and CKE0 bits in SCR. For details of SCI clock source selection, see table 12.9.

When the SCI is operated on an internal clock, the serial clock is output from the SCK pin.
Eight serial clock pulses are output in the transfer of one character, and when no transfer is performed the clock is fixed high. When only receive operations are performed, however, the serial clock is output until an overrun error occurs or the RE bit is cleared to 0 . If you want to perform receive operations in units of one character, you should select an external clock as the clock source.

Data Transfer Operations

SCI initialization (clocked synchronous mode): Before transmitting and receiving data, you should first clear the TE and RE bits in SCR to 0 , then initialize the SCI as described below.

When the operating mode, transfer format, etc., is changed, the TE and RE bits must be cleared to 0 before making the change using the following procedure. When the TE bit is cleared to 0 , the TDRE flag is set to 1 and TSR is initialized. Note that clearing the RE bit to 0 does not change the contents of the RDRF, PER, FER, and ORER flags, or the contents of RDR.

Figure 12.15 shows a sample SCI initialization flowchart.

[1] Set the clock selection in SCR. Be sure to clear bits RIE, TIE, TEIE, and MPIE, TE and RE, to 0 .
[2] Set the data transfer format in SMR and SCMR.
[1] [3] Write a value corresponding to the bit rate to BRR. Not necessary if an external clock is used.
[2] [4] Wait at least one bit interval, then set the TE bit or RE bit in SCR to 1 . Also set the RIE, TIE, TEIE, and MPIE bits.
Setting the TE and RE bits enables the TxD and RxD pins to be used.

Note: In simultaneous transmit and receive operations, the TE and RE bits should both be cleared to 0 or set to 1 simultaneously.

Figure 12.15 Sample SCI Initialization Flowchart

Serial data transmission (clocked synchronous mode): Figure 12.16 shows a sample flowchart for serial transmission.

The following procedure should be used for serial data transmission.

Figure 12.16 Sample Serial Transmission Flowchart

In serial transmission, the SCI operates as described below.
[1] The SCI monitors the TDRE flag in SSR, and if is 0 , recognizes that data has been written to TDR, and transfers the data from TDR to TSR.
[2] After transferring data from TDR to TSR, the SCI sets the TDRE flag to 1 and starts transmission. If the TIE bit is set to 1 at this time, a transmit data empty interrupt (TXI) is generated.
When clock output mode has been set, the SCI outputs 8 serial clock pulses. When use of an external clock has been specified, data is output synchronized with the input clock.
The serial transmit data is sent from the TxD pin starting with the LSB (bit 0) and ending with the MSB (bit 7).
[3] The SCI checks the TDRE flag at the timing for sending the MSB (bit 7).
If the TDRE flag is cleared to 0 , data is transferred from TDR to TSR, and serial transmission of the next frame is started.
If the TDRE flag is set to 1 , the TEND flag in SSR is set to 1 , the MSB (bit 7) is sent, and the TxD pin maintains its state.
If the TEIE bit in SCR is set to 1 at this time, a TEI interrupt request is generated.
[4] After completion of serial transmission, the SCK pin is fixed.
Figure 12.17 shows an example of SCI operation in transmission.

Figure 12.17 Example of SCI Operation in Transmission
Serial data reception (clocked synchronous mode): Figure 12.18 shows a sample flowchart for serial reception.

The following procedure should be used for serial data reception.
When changing the operating mode from asynchronous to clocked synchronous, be sure to check that the ORER, PER, and FER flags are all cleared to 0 .

The RDRF flag will not be set if the FER or PER flag is set to 1 , and neither transmit nor receive operations will be possible.

[1] [1] $\begin{aligned} & \text { SCI initialization: } \\ & \text { The RxD pin is automatically } \\ & \text { designated as the receive data } \\ & \text { input pin. }\end{aligned}$
[1] [1] $\begin{aligned} & \text { SCI initialization: } \\ & \text { The RxD pin is automatically } \\ & \text { designated as the receive data } \\ & \text { input pin. }\end{aligned}$
[1] [1] $\begin{aligned} & \text { SCI initialization: } \\ & \text { The RxD pin is automatically } \\ & \text { designated as the receive data } \\ & \text { input pin. }\end{aligned}$
[1] [1] $\begin{aligned} & \text { SCI initialization: } \\ & \text { The RxD pin is automatically } \\ & \text { designated as the receive data } \\ & \text { input pin. }\end{aligned}$
[2] [3] Receive error processing: If a receive error occurs, read the ORER flag in SSR, and after performing the appropriate error processing, clear the ORER flag to 0 . Transfer cannot be resumed if the ORER flag is set to 1 .
[4] SCI status check and receive data read:
Read SSR and check that the RDRF flag is set to 1 , then read the receive data in RDR and clear the RDRF flag to 0 . Transition of the RDRF flag from 0 to 1 can also be identified by an RXI interrupt.
[5] Serial reception continuation procedure:
To continue serial reception, before the MSB (bit 7) of the current frame is received, finish reading the RDRF flag, reading RDR, and clearing the RDRF flag to 0 . The RDRF flag is cleared automatically when the DTC* is activated by a receive data full interrupt (RXI) request and the RDR value is read.
[3]

Note: * The case, in which the DTC automatically clears the RDRF flag, occurs only when DISEL in DTC is 0 with the transfer counter not being 0 . Therefore, the RDRF flag should be cleared by CPU when DISEL is 1 , or when DISEL is 0 with the when DISEL is 0 with the
transfer counter being 0 .

Figure 12.18 Sample Serial Reception Flowchart

In serial reception, the SCI operates as described below.
[1] The SCI performs internal initialization in synchronization with serial clock input or output.
[2] The received data is stored in RSR in LSB-to-MSB order.
After reception, the SCI checks whether the RDRF flag is 0 and the receive data can be transferred from RSR to RDR.
If this check is passed, the RDRF flag is set to 1 , and the receive data is stored in RDR. If a receive error is detected in the error check, the operation is as shown in table 12.11.
Neither transmit nor receive operations can be performed subsequently when a receive error has been found in the error check.
[3] If the RIE bit in SCR is set to 1 when the RDRF flag changes to 1 , a receive data full interrupt (RXI) request is generated.
Also, if the RIE bit in SCR is set to 1 when the ORER flag changes to 1 , a receive error interrupt (ERI) request is generated.

Figure 12.19 shows an example of SCI operation in reception.

Figure 12.19 Example of SCI Operation in Reception
Simultaneous serial data transmission and reception (clocked synchronous mode): Figure 12.20 shows a sample flowchart for simultaneous serial transmit and receive operations.

The following procedure should be used for simultaneous serial data transmit and receive operations.

Notes: When switching from transmit or receive operation to simultaneous transmit and receive operations, first clear the TE bit and RE bit to 0 , then set both these bits to 1 simultaneously.
[1] SCI initialization:
The TxD pin is designated as the transmit data output pin, and the $R \times D$ pin is designated as the receive data input pin, enabling simultaneous transmit and receive operations.
[2] SCl status check and transmit data write:
Read SSR and check that the TDRE flag is set to 1 , then write transmit data to TDR and clear the TDRE flag to 0 .
Transition of the TDRE flag from 0 to 1 can also be identified by a TXI interrupt.
[3] Receive error processing: If a receive error occurs, read the ORER flag in SSR, and after performing the appropriate error processing, clear the ORER flag to 0 . Transmission/reception cannot be resumed if the ORER flag is set to 1 .
[4] SCI status check and receive data read:
Read SSR and check that the RDRF flag is set to 1 , then read the receive data in RDR and clear the RDRF flag to 0 . Transition of the RDRF flag from 0 to 1 can also be identified by an RXI interrupt.
[5] Serial transmission/reception continuation procedure:
To continue serial transmission/ reception, before the MSB (bit 7) of the current frame is transmitted, read 1 from the TDRE flag to confirm that writing is possible. Then write data to TDR and clear the TDRE flag to 0 . Also, before the MSB (bit 7) of the current frame is received, finish reading the RDRF flag, reading RDR, and clearing the RDRF flag to 0.
Checking and clearing of the TDRE flag is automatic when the DTC is activated by a transmit data empty interrupt (TXI) request and data is written to TDR. Also, the RDRF flag is cleared automatically when the DTC* is activated by a receive data full interrupt (RXI) request and the RDR value is read.

* The case, in which the DTC automatically clears the TDRE flag or RDRF flag, occurs only when DISEL in the corresponding DTC transfer is 0 with the transfer counter not being 0 . Therefore, the corresponding flag should be cleared by CPU when DISEL in the corresponding DTC transfer is 1 , or when DISEL is 0 with the transfer counter being 0 .

Figure 12.20 Sample Flowchart of Simultaneous Serial Transmit and Receive Operations

12.4 SCI Interrupts

The SCI has four interrupt sources: the transmit-end interrupt (TEI) request, receive-error interrupt (ERI) request, receive-data-full interrupt (RXI) request, and transmit-data-empty interrupt (TXI) request. Table 12.12 shows the interrupt sources and their relative priorities. Individual interrupt sources can be enabled or disabled with the TIE, RIE, and TEIE bits in the SCR. Each kind of interrupt request is sent to the interrupt controller independently.

When the TDRE flag in SSR is set to 1 , a TXI interrupt request is generated. When the TEND flag in SSR is set to 1 , a TEI interrupt request is generated. A TXI interrupt can activate the DTC to perform data transfer. The TDRE flag is cleared to 0 automatically when data transfer is performed by the DTC*. The DTC cannot be activated by a TEI interrupt request.

When the RDRF flag in SSR is set to 1 , an RXI interrupt request is generated. When the ORER, PER, or FER flag in SSR is set to 1 , an ERI interrupt request is generated. An RXI interrupt can activate the DTC to perform data transfer. The RDRF flag is cleared to 0 automatically when data transfer is performed by the DTC*. The DTC cannot be activated by an ERI interrupt request.

Note: * The flag is not cleared when DISEL is 0 and the transfer counter value is not 0 .

Table 12.12 SCI Interrupt Sources

Channel	Interrupt Source	Description	DTC Activation	Priority*
0	ERI	Interrupt due to receive error (ORER, FER, or PER)	Not possible	High
	RXI	Interrupt due to receive data full state (RDRF)	Possible	
	TXI	Interrupt due to transmit data empty state (TDRE)	Possible	
	TEI	Interrupt due to transmission end (TEND)	Not possible	
1	ERI	Interrupt due to receive error (ORER, FER, or PER)	Not possible	
	RXI	Interrupt due to receive data full state (RDRF)	Possible	
	TXI	Interrupt due to transmit data empty state (TDRE)	Possible	
	TEI	Interrupt due to transmission end (TEND)	Not possible	
2	ERI	Interrupt due to receive error (ORER, FER, or PER)	Not possible	
	RXI	Interrupt due to receive data full state (RDRF)	Possible	
	TXI	Interrupt due to transmit data empty state (TDRE)	Possible	
	TEI	Interrupt due to transmission end (TEND)	Not possible	

Note: * This table shows the initial state immediately after a reset. Relative priorities among channels can be changed by means of ICR.

A TEI interrupt is requested when the TEND flag is set to 1 while the TEIE bit is set to 1 . The TEND flag is cleared at the same time as the TDRE flag. Consequently, if a TEI interrupt and a TXI interrupt are requested simultaneously, the TXI interrupt may be accepted first, with the result that the TDRE and TEND flags are cleared. Note that the TEI interrupt will not be accepted in this case.

12.5 Usage Notes

The following points should be noted when using the SCI.

Module Stop Mode Setting

SCI operation can be disabled or enabled using the module stop control register. The initial setting is for SCI operation to be halted. Register access is enabled by clearing module stop mode. For details, see section 18, Power-Down Modes.

Relation between Writes to TDR and the TDRE Flag

The TDRE flag in SSR is a status flag that indicates that transmit data has been transferred from TDR to TSR. When the SCI transfers data from TDR to TSR, the TDRE flag is set to 1 .

Data can be written to TDR regardless of the state of the TDRE flag. However, if new data is written to TDR when the TDRE flag is cleared to 0 , the data stored in TDR will be lost since it has not yet been transferred to TSR. It is therefore essential to check that the TDRE flag is set to 1 before writing transmit data to TDR.

Operation when Multiple Receive Errors Occur Simultaneously

If a number of receive errors occur at the same time, the state of the status flags in SSR is as shown in table 12.13. If there is an overrun error, data is not transferred from RSR to RDR, and the receive data is lost.

Table 12.13 State of SSR Status Flags and Transfer of Receive Data

SSR Status Flags			Receive Data Transfer		
RDRF	ORER	FER	PER	RSR to RDR	Receive Error Status
1	1	0	0	X	Overrun error
0	0	1	0	O	Framing error
0	0	0	1	O	Parity error
1	1	1	0	X	Overrun error + framing error
1	1	0	1	X	Overrun error + parity error
0	0	1	1	O	Framing error + parity error
1	1	1	1	X	Overrun error + framing error + parity error

Legend:

O: Receive data is transferred from RSR to RDR.
X : Receive data is not transferred from RSR to RDR.

Break Detection and Processing (Asynchronous Mode Only)

When framing error (FER) detection is performed, a break can be detected by reading the RxD pin value directly. In a break, the input from the RxD pin becomes all 0 s, and so the FER flag is set, and the parity error flag (PER) may also be set.

Note that, since the SCI continues the receive operation after receiving a break, even if the FER flag is cleared to 0 , it will be set to 1 again.

Sending a Break (Asynchronous Mode Only)

The TxD pin has a dual function as an I/O port whose direction (input or output) is determined by DR and DDR. This can be used to send a break.

Between serial transmission initialization and setting of the TE bit to 1 , the mark state is replaced by the value of DR (the pin does not function as the TxD pin until the TE bit is set to 1). Consequently, DDR and DR for the port corresponding to the TxD pin are first set to 1 .

To send a break during serial transmission, first clear DR to 0 , then clear the TE bit to 0 .
When the TE bit is cleared to 0 , the transmitter is initialized regardless of the current transmission state, the TxD pin becomes an I/O port, and 0 is output from the TxD pin.

Receive Error Flags and Transmit Operations (Clocked Synchronous Mode Only)

Transmission cannot be started when a receive error flag (ORER, PER, or FER) is set to 1 , even if the TDRE flag is cleared to 0 . Be sure to clear the receive error flags to 0 before starting transmission.

Note also that receive error flags cannot be cleared to 0 even if the RE bit is cleared to 0 .

Receive Data Sampling Timing and Reception Margin in Asynchronous Mode

In asynchronous mode, the SCI operates on a basic clock with a frequency of 16 times the transfer rate.

In reception, the SCI samples the falling edge of the start bit using the basic clock, and performs internal synchronization. Receive data is latched internally at the rising edge of the 8th pulse of the basic clock. This is illustrated in figure 12.21 .

Figure 12.21 Receive Data Sampling Timing in Asynchronous Mode
Thus the reception margin in asynchronous mode is given by formula (1) below.

$$
M=\left|\left(0.5-\frac{1}{2 N}\right)-(L-0.5) F-\frac{|D-0.5|}{N}(1+F)\right| \times 100 \%
$$

Where M: Reception margin (\%)
$\mathrm{N}:$ Ratio of bit rate to clock $(\mathrm{N}=16)$
D: Clock duty ($\mathrm{D}=0$ to 1.0)
L: Frame length ($\mathrm{L}=9$ to 12)
F: Absolute value of clock rate deviation
Assuming values of $\mathrm{F}=0$ and $\mathrm{D}=0.5$ in formula (1), a reception margin of 46.875% is given by formula (2) below.

When $\mathrm{D}=0.5$ and $\mathrm{F}=0$,

$$
\begin{align*}
M & =\left(0.5-\frac{1}{2 \times 16}\right) \times 100 \% \\
& =46.875 \% \tag{2}
\end{align*}
$$

However, this is only the computed value, and a margin of 20% to 30% should be allowed in system design.

Restrictions Concerning DTC Updating

- When an external clock source is used as the serial clock, the transmit clock should not be input until at least 5ϕ clock cycles after TDR is updated by the CPU and DTC. Misoperation may occur if the transmit clock is input within 4ϕ clocks after TDR is updated. (Figure 12.22)
- When RDR is read by the DTC, be sure to set the activation source to the relevant SCI reception end interrupt (RXI).
- The flag is cleared only when DISEL in DTC is 0 with the transfer counter not being 0 . When DISEL is 1 ,or DISEL is 0 with the transfer counter being 0 , the flag should be cleared by CPU. Note that transmitting, in particular, may not successfully be executed unless the TDRE flag is cleared by CPU.

Figure 12.22 Example of Clocked Synchronous Transmission by DTC

Operation in Case of Mode Transition

- Transmission

Operation should be stopped (by clearing TE, TIE, and TEIE to 0) before making a module stop mode or software standby mode transition. TSR, TDR, and SSR are reset. The output pin states in module stop mode or software standby mode depend on the port settings, and becomes high-level output after the relevant mode is cleared. If a transition is made during transmission, the data being transmitted will be undefined. When transmitting without changing the transmit mode after the relevant mode is cleared, transmission can be started by setting TE to 1 again, and performing the following sequence: SSR read \rightarrow TDR write \rightarrow TDRE clearance. To transmit with a different transmit mode after clearing the relevant mode, the procedure must be started again from initialization. Figure 12.23 shows a sample flowchart for mode transition during transmission. Port pin states are shown in figures 12.24 and 12.25. Operation should also be stopped (by clearing TE, TIE, and TEIE to 0) before making a transition from transmission by DTC transfer to module stop mode or software standby mode
transition. To perform transmission with the DTC after the relevant mode is cleared, setting TE and TIE to 1 will set the TXI flag and start DTC transmission.

Figure 12.23 Sample Flowchart for Mode Transition during Transmission

Figure 12.24 Asynchronous Transmission Using Internal Clock

Figure 12.25 Synchronous Transmission Using Internal Clock

- Reception

Receive operation should be stopped (by clearing RE to 0) before making a module stop mode or software standby mode transition. RSR, RDR, and SSR are reset. If a transition is made without stopping operation, the data being received will be invalid.
To continue receiving without changing the reception mode after the relevant mode is cleared, set RE to 1 before starting reception. To receive with a different receive mode, the procedure must be started again from initialization.
Figure 12.26 shows a sample flowchart for mode transition during reception.

Figure 12.26 Sample Flowchart for Mode Transition during Reception

Switching from SCK Pin Function to Port Pin Function

- Problem in Operation

When switching the SCK pin function to the output port function (high-level output) by making the following settings while $\mathrm{DDR}=1, \mathrm{DR}=1, \mathrm{C} / \overline{\mathrm{A}}=1, \mathrm{CKE} 1=0, \mathrm{CKE} 0=0$, and TE $=1$ (synchronous mode), low-level output occurs for one half-cycle.

1. End of serial data transmission
2. TE bit $=0$
3. $\mathrm{C} / \overline{\mathrm{A}}$ bit $=0 \ldots$ Switchover to port output
4. Occurrence of low-level output

Figure 12.27 Operation when Switching from SCK Pin Function to Port Pin Function

- Sample Procedure for Avoiding Low-Level Output

As this sample procedure temporarily places the SCK pin in the input state, the SCK/port pin should be pulled up beforehand with an external circuit.
With $\mathrm{DDR}=1, \mathrm{DR}=1, \mathrm{C} / \overline{\mathrm{A}}=1, \mathrm{CKE} 1=0, \mathrm{CKE} 0=0$, and $\mathrm{TE}=1$, make the following settings in the order shown.

1. End of serial data transmission
2. TE bit $=0$
3. \quad CKE1 bit $=1$
4. $\mathrm{C} / \overline{\mathrm{A}}$ bit $=0 \ldots$ Switchover to port output
5. \quad CKE1 bit $=0$

Figure 12.28 Operation when Switching from SCK Pin Function to Port Pin Function (Example of Preventing Low-Level Output)

Section 13 Smart Card Interface

13.1 Overview

SCI supports an IC card (Smart Card) interface conforming to ISO/IEC 7816-3 (Identification Card) as a serial communication interface extension function.

Switching between the normal serial communication interface and the Smart Card interface is carried out by means of a register setting.

13.1.1 Features

Features of the Smart Card interface supported by the H8S/2245 are as follows.

- Asynchronous mode
- Data length: 8 bits
- Parity bit generation and checking
- Transmission of error signal (parity error) in receive mode
- Error signal detection and automatic data retransmission in transmit mode
- Direct convention and inverse convention both supported
- On-chip baud rate generator allows any bit rate to be selected
- Three interrupt sources
- Three interrupt sources (transmit data empty, receive data full, and transmit/receive error) that can issue requests independently
- The transmit data empty interrupt and receive data full interrupt can activate the data transfer controller (DTC) to execute data transfer

13.1.2 Block Diagram

Figure 13.1 shows a block diagram of the Smart Card interface.

Figure 13.1 Block Diagram of Smart Card Interface

13.1.3 Pin Configuration

Table 13.1 shows the Smart Card interface pin configuration.
Table 13.1 Smart Card Interface Pins

Channel	Pin Name	Symbol	I/O	Function
0	Serial clock pin 0	SCK0	I/O	SCl0 clock input/output
	Receive data pin 0	RxD0	Input	SCl0 receive data input
	Transmit data pin 0	TxD0	Output	SCl0 transmit data output
1	Serial clock pin 1	SCK1	I/O	SCl1 clock input/output
	Receive data pin 1	RxD1	Input	SCl1 receive data input
	Transmit data pin 1	TxD1	Output	SCl1 transmit data output
2	Serial clock pin 2	SCK2	I/O	SCl2 clock input/output
	Receive data pin 2	RxD2	Input	SCl2 receive data input
	Transmit data pin 2	TxD2	Output	SCl2 transmit data output

13.1.4 Register Configuration

Table 13.2 shows the registers used by the Smart Card interface. Details of SMR, BRR, SCR, TDR, RDR, and MSTPCR are the same as for the normal SCI function: see the register descriptions in section 12, Serial Communication Interface (SCI).

Table 13.2 Smart Card Interface Registers

Channel	Name	Abbreviation	R/W	Initial Value	Address* ${ }^{1}$
0	Serial mode register 0	SMR0	R/W	H'00	H'FF78
	Bit rate register 0	BRR0	R/W	H'FF	H'FF79
	Serial control register 0	SCR0	R/W	$\mathrm{H}^{\prime} 00$	H'FF7A
	Transmit data register 0	TDR0	R/W	H'FF	H'FF7B
	Serial status register 0	SSR0	$\mathrm{R} /(\mathrm{W}) *^{2}$	H'84	H'FF7C
	Receive data register 0	RDR0	R	H'00	H'FF7D
	Smart card mode register 0	SCMR0	R/W	H'F2	H'FF7E
1	Serial mode register 1	SMR1	R/W	H'00	H'FF80
	Bit rate register 1	BRR1	R/W	H'FF	H'FF81
	Serial control register 1	SCR1	R/W	$\mathrm{H}^{\prime} \mathrm{OO}$	H'FF82
	Transmit data register 1	TDR1	R/W	H'FF	H'FF83
	Serial status register 1	SSR1	$\mathrm{R} /(\mathrm{W})^{*}{ }^{2}$	H'84	H'FF84
	Receive data register 1	RDR1	R	H'00	H'FF85
	Smart card mode register 1	SCMR1	R/W	H'F2	H'FF86
2	Serial mode register 2	SMR2	R/W	H'00	H'FF88
	Bit rate register 2	BRR2	R/W	H'FF	H'FF89
	Serial control register 2	SCR2	R/W	H'00	H'FF8A
	Transmit data register 2	TDR2	R/W	H'FF	H'FF8B
	Serial status register 2	SSR2	$\mathrm{R} /(\mathrm{W}) *^{2}$	H'84	H'FF8C
	Receive data register 2	RDR2	R	H'00	H'FF8D
	Smart card mode register 2	SCMR2	R/W	H'F2	H'FF8E
All	Module stop control register	MSTPCR	R/W	H'3FFF	H'FF3C

Notes: 1. Lower 16 bits of the address.
2. Can only be written with 0 for flag clearing.

13.2 Register Descriptions

Registers added with the Smart Card interface and bits for which the function changes are described here.

13.2.1 Smart Card Mode Register (SCMR)

Bit	7	6	5	4	3	2	1	0
	-	-	-	-	SDIR	SINV	-	SMIF
Initial value	1	1	1	1	0	0	1	0
R/W	-	-	-	-	R/W	R/W	-	R/W

SCMR is an 8-bit readable/writable register that selects the Smart Card interface function.
SCMR is initialized to H'F2 by a reset, and in standby mode or module stop mode.
Bits 7 to 4-Reserved: Read-only bits, always read as 1.
Bit 3—Smart Card Data Transfer Direction (SDIR): Selects the serial/parallel conversion format.

Bit 3

SDIR	Description	
0	TDR contents are transmitted LSB-first	(Initial value)
	Receive data is stored in RDR LSB-first	
1	TDR contents are transmitted MSB-first	
	Receive data is stored in RDR MSB-first	

Bit 2—Smart Card Data Invert (SINV): Specifies inversion of the data logic level. This function is used together with the SDIR bit for communication with an inverse convention card. The SINV bit does not affect the logic level of the parity bit. For parity-related setting procedures, see section 13.3.4, Register Settings.

Bit 2

SINV	Description	(Initial value)
0	TDR contents are transmitted as they are	
1	Receive data is stored as it is in RDR	
	TDR contents are inverted before being transmitted	

Bit 1—Reserved: Read-only bit, always read as 1.
Bit 0—Smart Card Interface Mode Select (SMIF): Enables or disables the Smart Card interface function.

Bit 0
SMIF Description

0	Smart Card interface function is disabled	(Initial value)
1	Smart Card interface function is enabled	

13.2.2 Serial Status Register (SSR)

Bit	7	6	5	4	3	2	1	0
	TDRE	RDRF	ORER	ERS	PER	TEND	MPB	MPBT
Initial value :	1	0	0	0	0	1	0	0
R/W	$\mathrm{R} /(\mathrm{W})^{*}$	$\mathrm{R} /(\mathrm{W})^{*}$	$\mathrm{R} /(\mathrm{W}) *$	$\mathrm{R} /(\mathrm{W})$ *	$\mathrm{R} /(\mathrm{W})^{*}$	R	R	R/W

Note: * Only 0 can be written to bits 7 to 3, to clear these flags.

Bit 4 of SSR has a different function in Smart Card interface mode. Coupled with this, the setting conditions for bit 2, TEND, are also different.

Bits 7 to 5-Operate in the same way as for the normal SCI. For details, see section 12.2.7, Serial Status Register (SSR).

Bit 4—Error Signal Status (ERS): In Smart Card interface mode, bit 4 indicates the status of the error signal sent back from the receiving end in transmission. Framing errors are not detected in Smart Card interface mode.

Bit 4

ERS Description

$0 \quad$ [Clearing conditions]

- Upon reset, and in standby mode or module stop mode
- When 0 is written to ERS after reading ERS = 1

1 [Setting condition]
When the low level of the error signal is sampled
Note: Clearing the TE bit in SCR to 0 does not affect the ERS flag, which retains its previous state.

Bits 3 to 0-Operate in the same way as for the normal SCI. For details, see section 12.2.7, Serial Status Register (SSR).

However, the setting conditions for the TEND bit, are as shown below.

Bit 2

TEND	Description	
0	[Clearing conditions]	(Initial value)

- When 0 is written to TDRE after reading TDRE $=1$
- When the DTC* is activated by a TXI interrupt and write data to TDR

1 [Setting conditions]

- Upon reset, and in standby mode or module stop mode
- When the TE bit in SCR is 0 and the ERS bit is also 0
- When TDRE $=1$ and ERS $=0$ (normal transmission) 12.5 etu after transmission of a 1-byte serial character when GM $=0$
- When TDRE $=1$ and ERS $=0$ (normal transmission) 11.0 etu after transmission of a 1 -byte serial character when $\mathrm{GM}=1$
Notes: etu: Elementary Time Unit (time for transfer of 1 bit)
* DTC can clear this bit only when DISEL is 0 with the transfer counter not being 0 .

13.2.3 Serial Mode Register (SMR)

Bit	7	6	5	4	3	2	1	0
	GM	CHR	PE	O/E	STOP	MP	CKS1	CKS0
Initial value	0	0	0	0	0	0	0	0
Set value*	GM	0	1	O/E	1	0	CKS1	CKS0
R/W								

Note: * When the smart card interface is used, be sure to make the 0 or 1 setting shown for bits $6,5,3$, and 2.

The function of bit 7 of SMR changes in smart card interface mode.
Bit 7—GSM Mode (GM): Sets the smart card interface function to GSM mode.

This bit is cleared to 0 when the normal smart card interface is used. In GSM mode, this bit is set to 1 , the timing of setting of the TEND flag that indicates transmission completion is advanced and clock output control mode addition is performed. The contents of the clock output control mode addition are specified by bits 1 and 0 of the serial control register (SCR).

Bit 7

GM	Description	(Initial value)
0	Normal smart card interface mode operation	
	\bullet	TEND flag generation 12.5 etu after beginning of start bit

Note: etu: Elementary time unit (time for transfer of 1 bit)

Bits 6 to $0-$ Operate in the same way as for the normal SCI.
For details, see section 12.2.5, Serial Mode Register (SMR).

13.2.4 Serial Control Register (SCR)

Bit	7	6	5	4	3	2	1	0
	TIE	RIE	TE	RE	MPIE	TEIE	CKE1	CKE0
Initial value	0	0	0	0	0	0	0	0
R/W								

In smart card interface mode, the function of bits 1 and 0 of SCR changes when bit 7 of the serial mode register (SMR) is set to 1 .

Bits 7 to 2-Operate in the same way as for the normal SCI.
For details, see section 12.2.6, Serial Control Register (SCR).
Bits 1 and 0—Clock Enable 1 and 0 (CKE1, CKE0): These bits are used to select the SCI clock source and enable or disable clock output from the SCK pin.

In smart card interface mode, in addition to the normal switching between clock output enabling and disabling, the clock output can be specified as to be fixed high or low.

SCMR	SMR	SCR Setting		SCK Pin Function
SMIF	$\overline{\mathrm{C} / \overline{\mathrm{A}}, \mathrm{GM}}$	CKE1	CKE0	
0	See the SCI			
1	0	0	0	Operates as port I/O pin
1	0	0	1	Outputs clock as SCK output pin
1	1	0	0	Operates as SCK output pin, with output fixed low
1	1	0	1	Outputs clock as SCK output pin
1	1	1	0	Operates as SCK output pin, with output fixed high
1	1	1	1	Outputs clock as SCK output pin

13.3 Operation

13.3.1 Overview

The main functions of the Smart Card interface are as follows.

- One frame consists of 8-bit data plus a parity bit.
- In transmission, a guard time of at least 2 etu (Elementary Time Unit: the time for transfer of one bit) is left between the end of the parity bit and the start of the next frame.
- If a parity error is detected during reception, a low error signal level is output for one etu period, 10.5 etu after the start bit.
- If the error signal is sampled during transmission, the same data is transmitted automatically after the elapse of 2 etu or longer.
- Only asynchronous communication is supported; there is no clocked synchronous communication function.

13.3.2 Pin Connections

Figure 13.2 shows a schematic diagram of Smart Card interface related pin connections.
In communication with an IC card, since both transmission and reception are carried out on a single data transmission line, the TxD pin and RxD pin should be connected with the LSI pin. The data transmission line should be pulled up to the V_{CC} power supply with a resistor.

When the clock generated on the Smart Card interface is used by an IC card, the SCK pin output is input to the CLK pin of the IC card. No connection is needed if the IC card uses an internal clock.

LSI port output is used as the reset signal.
Other pins must normally be connected to the power supply or ground.

Figure 13.2 Schematic Diagram of Smart Card Interface Pin Connections
Note: If an IC card is not connected, and the TE and RE bits are both set to 1, closed transmission/reception is possible, enabling self-diagnosis to be carried out.

13.3.3 Data Format

Figure 13.3 shows the Smart Card interface data format. In reception in this mode, a parity check is carried out on each frame, and if an error is detected an error signal is sent back to the transmitting end, and retransmission of the data is requested. If an error signal is sampled during transmission, the same data is retransmitted.

When there is no parity error

When a parity error occurs

Legend:
Receiving station
Ds
: Start bit
D0 to D7 : Data bits
Dp : Parity bit
DE : Error signal
Figure 13.3 Smart Card Interface Data Format

The operation sequence is as follows.
[1] When the data line is not in use it is in the high-impedance state, and is fixed high with a pullup resistor.
[2] The transmitting station starts transfer of one frame of data. The data frame starts with a start bit (Ds, low-level), followed by 8 data bits (D0 to D7) and a parity bit (Dp).
[3] With the Smart Card interface, the data line then returns to the high-impedance state. The data line is pulled high with a pull-up resistor.
[4] The receiving station carries out a parity check.
If there is no parity error and the data is received normally, the receiving station waits for reception of the next data.
If a parity error occurs, however, the receiving station outputs an error signal (DE, low-level) to request retransmission of the data. After outputting the error signal for the prescribed length of time, the receiving station places the signal line in the high-impedance state again. The signal line is pulled high again by a pull-up resistor.
[5] If the transmitting station does not receive an error signal, it proceeds to transmit the next data frame.

If it does receive an error signal, however, it returns to step [2] and retransmits the erroneous data.

13.3.4 Register Settings

Table 13.3 shows a bit map of the registers used by the smart card interface.
Bits indicated as 0 or 1 must be set to the value shown. The setting of other bits is described below.

Table 13.3 Smart Card Interface Register Settings
Bit

Register	Bit $\mathbf{7}$	Bit $\mathbf{6}$	Bit $\mathbf{5}$	Bit $\mathbf{4}$	Bit 3	Bit 2	Bit 1	Bit 0
SMR	GM	0	1	O/E	1	0	CKS1	CKS0
BRR	BRR7	BRR6	BRR5	BRR4	BRR3	BRR2	BRR1	BRR0
SCR	TIE	RIE	TE	RE	0	0	CKE1*	CKE0
TDR	TDR7	TDR6	TDR5	TDR4	TDR3	TDR2	TDR1	TDR0
SSR	TDRE	RDRF	ORER	ERS	PER	TEND	0	0
RDR	RDR7	RDR6	RDR5	RDR4	RDR3	RDR2	RDR1	RDR0
SCMR	-	-	-	-	SDIR	SINV	-	SMIF

Legend:
— : Unused bit
Note: * The CKE1 bit must be cleared to 0 when the GM bit in SMR is cleared to 0 .

SMR Setting

The GM bit is cleared to 0 in normal smart card interface mode, and set to 1 in GSM mode. The $\mathrm{O} / \overline{\mathrm{E}}$ bit is cleared to 0 if the IC card is of the direct convention type, and set to 1 if of the inverse convention type.

Bits CKS1 and CKS0 select the clock source of the on-chip baud rate generator. See section 13.3.5, Clock.

BRR Setting

BRR is used to set the bit rate. See section 13.3.5, Clock, for the method of calculating the value to be set.

SCR Setting

The function of the TIE, RIE, TE, and RE bits is the same as for the normal SCI. For details, see section 12, Serial Communication Interface (SCI).

Bits CKE1 and CKE0 specify the clock output. When the GM bit in SMR is cleared to 0 , set these bits to $\mathrm{B}^{\prime} 00$ if a clock is not to be output, or to B' 01 if a clock is to be output. When the GM bit in SMR is set to 1 , clock output is performed. The clock output can also be fixed high or low.

Smart Card Mode Register (SCMR) Setting

The SDIR bit is cleared to 0 if the IC card is of the direct convention type, and set to 1 if of the inverse convention type.

The SINV bit is cleared to 0 if the IC card is of the direct convention type, and set to 1 if of the inverse convention type.

The SMIF bit is set to 1 in the case of the Smart Card interface.
Examples of register settings and the waveform of the start character are shown below for the two types of IC card (direct convention and inverse convention).

- Direct convention (SDIR $=\mathrm{SINV}=\mathrm{O} / \overline{\mathrm{E}}=0)$

With the direct convention type, the logic 1 level corresponds to state Z and the logic 0 level to state A, and transfer is performed in LSB-first order. The start character data above is H'3B.

The parity bit is 1 since even parity is stipulated for the Smart Card.

- Inverse convention $(\operatorname{SDIR}=\operatorname{SINV}=\mathrm{O} / \overline{\mathrm{E}}=1)$

With the inverse convention type, the logic 1 level corresponds to state A and the logic 0 level to state Z , and transfer is performed in MSB-first order. The start character data above is $\mathrm{H}^{\prime} 3 \mathrm{~F}$.

The parity bit is 0 , corresponding to state Z , since even parity is stipulated for the Smart Card.
With the H8S/2245 Group, inversion specified by the SINV bit applies only to the data bits, D7 to D0. For parity bit inversion, the $\mathrm{O} / \overline{\mathrm{E}}$ bit in SMR is set to odd parity mode (the same applies to both transmission and reception).

13.3.5 Clock

Only an internal clock generated by the on-chip baud rate generator can be used as the transmit/receive clock for the smart card interface. The bit rate is set with BRR and the CKS1 and CKS0 bits in SMR. The formula for calculating the bit rate is as shown below. Table 13.5 shows some sample bit rates.

If clock output is selected by setting CKE0 to 1 , a clock with a frequency of 372 times the bit rate is output from the SCK pin.

$$
\mathrm{B}=\frac{\phi}{1488 \times 2^{2 \mathrm{n}-1} \times(\mathrm{N}+1)} \times 10^{6}
$$

Where $\mathrm{N}=$ Value set in $\mathrm{BRR}(0 \leq \mathrm{N} \leq 255)$
$\mathrm{B}=\mathrm{Bit}$ rate (bit/s)
$\phi=$ Operating frequency (MHz)
$\mathrm{n}=$ See table 13.4
Table 13.4 Correspondence between n and CKS1, CKS0

\mathbf{n}	CKS1	CKS0
0	0	$\frac{0}{1}$
1	1	$\frac{0}{1}$
2		
3		

Table 13.5 Examples of Bit Rate B (bit/s) for Various BRR Settings (When $\mathbf{n}=\mathbf{0}$)

	$\phi(\mathrm{MHz})$						
\mathbf{N}	$\mathbf{1 0 . 0 0}$	$\mathbf{1 0 . 7 1 4}$	$\mathbf{1 3 . 0 0}$	$\mathbf{1 4 . 2 8 5}$	$\mathbf{1 6 . 0 0}$	$\mathbf{1 8 . 0 0}$	$\mathbf{2 0 . 0 0}$
0	13441	14400	17473	19200	21505	24194	26882
1	6720	7200	8737	9600	10753	12097	13441
2	4480	4800	5824	6400	7168	8065	8961

Note: Bit rates are rounded to the nearest whole number.

The method of calculating the value to be set in the bit rate register (BRR) from the operating frequency and bit rate, on the other hand, is shown below. N is an integer, $0 \leq \mathrm{N} \leq 255$, and the smaller error is specified.

$$
\mathrm{N}=\frac{\phi}{1488 \times 2^{2 \mathrm{n}-1} \times \mathrm{B}} \times 10^{6}-1
$$

Table 13.6 Examples of BRR Settings for Bit Rate B (bit/s) (When $\mathbf{n}=0)$

bit/s	ϕ (MHz)															
	7.1424		10.00		10.7136		13.00		14.2848		16.00		18.00		20.00	
	N	Error														
9600	0	0.00	1	30	1	25	1	8.99	1	0.00	1	12.01	2	15.99	2	6.60

Table 13.7 Maximum Bit Rate at Various Frequencies (Smart Card Interface Mode)

$\boldsymbol{\phi}(\mathbf{M H z})$	Maximum Bit Rate (bit/s)	\mathbf{N}	\mathbf{n}
7.1424	9600	0	0
10.00	13441	0	0
10.7136	14400	0	0
13.00	17473	0	0
14.2848	19200	0	0
16.00	21505	0	0
18.00	24194	0	0
20.00	26882	0	0

The bit rate error is given by the following formula:

$$
\text { Error }(\%)=\left(\frac{\phi}{1488 \times 2^{2 n-1} \times B \times(N+1)} \times 10^{6}-1\right) \times 100
$$

13.3.6 Data Transfer Operations

Initialization

Before transmitting and receiving data, initialize the SCI as described below. Initialization is also necessary when switching from transmit mode to receive mode, or vice versa.
[1] Clear the TE and RE bits in SCR to 0.
[2] Clear the error flags ERS, PER, and ORER in SSR to 0.
[3] Set the O/E bit and CKS1 and CKS0 bits in SMR. Clear the C/A, CHR, and MP bits to 0, and set the STOP and PE bits to 1 .
[4] Set the SMIF, SDIR, and SINV bits in SCMR.
When the SMIF bit is set to 1 , the TxD and RxD pins are both switched from ports to SCI pins, and are placed in the high-impedance state.
[5] Set the value corresponding to the bit rate in BRR.
[6] Set the CKE0 bit in SCR. Clear the TIE, RIE, TE, RE, MPIE, TEIE and CKE1 bits to 0 . If the CKE0 bit is set to 1 , the clock is output from the SCK pin.
[7] Wait at least one bit interval, then set the TIE, RIE, TE, and RE bits in SCR. Do not set the TE bit and RE bit at the same time, except for self-diagnosis.

Serial Data Transmission

As data transmission in smart card mode involves error signal sampling and retransmission processing, the processing procedure is different from that for the normal SCI. Figure 13.4 shows a flowchart for transmitting, and figure 13.5 shows the relation between a transmit operation and the internal registers.
[1] Perform Smart Card interface mode initialization as described above in Initialization.
[2] Check that the ERS error flag in SSR is cleared to 0 .
[3] Repeat steps [2] and [3] until it can be confirmed that the TEND flag in SSR is set to 1.
[4] Write the transmit data to TDR, clear the TDRE flag to 0 , and perform the transmit operation. The TEND flag is cleared to 0 .
[5] When transmitting data continuously, go back to step [2].
[6] To end transmission, clear the TE bit to 0 .
With the above processing, interrupt servicing or data transfer by the DTC is possible.
If transmission ends and the TEND flag is set to 1 while the TIE bit is set to 1 and interrupt requests are enabled, a transmit data empty interrupt (TXI) request will be generated. If an error occurs in transmission and the ERS flag is set to 1 while the RIE bit is set to 1 and interrupt requests are enabled, a transfer error interrupt (ERI) request will be generated.

The timing for setting the TEND flag depends on the value of the GM bit in SMR. The TEND flag set timing is shown in figure 13.6.

If the DTC is activated by a TXI request, the number of bytes set in the DTC can be transmitted automatically, including automatic retransmission.

For details, see Interrupt Operations and Data Transfer Operation by DTC below.

Figure 13.4 Example of Transmission Processing Flow

Figure 13.5 Relation Between Transmit Operation and Internal Registers

Legend:
Ds : Start bit
D0 to D7 : Data bits
Dp : Parity bit
DE : Error signal
Figure 13.6 TEND Flag Generation Timing in Transmission Operation

Serial Data Reception

Data reception in Smart Card mode uses the same processing procedure as for the normal SCI.
Figure 13.7 shows an example of the transmission processing flow.
[1] Perform Smart Card interface mode initialization as described above in Initialization.
[2] Check that the ORER flag and PER flag in SSR are cleared to 0 . If either is set, perform the appropriate receive error processing, then clear both the ORER and the PER flag to 0 .
[3] Repeat steps [2] and [3] until it can be confirmed that the RDRF flag is set to 1.
[4] Read the receive data from RDR.
[5] When receiving data continuously, clear the RDRF flag to 0 and go back to step [2].
[6] To end reception, clear the RE bit to 0 .

Figure 13.7 Example of Reception Processing Flow
With the above processing, interrupt servicing or data transfer by the or DTC is possible.

If reception ends and the RDRF flag is set to 1 while the RIE bit is set to 1 and interrupt requests are enabled, a receive data full interrupt (RXI) request will be generated. If an error occurs in reception and either the ORER flag or the PER flag is set to 1 , a transfer error interrupt (ERI) request will be generated.

If the DTC is activated by an RXI request, the receive data in which the error occurred is skipped, and only the number of bytes of receive data set in the DTC are transferred.

For details, see Interrupt Operation and Data Transfer Operation by DTC below.
If a parity error occurs during reception and the PER is set to 1 , the received data is still transferred to RDR, and therefore this data can be read.

Mode Switching Operation

When switching from receive mode to transmit mode, first confirm that the receive operation has been completed, then start from initialization, clearing RE bit to 0 and setting TE bit to 1 . The RDRF flag or the PER and ORER flags can be used to check that the receive operation has been completed.

When switching from transmit mode to receive mode, first confirm that the transmit operation has been completed, then start from initialization, clearing TE bit to 0 and setting RE bit to 1 . The TEND flag can be used to check that the transmit operation has been completed.

Fixing Clock Output Level

When the GM bit in SMR is set to 1, the clock output level can be fixed with bits CKE1 and CKE0 in SCR. At this time, the minimum clock pulse width can be made the specified width.

Figure 13.8 shows the timing for fixing the clock output level. In this example, GM is set to 1 , CKE1 is cleared to 0 , and the CKE0 bit is controlled.

Figure 13.8 Timing for Fixing Clock Output Level

Interrupt Operation

There are three interrupt sources in smart card interface mode: transmit data empty interrupt (TXI) requests, transfer error interrupt (ERI) requests, and receive data full interrupt (RXI) requests. The transmit end interrupt (TEI) request is not used in this mode.

When the TEND flag in SSR is set to 1, a TXI interrupt request is generated.
When the RDRF flag in SSR is set to 1 , an RXI interrupt request is generated.
When any of flags ORER, PER, and ERS in SSR is set to 1 , an ERI interrupt request is generated. The relationship between the operating states and interrupt sources is shown in table 13.8.

Table 13.8 Smart Card Mode Operating States and Interrupt Sources

Operating State	Flag	Enable Bit	Interrupt Source	DTC Activation	
Transmit Mode	Normal operation	TEND	TIE	TXI	Possible
	Error	ERS	RIE	ERI	Not possible
Receive Mode	Normal operation	RDRF	RIE	RXI	Possible
	Error	PER, ORER	RIE	ERI	Not possible

Data Transfer Operation by DTC

In smart card mode, as with the normal SCI, transfer can be carried out using the DTC. In a transmit operation, the TDRE flag is also set to 1 at the same time as the TEND flag in SSR, and a TXI interrupt is generated. If the TXI request is designated beforehand as a DTC activation source, the DTC will be activated by the TXI request, and transfer of the transmit data will be carried out. When DISEL in DTC is 0 and the transfer counter value is not 0 , the TDRE and TEND flags are automatically cleared to 0 when data transfer is performed. If DISEL is 1 , or if DISEL is 0 and the transfer counter value is 0 , the DTC writes the transfer data to TDR but does not clear the flags. Therefore, the flags should be cleared by the CPU. In the event of an error, the SCI retransmits the same data automatically. The TEND flag remains cleared to 0 during this time, and the DTC is not activated. Thus, the number of bytes specified by the SCI and DTC are transmitted automatically even in retransmission following an error. However, the ERS flag is not cleared automatically when an error occurs, and so the RIE bit should be set to 1 beforehand so that an ERI request will be generated in the event of an error, and the ERS flag will be cleared.

When performing transfer using the DTC, it is essential to set and enable the DTC before carrying out SCI setting. For details of the DTC setting procedures, see section 7, Data Transfer Controller (DTC).

In a receive operation, an RXI interrupt request is generated when the RDRF flag in SSR is set to 1. If the RXI request is designated beforehand as a DTC activation source, the DTC will be activated by the RXI request, and transfer of the receive data will be carried out. At this time, the RDRF flag is cleared to 0 if DISEL in DTC is 0 and the transfer counter value is not 0 . If DISEL is 1 , or if DISEL is 0 and the transfer counter value is 0 , the DTC transfers the receive data but does not clear the flag. Therefore, the flag should be cleared by the CPU. If an error occurs, an error flag is set but the RDRF flag is not. Consequently, the DTC is not activated, but instead, an ERI interrupt request is sent to the CPU. Therefore, the error flag should be cleared.

13.3.7 Operation in GSM Mode

Switching the Mode

When switching between smart card interface mode and software standby mode, the following switching procedure should be followed in order to maintain the clock duty.

- When changing from smart card interface mode to software standby mode
[1] Set the data register (DR) and data direction register (DDR) corresponding to the SCK pin to the value for the fixed output state in software standby mode.
[2] Write 0 to the TE bit and RE bit in the serial control register (SCR) to halt transmit/receive operation. At the same time, set the CKE1 bit to the value for the fixed output state in software standby mode.
[3] Write 0 to the CKE0 bit in SCR to halt the clock.
[4] Wait for one serial clock period.
During this interval, clock output is fixed at the specified level, with the duty preserved.
[5] Write H'00 to SMR and SCMR.
[6] Make the transition to the software standby state.
- When returning to smart card interface mode from software standby mode
[7] Exit the software standby state.
[8] Set the CKE1 bit in SCR to the value for the fixed output state (current SCK pin state) when software standby mode is initiated.
[9] Set smart card interface mode and output the clock. Signal generation is started with the normal duty.

Figure 13.9 Clock Halt and Restart Procedure

Powering On

To secure the clock duty from power-on, the following switching procedure should be followed.
[1] The initial state is port input and high impedance. Use a pull-up resistor or pull-down resistor to fix the potential.
[2] Fix the SCK pin to the specified output level with the CKE1 bit in SCR.
[3] Set SMR and SCMR, and switch to smart card mode operation.
[4] Set the CKE0 bit in SCR to 1 to start clock output.

13.4 Usage Notes

The following points should be noted when using the SCI as a Smart Card interface.

Receive Data Sampling Timing and Reception Margin in Smart Card Interface Mode

In Smart Card Interface mode, the SCI operates on a basic clock with a frequency of 372 times the transfer rate.

In reception, the SCI samples the falling edge of the start bit using the basic clock, and performs internal synchronization. Receive data is latched internally at the rising edge of the 186th pulse of the basic clock. This is illustrated in figure 13.10.

Figure 13.10 Receive Data Sampling Timing in Smart Card Mode
Thus the reception margin in asynchronous mode is given by the following formula.

$$
\mathrm{M}=\left|\left(0.5-\frac{1}{2 \mathrm{~N}}\right)-(\mathrm{L}-0.5) \mathrm{F}-\frac{|\mathrm{D}-0.5|}{\mathrm{N}}(1+\mathrm{F})\right| \times 100 \%
$$

Where M: Reception margin (\%)
N : Ratio of bit rate to clock $(\mathrm{N}=372)$
D: Clock duty ($\mathrm{D}=0$ to 1.0)
L: Frame length $(\mathrm{L}=10)$
F: Absolute value of clock frequency deviation
Assuming values of $\mathrm{F}=0$ and $\mathrm{D}=0.5$ in the above formula, the reception margin formula is as follows.

When $\mathrm{D}=0.5$ and $\mathrm{F}=0$,

$$
\begin{aligned}
\mathrm{M} & =(0.5-1 / 2 \times 372) \times 100 \% \\
& =49.866 \%
\end{aligned}
$$

Retransfer Operations

Retransfer operations are performed by the SCI in receive mode and transmit mode as described below.

- Retransfer operation when SCI is in receive mode

Figure 13.11 illustrates the retransfer operation when the SCI is in receive mode.
[1] If an error is found when the received parity bit is checked, the PER bit in SSR is automatically set to 1 . If the RIE bit in SCR is enabled at this time, an ERI interrupt request is generated. The PER bit in SSR should be kept cleared to 0 until the next parity bit is sampled.
[2] The RDRF bit in SSR is not set for a frame in which an error has occurred.
[3] If no error is found when the received parity bit is checked, the PER bit in SSR is not set to 1 .
[4] If no error is found when the received parity bit is checked, the receive operation is judged to have been completed normally, and the RDRF flag in SSR is automatically set to 1 . If the RIE bit in SCR is enabled at this time, an RXI interrupt request is generated.
If DTC data transfer by an RXI source is enabled, the contents of RDR can be read automatically. When the RDR data is read by the DTC, the RDRF flag is automatically cleared to 0 if DISEL in DTC is 0 and the transfer counter value is not 0 .
[5] When a normal frame is received, the pin retains the high-impedance state at the timing for error signal transmission.

Figure 13.11 Retransfer Operation in SCI Receive Mode

- Retransfer operation when SCI is in transmit mode

Figure 13.12 illustrates the retransfer operation when the SCI is in transmit mode.
[6] If an error signal is sent back from the receiving end after transmission of one frame is completed, the ERS bit in SSR is set to 1 . If the RIE bit in SCR is enabled at this time, an ERI interrupt request is generated. The ERS bit in SSR should be kept cleared to 0 until the next parity bit is sampled.
[7] The TEND bit in SSR is not set for a frame for which an error signal indicating an abnormality is received.
[8] If an error signal is not sent back from the receiving end, the ERS bit in SSR is not set.
[9] If an error signal is not sent back from the receiving end, transmission of one frame, including a retransfer, is judged to have been completed, and the TEND bit in SSR is set to 1. If the TIE bit in SCR is enabled at this time, a TXI interrupt request is generated.

If data transfer by the DTC by means of the TXI source is enabled, the next data can be written to TDR automatically. When data is written to TDR by the DTC, the TDRE bit is automatically cleared to 0 if DISEL in DTC is 0 and the transfer counter value is not 0 .

Figure 13.12 Retransfer Operation in SCI Transmit Mode

Section 14 A/D Converter

14.1 Overview

The H8/2245 Group incorporates a successive approximation type 10-bit A/D converter that allows up to four analog input channels to be selected.

14.1.1 Features

A/D converter features are listed below

- 10-bit resolution
- Four input channels
- Settable analog conversion voltage range
- Conversion of analog voltages with the reference voltage pin $\left(\mathrm{V}_{\text {ref }}\right)$ as the analog reference voltage
- High-speed conversion
- Minimum conversion time: 6.5μ s per channel (at $20-\mathrm{MHz}$ operation)
- Choice of single mode or scan mode
- Single mode: Single-channel A/D conversion
- Scan mode: Continuous A/D conversion on 1 to 4 channels
- Four data registers
- Conversion results are held in a 16-bit data register for each channel
- Sample and hold function
- Three kinds of conversion start
- Choice of software or timer conversion start trigger (TPU or 8-bit timer), or ADTRG pin
- A / D conversion end interrupt generation
- A/D conversion end interrupt (ADI) request can be generated at the end of A / D conversion
- Module stop mode can be set
- As the initial setting, A/D converter operation is halted. Register access is enabled by exiting module stop mode.

14.1.2 Block Diagram

Figure 14.1 shows a block diagram of the A / D converter.

Figure 14.1 Block Diagram of A/D Converter

14.1.3 Pin Configuration

Table 14.1 summarizes the input pins used by the A / D converter.
The $A V_{C C}$ and $A V_{S S}$ pins are the power supply pins for the analog block in the A / D converter. The $\mathrm{V}_{\text {ref }}$ pin is the A / D conversion reference voltage pin.

Table 14.1 A/D Converter Pins

Pin Name	Symbol	$\mathbf{I / O}$	Function
Analog power supply pin	$\mathrm{AV}_{\mathrm{cc}}$	Input	Analog block power supply
Analog ground pin	$\mathrm{AV}_{\mathrm{ss}}$	Input	Analog block ground and A/D conversion reference voltage
Reference voltage pin	$\mathrm{V}_{\text {ref }}$	Input	A / D conversion reference voltage
Analog input pin 0	$\mathrm{AN0}$	Input	Analog input channel 0
Analog input pin 1	AN 1	Input	Analog input channel 1
Analog input pin 2	AN 2	Input	Analog input channel 2
Analog input pin 3	AN 3	Input	Analog input channel 3
A/D external trigger input pin	$\overline{\text { ADTRG }}$	Input	External trigger input for starting A/D conversion

14.1.4 Register Configuration

Table 14.2 summarizes the registers of the A / D converter.
Table 14.2 A/D Converter Registers

Name	Abbreviation	R/W	Initial Value	Address**
A/D data register AH	ADDRAH	R	H'00	H'FF90
A/D data register AL	ADDRAL	R	H'00	H'FF91
A/D data register BH	ADDRBH	R	H'00	H'FF92
A/D data register BL	ADDRBL	R	H'00	H'FF93
A/D data register CH	ADDRCH	R	H'00	H'FF94
A/D data register CL	ADDRCL	R	H'00	H'FF95
A/D data register DH	ADDRDH	R	H'00	H'FF96
A/D data register DL	ADDRDL	R	H'00	H'FF97
A/D control/status register	ADCSR	$\mathrm{R} /(\mathrm{W}){ }^{*}{ }^{2}$	H'00	H'FF98
A/D control register	ADCR	R/W	H'3F	H'FF99
Module stop control register	MSTPCR	R/W	H'3FFF	H'FF3C

Notes: 1. Lower 16 bits of the address.
2. Bit 7 can only be written with 0 for flag clearing.

14.2 Register Descriptions

14.2.1 A/D Data Registers A to D (ADDRA to ADDRD)

Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	AD9	AD8	AD7	AD6	AD5	AD4	AD3	AD2	AD1	AD0	-	-	-	-	-	-
Initial value	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
R/W	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R

There are four 16-bit read-only ADDR registers, ADDRA to ADDRD, used to store the results of A/D conversion.

The 10-bit data resulting from A / D conversion is transferred to the ADDR register for the selected channel and stored there. The upper 8 bits of the converted data are transferred to the upper byte (bits 15 to 8) of ADDR, and the lower 2 bits are transferred to the lower byte (bits 7 and 6) and stored. Bits 5 to 0 are always read as 0 .

The correspondence between the analog input channels and ADDR registers is shown in table 14.3.

ADDR can always be read by the CPU. The upper byte can be read directly, but for the lower byte, data transfer is performed via a temporary register (TEMP). For details, see section 14.3, Interface to Bus Master.

The ADDR registers are initialized to $\mathrm{H}^{\prime} 0000$ by a reset, and in standby mode or module stop mode.

Table 14.3 Analog Input Channels and Corresponding ADDR Registers

Analog Input Channel	A/D Data Register
AN0	ADDRA
AN1	ADDRB
AN2	ADDRC
AN3	ADDRD

14.2.2 A/D Control/Status Register (ADCSR)

Bit	$:$	7	6	5	4	3	2	1	0
	ADF	ADIE	ADST	SCAN	CKS	-	CH1	CH0	
	Initial value	$:$	0	0	0	0	0	0	0
R/W	$:$	R/(W)*	R/W						

Note: * Only 0 can be written to bit 7, to clear this flag.

ADCSR is an 8-bit readable/writable register that controls A / D conversion operations and shows the status of the operation.

ADCSR is initialized to $\mathrm{H}^{\prime} 00$ by a reset, and in hardware standby mode or module stop mode.
Bit 7—A/D End Flag (ADF): Status flag that indicates the end of A/D conversion.
Bit 7
ADF Description

0
[Clearing conditions]

- When 0 is written to the ADF flag after reading ADF = 1
- When the DTC* is activated by an ADI interrupt and ADDR is read

1 [Setting conditions]

- Single mode: When A/D conversion ends
- Scan mode: When A/D conversion ends on all specified channels

Note: * The flag is cleared only when DISEL in DTC is 0 and the transfer counter value is not 0 .

Bit 6-A/D Interrupt Enable (ADIE): Selects enabling or disabling of interrupt (ADI) requests at the end of A / D conversion.

Bit 6

ADIE	Description	
0	A/D conversion end interrupt (ADI) request disabled	(Initial value)
1	A/D conversion end interrupt (ADI) request enabled	

Bit 5-A/D Start (ADST): Selects starting or stopping on A/D conversion. Holds a value of 1 during A / D conversion.

The ADST bit can be set to 1 by software, a timer conversion start trigger, or the A/D external trigger input pin ($\overline{\mathrm{ADTRG}}$).

Bit 5

ADST	Description	
0	-	A/D conversion stopped

Bit 4-Scan Mode (SCAN): Selects single mode or scan mode as the A/D conversion operating mode. See section 14.4, Operation, for single mode and scan mode operation. Only set the SCAN bit while conversion is stopped ($\operatorname{ADST}=0$).

Bit $\mathbf{4}$		
SCAN	Description	
0	Single mode	(Initial value)
1	Scan mode	

Bit 3-Clock Select (CKS): Sets the A/D conversion time. Only change the conversion time while conversion is stopped ($\mathrm{ADST}=0$).

Set the conversion time to a value equal to or greater than the conversion time indicated in section 19.5, A/D Conversion Characteristics.

Bit 3

CKS Description

0	Conversion time $=266$ states (max.)	(Initial value)
1	Conversion time $=134$ states $($ max. $)$	

Bit 2—Reserved: This bit can be read or written, but should only be written with 0 .

Bits 1 and $\mathbf{0}$ —Channel Select 1 and $\mathbf{0}$ (CH1, CH0): Together with the SCAN bit, these bits select the analog input channel(s).

Only set the input channel while conversion is stopped.

Bit $\mathbf{1}$	Bit 0		Description	
CH1	CH0		Single Mode (SCAN = 0)	Scan Mode (SCAN = 1)
0	0	AN0	(Initial value)	AN0
	1	AN1	AN0, AN1	
1	0	AN2	AN0 to AN2	
	1	AN3	AN0 to AN3	

14.2.3 A/D Control Register (ADCR)

Bit	7	6	5	4	3	2	1	0
	TRGS1	TRGS0	-	-	-	-	-	-
Initial value	0	0	1	1	1	1	1	1
R/W	R/W	R/W	-	-	-	-	-	-

ADCR is an 8-bit readable/writable register that enables or disables external triggering of A/D conversion operations.

ADCR is initialized to $\mathrm{H}^{\prime} 3 \mathrm{~F}$ by a reset, and in hardware standby mode or module stop mode.
Bits 7 and 6-Timer Trigger Select 1 and 0 (TRGS1, TRGS0): Select enabling or disabling of the start of A/D conversion by a trigger signal. Only set bits TRGS1 and TRGS0 while conversion is stopped.

Bit $\mathbf{7}$	Bit $\mathbf{6}$	
TRGS1	TRGS0	Description
0	0	Start of A/D conversion by external trigger is disabled
	1	Start of A/D conversion by external trigger (TPU) is enabled
1	0	Start of A/D conversion by external trigger (8-bit timer) is enabled
	1	Start of A/D conversion by external trigger pin is enabled

Bits 5 to 0—Reserved: These bits are reserved; they are always read as 1 and cannot be modified.

14.2.4 Module Stop Control Register (MSTPCR)

R/W : R/W R/W

MSTPCR is a 16-bit readable/writable register that performs module stop mode control.
When the MSTP9 bit in MSTPCR is set to $1, \mathrm{~A} / \mathrm{D}$ converter operation stops at the end of the bus cycle and a transition is made to module stop mode. Registers cannot be read or written to in module stop mode. For details, see section 18.5, Module Stop Mode.

MSTPCR is initialized to H'3FFF by a reset and in hardware standby mode. It is not initialized in software standby mode.

Bit 9—Module Stop (MSTP9): Specifies the A/D converter module stop mode.
Bit 9
MSTP9 Description

0	A/D converter module stop mode cleared	
1	A/D converter module stop mode set	(Initial value)

14.3 Interface to Bus Master

ADDRA to ADDRD are 16 -bit registers, and the data bus to the bus master is 8 bits wide. Therefore, in accesses by the bus master, the upper byte is accessed directly, but the lower byte is accessed via a temporary register (TEMP).

A data read from ADDR is performed as follows. When the upper byte is read, the upper byte value is transferred to the CPU and the lower byte value is transferred to TEMP. Next, when the lower byte is read, the TEMP contents are transferred to the CPU.

When reading ADDR. always read the upper byte before the lower byte. It is possible to read only the upper byte, but if only the lower byte is read, incorrect data may be obtained.

Figure 14.2 shows the data flow for ADDR access.

Figure 14.2 ADDR Access Operation (Reading H'AA40)

14.4 Operation

The A/D converter operates by successive approximation with 10-bit resolution. It has two operating modes: single mode and scan mode.

14.4.1 Single Mode $(S C A N=0)$

Single mode is selected when A/D conversion is to be performed on a single channel only. A/D conversion is started when the ADST bit is set to 1, according to the software or external trigger input. The ADST bit remains set to 1 during A/D conversion, and is automatically cleared to 0 when conversion ends.

On completion of conversion, the ADF flag is set to 1 . If the ADIE bit is set to 1 at this time, an ADI interrupt request is generated. The ADF flag is cleared by writing 0 after reading ADCSR.

When the operating mode or analog input channel must be changed during analog conversion, to prevent incorrect operation, first clear the ADST bit to 0 in ADCSR to halt A/D conversion. After making the necessary changes, set the ADST bit to 1 to start A/D conversion again. The ADST bit can be set at the same time as the operating mode or input channel is changed.

Typical operations when channel 1 (AN1) is selected in single mode are described next. Figure 14.3 shows a timing diagram for this example.
[1] Single mode is selected $(\mathrm{SCAN}=0)$, input channel AN1 is selected $(\mathrm{CH} 1=0, \mathrm{CH} 0=1)$, the A / D interrupt is enabled ($\mathrm{ADIE}=1$), and A / D conversion is started $(\mathrm{ADST}=1)$.
[2] When A / D conversion is completed, the result is transferred to ADDRB. At the same time the ADF flag is set to 1 , the ADST bit is cleared to 0 , and the A/D converter becomes idle.
[3] Since $\mathrm{ADF}=1$ and $\mathrm{ADIE}=1$, an ADI interrupt is requested.
[4] The A/D interrupt handling routine starts.
[5] The routine reads ADCSR, then writes 0 to the ADF flag.
[6] The routine reads and processes the connection result (ADDRB).
[7] Execution of the A/D interrupt handling routine ends. After that, if the ADST bit is set to 1 , A/D conversion starts again and steps [2] to [7] are repeated.

Figure 14.3 Example of A/D Converter Operation (Single Mode, Channel 1 Selected)

14.4.2 \quad Scan Mode $(S C A N=1)$

Scan mode is useful for monitoring analog inputs in a group of one or more channels. When the ADST bit is set to 1 by a software, timer or external trigger input, A/D conversion starts on the first channel in the group (ANO). When two or more channels are selected, after conversion of the first channel ends, conversion of the second channel (AN1) starts immediately. A/D conversion continues cyclically on the selected channels until the ADST bit is cleared to 0 . The conversion results are transferred for storage into the ADDR registers corresponding to the channels.

When the operating mode or analog input channel must be changed during analog conversion, to prevent incorrect operation, first clear the ADST bit to 0 in ADCSR to halt A/D conversion. After making the necessary changes, set the ADST bit to 1 to start A/D conversion again. The ADST bit can be set at the same time as the operating mode or input channel is changed.

Typical operations when three channels (AN0 to AN2) are selected in scan mode are described next. Figure 14.4 shows a timing diagram for this example.
[1] Scan mode is selected ($\mathrm{SCAN}=1$), analog input channels AN0 to AN2 are selected ($\mathrm{CH} 1=1$, $\mathrm{CH} 0=0)$, and A / D conversion is started $(\mathrm{ADST}=1)$
[2] When A / D conversion of the first channel (ANO) is completed, the result is transferred to ADDRA. Next, conversion of the second channel (AN1) starts automatically.
[3] Conversion proceeds in the same way through the third channel (AN2).
[4] When conversion of all the selected channels (AN0 to AN2) is completed, the ADF flag is set to 1 and conversion of the first channel (AN0) starts again. If the ADIE bit is set to 1 at this time, an ADI interrupt is requested after A / D conversion ends.
[5] Steps [2] to [4] are repeated as long as the ADST bit remains set to 1 . When the ADST bit is cleared to $0, \mathrm{~A} / \mathrm{D}$ conversion stops. After that, if the ADST bit is set to $1, \mathrm{~A} / \mathrm{D}$ conversion starts again from the first channel (ANO).

Section 14 A/D Converter

Figure 14.4 Example of A/D Converter Operation (Scan Mode, Channels AN0 to AN2 Selected)

14.4.3 Input Sampling and A/D Conversion Time

The A/D converter has a built-in sample-and-hold circuit. The A/D converter samples the analog input at a time t_{D} after the ADST bit is set to 1 , then starts conversion. Figure 14.5 shows the A/D conversion timing. Table 14.4 indicates the A / D conversion time.

As indicated in figure 14.5, the A/D conversion time includes t_{D} and the input sampling time. The length of t_{D} varies depending on the timing of the write access to ADCSR. The total conversion time therefore varies within the ranges indicated in table 14.4.

In scan mode, the values given in table 14.4 apply to the first conversion time. In the second and subsequent conversions the conversion time is fixed at 256 states when CKS $=0$ or 128 states when $\mathrm{CKS}=1$.

Legend:
(1) : ADCSR write cycle
(2) : ADCSR address
t_{D} : A/D conversion start delay
$t_{\text {SPL }}$: Input sampling time
tconv: A/D conversion time
Figure 14.5 A/D Conversion Timing

Table 14.4 A/D Conversion Time (Single Mode)

Item	Symbol	CKS $=0$			CKS $=1$		
		Min	Typ	Max	Min	Typ	Max
A/D conversion start delay	$\mathrm{t}_{\text {b }}$	10	-	17	6	-	9
Input sampling time	$\mathrm{t}_{\text {SPL }}$	-	63	-	-	31	-
A/D conversion time	$\mathrm{t}_{\text {conv }}$	259	-	266	131	-	134

Note: Values in the table are the number of states.

14.4.4 External Trigger Input Timing

A/D conversion can be externally triggered. When the TRGS1 and TRGS0 bits are set to 11 in ADCR, external trigger input is enabled at the $\overline{\text { ADTRG }}$ pin. A falling edge at the $\overline{\text { ADTRG }}$ pin sets the ADST bit to 1 in ADCSR, starting A/D conversion. Other operations, in both single and scan modes, are the same as if the ADST bit has been set to 1 by software. Figure 14.6 shows the timing.

Figure 14.6 External Trigger Input Timing

14.5 Interrupts

The A/D converter generates an interrupt (ADI) at the end of A / D conversion. The ADI interrupt request can be enabled or disabled by the ADIE bit in ADCSR.

The DTC can be activated by an ADI interrupt. Having the converted data read by the DTC in response to an ADI interrupt enables continuous conversion to be achieved without imposing a load on software.

The A/D converter interrupt source is shown in table 14.5.

Table 14.5 A/D Converter Interrupt Source

Interrupt Source	Description	DTC Activation
ADI	Interrupt due to end of conversion	Possible

14.6 Usage Notes

The following points should be noted when using the A/D converter.

Module Stop Mode Setting

Operation of the A / D converter can be disabled or enabled using the module stop control register. The initial setting is for operation of the A/D converter to be halted. Register access is enabled by clearing module stop mode. For details, see section 18, Power-Down Modes.

Setting Range of Analog Power Supply and Other Pins

(1) Analog input voltage range

The voltage applied to analog input pins AN0 to AN3 during A/D conversion should be in the range $\mathrm{AV}_{\mathrm{SS}} \leq \mathrm{ANn} \leq \mathrm{AV}_{\text {ref }}$.
(2) Relation between $A V_{c \mathrm{C}}, \mathrm{AV}_{\mathrm{ss}}$ and $\mathrm{V}_{\mathrm{CC}}, \mathrm{V}_{\mathrm{ss}}$

As the relationship between $A V_{c C}, A V_{S S}$ and $V_{C C}, V_{S S}$, set $A V_{S S}=V_{S S}$. If the A / D converter is not used, the $A V_{\text {cc }}$ and $A V_{\text {ss }}$ pins must on no account be left open.
(3) $V_{\text {ref }}$ input range

The analog reference voltage input at the $V_{\text {ref }}$ pin set in the range $V_{\text {ref }} \leq A V_{c c}$.
Note: If conditions (1), (2), and (3) above are not met, the reliability of the device may be adversely affected.

Notes on Board Design

In board design, digital circuitry and analog circuitry should be as mutually isolated as possible, and layout in which digital circuit signal lines and analog circuit signal lines cross or are in close proximity should be avoided as far as possible. Failure to do so may result in incorrect operation of the analog circuitry due to inductance, adversely affecting A/D conversion values.

Also, digital circuitry must be isolated from the analog input signals (AN0 to AN3), analog reference power supply $\left(\mathrm{V}_{\text {ref }}\right)$, and analog power supply $\left(\mathrm{AV}_{\mathrm{CC}}\right)$ by the analog ground $\left(\mathrm{AV}_{\mathrm{SS}}\right)$. Also, the analog ground $\left(\mathrm{AV}_{\mathrm{sS}}\right)$ should be connected at one point to a stable digital ground $\left(\mathrm{V}_{\mathrm{ss}}\right)$ on the board.

Notes on Noise Countermeasures

A protection circuit connected to prevent damage due to an abnormal voltage such as an excessive surge at the analog input pins (AN0 to AN3) and analog reference power supply $\left(\mathrm{V}_{\text {ref }}\right)$ should be connected between $A V_{C C}$ and $A V_{\text {SS }}$ as shown in figure 14.7.

Also, the bypass capacitors connected to $\mathrm{AV}_{\mathrm{CC}}$ and $\mathrm{V}_{\text {ref }}$ and the filter capacitor connected to AN0 to AN 3 must be connected to $\mathrm{AV}_{\mathrm{ss}}$.

If a filter capacitor is connected as shown in figure 14.7, the input currents at the analog input pins (AN0 to AN3) are averaged, and so an error may arise. Also, when A/D conversion is performed frequently, as in scan mode, if the current charged and discharged by the capacitance of the sample-and-hold circuit in the A/D converter exceeds the current input via the input impedance $\left(\mathrm{R}_{\mathrm{in}}\right)$, an error will arise in the analog input pin voltage. Careful consideration is therefore required when deciding the circuit constants.

Figure 14.7 Example of Analog Input Protection Circuit
Table 14.6 Analog Pin Specifications

Item	Min	Max	Unit
Analog input capacitance	-	20	pF
Permissible signal source impedance	-	10^{*}	$\mathrm{k} \Omega$

Note: * When $\mathrm{V}_{\mathrm{cc}}=4.0 \mathrm{~V}$ to 5.5 V and $\phi \leq 12 \mathrm{MHz}$

Note: Values are reference values.
Figure 14.8 Analog Input Pin Equivalent Circuit

A/D Conversion Precision Definitions

H8S/2245 Group A/D conversion precision definitions are given below.

- Resolution

The number of A / D converter digital output codes

- Offset error

The deviation of the analog input voltage value from the ideal A / D conversion characteristic when the digital output changes from the minimum voltage value $\mathrm{B}^{\prime} 0000000000\left(\mathrm{H}^{\prime} 000\right)$ to $\mathrm{B}^{\prime} 0000000001$ ($\mathrm{H}^{\prime} 001$) (see figure 14.10).

- Full-scale error

The deviation of the analog input voltage value from the ideal A / D conversion characteristic when the digital output changes from B'1111111110 (H'3FE) to B'11111111111 (H'3FF) (see figure 14.10).

- Quantization error

The deviation inherent in the A/D converter, given by $1 / 2$ LSB (see figure 14.9).

- Nonlinearity error

The error with respect to the ideal A/D conversion characteristic between the zero voltage and the full-scale voltage. Does not include the offset error, full-scale error, or quantization error.

- Absolute precision

The deviation between the digital value and the analog input value. Includes the offset error, full-scale error, quantization error, and nonlinearity error.

Figure 14.9 A/D Conversion Precision Definitions (1)

Figure 14.10 A/D Conversion Precision Definitions (2)

Permissible Signal Source Impedance

$\mathrm{H} 8 \mathrm{~S} / 2245$ Group analog input is designed so that conversion precision is guaranteed for an input signal for which the signal source impedance is $10 \mathrm{k} \Omega$ or less. This specification is provided to enable the A/D converter's sample-and-hold circuit input capacitance to be charged within the sampling time; if the sensor output impedance exceeds $10 \mathrm{k} \Omega$, charging may be insufficient and it may not be possible to guarantee the A/D conversion precision.

However, if a large capacitance is provided externally, the input load will essentially comprise only the internal input resistance of $10 \mathrm{k} \Omega$, and the signal source impedance is ignored.

However, since a low-pass filter effect is obtained in this case, it may not be possible to follow an analog signal with a large differential coefficient (e.g., $5 \mathrm{mV} / \mu \mathrm{sec}$ or greater).

When converting a high-speed analog signal, a low-impedance buffer should be inserted.

Influences on Absolute Precision

Adding capacitance results in coupling with GND, and therefore noise in GND may adversely affect absolute precision. Be sure to make the connection to an electrically stable GND such as $\mathrm{AV}_{\text {ss }}$.

Care is also required to insure that filter circuits do not communicate with digital signals on the mounting board, so acting as antennas.

Figure 14.11 Example of Analog Input Circuit

Section 15 RAM

15.1 Overview

The H8S/2246, H8S/2244, and H8S/2242 have 8 kbytes of on-chip high-speed static RAM, and the H8S/2245, H8S/2243, H8S/2241, and H8S/2240 have 4 kbytes. The on-chip RAM is connected to the CPU by a 16-bit data bus, enabling both byte data and word data to be accessed in one state. This makes it possible to perform fast word data transfer.

The on-chip RAM on the H8S/2246, H8S/2244, and H8S/2242 is located in addresses H'E400 to H'FBFF (6 kbytes) in normal mode (modes 1 to 3), and in addresses H'FFDC00 to H'FFFBFF (8 kbytes) in advanced mode (modes 4 to 7).

The on-chip RAM on the H8S/2245, H8S/2243, H8S/2241, and H8S/2240 is located in addresses H'EC00 to H'FBFF (4 kbytes) in normal mode (modes 1 to 3), and in addresses H'FFEC00 to H'FFFBFF (4 kbytes) in advanced mode (modes 4 to 7).

The on-chip RAM can be enabled or disabled by means of the RAM enable bit (RAME) in the system control register (SYSCR).

15.1.1 Block Diagram

Figure 15.1 shows a block diagram of the on-chip RAM.

Figure 15.1 Block Diagram of RAM (Example with H8S/2246 in Advanced Mode)

15.1.2 Register Configuration

The on-chip RAM is controlled by SYSCR. Table 15.1 shows the register configuration.
Table 15.1 Register Configuration

Name	Abbreviation	R/W	Initial Value	Address*
System control register	SYSCR	R/W	H'01	H'FF39

Note: * Lower 16 bits of the address.

15.2 Register Descriptions

15.2.1 System Control Register (SYSCR)

Bit	7	6	5	4	3	2	1	0
	-	-	INTM1	INTM0	NMIEG	-	-	RAME
Initial value :	0	0	0	0	0	0	0	1
R/W	R/W	-	R/W	R/W	R/W	-	-	R/W

The on-chip RAM is enabled or disabled by the RAME bit in SYSCR. For details of other bits in SYSCR, see section 3.2.2, System Control Register (SYSCR).

Bit 0—RAM Enable (RAME): Enables or disables the on-chip RAM. The RAME bit is initialized when the reset state is released. It is not initialized in software standby mode.

Bit 0

RAME	Description	
0	On-chip RAM is disabled	(Initial value)
1	On-chip RAM is enabled	

Note: Do not clear the RAME bit to 0 when the DTC is used.

15.3 Operation

When the RAME bit is set to 1 , accesses to $\mathrm{H} 8 \mathrm{~S} / 2246, \mathrm{H} 8 \mathrm{~S} / 2244$, and $\mathrm{H} 8 \mathrm{~S} / 2242$ addresses H'FFDC00 to H'FFFBFF, and H8S/2245, H8S/2243, H8S/2241, and H8S/2240 addresses H'FFEC00 to H'FFFBFF, are directed to the on-chip RAM. When the RAME bit is cleared to 0 , the off-chip address space is accessed.

Since the on-chip RAM is connected to the CPU by an internal 16-bit data bus, it can be written to and read in byte or word units. Each type of access can be performed in one state.

Even addresses use the upper 8 bits, and odd addresses use the lower 8 bits. Word data must start at an even address.

Section 16 ROM

16.1 Overview

The H8S/2246 and H8S/2245 have 128 kbytes of on-chip ROM (PROM or mask ROM). The H8S/2244 and H8S/2243 have 64 kbytes of on-chip ROM (mask ROM). The H8S/2242 and H8S/2241 have 32 kbytes of on-chip ROM (mask ROM). The ROM is connected to the CPU by a 16 -bit data bus. The CPU accesses both byte data and word data in one state, making possible rapid instruction fetches and high-speed processing.

The on-chip ROM is enabled or disabled by setting the mode pins $\left(\mathrm{MD}_{2}, \mathrm{MD}_{1}\right.$, and $\left.\mathrm{MD}_{0}\right)$ and bit EAE in BCRL.

The PROM version of the H8S/2245 Group (H8S/2246) can be programmed with a generalpurpose PROM programmer, by setting PROM mode.

16.1.1 Block Diagram

Figure 16.1 shows a block diagram of the on-chip ROM.

Figure 16.1 Block Diagram of ROM (Example with H8S/2246 and H8S/2245 in Modes 6, 7)

16.1.2 Register Configuration

The on-chip ROM is controlled by BCRL. The register configuration is shown in table 16.1 .
Table 16.1 Register Configuration

| | | Initial Value | | | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Name | Abbreviation | R/W | Power-On Reset | Manual Reset | Address* |
| Bus control register L | BCRL | R/W | H'3C | Retained | H'FED5 |

Note: * Lower 16 bits of the address.

16.2 Register Descriptions

16.2.1 Bus Control Register L (BCRL)

Bit	7	6	5	4	3	2	1	0
	BRLE	BREQOE	EAE	-	-	ASS	-	WAITE
Initial value	0	0	1	1	1	1	0	0
R/W								

BCRL is an 8-bit readable/writable register that performs selection of the external bus release state protocol, selection of the area partition unit, and enabling or disabling of $\overline{\text { WAIT }}$ pin input.

BCRL is initialized to $\mathrm{H}^{\prime} 3 \mathrm{C}$ by a power-on reset and in hardware standby mode. It is not initialized by a manual reset or in software standby mode.

Enabling or disabling of part of the on-chip ROM area can be selected by means of the EAE bit in BCRL. For details of the other bits in BCRL, see section 6.2.5, Bus Control Register L (BCRL).

Bit 5—External Address Enable (EAE): Selects whether addresses H'010000 to H'01FFFF are to be internal addresses or external addresses.

This setting is invalid in normal mode.
Bit 5
EAE Description

0	Addresses H'010000 to H'01FFFF are in on-chip ROM (in the H8S/2246 and
	H8S/2245) or a reserved area* (in the H8S/2244, H8S/2243, H8S/2242, and
	H8S/2241).
1	Addresses H'010000 to H'01FFFF are external addresses (external expansion mode) or a reserved area* (single-chip mode).

Note: * Reserved areas should not be accessed.

16.3 Operation

The on-chip ROM is connected to the CPU by a 16 -bit data bus, and both byte and word data can be accessed in one state. Even addresses are connected to the upper 8 bits, and odd addresses to the lower 8 bits. Word data must start at an even address.

The on-chip ROM is enabled and disabled by setting the mode pins $\left(\mathrm{MD}_{2}, \mathrm{MD}_{1}\right.$, and $\left.\mathrm{MD}_{0}\right)$ and bit EAE in BCRL. These settings are shown in table 16.2.

In the $\mathrm{H} 8 \mathrm{~S} / 2246, \mathrm{H} 8 \mathrm{~S} / 2245, \mathrm{H} 8 \mathrm{~S} / 2244$, and $\mathrm{H} 8 \mathrm{~S} / 2243$ normal mode, a maximum of 56 kbytes of ROM can be used.

Table 16.2 Operating Modes and ROM Area

Operating Mode		Mode Pin Setting			$\begin{aligned} & \text { BCRL } \\ & \text { EAE } \end{aligned}$	On-Chip ROM		
		MD ${ }_{2}$	MD ${ }_{1}$	MD		$\begin{aligned} & \hline \text { H8S/2246 and } \\ & \text { H8S/2245 } \end{aligned}$	$\begin{aligned} & \text { H8S/2244 and } \\ & \text { H8S/2243 } \end{aligned}$	H8S/2242 and H8S/2241
Mode 1	Normal expanded mode with on-chip ROM disabled	0	0	1	-	Disabled	Disabled	Disabled
Mode 2	Normal expanded mode with on-chip ROM enabled		1	0	-	Enabled (56 kbytes)	Enabled (56 kbytes)	Enabled (32 kbytes)
Mode 3	Normal single-chip mode			1				
Mode 4	Advanced expanded mode with on-chip ROM disabled	1	0	0	-	Disabled	Disabled	Disabled
Mode 5	Advanced expanded mode with on-chip ROM disabled			1				
Mode 6	Advanced expanded mode with on-chip ROM enabled		1	0	0	Enabled (128 kbytes)	Enabled (64 kbytes)	Enabled (32 kbytes)
					1	Enabled (64 kbytes)		
Mode 7	Advanced single-chip mode			1	0	Enabled (128 kbytes)		
					1	Enabled (64 kbytes)		

In H8S/2246 and H8S/2245 modes 6 and 7, the on-chip ROM available after a power-on reset is the 64 -kbyte area comprising addresses $\mathrm{H}^{\prime} 000000$ to $\mathrm{H}^{\prime} 00 \mathrm{FFFF}$.

16.4 PROM Mode

16.4.1 PROM Mode Setting

The PROM version of the H8S/2245 Group suspends its microcontroller functions when placed in PROM mode, enabling the on-chip PROM to be programmed. This programming can be done with a PROM programmer set up in the same way as for the HN27C101 EPROM ($\mathrm{V}_{\mathrm{PP}}=12.5 \mathrm{~V}$). Use of a 100-pin/32-pin socket adapter enables programming with a commercial PROM programmer.

Note that the PROM programmer should not be set to page mode as the H8S/2245 Group does not support page programming.

Table 16.3 shows how PROM mode is selected.
Table 16.3 Selecting PROM Mode

Pin Names	Setting
$\mathrm{MD}_{2}, \mathrm{MD}_{1}, \mathrm{MD}_{0}$	Low
$\overline{\mathrm{STBY}}$	
$\mathrm{PA}_{2}, \mathrm{PA}_{1}$	High

16.4.2 Socket Adapter and Memory Map

Programs can be written and verified by attaching a 100-pin/32-pin socket adapter to the PROM programmer. Table 16.4 gives ordering information for the socket adapter, and figure 16.2 shows the wiring of the socket adapter. Figure 16.3 shows the memory map in PROM mode.

Figure 16.2 Wiring of 100-Pin/32-Pin Socket Adapter

Table 16.4 Socket Adapter

Microcontroller	Package	Socket Adapter
H8S/2246	100 pin QFP (FP-100B)	HS2245ESHS1H
	100 pin TQFP (TFP-100B)	HS2245ESNS1H

Addresses in MCU mode		Addresses in PROM mode
H'000000	On-chip PROM	H'00000
H'01FFFF		H'1FFFF

Figure 16.3 Memory Map in PROM Mode

16.5 Programming

16.5.1 Overview

Table 16.5 shows how to select the program, verify, and program-inhibit modes in PROM mode.
Table 16.5 Mode Selection in PROM Mode

Mode	Pins						
	$\overline{\overline{C E}}$	$\overline{\mathrm{OE}}$	$\overline{\text { PGM }}$	V_{pp}	$\mathrm{V}_{\text {cc }}$	EO_{7} to EO_{0}	EA_{16} to EA ${ }_{0}$
Program	L	H	L	$\mathrm{V}_{\text {PP }}$	$\mathrm{V}_{\text {cc }}$	Data input	Address input
Verify	L	L	H	$\mathrm{V}_{\text {PP }}$	V_{cc}	Data output	Address input
Program-inhibit	L	L	L	V_{PP}	V_{cc}	High impedance	Address input
	L	H	H				
	H	L	L				
	H	H	H				

Legend:
L: Low voltage level
H: High voltage level
V_{pp} : V_{PP} voltage level
$\mathrm{V}_{\mathrm{cc}}: \mathrm{V}_{\mathrm{cc}}$ voltage level

Programming and verification should be carried out using the same specifications as for the standard HN27C101 EPROM.

However, do not set the PROM programmer to page mode does not support page programming. A PROM programmer that only supports page programming cannot be used. When choosing a PROM programmer, check that it supports high-speed programming in byte units. Always set addresses within the range $\mathrm{H}^{\prime} 00000$ to $\mathrm{H}^{\prime} 1 \mathrm{FFFF}$.

16.5.2 Programming and Verification

An efficient, high-speed programming procedure can be used to program and verify PROM data. This procedure writes data quickly without subjecting the chip to voltage stress or sacrificing data reliability. It leaves the data H'FF in unused addresses. Figure 16.4 shows the basic high-speed programming flowchart. Tables 16.6 and 16.7 list the electrical characteristics of the chip during programming. Figure 16.5 shows a timing chart.

Figure 16.4 High-Speed Programming Flowchart

Table 16.6 DC Characteristics in PROM Mode
When $\mathrm{V}_{\mathrm{CC}}=6.0 \mathrm{~V} \pm 0.25 \mathrm{~V}, \mathrm{~V}_{\mathrm{PP}}=12.5 \mathrm{~V} \pm 0.3 \mathrm{~V}, \mathrm{~V}_{\mathrm{SS}}=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{a}}=25^{\circ} \mathrm{C} \pm 5^{\circ} \mathrm{C}$

Item		Symbol	Min	Typ	Max	Unit	Test Conditions
Input high voltage	$\begin{aligned} & \mathrm{EO}_{7} \text { to } \mathrm{EO}_{0}, \mathrm{EA}_{16} \\ & \text { to } \mathrm{EA}_{0}, \overline{\mathrm{OE}}, \mathrm{CE}, \\ & \mathrm{PGM}_{\mathrm{CGM}} \end{aligned}$	$\mathrm{V}_{\text {IH }}$	2.4	-	$\mathrm{V}_{\text {cc }}+0.3$	V	
Input low voltage	$\begin{aligned} & \mathrm{EO}_{7} \text { to } \mathrm{EO}_{0}, \mathrm{EA}_{16} \\ & \text { to } \mathrm{EA} \\ & \hline \mathrm{PGM} \\ & \hline \mathrm{OE}, \overline{\mathrm{CE}}, \end{aligned}$	$\mathrm{V}_{\text {IL }}$	-0.3	-	0.8	V	
Output high voltage	EO_{7} to EO_{0}	$\mathrm{V}_{\text {OH }}$	2.4	-	-	V	$\mathrm{I}_{\text {OH }}=-200 \mu \mathrm{~A}$
Output low voltage	EO_{7} to EO_{0}	V_{oL}	-	-	0.45	V	$\mathrm{I}_{\mathrm{OL}}=1.6 \mathrm{~mA}$
Input leakage current	$\begin{aligned} & \mathrm{EO}_{7} \text { to } \mathrm{EO}_{0}, \mathrm{EA}_{16} \\ & \text { to } \mathrm{EA}_{0}, \overline{\mathrm{OE}}, \mathrm{CE}, \\ & \mathrm{PGM} \end{aligned}$	$\mid I_{\text {l }}$ \|	-	-	2	$\mu \mathrm{A}$	$\begin{aligned} & \mathrm{V}_{\text {in }}= \\ & 5.25 \mathrm{~V} / 0.5 \mathrm{~V} \end{aligned}$
$\mathrm{V}_{\text {cc }}$ current		$\mathrm{I}_{\text {c }}$	-	-	40	mA	
$\mathrm{V}_{\text {PP }}$ current		$\mathrm{I}_{\text {PP }}$	-	-	40	mA	

Table 16.7 AC Characteristics in PROM Mode
When $\mathrm{V}_{\mathrm{CC}}=6.0 \mathrm{~V} \pm 0.25 \mathrm{~V}, \mathrm{~V}_{\mathrm{PP}}=12.5 \mathrm{~V} \pm 0.3 \mathrm{~V}, \mathrm{~T}_{\mathrm{a}}=25^{\circ} \mathrm{C} \pm 5^{\circ} \mathrm{C}$

Item	Symbol	Min	Typ	Max	Unit	Test Conditions
Address setup time	$\mathrm{t}_{\text {AS }}$	2	-	-	$\mu \mathrm{S}$	Figure 16.5*'
$\overline{\text { OE setup time }}$	$\mathrm{t}_{\text {oss }}$	2	-	-	$\mu \mathrm{s}$	
Data setup time	t_{os}	2	-	-	$\mu \mathrm{S}$	
Address hold time	$\mathrm{t}_{\text {AH }}$	0	-	-	$\mu \mathrm{s}$	
Data hold time	t_{DH}	2	-	-	$\mu \mathrm{s}$	
Data output disable time	$\mathrm{t}_{\mathrm{DF}} *^{2}$	-	-	130	ns	
$\mathrm{V}_{\text {PP }}$ setup time	$\mathrm{t}_{\text {vps }}$	2	-	-	$\mu \mathrm{s}$	
Programming pulse width	$\mathrm{t}_{\text {pw }}$	0.19	0.20	0.21	ms	
$\overline{\text { PGM pulse width for overwrite programming }}$	$\mathrm{t}_{\text {opw }}{ }^{* 3}$	0.19	-	5.25	ms	
$\mathrm{V}_{\text {cc }}$ setup time	$\mathrm{t}_{\mathrm{vcs}}$	2	-	-	$\mu \mathrm{s}$	
$\overline{\mathrm{CE}}$ setup time	$\mathrm{t}_{\text {ces }}$	2	-	-	$\mu \mathrm{s}$	
Data output delay time	t_{OE}	0	-	150	ns	

Notes: 1. Input pulse level: 0.8 V to 2.2 V
Input rise time and fall time $\leq 20 \mathrm{~ns}$
Timing reference levels; Input: $1.0 \mathrm{~V}, 2.0 \mathrm{~V}$;
Output: $0.8 \mathrm{~V}, 2.0 \mathrm{~V}$
2. $t_{D F}$ is defined to be when output has reached the open state, and the output level can no longer be referenced.
3. $t_{\text {opw }}$ is defined by the value shown in the flowchart.

Figure 16.5 PROM Programming/Verification Timing

16.5.3 Programming Precautions

- Program using the specified voltages and timing.

The programming voltage (V_{PP}) in PROM mode is 12.5 V .
If the PROM programmer is set to Renesas Technology HN27C101 specifications, V_{PP} will be 12.5 V . Applied voltages in excess of the specified values can permanently destroy the MCU. Be particularly careful about the PROM programmer's overshoot characteristics.

- Before programming, check that the MCU is correctly mounted in the PROM programmer. Overcurrent damage to the MCU can result if the index marks on the PROM programmer, socket adapter, and MCU are not correctly aligned.
- Do not touch the socket adapter or MCU while programming. Touching either of these can cause contact faults and programming errors.
- The MCU cannot be programmed in page programming mode. Select the programming mode carefully.
- The size of the PROM is 128 kbytes. Always set addresses within the range $\mathrm{H}^{\prime} 00000$ to H'1FFFF. During programming, write H'FF to unused addresses to avoid verification errors.

16.5.4 Reliability of Programmed Data

An effective way to assure the data retention characteristics of the programmed chips is to bake them at $150^{\circ} \mathrm{C}$, then screen them for data errors. This procedure quickly eliminates chips with PROM cells prone to early failure.

Figure 16.6 shows the recommended screening procedure.

Figure 16.6 Recommended Screening Procedure
If a series of programming errors occurs while the same PROM programmer is being used, stop programming and check the PROM programmer and socket adapter for defects.

Please inform Renesas of any abnormal conditions noted during or after programming or in screening of program data after high-temperature baking.

Section 17 Clock Pulse Generator

17.1 Overview

The H8S/2245 Group has a built-in clock pulse generator (CPG) that generates the system clock (ϕ), the bus master clock, and internal clocks.

The clock pulse generator consists of an oscillator circuit, a duty adjustment circuit, a mediumspeed clock divider, and a bus master clock selection circuit.

17.1.1 Block Diagram

Figure 17.1 shows a block diagram of the clock pulse generator.

Figure 17.1 Block Diagram of Clock Pulse Generator

17.1.2 Register Configuration

The clock pulse generator is controlled by SCKCR and LPWCR. Table 17.1 shows the register configuration.

Table 17.1 Clock Pulse Generator Register

Name	Abbreviation	R/W	Initial Value	Address*
System clock control register	SCKCR	R/W	H'00 $^{\text {H }}$	H'FF3A
Low power control register	LPWCR	R/W	H'00	H'FF44

Note: * Lower 16 bits of the address.

17.2 Register Descriptions

17.2.1 System Clock Control Register (SCKCR)

Bit	$:$	7	6	5	4	3	2	1	0
	PSTOP	-	-	-	-	SCK2	SCK1	SCK0	
	Initial value:	0	0	0	0	0	0	0	0
R/W	$:$	R/W	R/W	-	-	-	R/W	R/W	R/W

SCKCR is an 8-bit readable/writable register that performs ϕ clock output control and mediumspeed mode control.

SCKCR is initialized to $\mathrm{H}^{\prime} 00$ by a reset and in hardware standby mode. It is not initialized in software standby mode.

Bit 7— ϕ Clock Output Disable (PSTOP): Controls ϕ output.
Description

Bit $\mathbf{7}$		Slep Mode	Software Standby Mode	Hardware Standby Mode
PSTOP	Normal Operation	Sleep		
0	ϕ output (initial value)	ϕ output	Fixed high	High impedance
1	Fixed high	Fixed high	Fixed high	High impedance

Bit 6-Reserved: This bit can be read or written to, but only 0 should be written.
Bits 5 to 3-Reserved: Read-only bits, always read as 0 .
Bits 2 to 0—System Clock Select 2 to 0 (SCK2 to SCK0): These bits select the clock for the bus master.

Bit $\mathbf{2}$	Bit $\mathbf{1}$	Bit $\mathbf{0}$		
SCK2	SCK1	SCK0	Description	(Initial value)
0	0	0	Bus master is in high-speed mode	
		1	Medium-speed clock is $\phi / 2$	
1	0	Medium-speed clock is $\phi / 4$		
1	0	0	Medium-speed clock is $\phi / 8$	
		1	Medium-speed clock is $\phi / 16$	
	1	-	-	

17.2.2 Low Power Control Register (LPWCR)

Bit	7	6	5	4	3	2	1	0
	-	-	RFCUT	-	-	-	-	-
Initial value:	0	0	0	0	0	0	0	0
R/W								

LPWCR is an 8-bit readable/writable register that controls the oscillator's built-in feedback resistor when using external clock input.

LPWCR is initialized to $\mathrm{H}^{\prime} 00$ by a reset and in hardware standby mode. It is not initialized in software standby mode.

Bits 6 and 7-Reserved: These bits can be read or written to, but do not affect operation.
Bit 5—Built-in Feedback Resistor Control (RFCUT): Selects whether the oscillator's built-in feedback resistor and duty adjustment circuit are used with external clock input. Do not access this bit when a crystal oscillator is used.

When an external clock is input, a temporary transition should be made to software standby mode after setting this bit. When software standby mode is entered, it is possible to select use or non-use
of the oscillator's built-in feedback resistor and duty adjustment circuit. Software standby mode should then be exited by means of an external interrupt.

Bit 5
RFCUT Description

0	Oscillator's built-in feedback resistor and duty adjustment circuit are used
1	Oscillator's built-in feedback resistor and duty adjustment circuit are not used

Bits 4 to 0—Reserved: These bits can be read or written to, but do not affect operation.

17.3 Oscillator

Clock pulses can be supplied by connecting a crystal resonator, or by input of an external clock.

17.3.1 Connecting a Crystal Resonator

Circuit Configuration

A crystal resonator can be connected as shown in the example in figure 17.2. Select the damping resistance R_{d} according to table 17.2. An AT-cut parallel-resonance crystal should be used.

Figure 17.2 Connection of Crystal Resonator (Example)
Table 17.2 Damping Resistance Value

Frequency (MHz)	$\mathbf{2}$	$\mathbf{4}$	$\mathbf{8}$	$\mathbf{1 2}$	$\mathbf{1 6}$	$\mathbf{2 0}$
$\mathbf{R}_{\mathrm{d}}(\Omega)$	1 k	500	200	0	0	0

Crystal resonator

Figure 17.3 shows the equivalent circuit of the crystal resonator. Use a crystal resonator that has the characteristics shown in table 17.3 and the same resonance frequency as the system clock (ϕ).

Figure 17.3 Crystal Resonator Equivalent Circuit
Table 17.3 Crystal Resonator Parameters

Frequency (MHz)	$\mathbf{2}$	$\mathbf{4}$	$\mathbf{8}$	$\mathbf{1 2}$	$\mathbf{1 6}$	$\mathbf{2 0}$
$\mathbf{R}_{\mathrm{s}} \max (\boldsymbol{\Omega})$	500	120	80	60	50	40
$\mathbf{C}_{0} \max (\mathbf{p F})$	7	7	7	7	7	7

Note on Board Design

When a crystal resonator is connected, the following points should be noted:
Other signal lines should be routed away from the oscillator circuit to prevent induction from interfering with correct oscillation. See figure 17.4.

When designing the board, place the crystal resonator and its load capacitors as close as possible to the XTAL and EXTAL pins.

Figure 17.4 Example of Incorrect Board Design

17.3.2 External Clock Input

Circuit Configuration

An external clock signal can be input as shown in the examples in figure 17.5. If the XTAL pin is left open, make sure that stray capacitance is no more than 10 pF .

In example (b), make sure that the external clock is held high in standby mode.

(a) XTAL pin left open

(b) Complementary clock input at XTAL pin

Figure 17.5 External Clock Input (Examples)

External Clock

The external clock signal should have the same frequency as the system clock (ϕ).
Table 17.4 and figure 17.6 show the input conditions for the external clock.
Table 17.4 External Clock Input Conditions

Item	Symbol	$\begin{gathered} \mathrm{V}_{\mathrm{cc}}=2.7 \mathrm{~V} \\ \text { to } 5.5 \mathrm{~V} \end{gathered}$		$\begin{aligned} & \mathrm{V}_{\mathrm{cc}}=2.7 \mathrm{~V} \\ & \text { to } 5.5 \mathrm{~V} * \end{aligned}$		$\begin{gathered} \mathrm{V}_{\mathrm{cc}}=5.0 \mathrm{~V} \\ \pm 10 \% \end{gathered}$		Unit	Test Conditions
		Min	Max	Min	Max	Min	Max		
External clock input pulse width low level	$\mathrm{t}_{\text {ExL }}$	40	-	30	-	20	-	ns	Figure 17.6
External clock input pulse width high level	$t_{\text {EXH }}$	40	-	30	-	20	-	ns	
External clock rise time	$\mathrm{t}_{\text {EXr }}$	-	10	-	7.5	-	5	ns	
External clock fall time	$\mathrm{t}_{\text {EXf }}$	-	10	-	7.5	-	5	ns	
Clock pulse width low level	t_{CL}	0.4	0.6	0.4	0.6	0.4	0.6	$\mathrm{t}_{\text {cyc }}$	$\phi \geq 5 \mathrm{MHz}$ Figure
		80	-	80	-	80	-	ns	$\phi<5 \mathrm{MHz} 19.4$
Clock pulse width high level	t_{CH}	0.4	0.6	0.4	0.6	0.4	0.6	$\mathrm{t}_{\text {cyc }}$	$\phi \geq 5 \mathrm{MHz}$
		80	-	80	-	80	-	ns	$\phi<5 \mathrm{MHz}$

Note: * Does not apply to the HD6472246.

Table 17.5 and figure 17.6 show the external clock input conditions when the duty adjustment circuit is not used. When the duty adjustment circuit is not used, the ϕ output waveform depends on the external clock input waveform, and therefore no specifications are provided.

Table 17.5 External Clock Input Conditions when Duty Adjustment Circuit Is Not Used

Item	Symbol	$\begin{gathered} \mathrm{V}_{\mathrm{cc}}=2.7 \mathrm{~V} \\ \text { to } 5.5 \mathrm{~V} \end{gathered}$		$\begin{aligned} & \mathrm{V}_{\mathrm{cc}}=2.7 \mathrm{~V} \\ & \text { to } 5.5 \mathrm{~V} * \end{aligned}$		$\begin{gathered} \mathrm{V}_{\mathrm{cc}}=5.0 \mathrm{~V} \\ \pm 10 \% \end{gathered}$		Unit	Test Conditions
		Min	Max	Min	Max	Min	Max		
External clock input pulse width low level	$\mathrm{t}_{\text {ExL }}$	50	-	37.5	-	25	-	ns	Figure 17.6
External clock input pulse width high level	$t_{\text {EXH }}$	50	-	37.5	-	25	-	ns	
External clock rise time	$\mathrm{t}_{\text {EXI }}$	-	10	-	7.5	-	5	ns	
External clock fall time	$\mathrm{t}_{\text {EXf }}$	-	10	-	7.5	-	5	ns	

Notes: When the duty adjustment circuit is not used, the maximum operating frequency falls according to the input waveform.
(Example: When $\mathrm{t}_{\mathrm{EXL}}=\mathrm{t}_{\mathrm{EXH}}=25 \mathrm{~ns}$ and $\mathrm{t}_{\mathrm{EXt}}=\mathrm{t}_{\mathrm{EXf}}=5 \mathrm{~ns}$, the clock cycle time $=60 \mathrm{~ns}$, and therefore the maximum operating frequency $=16.7 \mathrm{MHz}$.)

* Does not apply to the HD6472246.

Figure 17.6 External Clock Input Timing

Note on External Clock Switchover

When using two or more external clocks (e.g. 10 MHz and 32 kHz), input clock switchover should be carried out in software standby mode.

A sample external clock switching circuit is shown in figure 17.7, and sample external clock switchover timing in figure 17.8.

Figure 17.7 Sample External Clock Switching Circuit

Figure 17.8 Sample External Clock Switchover Timing

17.4 Duty Adjustment Circuit

When the oscillator frequency is 5 MHz or higher, the duty adjustment circuit adjusts the duty cycle of the clock signal from the oscillator to generate the system clock (ϕ).

17.5 Medium-Speed Clock Divider

The medium-speed clock divider divides the system clock to generate $\phi / 2, \phi / 4, \phi / 8, \phi / 16$, and $\phi / 32$.

17.6 Bus Master Clock Selection Circuit

The bus master clock selection circuit selects the system clock (ϕ) or one of the medium-speed clocks ($\phi / 2, \phi / 4, \phi / 8, \phi / 16$, and $\phi / 32$) to be supplied to the bus master, according to the settings of the SCK2 to SCK0 bits in SCKCR.

17.7 Note on Crystal Resonator

As various characteristics related to the crystal resonator are closely linked to the user's board design, thorough evaluation is necessary on the user's part, using the resonator connection examples shown in this section as a guide. As the resonator circuit ratings will depend on the floating capacitance of the resonator and the mounting circuit, the ratings should be determined in consultation with the resonator manufacturer. The design must ensure that a voltage exceeding the maximum rating is not applied to the oscillator pin.

Section 18 Power-Down Modes

18.1 Overview

In addition to the normal program execution state, the H8S/2245 Group has power-down modes in which operation of the CPU and oscillator is halted and power dissipation is reduced. Low-power operation can be achieved by individually controlling the CPU, on-chip supporting modules, and so on.

The H8S/2245 Group operating modes are as follows:
(1) High-speed mode
(2) Medium-speed mode
(3) Sleep mode
(4) Module stop mode
(5) Software standby mode
(6) Hardware standby mode

Of these, (2) to (6) are power-down modes. Sleep mode is a CPU mode, medium-speed mode is a CPU and bus master mode, and module stop mode is an on-chip supporting module mode (including bus masters other than the CPU). A combination of these modes can be set.

After a reset, the H8S/2245 Group is in high-speed mode.
Table 18.1 shows the conditions for transition to the various modes, the status of the CPU, on-chip supporting modules, etc., and the method of clearing each mode.

Table 18.1 Operating Modes

Operating Mode	Transition Condition	Clearing Condition	Oscillator	CPU		Modules		I/O Ports
					Registers		Registers	
High speed mode	Control register		Functions	High speed	Functions	High speed	Functions	High speed
Mediumspeed mode	Control register		Functions	Medium speed	Functions	High/ medium speed* ${ }^{1}$	Functions	High speed
Sleep mode	Instruction	Interrupt	Functions	Halted	Retained	High speed	Functions	High speed
Module stop mode	Control register		Functions	High/ medium speed	Functions	Halted	Retained/ reset* ${ }^{2}$	Retained
Software standby mode	Instruction	External interrupt	Halted	Halted	Retained	Halted	Retained/ reset* ${ }^{2}$	Retained
Hardware standby mode	Pin		Halted	Halted	Undefined	Halted	Reset	High impedance

Notes: 1. The bus master operates on the medium-speed clock, and other on-chip supporting modules on the high-speed clock.
2. The SCl and A / D are reset, and other on-chip supporting modules retain their state.

18.1.1 Register Configuration

Power-down modes are controlled by the SBYCR, SCKCR, and MSTPCR registers. Table 18.2 summarizes these registers.

Table 18.2 Power-Down Mode Registers

Name	Abbreviation	R/W	Initial Value	Address*
Standby control register	SBYCR	R/W	H'08	H'FF38
System clock control register	SCKCR	R/W	H'00	H'FF3A
Module stop control register H	MSTPCRH	R/W	H'3F	H'FF3C
Module stop control register L	MSTPCRL	R/W	H'FF	H'FF3D

Note: * Lower 16 bits of the address.

18.2 Register Descriptions

18.2.1 Standby Control Register (SBYCR)

Bit	7	6	5	4	3	2	1	0
	SSBY	STS2	STS1	STSO	OPE	-	-	-
Initial value	0	0	0	0	1	0	0	0
R/W	R/W	R/W	R/W	R/W	R/W	-	-	-

SBYCR is an 8-bit readable/writable register that performs software standby mode control.
SBYCR is initialized to $\mathrm{H}^{\prime} 08$ by a reset and in hardware standby mode. It is not initialized in software standby mode.

Bit 7—Software Standby (SSBY): Specifies a transition to software standby mode. Remains set to 1 when software standby mode is released by an external interrupt, and a transition is made to normal operation. The SSBY bit should be cleared by writing 0 to it.

Bit 7
SSBY Description

0	Transition to sleep mode after execution of SLEEP instruction	(Initial value)
1	Transition to software standby mode after execution of SLEEP instruction	

Bits 6 to 4—Standby Timer Select $\mathbf{2}$ to 0 (STS2 to STS0): These bits select the time the MCU waits for the clock to stabilize when software standby mode is cleared by an external interrupt. With crystal oscillation, refer to table 18.4 and make a selection according to the operating frequency so that the standby time is at least 8 ms (the oscillation stabilization time). With an external clock, any selection can be made.

Bit $\mathbf{6}$	Bit $\mathbf{5}$	Bit $\mathbf{4}$		
STS2	STS1	STS0	Description	(Initial value)
0	0	0	Standby time $=8192$ states	
		1	Standby time $=16384$ states	
	1	0	Standby time $=32768$ states	
1	0	$\frac{0}{1}$	Standby time $=65536$ states	
	1	0	Standby time $=131072$ states	
		Standby time $=262144$ states		

Bit 3—Output Port Enable (OPE): Specifies whether the output of the address bus and bus control signals ($\overline{\mathrm{CS} 0}$ to $\overline{\mathrm{CS} 3}, \overline{\mathrm{AS}}, \overline{\mathrm{RD}}, \overline{\mathrm{HWR}}, \overline{\mathrm{LWR}}$) is retained or set to the high-impedance state in software standby mode.

Bit 3

OPE	Description
0	In software standby mode, address bus and bus control signals are high-impedance
1	In software standby mode, address bus and bus control signals retain output state
	(Initial value)

Bits 2 to 0—Reserved: Read-only bits, always read as 0 .

18.2.2 System Clock Control Register (SCKCR)

Bit	7	6	5	4	3	2	1	0
	PSTOP	-	-	-	-	SCK2	SCK1	SCKO
Initial value	0	0	0	0	0	0	0	0
R/W	R/W	R/W	-	-	-	R/W	R/W	R/W

SCKCR is an 8-bit readable/writable register that performs ϕ clock output control and mediumspeed mode control.

SCKCR is initialized to $\mathrm{H}^{\prime} 00$ by a reset and in hardware standby mode. It is not initialized in software standby mode.

Bit 7— ϕ Clock Output Disable (PSTOP): Controls ϕ output.

Description

Bit $\mathbf{7}$	Normal Operating	Sleep Mode	Software Standby Mode	Hardware Standby Mode
PSTOP	Mode			

Bits 6-Reserved: This bit can be read or written to, but only 0 should be written.
Bits 5 to 3-Reserved: Read-only bits, always read as 0 .
Bits 2 to 0—System Clock Select (SCK2 to SCK0): These bits select the clock for the bus master.

Bit 2	Bit 1	Bit 0		
SCK2	SCK1	SCK0	Description	
0	0	0	Bus master in high-speed mode	(Initial value)
		1	Medium-speed clock is $\phi / 2$	
1	0	Medium-speed clock is $\phi / 4$		
1	0	0	Medium-speed clock is $\phi / 8$	Medium-speed clock is $\phi / 16$
		1	Medium-speed clock is $\phi / 32$	
			-	

18.2.3 Module Stop Control Register (MSTPCR)

R/W : R/W R/W

MSTPCR is a 16-bit readable/writable register that performs module stop mode control.

MSTPCR is initialized to H'3FFF by a reset and in hardware standby mode. It is not initialized in software standby mode.

Bits 15 to 0—Module Stop (MSTP 15 to MSTP 0): These bits specify module stop mode. See table 18.3 for the method of selecting on-chip supporting modules.

Bits 15 to 0

MSTP15 to MSTPO Description

0	Module stop mode cleared
1	Module stop mode set

18.3 Medium-Speed Mode

When the SCK2 to SCK0 bits in SCKCR are set to 1, the operating mode changes to mediumspeed mode at the end of the bus cycle. In medium-speed mode, the CPU operates on the operating clock $(\phi / 2, \phi / 4, \phi / 8, \phi / 16$, or $\phi / 32$) specified by the SCK 2 to SCK 0 bits. The bus masters other than the CPU (DTC) also operate in medium-speed mode. On-chip supporting modules other than the bus masters always operate on the high-speed clock (ϕ).

In medium-speed mode, a bus access is executed in the specified number of states with respect to the bus master operating clock. For example, if $\phi / 4$ is selected as the operating clock, on-chip memory is accessed in 4 states, and internal I/O registers in 8 states.

Medium-speed mode is cleared by clearing all of bits SCK2 to SCK0 to 0. A transition is made to high-speed mode and medium-speed mode is cleared at the end of the current bus cycle.

If a SLEEP instruction is executed when the SSBY bit in SBYCR is cleared to 0 , a transition is made to sleep mode. When sleep mode is cleared by an interrupt, medium-speed mode is restored.

If a SLEEP instruction is executed when the SSBY bit in SBYCR is set to 1 , a transition is made to software standby mode. When software standby mode is cleared by an external interrupt, medium-speed mode is restored.

When the $\overline{\mathrm{RES}}$ pin is driven low, a transition is made to the reset state, and medium-speed mode is cleared. The same applies in the case of a reset caused by overflow of the watchdog timer.

When the $\overline{\text { STBY }}$ pin is driven low, a transition is made to hardware standby mode.

Figure 18.1 shows the timing for transition to and clearance of medium-speed mode.

Figure 18.1 Medium-Speed Mode Transition and Clearance Timing

18.4 Sleep Mode

If a SLEEP instruction is executed when the SSBY bit in SBYCR is cleared to 0 , the CPU enters sleep mode. In sleep mode, CPU operation stops but the contents of the CPU's internal registers are retained. Other supporting modules do not stop.

Sleep mode is cleared by a reset or any interrupt, and the CPU returns to the normal program execution state via the exception handling state. Sleep mode is not cleared if interrupts are disabled, or if interrupts other than NMI are masked by the CPU.

When the STBY pin is driven low, a transition is made to hardware standby mode.

18.5 Module Stop Mode

18.5.1 Module Stop Mode

Module stop mode can be set for individual on-chip supporting modules.
When the corresponding MSTP bit in MSTPCR is set to 1 , module operation stops at the end of the bus cycle and a transition is made to module stop mode. The CPU continues operating independently.

Table 18.3 shows MSTP bits and the corresponding on-chip supporting modules.

When the corresponding MSTP bit is cleared to 0 , module stop mode is cleared and the module starts operating again at the end of the bus cycle. In module stop mode, the internal states of modules other than the SCI and A / D are retained.

After reset clearance, all modules other than DTC are in module stop mode.

When an on-chip supporting module is in module stop mode, read/write access to its registers is disabled.

If a transition is made to sleep mode when all modules are stopped (MSTPCR $=\mathrm{H}^{\prime} \mathrm{FFFF}$) or modules other than the 8-bit timers are stopped (MSTPCR $\left.=H^{\prime} E F F F\right)$, operation of the bus controller and I/O ports is also halted, enabling current dissipation to be further reduced.

Table 18.3 MSTP Bits and Corresponding On-Chip Supporting Modules

Register	Bit	Module
MSTPCRH	MSTP15	-
	MSTP14	Data transfer controller (DTC)
	MSTP13	16-bit timer pulse unit (TPU)
	MSTP12	8 -bit timer
	MSTP11	-
	MSTP10	-
	MSTP9	A/D converter
	MSTP8	-
MSTPCRL	MSTP7	Serial communication interface (SCI) channel 2
	MSTP6	Serial communication interface (SCI) channel 1
	MSTP5	Serial communication interface (SCl) channel 0
	MSTP4	-
	MSTP3	-
	MSTP2	-
	MSTP1	-
	MSTP0	-

Note: Bits $15,11,10,8$, and 4 to 0 can be read or written to, but do not affect operation.

18.5.2 Usage Notes

DTC Module Stop Mode: Depending on the operating status of the DTC, the MSTP14 bit may not be set to 1 . Setting of the DTC module stop mode should be carried out only when the DTC is not activated.

For details, refer to section 7, Data Transfer Controller.
On-Chip Supporting Module Interrupts: Relevant interrupt operations cannot be performed in module stop mode. Consequently, if module stop mode is entered when an interrupt has been requested, it will not be possible to clear the CPU interrupt source or DTC activation source. Interrupts should therefore be disabled before entering module stop mode.

Writing to MSTPCR: MSTPCR should only be written to by the CPU.

18.6 Software Standby Mode

18.6.1 Software Standby Mode

If a SLEEP instruction is executed when the SSBY bit in SBYCR is set to 1 , software standby mode is entered. In this mode, the CPU, on-chip supporting modules, and oscillator all stop. However, the contents of the CPU's internal registers, RAM data, and the states of on-chip supporting modules other than the SCI and A/D, and I/O ports, are retained. Whether the address bus and bus control signals are placed in the high-impedance state or retain the output state can be specified by the OPE bit in SBYCR.

In this mode the oscillator stops, and therefore power dissipation is significantly reduced.

18.6.2 Clearing Software Standby Mode

Software standby mode is cleared by an external interrupt (NMI pin, or pins $\overline{\text { IRQ0 }}$ to $\overline{\text { IRQ2 }}$), or by means of the $\overline{\mathrm{RES}}$ pin or $\overline{\text { STBY }}$ pin.

Clearing with an Interrupt

When an NMI or IRQ0 to IRQ2 interrupt request signal is input, clock oscillation starts, and after the elapse of the time set in bits STS2 to STS0 in SBYCR, stable clocks are supplied to the entire H8S/2245 Group chip, software standby mode is cleared, and interrupt exception handling is started.

When clearing software standby mode with an IRQ0 to IRQ2 interrupt, set the corresponding enable bit to 1 and ensure that no interrupt with a higher priority than interrupts IRQ0 to IRQ2 is generated. Software standby mode cannot be cleared if the interrupt has been masked on the CPU side or has been designated as a DTC activation source.

Clearing with the $\overline{\text { RES }}$ Pin

When the $\overline{\mathrm{RES}}$ pin is driven low, clock oscillation is started. At the same time as clock oscillation starts, clocks are supplied to the entire H8S/2245 Group chip. Note that the $\overline{\mathrm{RES}}$ pin must be held low until clock oscillation stabilizes. When the $\overline{\text { RES }}$ pin goes high, the CPU begins reset exception handling.

Clearing with the $\overline{\text { STBY }}$ Pin

When the $\overline{\text { STBY }}$ pin is driven low, a transition is made to hardware standby mode.

18.6.3 Setting Oscillation Stabilization Time after Clearing Software Standby Mode

Bits STS2 to STS0 in SBYCR should be set as described below.

Using a Crystal Oscillator

Set bits STS2 to STS0 so that the standby time is at least 8 ms (the oscillation stabilization time).
Table 18.4 shows the standby times for different operating frequencies and settings of bits STS2 to STSO.

Table 18.4 Oscillation Stabilization Time Settings

STS2	STS1	STSO	Standby Time	$\begin{aligned} & 20 \\ & \mathrm{MHz} \end{aligned}$	$\begin{aligned} & 16 \\ & \mathrm{MHz} \end{aligned}$	$\begin{aligned} & 12 \\ & \mathrm{MHz} \end{aligned}$	$\begin{aligned} & 10 \\ & \mathrm{MHz} \end{aligned}$	$\begin{aligned} & 8 \\ & \mathrm{MHz} \end{aligned}$	$\begin{aligned} & 6 \\ & \mathrm{MHz} \end{aligned}$	$\begin{aligned} & 4 \\ & \mathrm{MHz} \end{aligned}$	$\begin{aligned} & 2 \\ & \mathrm{MHz} \end{aligned}$	Unit
0	0	0	8192 states	0.41	0.51	0.68	0.82	1.0	1.4	2.0	4.1	ms
		1	16384 states	0.82	1.0	1.4	1.6	2.0	2.7	4.1	8.2	
	1	0	32768 states	1.6	2.0	2.7	3.3	4.1	5.5	8.2	16.4	
		1	65536 states	3.3	4.1	5.5	6.6	8.2	10.9	16.4	32.8	
1	0	0	131072 states	6.6	8.2	10.9	13.1	16.4	21.8	32.8	65.5	
		1	262144 states	13.1	16.4	21.8	26.2	32.8	43.7	65.5	131.1	
	1	0	Reserved	-	-	-	-	-	-	-	-	-
		1	16 states	0.8	1.0	1.3	1.6	2.0	2.7	4.0	8.0	$\mu \mathrm{s}$

\square Recommended time setting

Using an External Clock

Any value can be set. Normally, use of the minimum time is recommended.

18.6.4 Software Standby Mode Application Example

Figure 18.2 shows an example in which a transition is made to software standby mode at the falling edge on the NMI pin, and software standby mode is cleared at the rising edge on the NMI pin.

In this example, an NMI interrupt is accepted with the NMIEG bit in SYSCR cleared to 0 (falling edge specification), then the NMIEG bit is set to 1 (rising edge specification), the SSBY bit is set to 1 , and a SLEEP instruction is executed, causing a transition to software standby mode.

Software standby mode is then cleared at the rising edge on the NMI pin.

Figure 18.2 Software Standby Mode Application Example

18.6.5 Usage Notes

I/O Port Status: In software standby mode, I/O port states are retained. If the OPE bit is set to 1 , the address bus and bus control signal output is also retained. Therefore, there is no reduction in current dissipation for the output current when a high-level signal is output.

Current Dissipation during Oscillation Stabilization Wait Period: Current dissipation increases during the oscillation stabilization wait period.

18.7 Hardware Standby Mode

18.7.1 Hardware Standby Mode

When the $\overline{\text { STBY }}$ pin is driven low, a transition is made to hardware standby mode from any mode.
In hardware standby mode, all functions enter the reset state and stop operation, resulting in a significant reduction in power dissipation. As long as the prescribed voltage is supplied, on-chip RAM data is retained. I/O ports are set to the high-impedance state.

In order to retain on-chip RAM data, the RAME bit in SYSCR should be cleared to 0 before driving the $\overline{\text { STBY }}$ pin low.

Do not change the state of the mode pins $\left(\mathrm{MD}_{2}\right.$ to $\left.\mathrm{MD}_{0}\right)$ while the $\mathrm{H} 8 \mathrm{~S} / 2245$ Group is in hardware standby mode.

Hardware standby mode is cleared by means of the $\overline{\text { STBY }}$ pin and the $\overline{\operatorname{RES}}$ pin. When the $\overline{\text { STBY }}$ pin is driven high while the $\overline{\mathrm{RES}}$ pin is low, the reset state is set and clock oscillation is started. Ensure that the $\overline{\mathrm{RES}}$ pin is held low until the clock oscillation stabilizes (at least $\mathrm{t}_{\text {oSCl }}$-the oscillation stabilization time-when using a crystal oscillator). When the $\overline{\mathrm{RES}}$ pin is subsequently driven high, a transition is made to the program execution state via the reset exception handling state.

18.7.2 Hardware Standby Mode Timing

Figure 18.3 shows an example of hardware standby mode timing.
When the $\overline{\text { STBY }}$ pin is driven low after the $\overline{\mathrm{RES}}$ pin has been driven low, a transition is made to hardware standby mode. Hardware standby mode is cleared by driving the $\overline{\text { STBY }}$ pin high, waiting for the oscillation stabilization time, then changing the $\overline{\mathrm{RES}}$ pin from low to high.

Figure 18.3 Hardware Standby Mode Timing (Example)

18.8 ϕ Clock Output Disabling Function

Output of the ϕ clock can be controlled by means of the PSTOP bit in SCKCR and DDR for the corresponding port. When the PSTOP bit is set to 1 , the ϕ clock stops at the end of the bus cycle, and ϕ output goes high. ϕ clock output is enabled when the PSTOP bit is cleared to 0 . When DDR for the corresponding port is cleared to $0, \phi$ clock output is disabled and input port mode is set. Table 18.5 shows the state of the ϕ pin in each processing mode.

Table 18.5 ϕ Pin State in Each Processing Mode

Register Settings				Software Standby Mode	Hardware Standby Mode		
0	PSTOP	Normal Mode	Sleep Mode	High impedance	High impedance	High impedance	High impedance
:---							
1							

Legend:
\times : Don't care

Section 19 Electrical Characteristics

19.1 Absolute Maximum Ratings

Table 19.1 lists the absolute maximum ratings.
Table 19.1 Absolute Maximum Ratings

Item	Symbol	Value	Unit
Power supply voltage	V_{cc}	-0.3 to +7.0	V
Programming voltage	V_{PP}	-0.3 to +13.5	V
Input voltage (except port 4)	$\mathrm{V}_{\text {in }}$	-0.3 to $\mathrm{V}_{\mathrm{cc}}+0.3$	V
Input voltage (port 4)	$\mathrm{V}_{\text {in }}$	-0.3 to $\mathrm{AV}_{\mathrm{cc}}+0.3$	V
Reference voltage	$\mathrm{V}_{\text {ref }}$	-0.3 to $\mathrm{AV}_{\mathrm{cc}}+0.3$	V
Analog power supply voltage	$\mathrm{AV}_{\mathrm{cc}}$	-0.3 to +7.0	V
Analog input voltage	V_{AN}	-0.3 to $\mathrm{AV} \mathrm{CC}+0.3$	V
Operating temperature	$\mathrm{T}_{\text {opr }}$	Regular specifications: -20 to +75	${ }^{\circ} \mathrm{C}$
Storage temperature		$\mathrm{T}_{\text {stg }}$	-55 to +125
${ }^{\circ} \mathrm{C}$			

Caution: Permanent damage to the chip may result if absolute maximum ratings are exceeded.

19.2 Power Supply Voltage and Operating Frequency Ranges

Power supply voltage and operating frequency ranges (shaded areas) are shown in table 19.2.

Table 19.2 Power Supply Voltage and Operating Frequency Ranges

Condition A: All H8S/2245 Group products
$\mathrm{V}_{\mathrm{CC}}=2.7 \mathrm{~V}$ to $5.5 \mathrm{~V}, \mathrm{AV}_{\mathrm{CC}}=2.7 \mathrm{~V}$ to $5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{ref}}=2.7 \mathrm{~V}$ to $\mathrm{AV}_{\mathrm{CC}}, \mathrm{V}_{\mathrm{SS}}=\mathrm{AV}_{\mathrm{SS}}=0 \mathrm{~V}$, $\phi=32 \mathrm{kHz}$ to $10 \mathrm{MHz}, \mathrm{T}_{\mathrm{a}}=-20^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$ (regular specifications),
$\mathrm{T}_{\mathrm{a}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ (wide-range specifications)
Condition B: HD6432246, HD6432245, HD6432244, HD6432243, HD6432242, HD6432241R, HD6412240
$\mathrm{V}_{\mathrm{CC}}=2.7 \mathrm{~V}$ to $5.5 \mathrm{~V}, \mathrm{AV}_{\mathrm{CC}}=2.7 \mathrm{~V}$ to $5.5 \mathrm{~V}, \mathrm{~V}_{\text {ref }}=2.7 \mathrm{~V}$ to $\mathrm{AV}_{\mathrm{CC}}, \mathrm{V}_{\mathrm{SS}}=\mathrm{AV}_{\mathrm{SS}}=0 \mathrm{~V}$, $\phi=32 \mathrm{kHz}$ to $13 \mathrm{MHz}, \mathrm{T}_{\mathrm{a}}=-20^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$ (regular specifications), $\mathrm{T}_{\mathrm{a}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ (wide-range specifications)

Condition C: All H8S/2245 Group products
$\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V} \pm 10 \%, \mathrm{AV}_{\mathrm{CC}}=5.0 \mathrm{~V} \pm 10 \%, \mathrm{~V}_{\text {ref }}=4.5 \mathrm{~V}$ to $\mathrm{AV}_{\mathrm{CC}}, \mathrm{V}_{\mathrm{SS}}=\mathrm{AV}_{\mathrm{SS}}=0 \mathrm{~V}, \phi=$ 2 MHz to $20 \mathrm{MHz}, \mathrm{T}_{\mathrm{a}}=-20^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$ (regular specifications),
$\mathrm{T}_{\mathrm{a}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ (wide-range specifications)

Clock Supply Method	Crystal Resonator Connection	External Clock Input			
Operating Modules	All Modules	DTC, TPU, SCI, A/D Converter	CPU, I/O Ports, Bus Controller, 8 -Bit Timers, Interrupt Controller, WDT		
Condition A			Nom-		$\underbrace{2}_{v_{c c}^{5.5}(\mathrm{~V})}$
Condition B					
Condition C					

19.3 DC Characteristics

Table 19.3 lists the DC characteristics. Table 19.4 lists the permissible output currents.
Table 19.3 DC Characteristics (1)
Conditions: $\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V} \pm 10 \%, \mathrm{AV}_{\mathrm{CC}}=5.0 \mathrm{~V} \pm 10 \%, \mathrm{~V}_{\mathrm{ref}}=4.5 \mathrm{~V}$ to $\mathrm{AV}_{\mathrm{CC}}, \mathrm{V}_{\mathrm{SS}}=\mathrm{AV}_{\mathrm{SS}}=0 \mathrm{~V}^{*}, \mathrm{~T}_{\mathrm{a}}$ $=-20$ to $+75^{\circ} \mathrm{C}$ (regular specifications), $\mathrm{T}_{\mathrm{a}}=-40$ to $+85^{\circ} \mathrm{C}$ (wide-range specifications)

Item		Symbol	Min	Typ	Max	Unit	Test Conditions
Schmitt trigger input voltage	Port 2, $\overline{\mathrm{IRQ0}}$ to $\overline{\mathrm{IRQ}}$	$\mathrm{V}_{\text {- }}{ }^{-}$	1.0	-	-	V	
		V_{T}^{+}	-	-	$\mathrm{V}_{\mathrm{cc}} \times 0.7$	V	
		$\mathrm{V}_{T}^{+}-\mathrm{V}_{T}^{-}$	0.4	-	-	V	
Input high voltage	$\overline{\mathrm{RES}}, \overline{\mathrm{STBY}}$, NMI, MD 2 to MD.	$\mathrm{V}_{\text {IH }}$	$\mathrm{V}_{\mathrm{cC}}-0.7$	-	$\mathrm{V}_{\mathrm{cc}}+0.3$	V	
	EXTAL		$\mathrm{V}_{\mathrm{cc}} \times 0.7$	-	$\mathrm{V}_{\mathrm{cc}}+0.3$	V	
	Ports 1, 3, 5, A to G		2.0	-	$\mathrm{V}_{\text {cc }}+0.3$	V	
	Port 4		2.0	-	$\mathrm{AV}_{\mathrm{cc}}+0.3$	V	
Input low voltage	$\overline{\mathrm{RES}}, \overline{\mathrm{STBY}}$, MD_{2} to MD_{0}	$\mathrm{V}_{1 \mathrm{~L}}$	-0.3	-	0.5	V	
	NMI, EXTAL, Ports 1, 3 to 5, A to G		-0.3	-	0.8	V	
Output high voltage	All output pins	V_{OH}	$\mathrm{V}_{\text {cc }}-0.5$	-	-	V	$\mathrm{I}_{\mathrm{OH}}=-200 \mu \mathrm{~A}$
			3.5	-	-	V	$\mathrm{I}_{\text {OH }}=-1 \mathrm{~mA}$
Output low voltage	All output pins	V_{oL}	-	-	0.4	V	$\mathrm{I}_{\mathrm{OL}}=1.6 \mathrm{~mA}$
	Ports 1, A to C		-	-	1.0	V	$\mathrm{I}_{\mathrm{OL}}=10 \mathrm{~mA}$
Input leakage current	$\overline{R E S}$	$\left\|I_{\text {in }}\right\|$	-	-	10.0	$\mu \mathrm{A}$	$\mathrm{V}_{\text {in }}=$
	$\overline{\text { STBY, }}$ NMI, $M D_{2}$ to MD_{0}		-	-	1.0		0.5 to $\mathrm{V}_{\mathrm{cc}}-0.5 \mathrm{~V}$
	Port 4		-	-	1.0	$\mu \mathrm{A}$	$\begin{aligned} & \mathrm{V}_{\text {in }}= \\ & 0.5 \text { to } \mathrm{AV} \mathrm{CC}-0.5 \mathrm{~V} \end{aligned}$

Item		Symbol	Min	Typ	Max	Unit	Test Conditions
Three-state leakage current (off state)	Ports 1 to 3, 5, A to G	$\left\|\mathrm{I}_{\text {TI }}\right\|$	-	-	1.0	$\mu \mathrm{A}$	$\begin{aligned} & \mathrm{V}_{\text {in }}= \\ & 0.5 \text { to } \mathrm{V}_{\text {cc }}-0.5 \mathrm{~V} \end{aligned}$
Input pull-up MOS current	Ports A to E	$-l_{p}$	50	-	300	$\mu \mathrm{A}$	$\mathrm{V}_{\text {in }}=0 \mathrm{~V}$
Input capacitance	$\overline{\mathrm{RES}}$	$\mathrm{C}_{\text {in }}$	-	-	80	pF	$\mathrm{V}_{\mathrm{in}}=0 \mathrm{~V}$,
	NMI		-	-	50	pF	$\begin{aligned} & -\mathrm{f}=1 \mathrm{MHz}, \\ & \mathrm{~T}=25^{\circ} \mathrm{C} \end{aligned}$
	All input pins except $\overline{R E S}$ and NMI		-	-	15	pF	
Current dissipation* ${ }^{2}$	Normal operation	$\mathrm{I}_{\mathrm{Cc}}{ }^{4}$	-	$\begin{aligned} & 50 \\ & (5.0 \mathrm{~V}) \end{aligned}$	$\begin{aligned} & 75 \\ & (5.5 \mathrm{~V}) \end{aligned}$	mA	$\mathrm{f}=20 \mathrm{MHz}$
	Sleep mode		-	$\begin{aligned} & \hline 35 \\ & (5.0 \mathrm{~V}) \end{aligned}$	$\begin{aligned} & 55 \\ & (5.5 \mathrm{~V}) \end{aligned}$	mA	$\mathrm{f}=20 \mathrm{MHz}$
	All module stop mode		-	$\begin{aligned} & 35 \\ & (5.0 \mathrm{~V}) \end{aligned}$	-	mA	Reference value $\mathrm{f}=20 \mathrm{MHz}$
	Medium speed ($\phi / 32$) mode		-	$\begin{aligned} & 25 \\ & (5.0 \mathrm{~V}) \end{aligned}$	-	mA	Reference value $\mathrm{f}=20 \mathrm{MHz}$
	Sleep, all module stop and medium speed ($\phi / 32$) mode		-	$\begin{aligned} & \hline 5.0 \\ & (5.0 \mathrm{~V}) \end{aligned}$	$\begin{aligned} & 10 \\ & (5.5 \mathrm{~V}) \end{aligned}$	mA	$\mathrm{f}=20 \mathrm{MHz}$
	Standby mode*		-	0.01	5.0	$\mu \mathrm{A}$	$\mathrm{T}_{\mathrm{a}} \leq 50^{\circ} \mathrm{C}$
			-	-	20.0		$50^{\circ} \mathrm{C}<\mathrm{T}_{\mathrm{a}}$
Analog power supply current	During A/D conversion	$\mathrm{Al}_{\mathrm{cc}}$	-	1.2	2.0	mA	
	Idle		-	0.01	5.0	$\mu \mathrm{A}$	
Reference current	During A/D conversion	$\mathrm{Al}_{\mathrm{cc}}$	-	0.5	0.8	mA	$\mathrm{V}_{\text {ref }}=5.0 \mathrm{~V}$
	Idle		-	0.01	5.0	$\mu \mathrm{A}$	
RAM standby voltage		$\mathrm{V}_{\text {RAM }}$	2.0	-	-	V	

Notes: 1. If the A / D converter is not used, do not leave the $A V_{c c}, A V_{s s}$, and $V_{\text {ref }}$ pins open.
Connect $\mathrm{AV}_{\mathrm{cc}}$ and $\mathrm{V}_{\text {ref }}$ to V_{c}, and connect $\mathrm{AV}_{\mathrm{ss}}$ to V_{ss}.
2. Current dissipation values are for $\mathrm{V}_{\mathrm{H}} \mathrm{min}=\mathrm{V}_{\mathrm{cc}}-0.5 \mathrm{~V}$ and $\mathrm{V}_{\mathrm{LL}} \max =0.5 \mathrm{~V}$ with all output pins unloaded and the on-chip pull-up transistors in the off state.
3. The values are for $\mathrm{V}_{\text {RAM }} \leq \mathrm{V}_{\mathrm{cc}}<4.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{IH}} \min =\mathrm{V}_{\mathrm{CC}} \times 0.9$, and $\mathrm{V}_{\mathrm{IL}} \max =0.3 \mathrm{~V}$.
4. $I_{c c}$ depends on $V_{c c}$ and f as follows:
$\mathrm{I}_{\mathrm{cc}} \mathrm{max}=2.0(\mathrm{~mA})+0.67(\mathrm{~mA} /(\mathrm{MHz} \times \mathrm{V})) \times \mathrm{V}_{\mathrm{cc}} \times \mathrm{f}$ [normal mode]
$\mathrm{I}_{\mathrm{cc}} \max =2.0(\mathrm{~mA})+0.48(\mathrm{~mA} /(\mathrm{MHz} \times \mathrm{V})) \times \mathrm{V}_{\mathrm{cc}} \times \mathrm{f}$ [sleep mode]
$\mathrm{I}_{\mathrm{cc}} \max =2.0(\mathrm{~mA})+0.07(\mathrm{~mA} /(\mathrm{MHz} \times \mathrm{V})) \times \mathrm{V}_{\mathrm{cc}} \times \mathrm{f}$ [sleep, all module stop and medium speed ($\phi / 32$) mode]

Table 19.3 DC Characteristics (2)

Conditions: $\mathrm{V}_{\mathrm{cC}}=2.7 \mathrm{~V}$ to $5.5 \mathrm{~V}, \mathrm{AV}_{\mathrm{cC}}=2.7 \mathrm{~V}$ to $5.5 \mathrm{~V}, \mathrm{~V}_{\text {ref }}=2.7 \mathrm{~V}$ to AV_{c},
$\mathrm{V}_{\mathrm{ss}}=\mathrm{AV}_{\mathrm{sS}}=0 \mathrm{~V}^{* 1}, \mathrm{~T}_{\mathrm{a}}=-20$ to $+75^{\circ} \mathrm{C}$ (regular specifications),
$\mathrm{T}_{\mathrm{a}}=-40$ to $+85^{\circ} \mathrm{C}$ (wide-range specifications)

Item		Symbol	Min	Typ	Max	Unit	Test Conditions
Schmitt trigger input voltage	Port 2, $\overline{\mathrm{IRQ0}}$ to $\overline{\mathrm{IRQ}}$	V_{T}^{-}	$\mathrm{V}_{\mathrm{cc}} \times 0.2$	-	-	V	
		V_{T}^{+}	-	-	$\mathrm{V}_{\mathrm{cc}} \times 0.7$	V	
		$\mathrm{V}_{T}^{+}-\mathrm{V}_{T}^{-}$	$\mathrm{V}_{c c} \times 0.07$	-	-	V	
Input high voltage	$\overline{\mathrm{RES}}, \overline{\mathrm{STBY}}$, NMI, MD 2 to $M D_{0}$	$\mathrm{V}_{\text {H }}$	$\mathrm{V}_{c c} \times 0.9$	-	$\mathrm{V}_{\mathrm{cc}}+0.3$	V	
	EXTAL		$\mathrm{V}_{\mathrm{cc}} \times 0.7$	-	$\mathrm{V}_{\mathrm{cc}}+0.3$	V	
	Ports 1, 3, 5, A to G		$\mathrm{V}_{\text {cc }} \times 0.7$	-	$\mathrm{V}_{\mathrm{cc}}+0.3$	V	
	Port 4		$\mathrm{V}_{\mathrm{cc}} \times 0.7$	-	$\mathrm{AV}_{\mathrm{cc}}+0.3$	V	
Input low voltage	$\overline{R E S}, \overline{S T B Y}$, MD_{2} to MD_{0}	V_{1}	-0.3	-	$\mathrm{V}_{\text {cc }} \times 0.1$	V	
	NMI, EXTAL,		-0.3	-	$\mathrm{V}_{\mathrm{cc}} \times 0.2$	V	$\mathrm{V}_{\mathrm{cc}}<4.0 \mathrm{~V}$
	Ports 1, 3 to 5, A to G				0.8		$\mathrm{V}_{\mathrm{cc}}=4.0$ to 5.5 V
Output high voltage	All output pins	$\mathrm{V}_{\text {о }}$	$\mathrm{V}_{\text {cc }}-0.5$	-	-	V	$\mathrm{I}_{\text {OH }}=-200 \mu \mathrm{~A}$
			$\mathrm{V}_{\text {cc }}-1.0$	-	-	V	$\mathrm{I}_{\mathrm{OH}}=-1 \mathrm{~mA}$
Output low voltage	All output pins	V_{0}	-	-	0.4	V	$\mathrm{I}_{\mathrm{oL}}=1.6 \mathrm{~mA}$
	Ports 1, A to C		-	-	1.0	V	$\begin{aligned} & \mathrm{V}_{\mathrm{Cc}} \leq 4 \mathrm{~V}, \\ & \mathrm{I}_{\mathrm{oL}}=5 \mathrm{~mA}, \\ & 4 \mathrm{~V}<\mathrm{V}_{\mathrm{cc}} \leq 5 \mathrm{~V}, \\ & \mathrm{I}_{\mathrm{oL}}=10 \mathrm{~mA} \end{aligned}$
Input leakage current	$\overline{R E S}$	$\left\|i_{i n}\right\|$	-	-	10.0	$\mu \mathrm{A}$	$\mathrm{V}_{\text {in }}=$
	$\overline{\text { STBY, NMI, }}$ MD_{2} to MD_{0}		-	-	1.0		0.5 to $\mathrm{V}_{\mathrm{cc}}-0.5 \mathrm{~V}$
	Port 4		-	-	1.0	$\mu \mathrm{A}$	$\begin{aligned} & \mathrm{V}_{\text {in }}= \\ & 0.5 \text { to } \mathrm{AV}_{\mathrm{cc}}-0.5 \mathrm{~V} \end{aligned}$

Item		Symbol	Min	Typ	Max	Unit	Test Conditions
Three-state leakage current (off state)	Ports 1 to 3, 5, A to G	$\left\|\mathrm{I}_{\text {TSI }}\right\|$	-	-	1.0	$\mu \mathrm{A}$	$\begin{aligned} & \mathrm{V}_{\text {in }}= \\ & 0.5 \text { to } \mathrm{V}_{\text {cc }}-0.5 \mathrm{~V} \end{aligned}$
Input pullup current	Port A to E	$-l_{p}$	10	-	300	$\mu \mathrm{A}$	$\begin{aligned} & \mathrm{V}_{\mathrm{cc}}=2.7 \mathrm{~V} \text { to } \\ & 5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{in}}=0 \mathrm{~V} \end{aligned}$
Input capacitance	$\overline{\mathrm{RES}}$	$\mathrm{C}_{\text {in }}$	-	-	80	pF	$\begin{aligned} & \mathrm{V}_{\text {in }}=0 \mathrm{~V}, \\ & \mathrm{f}=1 \mathrm{MHz}, \\ & \mathrm{Ta}=25^{\circ} \mathrm{C} \end{aligned}$
	NMI		-	-	50	pF	
	All input pins except $\overline{R E S}$ and NMI		-	-	15	pF	
Current dissipation* ${ }^{2}$	Normal operation	$\mathrm{I}_{\mathrm{cc}} *^{4}$	-	$\begin{aligned} & 13 \\ & (3.0 \mathrm{~V}) \end{aligned}$	$\begin{aligned} & 40 \\ & (5.5 \mathrm{~V}) \end{aligned}$	mA	$\mathrm{f}=10 \mathrm{MHz}$
			-	$\begin{aligned} & \hline 18 \\ & (3.0 \mathrm{~V}) \end{aligned}$	$\begin{aligned} & 52 \\ & (5.5 \mathrm{~V}) \end{aligned}$		$\mathrm{f}=13 \mathrm{MHz}$
			-	60	120	$\mu \mathrm{A}$	$\begin{aligned} & \mathrm{f}=32 \mathrm{kHz}, \\ & \mathrm{~V}_{\mathrm{cc}}=3.0 \mathrm{~V} *^{5} \end{aligned}$
	Sleep mode		-	$\begin{aligned} & 9 \\ & (3.0 \mathrm{~V}) \end{aligned}$	$\begin{aligned} & 28 \\ & (5.5 \mathrm{~V}) \end{aligned}$	mA	$\mathrm{f}=10 \mathrm{MHz}$
			-	$\begin{aligned} & 12 \\ & (3.0 \mathrm{~V}) \end{aligned}$	$\begin{aligned} & 37 \\ & (5.5 \mathrm{~V}) \end{aligned}$		$\mathrm{f}=13 \mathrm{MHz}$
	All module stop mode		-	$\begin{aligned} & 9 \\ & (3.0 \mathrm{~V}) \end{aligned}$	-	mA	Reference value $\mathrm{f}=10 \mathrm{MHz}$
			-	$\begin{aligned} & 12 \\ & (3.0 \mathrm{~V}) \end{aligned}$	-		Reference value $\mathrm{f}=13 \mathrm{MHz}$
	Medium speed ($\phi / 32$)		-	$\begin{aligned} & 6 \\ & (3.0 \mathrm{~V}) \end{aligned}$	-	mA	Reference value $\mathrm{f}=10 \mathrm{MHz}$
	mode		-	$\begin{aligned} & 8 \\ & (3.0 \mathrm{~V}) \end{aligned}$	-		Reference value $\mathrm{f}=13 \mathrm{MHz}$
	Sleep, all module stop		-	$\begin{aligned} & \hline 1.5 \\ & (3.0 \mathrm{~V}) \end{aligned}$	$\begin{aligned} & 6.0 \\ & (5.5 \mathrm{~V}) \end{aligned}$	mA	$\mathrm{f}=10 \mathrm{MHz}$
	and medium speed ($\phi / 32$) mode		-	$\begin{aligned} & 2.5 \\ & (3.0 \mathrm{~V}) \end{aligned}$	$\begin{aligned} & 7.5 \\ & (5.5 \mathrm{~V}) \end{aligned}$		$\mathrm{f}=13 \mathrm{MHz}$
			-	30	60	$\mu \mathrm{A}$	$\begin{aligned} & \mathrm{f}=32 \mathrm{kHz}, \\ & \mathrm{~V}_{\mathrm{cc}}=3.0 \mathrm{~V} *^{5} \end{aligned}$

Item		Symbol	Min	Typ	Max	Unit	Test Conditions
Current dissipation* ${ }^{2}$	Standby mode*	$\mathrm{I}_{\mathrm{cc}} *^{4}$	-	0.01	5.0	$\mu \mathrm{A}$	$\mathrm{T}_{\mathrm{a}} \leq 50^{\circ} \mathrm{C}$
			-	-	20.0		$50^{\circ} \mathrm{C}<\mathrm{T}_{\mathrm{a}}$
Analog power supply current	During A/D	$\mathrm{Al}_{\mathrm{cc}}$	-	0.4	1.0	mA	$\mathrm{AV}_{\mathrm{cc}}=3.0 \mathrm{~V}$
	conversion		-	1.2	-	mA	$\mathrm{AV}_{\mathrm{cc}}=5.0 \mathrm{~V}$
	Idle		-	0.01	5.0	$\mu \mathrm{A}$	
Reference power supply current	During A/D conversion	$\mathrm{Al}_{\mathrm{cc}}$	-	0.3	0.6	mA	$\mathrm{V}_{\text {ref }}=3.0 \mathrm{~V}$
			-	0.5	-	mA	$\mathrm{V}_{\text {ref }}=5.0 \mathrm{~V}$
	Idle		-	0.01	5.0	$\mu \mathrm{A}$	
RAM standby voltage		$\mathrm{V}_{\text {RAM }}$	2.0	-	-	V	

Notes: 1. If the A / D converter is not used, do not leave the $A V_{c c}, A V_{s s}$, and $V_{\text {ref }}$ pins open. Connect $\mathrm{AV}_{\mathrm{cc}}$ and $\mathrm{V}_{\text {ref }}$ to V_{c}, and connect $\mathrm{AV}_{\mathrm{ss}}$ to V_{ss}.
2. Current dissipation values are for $\mathrm{V}_{\mathrm{tH}} \min =\mathrm{V}_{\mathrm{cc}}-0.5 \mathrm{~V}$ and $\mathrm{V}_{\mathrm{tL}} \max =0.5 \mathrm{~V}$ with all output pins unloaded and the on-chip pull-up transistors in the off state.
3. The values are for $\mathrm{V}_{\text {RAM }} \leq \mathrm{V}_{\mathrm{cC}}<2.7 \mathrm{~V}, \mathrm{~V}_{\mathrm{H}} \min =\mathrm{V}_{\mathrm{cC}} \times 0.9$, and $\mathrm{V}_{\mathrm{LL}} \max =0.3 \mathrm{~V}$.
4. $I_{c c}$ depends on $V_{c c}$ and f as follows:
$\mathrm{I}_{\mathrm{cc}} \max =2.0(\mathrm{~mA})+0.67(\mathrm{~mA} /(\mathrm{MHz} \times \mathrm{V})) \times \mathrm{V}_{\mathrm{cc}} \times \mathrm{f}$ [normal mode]
$\mathrm{I}_{\mathrm{cc}} \max =2.0(\mathrm{~mA})+0.48(\mathrm{~mA} /(\mathrm{MHz} \times \mathrm{V})) \times \mathrm{V}_{\mathrm{cc}} \times \mathrm{f}$ [sleep mode]
$\mathrm{I}_{\mathrm{cc}} \max =2.0(\mathrm{~mA})+0.07(\mathrm{~mA} /(\mathrm{MHz} \times \mathrm{V})) \times \mathrm{V}_{\mathrm{cc}} \times \mathrm{f}$ [sleep, all module stop and medium speed ($\phi / 32$) mode]
5. The current dissipation for $32-\mathrm{kHz}$ operation is the value when the duty adjustment circuit is stopped.

Table 19.4 Permissible Output Currents

Conditions: $\mathrm{V}_{\mathrm{CC}}=2.7 \mathrm{~V}$ to $5.5 \mathrm{~V}, \mathrm{AV}_{\mathrm{CC}}=2.7$ to $5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{ref}}=2.7 \mathrm{~V}$ to $\mathrm{AV}_{\mathrm{CC}}, \mathrm{V}_{\mathrm{SS}}=\mathrm{AV}_{\mathrm{SS}}=0 \mathrm{~V}$, $\mathrm{T}_{\mathrm{a}}=-20$ to $+75^{\circ} \mathrm{C}$ (regular specifications), $\mathrm{Ta}=-40$ to $+85^{\circ} \mathrm{C}$ (wide-range specifications)

Item	Symbol	Min	Typ	Max	Unit	
Permissible output low current (per pin)	Ports 1, A to C I_{OL} - - 10 mA Other output pins	-	-	2.0	mA	
Permissible output low current (total)	Total of 28 pins including ports 1 and A to C	$\sum \mathrm{I}_{\mathrm{OL}}$	-	-	80	mA
	Total of all output pins, including the above		-	-	120	mA
Permissible output high current (per pin)	All output pins	$-\mathrm{I}_{\mathrm{OH}}$	-	-	2.0	mA
Permissible output high current (total)	Total of all output pins	$\sum-\mathrm{I}_{\mathrm{OH}}$	-	-	40	mA

Notes: 1. To protect chip reliability, do not exceed the output current values in table 19.4.
2. When driving a darlington pair or LED, always insert a current-limiting resister in the output line, as show in figures 19.1 and 19.2.

Figure 19.1 Darlington Pair Drive Circuit (Example)

Figure 19.2 LED Drive Circuit (Example)

19.4 AC Characteristics

Figure 19.3 show, the test conditions for the AC characteristics.

Figure 19.3 Output Load Circuit

19.4.1 Clock Timing

Table 19.5 lists the clock timing

Table 19.5 Clock Timing

Condition A: $\mathrm{V}_{\mathrm{cc}}=2.7 \mathrm{~V}$ to $5.5 \mathrm{~V}, \mathrm{AV}_{\mathrm{cc}}=2.7 \mathrm{~V}$ to $5.5 \mathrm{~V}, \mathrm{~V}_{\text {ref }}=2.7 \mathrm{~V}$ to $\mathrm{AV}_{\mathrm{Cc}}$, $\mathrm{V}_{\mathrm{ss}}=\mathrm{AV}_{\mathrm{ss}}=0 \mathrm{~V}, \phi=32 \mathrm{kHz}$ to $10 \mathrm{MHz}, \mathrm{T}_{\mathrm{a}}=-20$ to $+75^{\circ} \mathrm{C}$ (regular specifications), $\mathrm{T}_{\mathrm{a}}=-40$ to $+85^{\circ} \mathrm{C}$ (wide-range specifications)

Condition B: $\mathrm{V}_{\mathrm{CC}}=2.7$ to $5.5 \mathrm{~V}, \mathrm{AV}_{\mathrm{CC}}=2.7$ to $5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{ref}}=2.7 \mathrm{~V}$ to $\mathrm{AV}_{\mathrm{CC}}$, $\mathrm{V}_{\mathrm{ss}}=\mathrm{AV}_{\mathrm{ss}}=0 \mathrm{~V}, \phi=32 \mathrm{kHz}$ to $13 \mathrm{MHz}, \mathrm{T}_{\mathrm{a}}=-20$ to $+75^{\circ} \mathrm{C}$ (regular specifications), $\mathrm{T}_{\mathrm{a}}=-40$ to $+85^{\circ} \mathrm{C}$ (wide-range specifications)

Condition C: $\mathrm{V}_{\mathrm{cC}}=5.0 \mathrm{~V} \pm 10 \%, \mathrm{AV}_{\mathrm{cC}}=5.0 \mathrm{~V} \pm 10 \%, \mathrm{~V}_{\mathrm{ref}}=4.5 \mathrm{~V}$ to $\mathrm{AV}_{\mathrm{cc}}$, $\mathrm{V}_{\mathrm{SS}}=\mathrm{AV}_{\mathrm{SS}}=0 \mathrm{~V}, \phi=2$ to $20 \mathrm{MHz}, \mathrm{T}_{\mathrm{a}}=-20$ to $+75^{\circ} \mathrm{C}$ (regular specifications), $\mathrm{T}_{\mathrm{a}}=-40$ to $+85^{\circ} \mathrm{C}$ (wide-range specifications)

Item	Symbol	Condition A		Condition B		Condition C		Unit	Test Conditions
		Min	Max	Min	Max	Min	Max		
Clock cycle time	$\mathrm{t}_{\text {cy }}$	100	31250	75	31250	50	500	ns	Figure 19.4
Clock high pulse width	t_{CH}	35	-	25	-	20	-	ns	
Clock low pulse width	t_{cL}	35	-	25	-	20	-	ns	
Clock rise time	t_{c}	-	15	-	10	-	5	ns	
Clock fall time	t_{ct}	-	15	-	10	-	5	ns	
Clock oscillator setting time at reset (crystal)	$\mathrm{t}_{\text {osc } 1}$	20	-	20	-	10	-	ms	Figure 19.5
Clock oscillator setting time in software standby (crystal)	$\mathrm{t}_{\text {osc2 }}$	8	-	8	-	8	-	ms	Figure 18.2
External clock output stabilization delay time	$\mathrm{t}_{\text {DEXT }}$	500	-	500	-	500	-	$\mu \mathrm{s}$	Figure 19.5

Figure 19.4 System Clock Timing

Figure 19.5 Oscillator Settling Timing

19.4.2 Control Signal Timing

Table 19.6 lists the control signal timing.

Table 19.6 Control Signal Timing

Condition A: $\mathrm{V}_{\mathrm{CC}}=2.7 \mathrm{~V}$ to $5.5 \mathrm{~V}, \mathrm{AV}_{\mathrm{CC}}=2.7 \mathrm{~V}$ to $5.5 \mathrm{~V}, \mathrm{~V}_{\text {ref }}=2.7 \mathrm{~V}$ to $\mathrm{AV}_{\mathrm{CC}}$, $\mathrm{V}_{\mathrm{SS}}=\mathrm{AV}_{\mathrm{ss}}=0 \mathrm{~V}, \phi=32 \mathrm{kHz}$ to $10 \mathrm{MHz}, \mathrm{T}_{\mathrm{a}}=-20$ to $+75^{\circ} \mathrm{C}$ (regular specifications), $\mathrm{T}_{\mathrm{a}}=-40$ to $+85^{\circ} \mathrm{C}$ (wide-range specifications)

Condition B: $\mathrm{V}_{\text {CC }}=2.7 \mathrm{~V}$ to $5.5 \mathrm{~V}, \mathrm{AV}_{\mathrm{CC}}=2.7 \mathrm{~V}$ to $5.5 \mathrm{~V}, \mathrm{~V}_{\text {ref }}=2.7 \mathrm{~V}$ to $\mathrm{AV}_{\mathrm{CC}}$, $\mathrm{V}_{\mathrm{ss}}=\mathrm{AV}_{\text {ss }}=0 \mathrm{~V}, \phi=32 \mathrm{kHz}$ to $13 \mathrm{MHz}, \mathrm{T}_{\mathrm{a}}=-20$ to $+75^{\circ} \mathrm{C}$ (regular specifications), $\mathrm{T}_{\mathrm{a}}=-40$ to $+85^{\circ} \mathrm{c}$ (wide-range specifications)

Condition C: $\mathrm{V}_{\mathrm{cC}}=5.0 \mathrm{~V} \pm 10 \%, \mathrm{AV}_{\mathrm{CC}}=5.0 \mathrm{~V} \pm 10 \%, \mathrm{~V}_{\text {ref }}=4.5 \mathrm{~V}$ to $\mathrm{AV}_{\mathrm{cC}}$, $\mathrm{V}_{\mathrm{SS}}=\mathrm{AV}_{\mathrm{SS}}=0 \mathrm{~V}, \phi=2$ to $20 \mathrm{MHz}, \mathrm{T}_{\mathrm{a}}=-20$ to $+75^{\circ} \mathrm{C}$ (regular specifications), $\mathrm{T}_{\mathrm{a}}=-40$ to $+85^{\circ} \mathrm{C}$ (wide-range specifications)

Item	Symbol	Condition A		Condition B		Condition C		Unit	Test Conditions
		Min	Max	Min	Max	Min	Max		
$\overline{\mathrm{RES}}$ setup time	$\mathrm{t}_{\text {RESS }}$	200	-	200	-	200	-	ns	Figure 19.6
$\overline{\text { RES }}$ pulse width	$\mathrm{t}_{\text {RESW }}$	20	-	20	-	20	-	$\mathrm{t}_{\text {cyc }}$	
NMI reset setup time	$\mathrm{t}_{\text {mMiRs }}$	200	-	200	-	200	-	ns	
NMI reset hold time	$\mathrm{t}_{\text {MMRH }}$	200	-	200	-	200	-		
NMI setup time	$\mathrm{t}_{\text {MMI }}$	200	-	200	-	150	-	ns	Figure 19.7
NMI hold time	$\mathrm{t}_{\text {мMH }}$	10	-	10	-	10	-		
NMI pulse width (exiting software standby mode)	$\mathrm{t}_{\text {мuIW }}$	200	-	200	-	200	-	ns	
$\overline{\overline{\mathrm{RQ}} \text { setup time }}$	$\mathrm{t}_{\text {Rras }}$	200	-	200	-	150	-	ns	
$\overline{\mathrm{IRQ}}$ hold time	$\mathrm{t}_{\text {RROH }}$	10	-	10	-	10	-	ns	
$\overline{\overline{\mathrm{RQ}}}$ pulse width (exiting software standby mode)	$\mathrm{t}_{\text {IRaw }}$	200	-	200	-	200	-	ns	

Figure 19.6 Reset Input Timing

Figure 19.7 Interrupt Input Timing

19.4.3 Bus Timing

Table 19.7 lists the bus timing.

Table 19.7 Bus Timing

Condition A: $\mathrm{V}_{\mathrm{CC}}=2.7 \mathrm{~V}$ to $5.5 \mathrm{~V}, \mathrm{AV}_{\mathrm{CC}}=2.7 \mathrm{~V}$ to $5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{ref}}=2.7 \mathrm{~V}$ to $\mathrm{AV}_{\mathrm{CC}}$, $\mathrm{V}_{\mathrm{SS}}=\mathrm{AV}_{\mathrm{sS}}=0 \mathrm{~V}, \phi=32 \mathrm{kHz}$ to $10 \mathrm{MHz}, \mathrm{T}_{\mathrm{a}}=-20$ to $+75^{\circ} \mathrm{C}$ (regular specifications), $\mathrm{T}_{\mathrm{a}}=-40$ to $+85^{\circ} \mathrm{C}$ (wide-range specifications)

Condition B: $\mathrm{V}_{\mathrm{CC}}=2.7 \mathrm{~V}$ to $5.5 \mathrm{~V}, \mathrm{AV}_{\mathrm{CC}}=2.7 \mathrm{~V}$ to $5.5 \mathrm{~V}, \mathrm{~V}_{\text {ref }}=2.7 \mathrm{~V}$ to $\mathrm{AV}_{\mathrm{CC}}$, $\mathrm{V}_{\mathrm{ss}}=\mathrm{AV}_{\mathrm{ss}}=0 \mathrm{~V}, \phi=32 \mathrm{kHz}$ to $13 \mathrm{MHz}, \mathrm{T}_{\mathrm{a}}=-20$ to $+75^{\circ} \mathrm{C}$ (regular specifications), $\mathrm{T}_{\mathrm{a}}=-40$ to $+85^{\circ} \mathrm{C}$ (wide-range specifications)

Condition $\mathrm{C}: \mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V} \pm 10 \%, \mathrm{AV}_{\mathrm{CC}}=5.0 \mathrm{~V} \pm 10 \%, \mathrm{~V}_{\mathrm{ref}}=4.5 \mathrm{~V}$ to $\mathrm{AV}_{\mathrm{CC}}$, $\mathrm{V}_{\mathrm{SS}}=A \mathrm{~V}_{\mathrm{SS}}=0 \mathrm{~V}, \phi=2$ to $20 \mathrm{MHz}, \mathrm{T}_{\mathrm{a}}=-20$ to $+75^{\circ} \mathrm{C}$ (regular specifications), $\mathrm{T}_{\mathrm{a}}=-40$ to $+85^{\circ} \mathrm{C}$ (wide-range specifications)

Item	Symbol	Condition A		Condition B		Condition C		Unit	Test Conditions
		Min	Max	Min	Max	Min	Max		
Address delay time	$\mathrm{t}_{\text {AD }}$	-	40	-	35	-	20	ns	Figure 19.8 to
Address setup time	$\mathrm{t}_{\text {AS }}$	$\begin{aligned} & 0.5 \times \\ & \mathrm{t}_{\mathrm{cyc}}-30 \end{aligned}$	-	$\begin{aligned} & 0.5 \times \\ & t_{\mathrm{cyc}}-20 \end{aligned}$	-	$\begin{aligned} & 0.5 \times \\ & \mathrm{t}_{\mathrm{cyc}}-15 \end{aligned}$	-	ns	Figure 19.12
Address hold time	$\mathrm{t}_{\text {AH }}$	$\begin{aligned} & 0.5 \times \\ & \mathrm{t}_{\mathrm{cyc}}-20 \end{aligned}$	-	$\begin{aligned} & 0.5 \times \\ & \mathrm{t}_{\mathrm{cyc}}-15 \end{aligned}$	-	$\begin{aligned} & 0.5 \times \\ & t_{\mathrm{cyc}}-10 \end{aligned}$	-	ns	
$\overline{\text { CS }}$ delay time	$\mathrm{t}_{\text {cso }}$	-	40	-	35	-	20	ns	
$\overline{\text { AS delay time }}$	$\mathrm{t}_{\text {ASD }}$	-	60	-	50	-	30	ns	
$\overline{\mathrm{RD}}$ delay time 1	$\mathrm{t}_{\text {RSO1 }}$	-	60	-	45	-	30	ns	
$\overline{\mathrm{RD}}$ delay time 2	$\mathrm{t}_{\text {RSO2 }}$	-	60	-	45	-	30	ns	
Read data setup time	$\mathrm{t}_{\text {RDS }}$	30	-	30	-	15	-	ns	
Read data hold time	$\mathrm{t}_{\text {RDH }}$	0	-	0	-	0	-	ns	
Read data access time 1	$\mathrm{t}_{\text {AcC1 }}$	-	$\begin{aligned} & 1.0 \times \\ & \mathrm{t}_{\mathrm{cyc}}-50 \end{aligned}$	-	$\begin{aligned} & 1.0 \times \\ & \mathrm{t}_{\mathrm{cyc}}-55 \end{aligned}$	-	$\begin{aligned} & 1.0 \times \\ & \mathrm{t}_{\mathrm{cyc}}-25 \end{aligned}$	ns	
Read data access time 2	$\mathrm{t}_{\text {ACC2 }}$	-	$\begin{aligned} & \hline 1.5 \times \\ & \mathrm{t}_{\mathrm{cyc}}-50 \\ & \hline \end{aligned}$	-	$\begin{aligned} & \hline 1.5 \times \\ & \mathrm{t}_{\mathrm{cyc}}-55 \\ & \hline \end{aligned}$	-	$\begin{aligned} & 1.5 \times \\ & \mathrm{t}_{\mathrm{cyc}}-25 \\ & \hline \end{aligned}$	ns	
Read data access time 3	$t_{\text {Acc3 }}$	-	$\begin{aligned} & \hline 2.0 \times \\ & \mathrm{t}_{\mathrm{cyc}}-50 \end{aligned}$	-	$\begin{aligned} & \hline 2.0 \times \\ & \mathrm{t}_{\mathrm{cyc}}-55 \end{aligned}$	-	$\begin{aligned} & 2.0 \times \\ & \mathrm{t}_{\mathrm{cyc}}-25 \end{aligned}$	ns	
Read data access time 4	$\mathrm{t}_{\text {ACC4 }}$	-	$\begin{aligned} & 2.5 \times \\ & \mathrm{t}_{\mathrm{cyc}}-50 \end{aligned}$	-	$\begin{aligned} & 2.5 \times \\ & \mathrm{t}_{\mathrm{cyc}}-55 \end{aligned}$	-	$\begin{aligned} & \hline 2.5 \times \\ & \mathrm{t}_{\mathrm{cyc}}-25 \end{aligned}$	ns	

Item	Symbol	Condition A		Condition B		Condition C		Unit	Test Conditions
		Min	Max	Min	Max	Min	Max		
Read data access time 5	$\mathrm{t}_{\text {ACC5 }}$	-	$\begin{aligned} & 3.0 \times \\ & t_{\mathrm{cyc}}-50 \end{aligned}$	-	$\begin{aligned} & \hline 3.0 \times \\ & \mathrm{t}_{\mathrm{cyc}}-55 \end{aligned}$	-	$\begin{aligned} & 3.0 \times \\ & t_{\mathrm{cyc}}-25 \end{aligned}$	ns	Figure 19.8 to
$\overline{\text { WR }}$ delay time 1	$\mathrm{t}_{\text {wRO1 }}$	-	60	-	45	-	30	ns	Figure 19.12
$\overline{\text { WR delay time } 2}$	$\mathrm{t}_{\text {wRo2 }}$	-	60	-	50	-	30	ns	
$\overline{\text { WR pulse width } 1 .}$	$\mathrm{t}_{\text {wsw1 }}$	$\begin{aligned} & 1.0 \times \\ & t_{\mathrm{cyc}}-40 \end{aligned}$	-	$\begin{aligned} & 1.0 \times \\ & t_{\mathrm{cyc}}-30 \end{aligned}$	-	$\begin{aligned} & 1.0 \times \\ & \mathrm{t}_{\mathrm{cyc}}-20 \end{aligned}$	-	ns	
$\overline{\text { WR pulse width } 2}$	$\mathrm{t}_{\text {wsw } 2}$	$\begin{aligned} & 1.5 \times \\ & \mathrm{t}_{\mathrm{cyc}}-40 \end{aligned}$	-	$\begin{aligned} & 1.5 \times \\ & \mathrm{t}_{\mathrm{cyc}}-30 \end{aligned}$	-	$\begin{aligned} & \hline 1.5 \times \\ & \mathrm{t}_{\mathrm{cyc}}-20 \end{aligned}$	-	ns	
Write data delay time	$\mathrm{t}_{\text {wod }}$	-	60	-	60	-	30	ns	
Write data setup time	$\mathrm{t}_{\text {wos }}$	0	-	0	-	0	-	ns	
Write data hold time	$\mathrm{t}_{\text {woh }}$	20	-	20	-	10	-	ns	
$\overline{\text { WAIT }}$ setup time	$\mathrm{t}_{\text {wTs }}$	60	-	50	-	30	-	ns	Figure 19.10
WAIT hold time	$t_{\text {wTH }}$	10	-	10	-	5	-	ns	
$\overline{\text { BREQ setup time }}$	$\mathrm{t}_{\text {Bras }}$	60	-	50	-	30	-	ns	Figure 19.13
$\overline{\text { BACK delay time }}$	$\mathrm{t}_{\text {BACD }}$	-	60	-	50	-	30	ns	
Bus-floating time	$\mathrm{t}_{\text {BzD }}$	-	100	-	80	-	50	ns	
$\overline{\mathrm{BREQO}}$ delay time	$\mathrm{t}_{\text {Braod }}$	-	60	-	50	-	30	ns	Figure 19.14

Figure 19.8 Basic Bus Timing (Two-State Access)

Figure 19.9 Basic Bus Timing (Three-State Access)

Figure 19.10 Basic Bus Timing (Three-State Access with One Wait State)

Figure 19.11 Burst ROM Access Timing (Two-State Access)

Figure 19.12 Burst ROM Access Timing (One-State Access)

Figure 19.13 External Bus Release Timing

Figure 19.14 External Bus Request Output Timing

19.4.4 Timing of On-Chip Supporting Modules

Table 19.8 lists the timing of on-chip supporting modules.

Table 19.8 Timing of On-Chip Supporting Modules

Condition A: $\mathrm{V}_{\mathrm{CC}}=2.7 \mathrm{~V}$ to $5.5 \mathrm{~V}, \mathrm{AV}_{\mathrm{CC}}=2.7 \mathrm{~V}$ to $5.5 \mathrm{~V}, \mathrm{~V}_{\text {ref }}=2.7 \mathrm{~V}$ to $\mathrm{AV}_{\mathrm{CC}}$, $\mathrm{V}_{\mathrm{ss}}=\mathrm{AV}_{\mathrm{ss}}=0 \mathrm{~V}, \phi=32 \mathrm{kHz}$ to $10 \mathrm{MHz}(\mathrm{I} / \mathrm{O}$ port, TMR, WDT), $\phi=2$ to 10 MHz (TPU, SCI, A/D converter), $\mathrm{T}_{\mathrm{a}}=-20$ to $+75^{\circ} \mathrm{C}$ (regular specifications), $\mathrm{T}_{\mathrm{a}}=-40$ to $+85^{\circ} \mathrm{C}$ (wide-range specifications)

Condition B: $\mathrm{V}_{\mathrm{CC}}=2.7 \mathrm{~V}$ to $5.5 \mathrm{~V}, \mathrm{AV}_{\mathrm{CC}}=2.7 \mathrm{~V}$ to $5.5 \mathrm{~V}, \mathrm{~V}_{\text {ref }}=2.7 \mathrm{~V}$ to $\mathrm{AV}_{\mathrm{CC}}$, $\mathrm{V}_{\mathrm{ss}}=\mathrm{AV}_{\mathrm{ss}}=0 \mathrm{~V}, \phi=32 \mathrm{kHz}$ to 13 MHz (I/O port, TMR, WDT), $\phi=2$ to 13 MHz (TPU, SCI, A/D converter), $\mathrm{T}_{\mathrm{a}}=-20$ to $+75^{\circ} \mathrm{C}$ (regular specifications), $\mathrm{T}_{\mathrm{a}}=-40$ to $+85^{\circ} \mathrm{C}$ (wide-range specifications)

Condition C: $\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V} \pm 10 \%, \mathrm{AV}_{\mathrm{cC}}=5.0 \mathrm{~V} \pm 10 \%, \mathrm{~V}_{\text {re }}=4.5 \mathrm{~V}$ to $\mathrm{AV}_{\mathrm{CC}}$, $\mathrm{V}_{\mathrm{SS}}=\mathrm{AV}_{\mathrm{SS}}=0 \mathrm{~V}, \phi=2$ to $20 \mathrm{MHz}, \mathrm{T}_{\mathrm{a}}=-20$ to $+75^{\circ} \mathrm{C}$ (regular specifications), $\mathrm{T}_{\mathrm{a}}=-40$ to $+85^{\circ} \mathrm{C}$ (wide-range specifications)

Item			Symbol	Condition A		Condition B		Condition C		Unit	Test Conditions
				Min	Max	Min	Max	Min	Max		
$\begin{aligned} & \overline{\mathrm{I} / \mathrm{O}} \\ & \text { port } \end{aligned}$	Output data delay time		$\mathrm{t}_{\text {pwo }}$	-	100	-	75	-	50	ns	$\begin{aligned} & \hline \text { Figure } \\ & 19.15 \end{aligned}$
	Input data setup time		$\mathrm{t}_{\text {PRS }}$	50	-	50	-	30	-		
	Input data hold time		$\mathrm{t}_{\text {PRH }}$	50	-	50	-	30	-		
TPU	Timer output delay time		$\mathrm{t}_{\text {Toco }}$	-	100	-	75	-	50	ns	$\begin{aligned} & \hline \text { Figure } \\ & 19.16 \end{aligned}$
	Timer input setup time		$\mathrm{t}_{\text {TICS }}$	50	-	40	-	30	-		
	Timer clock input setup time		$\mathrm{t}_{\text {Tcks }}$	50	-	40	-	30	-	ns	$\begin{aligned} & \text { Figure } \\ & 19.17 \end{aligned}$
	Timer clock pulse width	Single edge	$\mathrm{t}_{\text {TCKWH }}$	1.5	-	1.5	-	1.5	-	$\mathrm{t}_{\text {cy }}$	
		Both edges	$\mathrm{t}_{\text {tckwL }}$	2.5	-	2.5	-	2.5	-		

Item			Symbol	Condition A		Condition B		Condition C		Unit	Test Conditions
				Min	Max	Min	Max	Min	Max		
8-bit timer	Timer output delay time		$\mathrm{t}_{\text {тмоо }}$	-	100	-	75	-	50	ns	$\begin{aligned} & \hline \text { Figure } \\ & 19.18 \end{aligned}$
	Timer reset input setup time		$\mathrm{t}_{\text {TMRS }}$	50	-	50	-	30	-	ns	$\begin{aligned} & \text { Figure } \\ & 19.20 \end{aligned}$
	Timer clock input setup time		$\mathrm{t}_{\text {TMCS }}$	50	-	50	-	30	-	ns	$\begin{aligned} & \text { Figure } \\ & 19.19 \end{aligned}$
	Timer clock	Single edge	$\mathrm{t}_{\text {TMCWH }}$	1.5	-	1.5	-	1.5	-	$\mathrm{t}_{\text {cy }}$	
	pulse width	Both edges	$\mathrm{t}_{\text {TMCWL }}$	2.5	-	2.5	-	2.5	-		
WDT	Overflow output delay time		$\mathrm{t}_{\text {wovo }}$	-	100	-	75	-	50	ns	$\begin{aligned} & \text { Figure } \\ & 19.21 \end{aligned}$
$\overline{\mathrm{SCl}}$	Input clock cycle	Asynchronous	- $\mathrm{t}_{\text {cyo }}$	4	-	4	-	4	-	$\mathrm{t}_{\text {yc }}$	$\begin{aligned} & \hline \text { Figure } \\ & 19.22 \end{aligned}$
		Synchronous		6	-	6	-	6	-		
	Input clock pulse width		$\mathrm{t}_{\text {sckw }}$	0.4	0.6	0.4	0.6	0.4	0.6	$\mathrm{t}_{\text {scy }}$	
	Input clock rise time		$\mathrm{t}_{\text {sckr }}$	-	1.5	-	1.5	-	1.5	$\mathrm{t}_{\text {cyo }}$	
	Input clock fall time		$\mathrm{t}_{\text {sckf }}$	-	1.5	-	1.5	-	1.5		
	Transmit data delay time		$\mathrm{t}_{\text {TXO }}$	-	100	-	75	-	50	ns	$\begin{aligned} & \hline \text { Figure } \\ & 19.23 \end{aligned}$
	Receive data setup time (synchronous)		$\mathrm{t}_{\text {Rxs }}$	100	-	75	-	50	-	ns	
	Receive data hold time (synchronous)		$\mathrm{t}_{\text {RXH }}$	100	-	75	-	50	-	ns	
A/D converter	Trigger input setup time		$\mathrm{t}_{\text {TRGS }}$	50	-	40	-	30	-	ns	$\begin{aligned} & \hline \text { Figure } \\ & 19.24 \end{aligned}$

Figure 19.15 I/O Port Input/Output Timing

Output compare output*

Input capture input*

Note: * TIOCA0 to TIOCA2, TIOCB0 to TIOCB2, TIOCC0, TIOCDO
Figure 19.16 TPU Input/Output Timing

Figure 19.17 TPU Clock Input Timing

Figure 19.18 8-Bit Timer Output Timing

Figure 19.19 8-Bit Timer Clock Input Timing
ϕ

TMRIO, TMRI1

Figure 19.20 8-Bit Timer Reset Input Timing

Figure 19.21 WDT Output Timing

Figure 19.22 SCK Clock Input Timing

Figure 19.23 SCI Input/Output Timing Synchronous Mode

Figure 19.24 A/D Converter External Trigger Input Timing

19.5 A/D Conversion Characteristics

Table 19.9 lists the A / D conversion characteristics.

Table 19.9 A/D Conversion Characteristics

Condition A: $\mathrm{V}_{\mathrm{CC}}=2.7 \mathrm{~V}$ to $5.5 \mathrm{~V}, \mathrm{AV}_{\mathrm{CC}}=2.7 \mathrm{~V}$ to $5.5 \mathrm{~V}, \mathrm{~V}_{\text {ref }}=2.7 \mathrm{~V}$ to $\mathrm{AV}_{\mathrm{CC}}$, $\mathrm{V}_{\mathrm{SS}}=\mathrm{AV}_{\mathrm{SS}}=0 \mathrm{~V}, \phi=2$ to $10 \mathrm{MHz}, \mathrm{T}_{\mathrm{a}}=-20$ to $+75^{\circ} \mathrm{C}$ (regular specifications), $\mathrm{T}_{\mathrm{a}}=-40$ to $+85^{\circ} \mathrm{C}$ (wide-range specifications)

Condition B: $\mathrm{V}_{\mathrm{CC}}=2.7 \mathrm{~V}$ to $5.5 \mathrm{~V}, \mathrm{AV}_{\mathrm{cC}}=2.7 \mathrm{~V}$ to $5.5 \mathrm{~V}, \mathrm{~V}_{\text {ref }}=2.7 \mathrm{~V}$ to $\mathrm{AV}_{\mathrm{cc}}$,
$\mathrm{V}_{\mathrm{SS}}=\mathrm{AV}_{\mathrm{SS}}=0 \mathrm{~V}, \phi=2$ to $13 \mathrm{MHz}, \mathrm{T}_{\mathrm{a}}=-20$ to $+75^{\circ} \mathrm{C}$ (regular specifications), $\mathrm{T}_{\mathrm{a}}=-40$ to $+85^{\circ} \mathrm{C}$ (wide-range specifications)

Condition C: $\mathrm{V}_{\mathrm{cC}}=5.0 \mathrm{~V} \pm 10 \%, \mathrm{AV}_{\mathrm{cC}}=5.0 \mathrm{~V} \pm 10 \%, \mathrm{~V}_{\text {ref }}=4.5 \mathrm{~V}$ to AV_{c}, $\mathrm{V}_{\mathrm{SS}}=\mathrm{AV}_{\mathrm{SS}}=0 \mathrm{~V}, \phi=2$ to $20 \mathrm{MHz}, \mathrm{T}_{\mathrm{a}}=-20$ to $+75^{\circ} \mathrm{C}$ (regular specifications), $\mathrm{T}_{\mathrm{a}}=-40$ to $+85^{\circ} \mathrm{C}$ (wide-range specifications)

Item	Condition A			Condition B			Condition C			Unit
	Min	Typ	Max	Min	Typ	Max	Min	Typ	Max	
Resolution	10	10	10	10	10	10	10	10	10	bits
Conversion time	13.1	-	-	9.8	-	-	6.5	-	-	$\mu \mathrm{s}$
Analog input capacitance	-	-	20	-	-	20	-	-	20	pF
Permissible signalsource impedance	-	-	10*1	-	-	10*1	-	-	$10{ }^{3}$	$k \Omega$
	-	-	$5 *^{2}$	-	-	$5 *^{2}$	-	-	$5{ }^{*}$	
Nonlinearity error	-	-	± 6.0	-	-	± 6.0	-	-	± 3.0	LSB
Offset error	-	-	± 4.0	-	-	± 4.0	-	-	± 2.0	LSB
Full-scale error	-	-	± 4.0	-	-	± 4.0	-	-	± 2.0	LSB
Quantization error	-	-	± 0.5	-	-	± 0.5	-	-	± 0.5	LSB
Absolute accuracy	-	-	± 8.0	-	-	± 8.0	-	-	± 4.0	LSB

Notes: 1. $4.0 \leq \mathrm{AV}_{\mathrm{cc}} \leq 5.5 \mathrm{~V}$
2. $2.7 \mathrm{~V} \leq \mathrm{AV}_{\mathrm{cc}}<4.0 \mathrm{~V}$
3. $\phi \leq 12 \mathrm{MHz}$
4. $\phi>12 \mathrm{MHz}$

19.6 Usage Notes

Although both the ZTAT and mask ROM versions fully meet the electrical specifications listed in this manual, due to differences in the fabrication process, the on-chip ROM, and the layout patterns, there will be differences in the actual values of the electrical characteristics, the operating margins, the noise margins, and other aspects.

Therefore, if a system is evaluated using the ZTAT version, a similar evaluation should also be performed using the mask ROM version.

Appendix A Instruction Set

A. 1 Instruction List

Operand Notation

Rd	General register (destination)*
Rs	General register (source)*
Rn	General register*
ERn	General register (32-bit register)
(EAd)	Destination operand
(EAs)	Source operand
EXR	Extended control register
CCR	Condition-code register
N	N (negative) flag in CCR
Z	Z (zero) flag in CCR
V	V (overflow) flag in CCR
C	C (carry) flag in CCR
PC	Program counter
SP	Stack pointer
\#IMM	Immediate data
disp	Displacement
+	Add
-	Subtract
\times	Multiply
\div	Divide
\wedge	Logical AND
\checkmark	Logical OR
\oplus	Logical exclusive OR
\rightarrow	Move
\neg	Logical NOT (logical complement)
() < >	Contents of effective address of the operand
:8/:16/:24/:32	8-, 16-, 24-, or 32-bit length

Note: * General registers include 8-bit registers (R0H to R7H, R0L to R7L), 16-bit registers (R0 to R7, E0 to E7), and 32-bit registers (ER0 to ER7).

Condition Code Notation

Symbol	
$\mathfrak{\downarrow}$	Changes according to the result of instruction
$*$	Undetermined (no guaranteed value)
0	Always cleared to 0
1	Always set to 1
-	Not affected by execution of the instruction

Table A. 1 Instruction Set

(1) Data Transfer Instructions

(2) Arithmetic Instructions

Mnemonic		$\begin{aligned} & \mathbb{N} \\ & \text { N } \\ & \text { N } \\ & \text { D } \\ & \text { No } \\ & 0.0 \end{aligned}$	Addressing Mode/ Instruction Length (Bytes)									Operation	Condition Code						No. of States*1		
		-	$\underset{\sim}{\text { c }}$							1											
		1									H		N	Z	V	C	Normal	Advanced			
ADD	ADD.B \#xx:8,Rd		B	2									Rd8+\#xx:8 \rightarrow Rd8	-	\downarrow	\downarrow	\downarrow	\downarrow	\downarrow		1
	ADD.B Rs,Rd	B		2								Rd8+Rs8 \rightarrow Rd8	-	\downarrow	\downarrow	\downarrow	\downarrow	\downarrow		1	
	ADD.W \#xx:16,Rd	W	4									Rd16+\#xx:16 \rightarrow Rd16	-	[3]	\downarrow	\downarrow	\downarrow	\downarrow	2	2	
	ADD.W Rs,Rd	W		2								Rd16+Rs16 \rightarrow Rd16	-	[3]	\downarrow	\downarrow	\downarrow	\downarrow		1	
	ADD.L \#xx:32,ERd	L	6									ERd32+\#xx:32 \rightarrow ERd32	-	[4]	\downarrow	\downarrow	\downarrow	\downarrow	3	3	
	ADD.L ERs,ERd	L		2								ERd32+ERs32 \rightarrow ERd32	-	[4]	\downarrow	\downarrow	\downarrow	\downarrow	1	1	
ADDX	ADDX \#xx:8,Rd	B	2									Rd8+\#xx:8+C \rightarrow Rd8	-	\downarrow	\downarrow	[5]	\downarrow	\downarrow		1	
	ADDX Rs,Rd	B		2								Rd8+Rs8+C \rightarrow Rd8	-	\downarrow	\downarrow	[5]	\downarrow	\downarrow		1	
ADDS	ADDS \#1,ERd	L		2								ERd32+1 \rightarrow ERd32	-	-	-	-	-	-		1	
	ADDS \#2,ERd	L		2								ERd32+2 \rightarrow ERd32	-	-	-	-	-	-		1	
	ADDS \#4,ERd	L		2								ERd32 $+4 \rightarrow$ ERd32	-	-	-	-	-	-		1	
INC	INC.B Rd	B		2								Rd8+1 \rightarrow Rd8	-	-	\downarrow	\downarrow	\downarrow	-		1	
	INC.W \#1,Rd	W		2								Rd16+1 \rightarrow Rd16	-	-	\downarrow	\downarrow	\downarrow	-	1	1	
	INC.W \#2,Rd	W		2								Rd16+2 \rightarrow Rd16	-	-	\downarrow	\downarrow	\downarrow	-	1	1	
	INC.L \#1,ERd	L		2								ERd32+1 \rightarrow ERd32	-	-	\downarrow	\downarrow	\downarrow	-	1	1	
	INC.L \#2,ERd	L		2								ERd32+2 \rightarrow ERd32	-	-	\downarrow	\downarrow	\downarrow	-	1	1	
DAA	DAA Rd	B		2								Rd8 decimal adjust \rightarrow Rd8	-	*	\downarrow	\downarrow	*	\downarrow		1	

Mnemonic			Addressing Mode／ Instruction Length（Bytes）									Operation	Condition Code						No．of States＊1				
						＋uyヨ（®）／uपヨ－®				I													
		1	H						N		－		V	C	Normal	Advanced							
MULXS	MULXS．B Rs，Rd			B		4									Rd8 \times Rs $8 \rightarrow$ Rd1 6 （signed multiplication）	－	－	1	1		－	13	
	MULXS．W Rs，ERd	w		4								Rd16×Rs16 \rightarrow ERd32 （signed multiplication）		－	1	$\downarrow \downarrow$	－	－	21				
DIVXU	DIVXU．B Rs，Rd	B		2								Rd16 \div Rs $8 \rightarrow$ Rd16（RdH：remainder， RdL：quotient）（unsigned division）	－	－	［6］	6］［7］	］	－	12				
	DIVXU．W Rs，ERd	W		2								ERd32：Rs16 \rightarrow ERd32（Ed：remainder， Rd：quotient）（unsigned division）	－	－	［6］	［6］$[7$	］	－	20				
DIVXS	DIVXS．B Rs，Rd	B		4								Rd16 \div Rs8 \rightarrow Rd16（RdH：remainder， RdL：quotient）（signed division）	－	－	［8］	［8］［7］	］	－	13				
	DIVXS．W Rs，ERd	W		4								ERd32 \div Rs $16 \rightarrow$ ERd32（Ed：remainder， Rd：quotient）（signed division）	－	－	［8］	B］［7］	7	－	21				
CMP	CMP．B \＃xx：8，Rd	B	2									Rd8－\＃xx：8	－	－	1	1	\downarrow	\downarrow	1				
	CMP．B Rs，Rd	B		2								Rd8－Rs8		－	1	1	\downarrow	\downarrow	1				
	CMP．W \＃xx：16，Rd	W	4									Rd16－\＃xx：16		［3］	1	1	\downarrow	\downarrow	2				
	CMP．W Rs，Rd	W		2								Rd16－Rs16		［3］	1	1	\downarrow	\downarrow	1				
	CMP．L\＃xx：32，ERd	L	6									ERd32－\＃xx：32		［4］	1	1	\downarrow	\downarrow	3				
	CMP．L ERs，ERd	L		2								ERd32－ERs32		［4］	1	1	\downarrow	\downarrow	1				
NEG	NEG．B Rd	B		2								$0-\mathrm{Rd} 8 \rightarrow \mathrm{Rd} 8$	－	1	1	1	1	\downarrow	1				
	NEG．W Rd	W		2								$0-\mathrm{Rd} 16 \rightarrow \mathrm{Rd} 16$	－	1	1	1	さ	\downarrow	1				
	NEG．L ERd	L		2								$0-$ ERd32 \rightarrow ERd32		\downarrow	1	\downarrow	\downarrow	\downarrow	1				

				$\underset{\text { istru }}{\text { A }}$			$\begin{aligned} & \text { sing } \\ & \text { Len } \end{aligned}$		ode (B	$\begin{aligned} & \text { e/ } \\ & 3 y t e \end{aligned}$										
					$\underset{\sim}{\sim}$					\%				ond	ditio	n	Cod		No. of	States*1
	Mnemonic	\bigcirc	爻	$\underset{\sim}{\text { ¢ }}$	(8)		()	(8)	(8)	(8)	1	Operation	1	H	N	Z	V	C	Normal	Advanced
EXTU	EXTU.W Rd	W		2								$0 \rightarrow$ (<bit 15 to $8>$ of Rd16)	-	-	0	\downarrow	0	-		1
	EXTU.L ERd	L		2								$0 \rightarrow$ (<bit 31 to 16> of ERd32)	-	-	0	\downarrow	0	-		1
EXTS	EXTS.W Rd	W		2								(<bit 7> of Rd16) \rightarrow (<bit 15 to 8> of Rd16)	-	-	\downarrow	\downarrow	0	-		1
	EXTS.L ERd	L		2								(<bit 15> of ERd32) \rightarrow (<bit 31 to 16> of ERd32)	-	-	\downarrow	\downarrow	0	-		1
TAS*	TAS @ERd	B			4							@ERd-0 \rightarrow CCR set, $(1) \rightarrow$ (<bit 7> of @ERd)	-	-	\downarrow	\downarrow	0	-		4

Note: * Only register ER0, ER1, ER4, or ER5 should be used when using the TAS instruction.
(3) Logical Instructions

（4）Shift Instructions

		－	－	\checkmark	－	－	－	－	－	－	－	－	－	－	－	－	－	－	－
000000000		\leftrightarrow																	
		\leftrightarrow	\leftrightarrow	\leftrightarrow	\leftrightarrow	\leftrightarrow	\leftrightarrow	\bigcirc											
		\leftrightarrow																	
		\leftrightarrow																	
		1	1	\mid	1	1	1	｜	1	1	1	1	1	\mid	1	1	｜	1	1
		1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
	－																		
	E®（ロ）®																		
	（ $0 d^{\prime} p$ ）（0）																		
	EE（C）																		
	＋uपヨ（0）／uy																		
	（uyヨ＇p）®®																		
	uप्वヨ®）																		
	uy	\sim																	
	xx\＃																		
əz！${ }^{\text {P pueıədo }}$		∞	∞	3	3	\rightarrow	\rightarrow	∞	\oplus	3	3	\rightarrow	\rightarrow	∞	∞	3	3	\rightarrow	\rightarrow
								$\begin{aligned} & \underset{\sim}{\underset{\sim}{x}} \\ & \infty \\ & \underset{\sim}{\underset{\sim}{x}} \\ & \underset{\sim}{\prime} \end{aligned}$						$\begin{aligned} & \underset{\sim}{o} \\ & \infty \\ & \dot{\sim} \\ & \underset{\sim}{\top} \end{aligned}$				号	号
		$\frac{\underset{1}{4}}{\underset{\sim}{\omega}}$												$\begin{aligned} & \underset{\sim}{1} \end{aligned}$					

			-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	$\bigcirc 0$	\leftrightarrow																	
	8	\bigcirc																	
	\cdots	\leftrightarrow																	
	z	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\leftrightarrow											
	${ }_{0}^{\text {O }}$ I	,	I	1	1	1	I	\|	,	\|	\|	\|	\|	\|	1	\|	,	\|	
	0 -	1	1	,	1	1	1	1	1	1	1	,	1	1	,	I	,	1	
					$\stackrel{0}{0}$														
	-																		
	-e®(0)																		
	(Od'p)®																		
	ex(1)																		
	+uप̇®®\|uy																		
	($\mathbf{u y g}$ 'p)(0)																		
	uपヨ®0																		
	uy	\sim	\sim	\sim	\sim	~	\sim												
	xx\#																		
	əz!S puerado	∞	∞	3	3	\pm	-	¢	∞	3	3	-	\lrcorner	∞	∞	3	3	-	\lrcorner
$\begin{aligned} & \text { 을 } \\ & \text { O} \\ & \underline{0} \\ & \stackrel{0}{\Sigma} \end{aligned}$		$\left\lvert\, \begin{aligned} & \underset{\sim}{\infty} \\ & \infty \\ & \underset{\sim}{\mu} \\ & \underset{\sim}{\omega} \\ & \hline \end{aligned}\right.$				$\begin{gathered} \underset{\sim}{\underset{\sim}{\underset{~}{w}}} \\ \underset{\sim}{\sim} \\ \underset{\sim}{\top} \end{gathered}$		$\begin{gathered} \underset{\sim}{\underset{\sim}{c}} \\ \underset{\sim}{\dot{x}} \\ \underset{\sim}{o} \\ \underset{\sim}{2} \end{gathered}$						$\begin{array}{\|c} \underset{\sim}{\sim} \\ \underset{\sim}{x} \\ \underset{\sim}{x} \\ \underset{\sim}{o} \\ \hline \end{array}$				$\begin{gathered} \underset{\sim}{\underset{\sim}{\underset{u}{u}}} \\ \underset{\sim}{\underset{\sim}{x}} \\ \underset{\sim}{0} \\ \hline \end{gathered}$	促
		$\begin{aligned} & \text { ๙ } \\ & \stackrel{\rightharpoonup}{\top} \end{aligned}$						$\begin{aligned} & \vec{x} \\ & \stackrel{\rightharpoonup}{0} \end{aligned}$											

Mnemonic			Addressing Mode/ Instruction Length (Bytes)									Operation		Condition Code						No. of States*1			
		\times	¢	$\begin{aligned} & \stackrel{c}{\underset{\sim}{u}} \\ & \stackrel{\rightharpoonup}{山} \\ & \hline \end{aligned}$						1													
		1							H		N			Z	V	C	Normal	Advanced					
ROTL	ROTL.B Rd		B		2											-	-	\downarrow	\downarrow	0	\downarrow	1	1
	ROTL.B \#2,Rd	B		2								-	-			\downarrow	\downarrow	0	\downarrow	1	1		
	ROTL.W Rd	W		2								-	-			\downarrow	\downarrow	0	\downarrow	1	1		
	ROTL.W \#2,Rd	W		2								-	-			\downarrow	\downarrow	0	\downarrow	1	1		
	ROTL.L ERd	L		2								-	-			\downarrow	\downarrow	0	\downarrow	1	1		
	ROTL.L \#2,ERd	L		2								-	-			\downarrow	\downarrow	0	\downarrow	1	1		
ROTR	ROTR.B Rd	B		2										-	-	\downarrow	\downarrow	0	\downarrow	1	1		
	ROTR.B \#2,Rd	B		2										-	-	\downarrow	\downarrow	0	\downarrow	1	1		
	ROTR.W Rd	W		2										-	-	\downarrow	\downarrow	0	\downarrow	1	1		
	ROTR.W \#2,Rd	W		2										-	-	\downarrow	\downarrow	0	\downarrow	1	1		
	ROTR.L ERd	L		2										-	-	\downarrow	\downarrow	0	\downarrow	1	1		
	ROTR.L \#2,ERd	L		2										-	-	\downarrow	\downarrow	0	\downarrow	1	1		

(5) Bit-Manipulation Instructions

Mnemonic			Addressing Mode/ Instruction Length (Bytes)									Operation	Condition Code						No. of States*1		
		잧	¢				$\begin{aligned} & \mathfrak{\pi} \\ & \text { ®in } \\ & \hline \end{aligned}$			1											
		1									H		N	Z	V	C	Normal	Advanced			
BSET	BSET \#xx:3,Rd		B		2								$(\# x x: 3$ of Rd8) $\leftarrow 1$	-	-	-	-	-	-	1	1
	BSET \#xx:3,@ERd	B			4							$(\# x x: 3$ of @ERd) $\leftarrow 1$	-	-	-	-	-	-	4	4	
	BSET \#xx:3,@aa:8	B						4				$(\# x x: 3$ of @aa:8) ¢1	-	-	-	-	-	-	4	4	
	BSET \#xx:3,@aa:16	B						6				$(\# x x: 3$ of @aa:16)ヶ1	-	-	-	-	-	-	5	5	
	BSET \#xx:3,@aa:32	B						8				$(\# x x: 3$ of @aa:32) ¢1	-	-	-	-	-	-	6	6	
	BSET Rn,Rd	B		2								$($ Rn8 of Rd8) $\leftarrow 1$	-	-	-	-	-	-	1	1	
	BSET Rn,@ERd	B			4							$($ Rn8 of @ERd) $\leftarrow 1$	-	-	-	-	-	-	4	4	
	BSET Rn,@aa:8	B						4				(Rn8 of @aa:8) ¢1	-	-	-	-	-	-	4	4	
	BSET Rn,@aa:16	B						6				$(R n 8$ of @aa:16) $\leftarrow 1$	-	-	-	-	-	-	5	5	
	BSET Rn,@aa:32	B						8				$($ Rn8 of @aa:32) $\leftarrow 1$	-	-	-	-	-	-	6	6	
BCLR	BCLR \#xx:3,Rd	B		2								$(\# x x: 3$ of Rd8) $\leftarrow 0$	-	-	-	-	-	-	1	1	
	BCLR \#xx:3,@ERd	B			4							$(\# x x: 3$ of @ERd) $\leftarrow 0$	-	-	-	-	-	-	4	4	
	BCLR \#xx:3,@aa:8	B						4				$(\# x x: 3$ of @aa:8)↔0	-	-	-	-	-	-	4	4	
	BCLR \#xx:3,@aa:16	B						6				(\#xx:3 of @aa:16) ¢0	-	-	-	-	-	-	5	5	
	BCLR \#xx:3,@aa:32	B						8				(\#xx:3 of @aa:32) ¢0	-	-	-	-	-	-	6	6	
	BCLR Rn,Rd	B		2								$($ Rn8 of Rd8) $\leftarrow 0$	-	-	-	-	-	-	1	1	
	BCLR Rn,@ERd	B			4							$($ Rn8 of @ERd) -0	-	-	-	-	-	-	4	4	
	BCLR Rn,@aa:8	B						4				(Rn8 of @aa:8)↔0	-	-	-	-	-	-	4	4	
	BCLR Rn,@aa:16	B						6				$($ Rn8 of @aa:16) $¢ 0$	-	-	-	-	-	-	5	5	

Mnemonic			Addressing Mode/ Instruction Length (Bytes)									Operation	Condition Code						No. of States*1		
		$\begin{aligned} & \times \times \\ & \times \\ & \times \end{aligned}$	$\underset{\sim}{\text { c }}$							1											
		1									H		N	Z	V	C	Normal	Advanced			
BTST	BTST \#xx:3,@aa:32		B						8				$\neg(\# x x: 3$ of @aa:32) \rightarrow Z	-	-	-	\downarrow	-	-	5	5
	BTST Rn,Rd	B		2								$\neg(\mathrm{Rn} 8$ of Rd8) $\rightarrow Z$	-	-	-	\downarrow	-	-	1	1	
	BTST Rn,@ERd	B			4							$\neg($ Rn8 of @ERd \rightarrow)	-	-	-	\downarrow	-	-	3	3	
	BTST Rn,@aa:8	B						4				$\neg($ Rn8 of @aa:8) \rightarrow Z	-	-	-	\downarrow	-	-	3	3	
	BTST Rn,@aa:16	B						6				$\neg($ Rn8 of @aa:16) \rightarrow Z	-	-	-	\downarrow	-	-	4	4	
	BTST Rn,@aa:32	B						8				$\neg($ Rn8 of @aa:32) \rightarrow Z	-	-	-	\downarrow	-	-	5	5	
BLD	BLD \#xx:3,Rd	B		2								(\#xx:3 of Rd8) \rightarrow C	-	-	-	-	-	\downarrow	1	1	
	BLD \#xx:3,@ERd	B			4							$(\# x x: 3$ of @ERd) \rightarrow C	-	-	-	-	-	\downarrow	3	3	
	BLD \#xx:3,@aa:8	B						4				(\#xx:3 of @aa:8) \rightarrow c	-	-	-	-	-	\downarrow	3	3	
	BLD \#xx:3,@aa:16	B						6				(\#xx:3 of @aa:16) \rightarrow C	-	-	-	-	-	\downarrow	4	4	
	BLD \#xx:3,@aa:32	B						8				(\#xx:3 of @aa:32) \rightarrow C	-	-	-	-	-	\downarrow	5	5	
BILD	BILD \#xx:3,Rd	B		2								$\neg(\# x x: 3$ of Rd8) \rightarrow C	-	-	-	-	-	\downarrow	1	1	
	BILD \#xx:3,@ERd	B			4							$\neg(\# x x: 3$ of @ERd) \rightarrow C	-	-	-	-	-	\downarrow	3	3	
	BILD \#xx:3,@aa:8	B						4				$\neg(\# x x: 3$ of @aa:8) \rightarrow C	-	-	-	-	-	\downarrow	3	3	
	BILD \#xx:3,@aa:16	B						6				$\neg(\# x x: 3$ of @aa:16) \rightarrow C	-	-	-	-	-	\downarrow	4	4	
	BILD \#xx:3,@aa:32	B						8				$\neg(\# x x: 3$ of @aa:32) \rightarrow C	-	-	-	-	-	\downarrow	5	5	
BST	BST \#xx:3,Rd	B		2								$\mathrm{C} \rightarrow(\# \mathrm{xx}: 3$ of Rd8)	-	-	-	-	-	-	1	1	
	BST \#xx:3,@ERd	B			4							$\mathrm{C} \rightarrow$ (\#xx:3 of @ERd)	-	-	-	-	-	-	4	4	
	BST \#xx:3,@aa:8	B						4				$\mathrm{C} \rightarrow$ (\#xx:3 of @aa:8)	-	-	-	-	-	-	4	4	

Mnemonic			Addressing Mode/ Instruction Length (Bytes)									Operation	Condition Code						No. of States*1		
		$\begin{gathered} \times \times \\ \times \\ \times \\ \hline \end{gathered}$	$\underset{\mathbf{x}}{\mathbf{r}}$				$\begin{gathered} \widetilde{\pi} \\ \text { Bib } \\ \hline \end{gathered}$			1											
		1									H		N	Z	V	C	Normal	Advanced			
BST	BST \#xx:3,@aa:16		B						6				$C \rightarrow$ (\#xx:3 of @aa:16)	-	-	-	-	-	-	5	5
	BST \#xx:3,@aa:32	B						8				C \rightarrow (\#xx:3 of @aa:32)	-	-	-	-	-	-	6	6	
BIST	BIST \#xx:3,Rd	B		2								$\neg \mathrm{C} \rightarrow$ (\#xx:3 of Rd8)	-	-	-	-	-	-	1	1	
	BIST \#xx:3,@ERd	B			4							$\neg \mathrm{C} \rightarrow(\# \mathrm{xx}$:3 of @ERd)	-	-	-	-	-	-	4	4	
	BIST \#xx:3,@aa:8	B						4				$\neg \mathrm{C} \rightarrow$ (\#xx:3 of @aa:8)	-	-	-	-	-	-	4	4	
	BIST \#xx:3,@aa:16	B						6				$\neg \mathrm{C} \rightarrow$ (\#xx:3 of @aa:16)	-	-	-	-	-	-	5	5	
	BIST \#xx:3,@aa:32	B						8				$\neg \mathrm{C} \rightarrow$ (\#xx:3 of @aa:32)	-	-	-	-	-	-	6	6	
BAND	BAND \#xx:3,Rd	B		2								$\mathrm{C} \wedge(\# \mathrm{xx}: 3$ of Rd8) \rightarrow C	-	-	-	-	-	\downarrow			
	BAND \#xx:3,@ERd	B			4							C^(\#xx:3 of @ERd) \rightarrow C	-	-	-	-	-	\downarrow	3	3	
	BAND \#xx:3,@aa:8	B						4				C^(\#xx:3 of @aa:8) \rightarrow C	-	-	-	-	-	\downarrow	3	3	
	BAND \#xx:3,@aa:16	B						6				C^(\#xx:3 of @aa:16) \rightarrow C	-	-	-	-	-	\downarrow	4	4	
	BAND \#xx:3,@aa:32	B						8				C^(\#xx:3 of @aa:32) \rightarrow C	-	-	-	-	-	\downarrow	5	5	
BIAND	BIAND \#xx:3,Rd	B		2								$\mathrm{C} \wedge[\neg(\# x x: 3$ of Rd8) $] \rightarrow \mathrm{C}$	-	-	-	-	-	\downarrow	1	1	
	BIAND \#xx:3,@ERd	B			4							$\mathrm{C} \wedge[\neg(\# x x: 3$ of @ERd) $] \rightarrow \mathrm{C}$	-	-	-		-	\downarrow	3	3	
	BIAND \#xx:3,@aa:8	B						4				$\mathrm{C} \wedge[\neg$ (\#xx:3 of @aa:8)] \rightarrow C	-	-	-	-	-	\downarrow	3	3	
	BIAND \#xx:3,@aa:16	B						6				$\mathrm{C} \wedge[\neg(\# x x: 3$ of @aa:16)] \rightarrow C	-	-	-	-	-	\downarrow	4	4	
	BIAND \#xx:3,@aa:32	B						8				C^[${ }^{\text {(\#xx:3 of @aa:32) }] \rightarrow \text { C }}$	-	-	-	-	-	\downarrow	5	5	
BOR	BOR \#xx:3,Rd	B		2								$C \vee(\# x x: 3$ of Rd8) \rightarrow C	-	-	-	-	-	\downarrow	1	1	
	BOR \#xx:3,@ERd	B			4							C $\vee(\# x x: 3$ of @ERd) \rightarrow C	-	-	-	-	-	\downarrow	3	3	

					ddr ctio	ress on	$\begin{aligned} & \text { sing } \\ & \text { Leng } \end{aligned}$		$\begin{aligned} & \text { lode/ } \\ & \text { h (By } \end{aligned}$	yytes										
					$\underset{\mathbf{c}}{\boldsymbol{\sim}}$				O					ond	ditio	n	Code		No. of	States*1
	Mnemonic	\bigcirc	-	$\stackrel{\sim}{4}$				(8)		(3)	,	Operation	1	H	N	z	V	C	Normal	Advanced
BOR	BOR \#xx:3,@aa:8	B						4				C $\vee(\# x x: 3$ of @aa:8) \rightarrow C	-				-	\downarrow	3	
	BOR \#xx:3,@aa:16	B						6				$\mathrm{C} \vee$ (\#xx:3 of @aa:16) \rightarrow C	-	-	-	-	-	\downarrow	4	
	BOR \#xx:3,@aa:32	B						8				$\mathrm{C} \vee$ (\#xx:3 of @aa:32) \rightarrow C	-	-	-	-	-	\downarrow	5	
BIOR	BIOR \#xx:3,Rd	B		2								$\mathrm{C} \vee[\neg$ (\#xx:3 of Rd8) $] \rightarrow \mathrm{C}$	-	-	-		-	\downarrow	1	
	BIOR \#xx:3,@ERd	B			4							$\mathrm{C} \vee[\neg$ (\#xx:3 of @ERd) $] \rightarrow$ C	-	-	-	-	-	\downarrow	3	
	BIOR \#xx:3,@aa:8	B						4				C $\vee[\urcorner$ (\#xx:3 of @aa:8)] \rightarrow C	-		-		-	\downarrow	3	
	BIOR \#xx:3,@aa:16	B						6				C $\vee[\neg$ (\#xx:3 of @aa:16)] \rightarrow C	-	-	-	-	-	\downarrow	4	
	BIOR \#xx:3,@aa:32	B						8				C $\vee[\neg$ (\#xx:3 of @aa:32)] \rightarrow C	-		-		-	\downarrow	5	
BXOR	BXOR \#xx:3,Rd	B		2								$\mathrm{C} \oplus(\# \mathrm{\# x}: 3$ of Rd8) \rightarrow C	-	-	-	-	-	\downarrow	1	
	BXOR \#xx:3,@ERd	B			4							$C \oplus(\# x x: 3$ of @ERd) \rightarrow C	-	-	-		-	\downarrow	3	
	BXOR \#xx:3,@aa:8	B						4				C $\oplus(\# x x: 3$ of @aa:8) \rightarrow C	-	-	-	-	-	\downarrow	3	
	BXOR \#xx:3,@aa:16	B						6				$\mathrm{C} \oplus(\# \mathrm{mx}: 3$ of @aa:16) \rightarrow C	-		-	-	-	\downarrow	4	
	BXOR \#xx:3,@aa:32	B						8				$C \oplus(\# x x: 3$ of @aa:32) \rightarrow C	-	-	-	-	-	\downarrow	5	
BIXOR	BIXOR \#xx:3,Rd	B		2								$C \oplus[\urcorner$ (\#xx:3 of Rd8) $] \rightarrow C$	-	-	-	-	-	\downarrow	1	
	BIXOR \#xx:3,@ERd	B			4							$C \oplus[\neg(\# x x: 3$ of @ERd) $] \rightarrow C$	-	-	-	-	-	\downarrow	3	
	BIXOR \#xx:3,@aa:8	B						4				$\mathrm{C} \oplus[\neg(\# \mathrm{xx}: 3$ of @aa:8)] $\rightarrow \mathrm{C}$	-	-	-	-	-	\downarrow	3	
	BIXOR \#xx:3,@aa:16	B						6				$C \oplus[\neg$ (\#xx:3 of @aa:16)] \rightarrow C	-	-	-	-	-	\downarrow	4	
	BIXOR \#xx:3,@aa:32	B						8				$\mathrm{C} \oplus[\neg(\# \mathrm{xx}: 3$ of @aa:32)] \rightarrow C		-	-	-	-	\downarrow	5	

(6) Branch Instructions

Mnemonic			Addressing Mode/ Instruction Length (Bytes)									Operation	Condition Code						No. of States*1		
		$\begin{aligned} & \times \\ & \times \\ & \hline \end{aligned}$	$\underset{\mathbf{x}}{\mathbf{x}}$					$\begin{aligned} & 0 \\ & 0 \\ & \tilde{0} \\ & \text { Bु } \end{aligned}$		1											
		1									H		N	Z	V	C	Normal	Advanced			
JMP	JMP @ERn		-			2							$\mathrm{PC} \leftarrow \mathrm{ERn}$	-	-	-	-	-	-		2
	JMP @aa:24	-						4				$\mathrm{PC} \leftarrow \mathrm{aa}: 24$	-	-	-	-	-	-		3	
	JMP @@aa:8	-								2		$\mathrm{PC} \leftarrow$ @aa:8	-	-	-	-	-	-	4	5	
BSR	BSR d:8	-							2			$\mathrm{PC} \rightarrow$ @-SP, PC $\leftarrow \mathrm{PC}+\mathrm{d}: 8$	-	-	-	-	-	-	3	4	
	BSR d:16	-							4			$\mathrm{PC} \rightarrow$ @-SP,PC $\leftarrow \mathrm{PC}+\mathrm{d}: 16$	-	-	-	-	-	-	4	5	
JSR	JSR @ERn	-			2							$\mathrm{PC} \rightarrow$ @-SP, PC $\leftarrow \mathrm{ERn}$	-	-	-	-	-	-	3	4	
	JSR @aa:24	-						4				$\mathrm{PC} \rightarrow$ @-SP,PC$\leftarrow \mathrm{aa}: 24$	-	-	-	-	-	-	4	5	
	JSR @ @aa:8	-								2		$\mathrm{PC} \rightarrow$ @-SP,PC \leftarrow @aa:8	-	-	-	-	-	-	4	6	
RTS	RTS	-									2	$\mathrm{PC} \leftarrow @ \mathrm{SP}+$	-	-	-	-	-	-	4	5	

（7）System Control Instructions

		$\begin{array}{\|l} \frac{\sigma}{\infty} \\ \hline \frac{\sigma}{\wedge} \\ \hline \end{array}$	$\frac{\sigma}{\omega}$	\sim	－	～	－	－	m	m	＋	＊	\bullet	\bullet	＋	－	－	－	\sim	\llcorner
000000.000		I	\leftrightarrow	1	\leftrightarrow	｜	\leftrightarrow	1	\leftrightarrow	｜	\leftrightarrow									
		I	\leftrightarrow	I	\leftrightarrow	｜	\leftrightarrow		\leftrightarrow	I	\leftrightarrow	I	\leftrightarrow	I	\leftrightarrow	I	\leftrightarrow	1	\leftrightarrow	
		I	\leftrightarrow	｜	\leftrightarrow	｜	\leftrightarrow	｜	\leftrightarrow	I	\leftrightarrow	I	\leftrightarrow	｜	\leftrightarrow	1	\leftrightarrow	I	\leftrightarrow	
		I	\leftrightarrow	｜	\leftrightarrow	I	\leftrightarrow	1	\leftrightarrow	｜	\leftrightarrow	1								
		1	\leftrightarrow	1	\leftrightarrow	1	\leftrightarrow	1	\leftrightarrow	｜	\leftrightarrow	｜	\leftrightarrow	I	\leftrightarrow	I	\leftrightarrow	I	\leftrightarrow	1
		－	\leftrightarrow	1	\leftrightarrow	1	\leftrightarrow	｜	\leftrightarrow	1	\leftrightarrow	I	\leftrightarrow	1	\leftrightarrow	1	\leftrightarrow	I	\leftrightarrow	｜
					$\begin{array}{\|c} \underset{y}{u} \\ 0 \\ \hat{u} \\ 0 \\ \underset{x}{x} \\ \text { un } \end{array}$		$\begin{array}{\|c} \substack{0 \\ 0 \\ 0 \\ 1 \\ \infty \\ \\ \hline} \\ \hline \end{array}$												$\left\|\begin{array}{c} \underset{0}{0} \\ 0 \\ \uparrow \\ \underset{\sim}{\tilde{j}} \\ \underset{\sim}{e} \end{array}\right\|$	
	－																			
	とe（®）（0）																			
	（0d＇p）®																			
	ee（®）																\bullet	\bullet	∞	∞
	＋uपヨ®®（uy														－	－				
	（uyg＇p）（0）										\bigcirc	\bigcirc	아	안						
	Uपㅋㅋ®								＋	＋										
	uy						\sim	\sim												
	xx\＃				\sim	\checkmark														
az！S pue．ado		1	｜	1	∞	∞	∞	∞	3	3	3	3	3	3	3	3	3	3	3	3
	$\begin{aligned} & 0 \\ & 0 \\ & \dot{0} \\ & \stackrel{y}{0} \\ & \frac{0}{\Sigma} \end{aligned}$		$\underset{\sim}{\underset{\sim}{x}}$	$\begin{gathered} \text { 邑 } \\ \underset{\omega}{u} \end{gathered}$		$\left\lvert\, \begin{gathered} \underset{\sim}{x} \\ \underset{x}{0} \\ 0 \\ \underset{x}{x} \\ \underset{\sim}{0} \\ 0 \end{gathered}\right.$									$\begin{gathered} \underset{\sim}{0} \\ 0 \\ \dot{0} \\ \underset{\sim}{\tilde{W}} \\ \underset{\sim}{0} \\ 0 \\ 0 \\ 0 \end{gathered}$	$\left\lvert\, \begin{gathered} \underset{x}{x} \\ \underset{\sim}{\dot{1}} \\ \dot{0} \\ \underset{\sim}{w} \\ \underset{O}{0} \\ 0 \\ 0 \\ \hline \end{gathered}\right.$			$\left\|\begin{array}{c} \tilde{0} \\ 0 \\ \tilde{y} \\ \tilde{\dddot{n}} \\ \tilde{\tilde{0}} \\ 0 \\ 0 \\ 0 \end{array}\right\|$	尔
		㐫	$\underset{\sim}{\underset{\sim}{x}}$	足	O															

(8) Program Transfer Instructions

A. 2 Operation Code Map

Table A. 2 shows the operation code map.
Table A. 2 Operation Code Map (1)

Table A. 2 Operation Code Map (2)

Table A. 2 Operation Code Map (3)

1st byte		2nd byte		3rd byte		4th byte	
AH	AL	BH	BL	CH	CL	DH	DL

Instruction code

$\mathrm{AHALBH} \text { BLCH }^{C L}$	0	1	2	3	4	5	6	7	8	9	A	B	C	D	E	F
01C05	MULXS		MULXS													
01D05		DIVXS		DIVXS												
$01 F 06$					OR	XOR	AND									
7Cr06*1				BTST												
7Cr07**				BTST	$\underset{\mathrm{BIOR}}{\mathrm{BOR}}$	$\frac{\text { BXOR }}{\text { BIXOR }}$	BAND	BLD								
7Dr06*1	BSET	BNOT	BCLR					$\frac{\text { BST }}{\text { BIST }}$								
7Dr07**	BSET	BNOT	BCLR													
7Eaa6*2				BTST												
7Eaa7*2				BTST	$\underset{\mathrm{BIOR}}{\mathrm{BOR}}$	$\frac{\text { BXOR }}{\text { BIXOR }}$	BAND BIAND	BLD								
7Faa6*2	BSET	BNOT	BCLR					$\begin{array}{r} \text { BST } \\ \text { BIST } \end{array}$								
7Faa7*2	BSET	BNOT	BCLR													

[^6]Table A. 2 Operation Code Map (4)

Instruction code	1st byte		2nd byte			3rd byte		4th byte		5th byte			6 th byte		7th byte		8th byte		significant bit of HH is 0 . significant bit of HH is 1 .	
	AH	AL	BH	BL		CH	CL	DH	DL	EH	EL		FH	FL	GH	GL	HH	HL		
	Instruction when most significant bit of HH is 0 . Instruction when most significant bit of HH is 1 .																			
(AHALBHBL ... FHFLGH	0	1	2		3		4	5	6	7		8		9	A	B	C	D	E	F
6A30aaaaaaa36*																				
6A30aaaaaaa27*					BTST	BOR BIOR BXOR BIXOR BAND BIAND BLD														
6A38aaaaaaaa**	BSET	BNOT	BCLR							$\frac{B S T}{B}$										
6A38aaaaaaa27*																				

Note: * aa is the absolute address specification

A. 3 Number of States Required for Instruction Execution

The tables in this section can be used to calculate the number of states required for instruction execution by the H8S/2000 CPU. Table A. 4 indicates the number of instruction fetch, data read/write, and other cycles occurring in each instruction. Table A. 3 indicates the number of states required for each cycle, depending on its size. The number of states required for execution of an instruction can be calculated from these two tables as follows:

Execution states $=I \times S_{I}+J \times S_{J}+K \times S_{K}+L \times S_{L}+M \times S_{M}+N \times S_{N}$
Examples: Advanced mode, program code and stack located in external memory, on-chip supporting modules accessed in two states with 8-bit bus width, external devices accessed in three states with one wait state and 16-bit bus width.

1. BSET \#0, @FFFFC7:8

From table A.4:

$$
\mathrm{I}=\mathrm{L}=2, \quad \mathrm{~J}=\mathrm{K}=\mathrm{M}=\mathrm{N}=0
$$

From table A.3:

$$
\mathrm{S}_{\mathrm{I}}=4, \quad \mathrm{~S}_{\mathrm{L}}=2
$$

Number of states required for execution $=2 \times 4+2 \times 2=12$
2. JSR @ @ 30

From table A.4:

$$
\mathrm{I}=\mathrm{J}=\mathrm{K}=2, \quad \mathrm{~L}=\mathrm{M}=\mathrm{N}=0
$$

From table A.3:

$$
S_{\mathrm{I}}=\mathrm{S}_{\mathrm{J}}=\mathrm{S}_{\mathrm{K}}=4
$$

Number of states required for execution $=2 \times 4+2 \times 4+2 \times 4=24$

Table A. 3 Number of States per Cycle
Access Conditions

		On-Chip Memory	On-Chip Supporting Module		External Device				
		8-Bit Bus			16-Bit Bus				
		$\begin{aligned} & \overline{8-B i t} \\ & \text { Bus } \end{aligned}$	$\begin{aligned} & \text { 16-Bit } \\ & \text { Bus } \end{aligned}$	2-State Access	3-State Access	2-State Access	3-State Access		
Instruction fetch	SI		1	4	2	4	$6+2 \mathrm{~m}$	2	$3+\mathrm{m}$
Branch address read	SJ								
Stack operation	SK								
Byte data access	SL		2		2	$3+m$			
Word data access	SM		4		4	$6+2 \mathrm{~m}$			
Internal operation	SN	1	1	1	1	1	1	1	

Legend:
m : Number of wait states inserted into external device access

Table A. 4 Number of Cycles in Instruction Execution

		Instruction Fetch	Branch Address Read	Stack Operation	Byte Data Access	Word Data Access	Internal Operation
Instruction	Mnemonic	I	J	K	L	M	N
ADD	ADD.B \#xx:8,Rd	1					
	ADD.B Rs,Rd	1					
	ADD.W \#xx:16,Rd	2					
	ADD.W Rs,Rd	1					
	ADD.L \#xx:32,ERd	3					
	ADD.L ERs,ERd	1					
ADDS	ADDS \#1/2/4,ERd	1					
ADDX	ADDX \#xx:8,Rd	1					
	ADDX Rs,Rd	1					
AND	AND.B \#xx:8,Rd	1					
	AND.B Rs,Rd	1					
	AND.W \#xx:16,Rd	2					
	AND.W Rs,Rd	1					
	AND.L \#xx:32,ERd	3					
	AND.L ERs,ERd	2					
ANDC	AND.B \#xx:8,CCR	1					
	ANDC \#xx:8,EXR	2					
BAND	BAND \#xx:3,Rd	1					
	BAND \#xx:3,@ERd	2			1		
	BAND \#xx:3,@aa:8	2			1		
	BAND \#xx:3,@aa:16	3			1		
	BAND \#xx:3,@aa:32	4			1		
Bcc	BRA d:8 (BT d:8)	2					
	BRN d:8 (BF d:8)	2					
	BHI d:8	2					
	BLS d:8	2					
	BCC d:8 (BHS d:8)	2					
	BCS d:8 (BLO d:8)	2					
	BNE d:8	2					
	BEQ d:8	2					
	BVC d:8	2					
	BVS d:8	2					
	BPL d:8	2					
	BMI d:8	2					
	BGE d:8	2					
	BLT d:8	2					
	BGT d:8	2					
	BLE d:8	2					
	BRA d:16 (BT d:16)	2					1
	BRN d:16 (BF d:16)	2					1

		Instruction Fetch	Branch Address Read	Stack Operation	Byte Data Access	Word Data Access	Internal Operation
Instruction	Mnemonic	I	J	K	L	M	N
Bcc	BHI d:16	2					1
	BLS d:16	2					1
	BCC d:16 (BHS d:16)	2					1
	BCS d:16 (BLO d:16)	2					1
	BNE d:16	2					1
	BEQ d:16	2					1
	BVC d:16	2					1
	BVS d:16	2					1
	BPL d:16	2					1
	BMI d:16	2					1
	BGE d:16	2					1
	BLT d:16	2					1
	BGT d:16	2					1
	BLE d:16	2					1
$\overline{B C L R}$	BCLR \#xx:3,Rd	1					
	BCLR \#xx:3,@ERd	2			2		
	BCLR \#xx:3,@aa:8	2			2		
	BCLR \#xx:3,@aa:16	3			2		
	BCLR \#xx:3,@aa:32	4			2		
	BCLR Rn,Rd	1					
	BCLR Rn,@ERd	2			2		
	BCLR Rn,@aa:8	2			2		
	BCLR Rn,@aa:16	3			2		
	BCLR Rn,@aa:32	4			2		
BIAND	BIAND \#xx:3,Rd	1					
	BIAND \#xx:3,@ERd	2			1		
	BIAND \#xx:3,@aa:8	2			1		
	BIAND \#xx:3,@aa:16	3			1		
	BIAND \#xx:3,@aa:32	4			1		
BILD	BILD \#xx:3,Rd	1					
	BILD \#xx:3,@ERd	2			1		
	BILD \#xx:3,@aa:8	2			1		
	BILD \#xx:3,@aa:16	3			1		
	BILD \#xx:3,@aa:32	4			1		
BIOR	BIOR \#xx:8,Rd	1					
	BIOR \#xx:8,@ERd	2			1		
	BIOR \#xx:8,@aa:8	2			1		
	BIOR \#xx:8,@aa:16	3			1		
	BIOR \#xx:8,@aa:32	4			1		

		Instruction Fetch	Branch Address Read	Stack Operation	Byte Data Access	Word Data Access	Internal Operation
Instruction	Mnemonic	I	J	K	L	M	N
BIST	BIST \#xx:3,Rd	1					
	BIST \#xx:3,@ERd	2			2		
	BIST \#xx:3,@aa:8	2			2		
	BIST \#xx:3,@aa:16	3			2		
	BIST \#xx:3,@aa:32	4			2		
$\overline{\mathrm{BIXOR}}$	BIXOR \#xx:3,Rd	1					
	BIXOR \#xx:3,@ERd	2			1		
	BIXOR \#xx:3,@aa:8	2			1		
	BIXOR \#xx:3,@aa:16	3			1		
	BIXOR \#xx:3,@aa:32	4			1		
BLD	BLD \#xx:3,Rd	1					
	BLD \#xx:3,@ERd	2			1		
	BLD \#xx:3,@aa:8	2			1		
	BLD \#xx:3,@aa:16	3			1		
	BLD \#xx:3,@aa:32	4			1		
BNOT	BNOT \#xx:3,Rd	1					
	BNOT \#xx:3,@ERd	2			2		
	BNOT \#xx:3,@aa:8	2			2		
	BNOT \#xx:3,@aa:16	3			2		
	BNOT \#xx:3,@aa:32	4			2		
	BNOT Rn,Rd	1					
	BNOT Rn,@ERd	2			2		
	BNOT Rn,@aa:8	2			2		
	BNOT Rn,@aa:16	3			2		
	BNOT Rn,@aa:32	4			2		
BOR	BOR \#xx:3,Rd	1					
	BOR \#xx:3,@ERd	2			1		
	BOR \#xx:3,@aa:8	2			1		
	BOR \#xx:3,@aa:16	3			1		
	BOR \#xx:3,@aa:32	4			1		
BSET	BSET \#xx:3,Rd	1					
	BSET \#xx:3,@ERd	2			2		
	BSET \#xx:3,@aa:8	2			2		
	BSET \#xx:3,@aa:16	3			2		
	BSET \#xx:3,@aa:32	4			2		
	BSET Rn,Rd	1					
	BSET Rn, @ERd	2			2		
	BSET Rn,@aa:8	2			2		
	BSET Rn, @aa:16	3			2		
	BSET Rn,@aa:32	4			2		

		Instruction Fetch	Branch Address Read	Stack Operation	Byte Data Access	Word Data Access	Internal Operation
Instruction	Mnemonic	I	J	K	L	M	N
BSR	BSR d:8	2		1			
		2		2			
	BSR d:16	2		1			1
		2		2			1
BST	BST \#xx:3,Rd	1					
	BST \#xx:3,@ERd	2			2		
	BST \#xx:3,@aa:8	2			2		
	BST \#xx:3,@aa:16	3			2		
	BST \#xx:3,@aa:32	4			2		
BTST	BTST \#xx:3,Rd	1					
	BTST \#xx:3,@ERd	2			1		
	BTST \#xx:3,@aa:8	2			1		
	BTST \#xx:3,@aa:16	3			1		
	BTST \#xx:3,@aa:32	4			1		
	BTST Rn,Rd	1					
	BTST Rn,@ERd	2			1		
	BTST Rn,@aa:8	2			1		
	BTST Rn,@aa:16	3			1		
	BTST Rn,@aa:32	4			1		
BXOR	BXOR \#xx:3,Rd	1					
	BXOR \#xx:3,@ERd	2			1		
	BXOR \#xx:3,@aa:8	2			1		
	BXOR \#xx:3,@aa:16	3			1		
	BXOR \#xx:3,@aa:32	4			1		
CMP	CMP.B \#xx:8,Rd	1					
	CMP.B Rs,Rd	1					
	CMP.W \#xx:16,Rd	2					
	CMP.W Rs,Rd	1					
	CMP.L \#xx:32,ERd	3					
	CMP.L ERs,ERd	1					
DAA	DAA Rd	1					
DAS	DAS Rd	1					
DEC	DEC.B Rd	1					
	DEC.W \#1/2,Rd	1					
	DEC.L \#1/2,ERd	1					
DIVXS	DIVXS.B Rs,Rd	2					11
	DIVXS.W Rs,ERd	2					19
$\overline{\text { DIVXU }}$	DIVXU.B Rs,Rd	1					11
	DIVXU.W Rs,ERd	1					19

Rev.3.00 Mar. 26, 2007 Page 632 of 772
REJ09B0355-0300

		Instruction Fetch	Branch Address Read	Stack Operation	Byte Data Access	Word Data Access	Internal Operation
Instruction	Mnemonic	I	J	K	L	M	N
EEPMOV	EEPMOV.B	2					
	EEPMOV.W	2			$2 \mathrm{n}+2^{*}{ }^{2}$		
EXTS	EXTS.W Rd	1					
	EXTS.L ERd	1					
EXTU	EXTU.W Rd	1					
	EXTU.L ERd	1					
INC	INC.B Rd	1					
	INC.W \#1/2,Rd	1					
	INC.L \#1/2,ERd	1					
JMP	JMP @ERn	2					
	JMP @aa:24	2					1
	JMP @@aa:8 Normal	2	1				1
	Advanced	2	2				1
JSR	JSR @ERn Normal	2		1			
	Advanced	2		2			
	JSR @aa:24 Normal	2		1			1
	Advanced	2		2			1
	JSR @@aa:8 Normal	2	1	1			
	Advanced	2	2	2			
LDC	LDC \#xx:8,CCR	1					
	LDC \#xx:8,EXR	2					
	LDC Rs,CCR	1					
	LDC Rs,EXR	1					
	LDC @ERs,CCR	2				1	
	LDC @ERs,EXR	2				1	
	LDC @(d:16,ERs),CCR	3				1	
	LDC @(d:16,ERs),EXR	3				1	
	LDC @(d:32,ERs),CCR	5				1	
	LDC @(d:32,ERs),EXR	5				1	
	LDC @ERs+,CCR	2				1	1
	LDC @ERs+,EXR	2				1	1
	LDC @aa:16,CCR	3				1	
	LDC @aa:16,EXR	3				1	
	LDC @aa:32,CCR	4				1	
	LDC @aa:32,EXR	4				1	
$\mathrm{LDM}^{*}{ }^{3}$	LDM.L@SP+,(ERn-ERn+1)	2		4			1
	LDM.L @SP+,(ERn-ERn+2)	2		6			1
	LDM.L @SP+,(ERn-ERn+3)	2		8			1

		Instruction Fetch	Branch Address Read	Stack Operation	Byte Data Access	Word Data Access	Internal Operation
Instruction	Mnemonic	I	J	K	L	M	N
MOV	MOV.B \#xx:8,Rd	1					
	MOV.B Rs,Rd	1					
	MOV.B @ERs,Rd	1			1		
	MOV.B @(d:16,ERs),Rd	2			1		
	MOV.B @(d:32,ERs),Rd	4			1		
	MOV.B@ERs+,Rd	1			1		1
	MOV.B @aa:8,Rd	1			1		
	MOV.B @aa:16,Rd	2			1		
	MOV.B @aa:32,Rd	3			1		
	MOV.B Rs,@ERd	1			1		
	MOV.B Rs,@(d:16,ERd)	2			1		
	MOV.B Rs,@(d:32,ERd)	4			1		
	MOV.B Rs,@-ERd	1			1		1
	MOV.B Rs,@aa:8	1			1		
	MOV.B Rs,@aa:16	2			1		
	MOV.B Rs,@aa:32	3			1		
	MOV.W \#xx:16,Rd	2					
	MOV.W Rs,Rd	1					
	MOV.W @ERs,Rd	1				1	
	MOV.W @(d:16,ERs),Rd	2				1	
	MOV.W @(d:32,ERs),Rd	4				1	
	MOV.W@ERs+,Rd	1				1	1
	MOV.W @aa:16,Rd	2				1	
	MOV.W @aa:32,Rd	3				1	
	MOV.W Rs,@ERd	1				1	
	MOV.W Rs,@(d:16,ERd)	2				1	
	MOV.W Rs,@(d:32,ERd)	4				1	
	MOV.W Rs,@-ERd	1				1	1
	MOV.W Rs,@aa:16	2				1	
	MOV.W Rs,@aa:32	3				1	
	MOV.L \#xx:32,ERd	3					
	MOV.L ERs,ERd	1					
	MOV.L @ERs,ERd	2				2	
	MOV.L @(d:16,ERs),ERd	3				2	
	MOV.L @(d:32,ERs),ERd	5				2	
	MOV.L @ERs+,ERd	2				2	1
	MOV.L @aa:16,ERd	3				2	
	MOV.L @aa:32,ERd	4				2	
	MOV.L ERs,@ERd	2				2	
	MOV.L ERs,@(d:16,ERd)	3				2	
	MOV.L ERs,@(d:32,ERd)	5				2	

		Instruction Fetch	Branch Address Read	Stack Operation	Byte Data Access	Word Data Access	Internal Operation
Instruction	Mnemonic	I	J	K	L	M	N
MOV	MOV.L ERs,@-ERd	2				2	1
	MOV.LERs,@aa:16	3				2	
	MOV.L ERs,@aa:32	4				2	
MOVFPE	MOVFPE @:aa:16,Rd	Cannot be used in the H8S/2245 Group					
MOVTPE	MOVTPE Rs,@:aa:16	Cannot be used in the H8S/2245 Group					
MULXS	MULXS.B Rs,Rd	2					11
	MULXS.W Rs,ERd	2					19
$\overline{M U L X U}$	MULXU.B Rs,Rd	1					11
	MULXU.W Rs,ERd	1					19
$\overline{\text { NEG }}$	NEG.B Rd	1					
	NEG.W Rd	1					
	NEG.L ERd	1					
NOP	NOP	1					
NOT	NOT.B Rd	1					
	NOT.W Rd	1					
	NOT.L ERd	1					
$\overline{\text { OR }}$	OR.B \#xx:8,Rd	1					
	OR.B Rs,Rd	1					
	OR.W \#xx:16,Rd	2					
	OR.W Rs, Rd	1					
	OR.L \#xx:32,ERd	3					
	OR.L ERs,ERd	2					
ORC	ORC \#xx:8,CCR	1					
	ORC \#xx:8,EXR	2					
POP	POP.W Rn	1				1	1
	POP.L ERn	2				2	1
$\overline{\text { PUSH }}$	PUSH.W Rn	1				1	1
	PUSH.L ERn	2				2	1
$\overline{\mathrm{ROTL}}$	ROTL.B Rd	1					
	ROTL.B \#2,Rd	1					
	ROTL.W Rd	1					
	ROTL.W \#2,Rd	1					
	ROTL.L ERd	1					
	ROTL.L \#2,ERd	1					
$\overline{\text { ROTR }}$	ROTR.B Rd	1					
	ROTR.B \#2,Rd	1					
	ROTR.W Rd	1					
	ROTR.W \#2,Rd	1					
	ROTR.L ERd	1					
	ROTR.L \#2,ERd	1					

			Instruction Fetch	Branch Address Read	Stack Operation	Byte Data Access	Word Data Access	Internal Operation
Instruction	Mnemonic		I	J	K	L	M	N
$\overline{\text { ROTXL }}$	ROTXL.B Rd		1					
	ROTXL.B \#2,Rd		1					
	ROTXL.W Rd		1					
	ROTXL.W \#2,Rd		1					
	ROTXL.L ERd		1					
	ROTXL.L \#2,ERd		1					
ROTXR	ROTXR.B Rd		1					
	ROTXR.B \#2,Rd		1					
	ROTXR.W Rd		1					
	ROTXR.W \#2,Rd		1					
	ROTXR.L ERd		1					
	ROTXR.L \#2,ERd		1					
RTE	RTE		2		2/3*1			1
RTS	RTS	Normal	2		1			1
		Advanced	2		2			1
SHAL	SHAL.B Rd		1					
	SHAL.B \#2,Rd		1					
	SHAL.W Rd		1					
	SHAL.W \#2,Rd		1					
	SHAL.L ERd		1					
	SHAL.L \#2,ERd		1					
SHAR	SHAR.B Rd		1					
	SHAR.B \#2,Rd		1					
	SHAR.W Rd		1					
	SHAR.W \#2,Rd		1					
	SHAR.L ERd		1					
	SHAR.L \#2,ERd		1					
$\overline{\text { SHLL }}$	SHLL.B Rd		1					
	SHLL.B \#2,Rd		1					
	SHLL.W Rd		1					
	SHLL.W \#2,Rd		1					
	SHLL.L ERd		1					
	SHLL.L \#2,ERd		1					
SHLR	SHLR.B Rd		1					
	SHLR.B \#2,Rd		1					
	SHLR.W Rd		1					
	SHLR.W \#2,Rd		1					
	SHLR.L ERd		1					
	SHLR.L \#2,ERd		1					
SLEEP	SLEEP		1					1

Rev.3.00 Mar. 26, 2007 Page 636 of 772
REJ09B0355-0300

		Instruction Fetch	Branch Address Read	Stack Operation	Byte Data Access	Word Data Access	Internal Operation
Instruction	Mnemonic	I	J	K	L	M	N
STC	STC.B CCR,Rd	1					
	STC.B EXR,Rd	1					
	STC.W CCR,@ERd	2				1	
	STC.W EXR,@ERd	2				1	
	STC.W CCR,@(d:16,ERd)	3				1	
	STC.W EXR,@(d:16,ERd)	3				1	
	STC.W CCR,@(d:32,ERd)	5				1	
	STC.W EXR,@(d:32,ERd)	5				1	
	STC.W CCR,@-ERd	2				1	1
	STC.W EXR,@-ERd	2				1	1
	STC.W CCR,@aa:16	3				1	
	STC.W EXR,@aa:16	3				1	
	STC.W CCR,@aa:32	4				1	
	STC.W EXR,@aa:32	4				1	
$\overline{S T M}{ }^{* 3}$	STM.L (ERn-ERn+1),@-SP	2		4			1
	STM.L (ERn-ERn+2),@-SP	2		6			1
	STM.L (ERn-ERn+3),@-SP	2		8			1
SUB	SUB.B Rs,Rd	1					
	SUB.W \#xx:16,Rd	2					
	SUB.W Rs,Rd	1					
	SUB.L \#xx:32,ERd	3					
	SUB.L ERs,ERd	1					
SUBS	SUBS \#1/2/4,ERd	1					
SUBX	SUBX \#xx:8,Rd	1					
	SUBX Rs,Rd	1					
TAS* ${ }^{4}$	TAS @ERd	2			2		
TRAPA	TRAPA \#xx:2	2	1	2/3*1			2
		2	2	2/3*1			2
XOR	XOR.B \#xx:8,Rd	1					
	XOR.B Rs,Rd	1					
	XOR.W \#xx:16,Rd	2					
	XOR.W Rs,Rd	1					
	XOR.L \#xx:32,ERd	3					
	XOR.L ERs,ERd	2					
XORC	XORC \#xx:8,CCR	1					
	XORC \#xx:8,EXR	2					

Notes: 1. 2 when EXR is invalid, 3 when EXR is valid.
2. When n bytes of data are transferred.
3. Only register ERO to ER6 should be used when using the STM/LDM instruction.
4. Only register ER0, ER1, ER4, or ER5 should be used when using the TAS instruction.

Appendix B Register Field

B. 1 Register Addresses

Address (Low)	Register Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Module Name	Bus Width (Bit)
$\begin{aligned} & \text { H'F800 } \\ & \text { to } \\ & \text { H'FBFF } \end{aligned}$	MRA	SM1	SM0	DM1	DM0	MD1	MDO	DTS	Sz	DTC	16/32*
	MRB	CHNE	DISEL	-	-	-	-	-	-		
	SAR										
	DAR										
	CRA										
	CRB										

H'FEB0	P1DDR	P17DDR	P16DDR	P15DDR	P14DDR	P13DDR	P12DDR	P11DDR	P10DDR	Port 1	8
H'FEB1	P2DDR	P27DDR	P26DDR	P25DDR	P24DDR	P23DDR	P22DDR	P21DDR	P20DDR	Port 2	
H'FEB2	P3DDR	-	-	P35DDR	P34DDR	P33DDR	P32DDR	P31DDR	P30DDR	Port 3	
H'FEB4	P5DDR	-	-	-	-	P53DDR	P52DDR	P51DDR	P50DDR	Port 5	
H'FEB9	PADDR	-	-	-	-	PA3DDR	PA2DDR	PA1DDR	PAODDR	Port A	
H'FEBA	PBDDR	PB7DDR	PB6DDR	PB5DDR	PB4DDR	PB3DDR	PB2DDR	PB1DDR	PBODDR	Port B	
H'FEBB	PCDDR	PC7DDR	PC6DDR	PC5DDR	PC4DDR	PC3DDR	PC2DDR	PC1DDR	PCODDR	Port C	
H'FEBC	PDDDR	PD7DDR	PD6DDR	PD5DDR	PD4DDR	PD3DDR	PD2DDR	PD1DDR	PDODDR	Port D	
H'FEBD	PEDDR	PE7DDR	PE6DDR	PE5DDR	PE4DDR	PE3DDR	PE2DDR	PE1DDR	PEODDR	Port E	
H'FEBE	PFDDR	PF7DDR	PF6DDR	PF5DDR	PF4DDR	PF3DDR	PF2DDR	PF1DDR	PFODDR	Port F	
H'FEBF	PGDDR	-	-	-	PG4DDR	PG3DDR	PG2DDR	PG1DDR	PGODDR	Port G	
H'FEC0	ICRA	ICRA7	ICRA6	ICRA5	ICRA4	ICRA3	ICRA2	ICRA1	-	Interrupt	8
H'FEC1	ICRB	-	ICRB6	ICRB5	ICRB4	ICRB 3	-	-	-	oller	
H'FEC2	ICRC	ICRC7	ICRC6	-	ICRC4	ICRC3	ICRC2	ICRC1	ICRC0		
H'FEDO	ABWCR	ABW7	ABW6	ABW5	ABW4	ABW3	ABW2	ABW1	ABW0	Bu	8
H'FED1	ASTCR	AST7	AST6	AST5	AST4	AST3	AST2	AST1	AST0		
H'FED2	WCRH	W71	W70	W61	W60	W51	W50	W41	W40		
H'FED3	WCRL	W31	W30	W21	W20	W11	W10	W01	woo		
H'FED4	BCRH	ICIS1	ICISO	BRSTRM	BRSTS1	BRSTSO	-	-	-		
H'FED5	BCRL	BRLE	BREQOE	EAE	-	-	ASS	-	WAITE		

H'FF2C	ISCRH		IRQ7SCB IRQ7SCA IRQ6SCB IRQ6SCA IRQ5SCB IRQ5SCA IRQ4SCB IRQ4SCA Interrupt	8					
H'FF2D	ISCRL		IRQ3SCB IRQ3SCA IRQ2SCB IRQ2SCA IRQ1SCB IRQ1SCA IRQ0SCB IRQ0SCA	controller					
H'FF2E	IER	IRQ7E	IRQ6E	IRQ5E	IRQ4E	IRQ3E	IRQ2E	IRQ1E	IRQ0E
H'FF2F	ISR	IRQ7F	IRQ6F	IRQ5F	IRQ4F	IRQ3F	IRQ2F	IRQ1F	IRQ0F

Address (Low)	Register Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Module Name	Bus Width (Bit)
H'FF30	DTCEA	DTCEA7	DTCEA6	DTCEA5	DTCEA4	DTCEA3	DTCEA2	DTCEA1	DTCEAO	DTC	8
H'FF31	DTCEB	DTCEB7	DTCEB6	DTCEB5	DTCEB4	DTCEB3	DTCEB2	DTCEB1	DTCEB0		
H'FF32	DTCEC	DTCEC7	DTCEC6	DTCEC5	DTCEC4	DTCEC3	DTCEC2	DTCEC1	DTCEC0		
H'FF33	DTCED	DTCED7	DTCED6	DTCED5	DTCED4	DTCED3	DTCED2	DTCED1	DTCED0		
H'FF34	DTCEE	DTCEE7	DTCEE6	DTCEE5	DTCEE4	DTCEE3	DTCEE2	DTCEE1	DTCEE0		
H'FF35	DTCEF	DTCEF7	DTCEF6	DTCEF5	DTCEF4	DTCEF3	DTCEF2	DTCEF1	DTCEF0		
H'FF37	DTVECR	SWDTE	DTVEC6	DTVEC5	DTVEC4	DTVEC3	DTVEC2	DTVEC1	DTVEC0		
H'FF38	SBYCR	SSBY	STS2	STS1	STS0	OPE	-	-	-	Powerdown state	8
H'FF39	SYSCR	-	-	INTM1	INTMO	NMIEG	-	-	RAME	MCU	8
H'FF3A	SCKCR	PSTOP	-	-	-	-	SCK2	SCK1	SCK0	Clock pulse generator	8
H'FF3B	MDCR	-	-	-	-	-	MDS2	MDS1	MDS0	MCU	8
H'FF3C	MSTPCRH	MSTP15	MSTP14	MSTP13	MSTP12	MSTP11	MSTP10	MSTP9	MSTP8		8
H'FF3D	MSTPCRL	MSTP7	MSTP6	MSTP5	MSTP4	MSTP3	MSTP2	MSTP1	MSTP0	wn state	
H'FF44	LPWCR	-	-	RFCUT	-	-	-	-	-	Clock pulse generator	8
H'FF50	PORT1	P17	P16	P15	P14	P13	P12	P11	P10	Port 1	8
H'FF51	PORT2	P27	P26	P25	P24	P23	P22	P21	P20	Port 2	
H'FF52	PORT3	-	-	P35	P34	P33	P32	P31	P30	Port 3	
H'FF53	PORT4	-	-	-	-	P43	P42	P41	P40	Port 4	
H'FF54	PORT5	-	-	-	-	P53	P52	P51	P50	Port 5	
H'FF59	PORTA	-	-	-	-	PA3	PA2	PA1	PAO	Port A	
H'FF5A	PORTB	PB7	PB6	PB5	PB4	PB3	PB2	PB1	PB0	Port B	
H'FF5B	PORTC	PC7	PC6	PC5	PC4	PC3	PC2	PC1	PC0	Port C	
H'FF5C	PORTD	PD7	PD6	PD5	PD4	PD3	PD2	PD1	PD0	Port D	
H'FF5D	PORTE	PE7	PE6	PE5	PE4	PE3	PE2	PE1	PE0	Port E	
H'FF5E	PORTF	PF7	PF6	PF5	PF4	PF3	PF2	PF1	PF0	Port F	
H'FF5F	PORTG	-	-	-	PG4	PG3	PG2	PG1	PG0	Port G	
H'FF60	P1DR	P17DR	P16DR	P15DR	P14DR	P13DR	P12DR	P11DR	P10DR	Port 1	
H'FF61	P2DR	P27DR	P26DR	P25DR	P24DR	P23DR	P22DR	P21DR	P20DR	Port 2	

Appendix B Register Field

Address (Low)	Register Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Module Name	Bus Width (Bit)
H'FF62	P3DR	-	-	P35DR	P34DR	P33DR	P32DR	P31DR	P30DR	Port 3	8
H'FF64	P5DR	-	-	-	-	P53DR	P52DR	P51DR	P50DR	Port 5	
H'FF69	PADR	-	-	-	-	PA3DR	PA2DR	PA1DR	PAODR	Port A	
H'FF6A	PBDR	PB7DR	PB6DR	PB5DR	PB4DR	PB3DR	PB2DR	PB1DR	PB0DR	Port B	
H'FF6B	PCDR	PC7DR	PC6DR	PC5DR	PC4DR	PC3DR	PC2DR	PC1DR	PCODR	Port C	
H'FF6C	PDDR	PD7DR	PD6DR	PD5DR	PD4DR	PD3DR	PD2DR	PD1DR	PD0DR	Port D	
H'FF6D	PEDR	PE7DR	PE6DR	PE5DR	PE4DR	PE3DR	PE2DR	PE1DR	PE0DR	Port E	
H'FF6E	PFDR	PF7DR	PF6DR	PF5DR	PF4DR	PF3DR	PF2DR	PF1DR	PFODR	Port F	
H'FF6F	PGDR	-	-	-	PG4DR	PG3DR	PG2DR	PG1DR	PGODR	Port G	
H'FF70	PAPCR	-	-	-	-	PA3PCR	PA2PCR	PA1PCR	PAOPCR	Port A	
H'FF71	PBPCR	PB7PCR	PB6PCR	PB5PCR	PB4PCR	PB3PCR	PB2PCR	PB1PCR	PB0PCR	Port B	
H'FF72	PCPCR	PC7PCR	PC6PCR	PC5PCR	PC4PCR	PC3PCR	PC2PCR	PC1PCR	PCOPCR	Port C	
H'FF73	PDPCR	PD7PCR	PD6PCR	PD5PCR	PD4PCR	PD3PCR	PD2PCR	PD1PCR	PDOPCR	Port D	
H'FF74	PEPCR	PE7PCR	PE6PCR	PE5PCR	PE4PCR	PE3PCR	PE2PCR	PE1PCR	PEOPCR	Port E	
H'FF76	P3ODR	-	-	P350DR	P34ODR	P33ODR	P320DR	P31ODR	P300DR	Port 3	
H'FF77	PAODR	-	-	-	-	PA3ODR	PA2ODR	PA10DR	PA0ODR	Port A	
H'FF78	SMR0	C/A	CHR	PE	O/E	STOP	MP	CKS1	CKS0	SCIO	8
	SMR0	GM	CHR	PE	O/E	STOP	MP	CKS1	CKS0	Smart card interface 0	
H'FF79	BRRO									SCIO, Smart card interface 0	
H'FF7A	SCR0	TIE	RIE	TE	RE	MPIE	TEIE	CKE1	CKE0	SCIO, Smart card interface 0	
	SCRO	TIE	RIE	TE	RE	MPIE	TEIE	CKE1	CKEO		
H'FF7B	TDR0										
H'FF7C	SSR0	TDRE	RDRF	ORER	FER	PER	TEND	MPB	MPBT	SCIO	
	SSR0	TDRE	RDRF	ORER	ERS	PER	TEND	MPB	MPBT	Smart card interface 0	
H'FF7D	RDR0									SCIO,	
H'FF7E	SCMR0	-	-	-	-	SDIR	SINV	-	SMIF	Smart card interface 0	

Rev.3.00 Mar. 26, 2007 Page 640 of 772
REJ09B0355-0300

Address (Low)	Register Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Module Name
W'FF96	ADDRDH	AD9	AD8	AD7	AD6	AD5	AD4	AD3	AD2	A/D
(Bit)										

Address (Low)	Register Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Module Name	Bus Width (Bit)
H'FFC0	TSTR	-	-	-	-	-	CST2	CST1	CSTO	TPU	16
H'FFC1	TSYR	-	-	-	-	-	SYNC2	SYNC1	SYNCO		
H'FFD0	TCR0	CCLR2	CCLR1	CCLR0	CKEG1	CKEG0	TPSC2	TPSC1	TPSC0	TPU0	16
H'FFD1	TMDR0	-	-	BFB	BFA	MD3	MD2	MD1	MD0		
H'FFD2	TIOROH	IOB3	IOB2	IOB1	IOB0	IOA3	IOA2	IOA1	IOA0		
H'FFD3	TIOROL	IOD3	IOD2	IOD1	IOD0	IOC3	IOC2	IOC1	IOC0		
H'FFD4	TIER0	TTGE	-	-	TCIEV	TGIED	TGIEC	TGIEB	TGIEA		
H'FFD5	TSR0	-	-	-	TCFV	TGFD	TGFC	TGFB	TGFA		
H'FFD6	TCNT0										
H'FFD8	TGR0A										
H'FFDA	TGR0B										
H'FFDC	TGR0C										
H'FFDE	TGR0D										
H'FFE0	TCR1	-	CCLR1	CCLR0	CKEG1	CKEG0	TPSC2	TPSC1	TPSC0	TPU1	16
H'FFE1	TMDR1	-	-	-	-	MD3	MD2	MD1	MD0		
H'FFE2	TIOR1	IOB3	IOB2	IOB1	IOB0	IOA3	IOA2	IOA1	IOAO		
H'FFE4	TIER1	TTGE	-	TCIEU	TCIEV	-	-	TGIEB	TGIEA		
H'FFE5	TSR1	TCFD	-	TCFU	TCFV	-	-	TGFB	TGFA		
H'FFE6	TCNT1										
H'FFE8	TGR1A										
H'FFEA	TGR1B										
H'FFF0	TCR2	-	CCLR1	CCLR0	CKEG1	CKEG0	TPSC2	TPSC1	TPSC0	TPU2	16
H'FFF1	TMDR2	-	-	-	-	MD3	MD2	MD1	MD0		
H'FFF2	TIOR2	IOB3	IOB2	IOB1	IOB0	IOA3	IOA2	IOA1	IOA0		
H'FFF4	TIER2	TTGE	-	TCIEU	TCIEV	-	-	TGIEB	TGIEA		
H'FFF5	TSR2	TCFD	-	TCFU	TCFV	-	-	TGFB	TGFA		
H'FFF6	TCNT2										
H'FFF8	TGR2A										
H'FFFA	TGR2B										

Note: * Located in on-chip RAM. The bus width is 32 bits when the DTC accesses this area as register information, and 16 bits otherwise.

B. 2 Register Descriptions

MRA—DTC Mode Register A
H'F800—H'FBFF
DTC

Bit :

7	6	5	4	3	2	1	0
SM1	SM0	DM1	DM0	MD1	MD0	DTS	Sz

Initial value :
Undefined Undefined Undefined Undefined Undefined Undefined Undefined Undefined
Read/Write :

Destination Address Mode

0	-	DAR is fixed
1	0	DAR is incremented after a transfer $(b y+1$ when $\mathrm{Sz}=0 ;$ by +2 when $\mathrm{Sz}=1)$
	1	DAR is decremented after a transfer $(b y-1$ when $\mathrm{Sz}=0 ;$ by -2 when $\mathrm{Sz}=1)$

Source Address Mode

0	-	SAR is fixed
1	0	SAR is incremented after a transfer $(b y+1$ when $S z=0 ;$ by +2 when $\mathrm{Sz}=1)$
	1	SAR is decremented after a transfer $(b y-1$ when $\mathrm{Sz}=0 ;$ by -2 when $\mathrm{Sz}=1)$

Bit

Initial value : Undefined Undefined Undefined Undefined Undefined Undefined Undefined Undefined
Read/Write :

Specifies transfer data source address

Specifies transfer data destination address

CRA—DTC Transfer Count Register A

Initial value : Unde- Unde-
fined fined

Specifies the number of DTC data transfers

CRB—DTC Transfer Count Register B

H'F800-H'FBFF

Initial value : Unde- Undefined fined fined
Read/Write : \qquad

Specifies the number of DTC block data transfers

P1DDR-Port	Data Dir	ection Reg	egister		'FEB0			Port 1
Bit	7	6	5	4	3	2	1	0
	P17DDR	P16DDR	P15DDR	P14DDR	P13DDR	P12DDR	P11DDR	P10DDR
Initial value :	0	0	0	0	0	0	0	0
Read/Write :	W	W	W	W	W	W	W	W

Specify input or output for individual port 1 pins

Bit	7	6	5	4	3	2	1	0
	P27DDR	P26DDR	P25DDR	P24DDR	P23DDR	P22DDR	P21DDR	P20DDR
Initial value :	0	0	0	0	0	0	0	0
Read/Write :	W	W	W	W	W	W	W	W

Specify input or output for individual port 2 pins

| P3DDR—Port 3 Data Direction Register H'FEB2 Port 3 |
| :--- | :--- | :--- |

Bit	7	6	5	4	3	2	1	0
	-	-	P35DDR	P34DDR	P33DDR	P32DDR	P31DDR	P30DDR
Initial value :	Undefined Undefined		0	0	0	0	0	0
Read/Write :	-	-	w	W	W	W	W	W

Specify input or output for individual port 3 pins

P5DDR—Port 5 Data Direction Register				H'FEB4			Port 5	
Bit	7	6	5	4	3	2	1	0
	-	-	-	-	P53DDR	P52DDR	P51DDR	P50DDR
Initial value :	Undefined Undefined Undefined Undefined				0	0	0	0
Read/Write :	-	-	-	-	W	W	W	W

Bit	7	6	5	4	3	2	1	0
	PB7DDR	PB6DDR	PB5DDR	PB4DDR	PB3DDR	PB2DDR	PB1DDR	PBODDR
Initial value	0	0	0	0	0	0	0	0
Read/Write	W	W	W	W	W	W	W	W

Specify input or output for individual port B pins

PCDDR—Port C Data Direction Register				H'FEBB			Port C	
Bit	7	6	5	4	3	2	1	0
	PC7DDR	PC6DDR	PC5DDR	PC4DDR	PC3DDR	PC2DDR	PC1DDR	PCODDR
Initial value	0	0	0	0	0	0	0	0
Read/Write	w	W	W	W	W	W	W	W

Specify input or output for individual port C pins

H'FEBC
Port D

Bit	7	6	5	4	3	2	1	0
	PD7DDR	PD6DDR	PD5DDR	PD4DDR	PD3DDR	PD2DDR	PD1DDR	PDODDR
Initial value	0	0	0	0	0	0	0	0
Read/Write	W	W	W	W	W	W	W	W

Specify input or output for individual port D pins
PEDDR—Port E Data Direction Register H'FEBD Port E

Bit	7	6	5	4	3	2	1	0
	PE7DDR	PE6DDR	PE5DDR	PE4DDR	PE3DDR	PE2DDR	PE1DDR	PEODDR
Initial value	0	0	0	0	0	0	0	0
Read/Write	w	w	w	w	W	w	W	w

Specify input or output for individual port E pins

PFDDR—Port F Data Direction Register				H'FEBE			Port F	
Bit	7	6	5	4	3	2	1	0
	PF7DDR	PF6DDR	PF5DDR	PF4DDR	PF3DDR	PF2DDR	PF1DDR	PFODDR
Modes 1, 2, 4, 5, 6								
Initial value	1	0	0	0	0	0	0	0
Read/Write	w	W	W	W	w	W	W	W
Modes 3, 7								
Initial value	0	0	0	0	0	0	0	0
Read/Write	W	W	W	W	W	W	W	W

Bit \begin{tabular}{c}
$:$

7 \& 6 \& 5 \& 4 \& 3 \& 2 \& 1 \& 0

\hline- \& - \& - \& PG4DDR \& PG3DDR \& PG2DDR \& PG1DDR \& PGODDR

\hline
\end{tabular}

Modes 1, 4, 5

Initial value	$:$	Undefined	Undefined Undefined	1	0	0	0	0
Read/Write	$:$	-	-	-	W	W	W	W
W								

Modes 2, 3, 6, 7

Initial value	$:$	Undefined Undefined Undefined	0	0	0	0	0	
Read/Write	$:$	-	-	-	W	W	W	W

Specify input or output for individual port G pins

ICRA—Interrupt Control Register A
ICRB—Interrupt Control Register B
ICRC—Interrupt Control Register C

H'FEC0
H'FEC1
H'FEC2

Interrupt Controller
Interrupt Controller
Interrupt Controller

Bit	7	6	5	4	3	2	1	0
	ICR7	ICR6	ICR5	ICR4	ICR3	ICR2	ICR1	ICRO
Initial value	0	0	0	0	0	0	0	0
Read/Write	R/W							

Sets the interrupt control level for interrupts
Correspondence between Interrupt Sources and ICR Settings

Register	Bits							
	7	6	5	4	3	2	1	0
ICRA	IRQ0	IRQ1	IRQ2 IRQ3	$\begin{array}{\|l\|l\|} \hline \text { IRQ4 } \\ \text { IRQ5 } \end{array}$	IRQ6 IRQ7	DTC	Watchdog timer	-
ICRB	-	A/D converter	TPU channel 0	TPU channel 1	TPU channel 2	-	-	-
ICRC	8-bit timer channel 0	8-bit timer channel 1	-	SCI channel 0	SCI channel 1	SCl channel 2	-	-

Bit

	7	6	5	4	3	2	1
ABW7	ABW6	ABW5	ABW4	ABW3	ABW2	ABW1	ABW0

Modes 1, 2, 3, 5, 6, 7

Initial value	$:$	1	1	1	1	1	1	1	1
Read/Write	$:$	R/W							
Mode 4									
Initial value	$:$	0	0	0	0	0	0	0	0
Read/Write	$:$	R/W							

Area 7 to 0 Bus Width Control

0	Area n is designated for 16 -bit access
1	Area n is designated for 8 -bit access

Note: $\mathrm{n}=7$ to 0

Bit	7	6	5	4	3	2	1	0
	AST7	AST6	AST5	AST4	AST3	AST2	AST1	ASTO
Initial value	1	1	1	1	1	1	1	1
Read/Write	R/W							

Area 7 to 0 Access State Control

0	Area n is designated for 2-state access Wait state insertion in area n external space is disabled.
1	Area n is designated for 3-state access Wait state insertion in area n external space is enabled

Note: $\mathrm{n}=7$ to 0

WCRH—Wait Control Register H
H'FED2

Bit	7	6	5	4	3	2		10	
	W71	W70	W61	W60	W51	W50		W41	W40
Initial value :	1	1	1	1	1	1		1	1
Read/Write :	R/W	R/W	R/W	R/W	R/W	R/W		R/W	R/W
						Area 4 Wait Control			
						0	0	Program wait not inserted	
							1	1 program wait state inserted	
						1	0	2 program wait states inserted	
							1	3 program wait states inserted	

Area 5 Wait Control

0	0	Program wait not inserted
	1	1 program wait state inserted
1	0	2 program wait states inserted
	1	3 program wait states inserted

Area 6 Wait Control

0	0	Program wait not inserted
	1	1 program wait state inserted
1	0	2 program wait states inserted
	1	3 program wait states inserted

Area 7 Wait Control

0	0	Program wait not inserted
	1	1 program wait state inserted
1	0	2 program wait states inserted
	1	3 program wait states inserted

WCRL—Wait Control Register L
H'FED3
Bus Controller

Bit
Initial value

7	6	5	4	3	2		1	0
W31	W30	W21	W20	W11	W10		W01	W00
1	1	1	1	1	1		1	1
R/W	R/W	R/W	R/W	R/W	R/W		R/W	R/W
					Area 0 Wait Control			
					0	0	Program wait not inserted	
						1	1 program wait state inserted	
					1	0	2 program wait states inserted	
						1	3 program wait states inserted	

Area 1 Wait Control

0	0	Program wait not inserted
	1	1 program wait state inserted
1	0	2 program wait states inserted
	1	3 program wait states inserted

Area 2 Wait Control

0	0	Program wait not inserted
	1	1 program wait state inserted
1	0	2 program wait states inserted
	1	3 program wait states inserted

Area 3 Wait Control

0	0	Program wait not inserted
	1	1 program wait state inserted
1	0	2 program wait states inserted
	1	3 program wait states inserted

BCRH—Bus Control Register H
H'FED4

Idle Cycle Insert 1

0	Idle cycle not inserted in case of successive external read cycles in different areas
1	Idle cycle inserted in case of successive external read cycles in different areas

Bit	7	6	5	4	3	2	1	0
	BRLE	BREQOE	EAE	-	-	ASS	-	WAITE
Initial value :	0	0	1	1	1	1	0	0
Read/Write :	R/W							
							VAIT Pin	nable
								input by WAIT sabled
								input by WAIT nabled
					rea Pa	Unit		
					0	partitio	nit is 128	bytes (1 Mbit)
					1	partitio	nit is 2 M	tes (16 Mbits)

External Addresses H'010000 to H'01FFFF Enable

0	On-chip ROM (H8S/2246 and H8S/2245) or a reserved area (H8S/2244, H8S/2243, H8S/2242, and H8S/2241)
1	External addresses (in external expansion mode) or reserved area* (in single-chip mode)

Note: * Do not access a reserved area.
BREQO Pin Enable

0	$\overline{\text { BREQO output disabled }}$
1	$\overline{\text { BREQO output enabled }}$

Bus Release Enable

0	External bus release is disabled
1	External bus release is enabled

ISCRH—IRQ Sense Control Register H
ISCRL-IRQ Sense Control Register L

H'FF2C
H'FF2D

Interrupt Controller
Interrupt Controller

ISCRH

Bit	15	14	13	12	11	10	9	8
	IRQ7SCB	IRQ7SCA	IRQ6SCB	IRQ6SCA	IRQ5SCB	IRQ5SCA	IRQ4SCB	IRQ4SCA
Initial value	0	0	0	0	0	0	0	0
Read/Write	R/W							

ISCRL

Bit	7	6	5	4	3	2	1	0
	IRQ3SCB	IRQ3SCA	IRQ2SCB	IRQ2SCA	IRQ1SCB	IRQ1SCA	IRQOSCB	IRQOSCA
Initial value	0	0	0	0	0	0	0	0
Read/Write	R/W							
	IRQ_{3} to IRQ_{0} Sense Control							
	IRQ ${ }_{\text {n }}$ SCB	$1 \mathrm{IR}_{n} \mathrm{SCA}$	Interrupt Request Generation					
	0	0	$\overline{\mathrm{RQ}}_{\mathrm{n}}$ input low level					
		1	Falling edge of $\overline{\mathrm{RQ}}_{\mathrm{n}}$ input					
	1	0	Rising edge of $\overline{\mathrm{TRQ}}_{\mathrm{n}}$ input					
		1	Both falling and rising edges of $\overline{\mathrm{RQ}}_{n}$ input					
	Note: $\mathrm{n}=7$ to 0							

Bit	7	6	5	4	3	2	1	0
	IRQ7E	IRQ6E	IRQ5E	IRQ4E	IRQ3E	IRQ2E	IRQ1E	IRQ0E
Initial value :	0	0	0	0	0	0	0	0
Read/Write :	R/W							
				IRQn Enable				
				0	IRQn inte	upt disa		
				1	IRQn inte	upt enab		
				Note:	$\mathrm{n}=7$ to 0			

ISR—IRQ Status Register H'FF2F Interrupt Controller

Bit
:---:
IRQ7F

$\begin{array}{lllllllll}\text { Read/Write: } & \mathrm{R} /(\mathrm{W})^{*} & \mathrm{R} /(\mathrm{W}) *\end{array}$

Indicate the status of IRQ7 to IRQ0 interrupt requests

Note: * Can only be written with 0 for flag clearing.

Bit	7	6	5	4	3	2	1	0
	DTCE7	DTCE6	DTCE5	DTCE4	DTCE3	DTCE2	DTCE1	DTCE0
Initial value	0	0	0	0	0	0	0	0
Read/Write :	R/W							

DTC Activation Enable

0	DTC activation by this interrupt is disabled [Clearing conditions] - When the DISEL bit is 1 and data transfer has ended - When the specified number of transfers have ended
1	DTC activation by this interrupt is enabled [Holding condition] When the DISEL bit is 0 and the specified number of transfers have not ended

Correspondence between interrupt sources and DTCER bits

Register	Bit								
	7	6	5	4	3	2	1	0	
DTCERA	IRQ0	IRQ1	IRQ2	IRQ3	IRQ4	IRQ5	IRQ6	IRQ7	
DTCERB	-	ADI	TGI0A	TGI0B	TGI0C	TGI0D	TGI1A	TGI1B	
DTCERC	TGI2A	TGI2B	-	-	-	-	-	-	
DTCERD	-	-	-	-	CMIA0	CMIB0	CMIA1	CMIB1	
DTCERE	-	-	-	-	RXI0	TXI0	RXI1	TXI1	
DTCERF	RXI2	TXI2	-	-	-	-	-	-	

Bit	7	6	5	4	3	2	1	0
	SWDTE	DTVEC6	DTVEC5	DTVEC4	DTVEC3	DTVEC2	DTVEC1	DTVECO
Initial value	0	0	0	0	0	0	0	0

$\begin{array}{llllllllll}\text { Read/Write: } & \underline{R /(W)} \\ & & R /(W))^{* 2} & \mathrm{R} /(\mathrm{W})^{* 2}\end{array}$
Sets vector number for DTC software activation

DTC Software Activation Enable

0	DTC software activation is disabled [Clearing conditions] - When the DISEL bit is 0 and the specified number of transfers have not ended - When 0 is written to the DISEL bit after a software-activated data transfer end interrupt (SWDTEND) request has been sent to the CPU.
1	DTC software activation is enabled [Holding conditions] - When the DISEL bit is 1 and data transfer has ended - When the specified number of transfers have ended - During data transfer activated by software

Notes: 1. A value of 1 can always be written to the SWDTE bit, but 0 can only be written after 1 is read.
2. Only write to bits DTVEC6 to DTVEC0 when SWDTE is 0 .

SBYCR—Standby Control Register
H'FF38

Bit	7	6	5	4	3	2	1	0
	SSBY	STS2	STS1	STSO	OPE	-	-	-
Initial value :	0	0	0	0	1	0	0	0
Read/Write :	R/W	R/W	R/W	R/W	R/W	-	-	
							- Output Port Enable	
						In software standby mode, address bus and bus control signals are high-impedance		
						In software standby mode, address bus and bus control signals retain output state		

Standby Timer Select

0	0	0	Standby time $=8192$ states
		1	Standby time $=16384$ states
	1	0	Standby time $=32768$ states
1	0	1	Standby time $=65536$ states
		1	Standby time $=131072$ states
	0	Reserved $=262144$ states	
		1	Standby time $=16$ states

Software Standby

0	Transition to sleep mode after execution of SLEEP instruction
1	Transition to software standby mode after execution of SLEEP instruction

MDCR—Mode Control Register H'FF3B MCU

Bit	7	6	5	4	3	2	1	0
	-	-	-	-	-	MDS2	MDS1	MDSO
Initial value	1	0	0	0	0	-*	-*	-*
Read/Write	-	-	-	-	-	R	R	R

Current mode pin operating mode
Note: * Determined by pins MD_{2} to MD_{0}
$\begin{array}{ll}\text { MSTPCRH—Module Stop Control Register H } & \text { H'FF3C } \\ \text { MSTPCRL—Module Stop Control Register L } & \text { H'FF3D }\end{array}$

MSTPCRH
MSTPCRL

Bit

Initial value :

Read/Write : R/W R/W

Specifies module stop mode

0	Module stop mode cleared
1	Module stop mode set

LPWCR—Low Power Control Register
H'FF44
Clock Oscillator

Bit	7	6	5	4	3	2	1	0
	-	-	RFCUT	-	-	-	-	-
Initial value	0	0	0	0	0	0	0	0
Read/Write	R/W							

Control of Oscillator's Built-In Feedback Resistor in External Clock Input

0	Oscillator's built-in feedback resistor and duty adjustment circuit are used
1	Oscillator's built-in feedback resistor and duty adjustment circuit are not used

Note: * Determined by the state of pins P_{7} to $\mathrm{P} 1_{0}$.

PORT2—Port 2 Register			H'FF51				1	
Bit	7	6	5	4	3	2		0
	P27	P26	P25	P24	P23	P22	P21	P20
Initial value	—*	—*	—*	-*	—*	—*	—*	-*
Read/Write :	R	R	R	R	R	R	R	R

Note: * Determined by the state of pins $\mathrm{P}_{2}{ }_{7}$ to P_{2}.

PORT3—Port 3 Register

H'FF52
Port 3

Bit	7	6	5	4	3	2	1	0
	-	-	P35	P34	P33	P32	P31	P30
Initial value :	Undefine	define	-*	—*	—*	-*	—*	-*
Read/Write :	-	-	R	R	R	R	R	R

Note: * Determined by the state of pins P_{5} to P_{0}.

Note: * Determined by the state of pins P_{3} to $\mathrm{P} 4_{0}$.
PORT5—Port 5 Register H'FF54 Port 5

Bit	7	6	5	4	3	2	1	0
	-	-	-	-	P53	P52	P51	P50
Initial value :	Undefine	defin	defin	defin	-*	-*	-*	—*
Read/Write :	-	-	-	-	R	R	R	R

Note: * Determined by the state of pins $\mathrm{P5}_{3}$ to P_{0}.

PORTA—Port A Register

H'FF59
Port A

Note: * Determined by the state of pins PA_{3} to PA_{0}.

Note: * Determined by the state of pins PB_{7} to PB_{0}.
PORTC—Port C Register H'FF5B Port C

Bit	7	6	5	4	3	2	1	0
	PC7	PC6	PC5	PC4	PC3	PC2	PC1	PC0
Initial value	—*	—*	-*	—*	—*	—*	—*	—*
Read/Write	R	R	R	R	R	R	R	R

Note: * Determined by the state of pins PC_{7} to PC_{0}.

Note: * Determined by the state of pins PD_{7} to PD_{0}.

Bit	7	6	5	4	3	2	1	0
	PE7	PE6	PE5	PE4	PE3	PE2	PE1	PE0
Initial value	-*	*	-*	-*	-*	-*	一*	-*
Read/Write	R	R	R	R	R	R	R	R

Note: * Determined by the state of pins PE_{7} to PE_{0}.

PORTF-Port F Register			H'FF5E					Port F
Bit :	7	6	5	4	3	2	1	0
	PF7	PF6	PF5	PF4	PF3	PF2	PF1	PF0
Initial value	—*	—*	—*	—*	—*	—*	—*	—*
Read/Write :	R	R	R	R	R	R	R	R

Note: * Determined by the state of pins PF_{7} to PF_{0}.
PORTG—Port G Register

H'FF5F

Bit	7	6	5	4	3	2	1	0
	-	-	-	PG4	PG3	PG2	PG1	PG0
Initial value	Undefined Undefined Undefined			-*	-*	-*	-*	-*
Read/Write	-	-	-	R	R	R	R	R

Note: * Determined by the state of pins PG_{4} to PG_{0}.

Bit	7	6	5	4	3	2	1	0
	P17DR	P16DR	P15DR	P14DR	P13DR	P12DR	P11DR	P10DR
Initial value	0	0	0	0	0	0	0	0
Read/Write	R/W							

Stores output data for port 1 pins ($\mathrm{P} 1_{7}$ to $\mathrm{P} 1_{0}$)

| P2DR—Port 2 Data Register \quad H'FF61 | Port 2 |
| :--- | :---: | :---: |

| | $:$ | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | Bit | P27DR | P26DR | P25DR | P24DR | P23DR | P22DR | P21DR | P20DR |
| | Initial value : | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| Read/Write : | R/W | |

Stores output data for port 2 pins (P_{2} to P_{2})

P3DR—Port 3 Data Register

H'FF62
Port 3

Bit	7	6	5	4	3	2	1	0
	-	-	-	-	P53DR	P52DR	P51DR	P50DR
Initial value Read/Write	Undefined Undefined Undefined Undefined				0	0	0	0
	-	-	-	-	R/W	R/W	R/W	R/W
Stores output data for port 5 pins ($\mathrm{P5}_{3}$ to P 50								

PADR—Port A Data Register	H'FF69	Port A

Bit	7	6	5	4	3	2	1	0
	-	-	-	-	PA3DR	PA2DR	PA1DR	PA0DR
Initial value :	Undefined Undefined Undefined Undefined				0	0	0	0
Read/Write :	-	-	-	-	R/W	R/W	R/W	R/W

PBDR—Port B Data Register
H'FF6A
Port B

Bit	7	6	5	4	3	2	1	0
	PB7DR	PB6DR	PB5DR	PB4DR	PB3DR	PB2DR	PB1DR	PB0DR
Initial value	0	0	0	0	0	0	0	0
Read/Write	R/W							

Stores output data for port B pins $\left(\mathrm{PB}_{7}\right.$ to $\left.\mathrm{PB}_{0}\right)$

Bit	7	6	5	4	3	2	1	0
	PC7DR	PC6DR	PC5DR	PC4DR	PC3DR	PC2DR	PC1DR	PCODR
Initial value	0	0	0	0	0	0	0	0
Read/Write	R/W							

Stores output data for port C pins $\left(\mathrm{PC}_{7}\right.$ to $\left.\mathrm{PC}_{0}\right)$
PDDR—Port D Data Register H'FF6C Port D

Bit	7	6	5	4	3	2	1	0
	PD7DR	PD6DR	PD5DR	PD4DR	PD3DR	PD2DR	PD1DR	PD0DR
Initial value	0	0	0	0	0	0	0	0

Read/Write :
R/W R/W

Stores output data for port D pins $\left(\mathrm{PD}_{7}\right.$ to $\left.\mathrm{PD}_{0}\right)$

PEDR—Port E Data Register
H'FF6D
Port E

Bit	7	6	5	4	3	2	1	
	PE7DR	PE6DR	PE5DR	PE4DR	PE3DR	PE2DR	PE1DR	PE0DR
Initial value	0	0	0	0	0	0	0	0
Read/Write	R/W							

Stores output data for port E pins $\left(\mathrm{PE}_{7}\right.$ to $\left.\mathrm{PE}_{0}\right)$

$\overline{\text { PGDR—Port G Data Register }}$ H'FF6F Port G

Bit	7	6	5	4	3	2	1	0
	-	-	-	PG4DR	PG3DR	PG2DR	PG1DR	PGODR
Initial value	Undefin	defin	defin	0	0	0	0	0
Read/Write	-	-	-	R/W	R/W	R/W	R/W	R/W

PAPCR—Port A MOS Pull-Up Control Register					H'FF70		Port A	
Bit	7	6	5	4	3	2	1	0
	-	-	-	-	PA3PCR	PA2PCR	PA1PCR	PAOPCR
Initial value :	Undefined Undefined Undefined Undefined				0	0	0	0
Read/Write :	-	-	-	-	R/W	R/W	R/W	R/W
					Controls the MOS input pull-up function incorporated into port A on a bit-by-bit basis			

Bit	7	6	5	4	3	2	1	0
	PB7PCR	PB6PCR	PB5PCR	PB4PCR	PB3PCR	PB2PCR	PB1PCR	PBOPCR
Initial value	0	0	0	0	0	0	0	0
Read/Write	R/W							

Controls the MOS input pull-up function incorporated into port B on a bit-by-bit basis

PCPCR-Port C MOS Pull-Up Control Register					H'FF72			Port C
Bit	7	6	5	4	3	2	1	0
	PC7PCR	PC6PCR	PC5PCR	PC4PCR	PC3PCR	PC2PCR	PC1PCR	PCOPCR
Initial value	0	0	0	0	0	0	0	0
Read/Write	R/W							

Controls the MOS input pull-up function incorporated into port C on a bit-by-bit basis
PDPCR—Port D MOS Pull-Up Control Register H'FF73

Bit	7	6	5	4	3	2	1	0
	PD7PCR	PD6PCR	PD5PCR	PD4PCR	PD3PCR	PD2PCR	PD1PCR	PDOPCR
Initial value	0	0	0	0	0	0	0	0
Read/Write	R/w							

Controls the MOS input pull-up function incorporated into port D on a bit-by-bit basis

PEPCR—Port E MOS Pull-Up Control Register H'FF74
Port E

Controls the MOS input pull-up function incorporated into port E on a bit-by-bit basis

P3ODR—Port 3 Open Drain Control Register					H'FF76			Port 3
Bit	7	6	5	4	3	2	1	0
	-	-	P35ODR	P34ODR	P330DR	P32ODR	P31ODR	P300DR
Initial value	Undefin	defin	0	0	0	0	0	0
Read/Write	-	-	R/W	R/W	R/W	R/W	R/W	R/W

Controls the PMOS on/off status for each port 3 pin $\left(\mathrm{P}_{5}\right.$ to $\left.\mathrm{P}_{3}\right)$
$\overline{\text { PAODR—Port A Open Drain Control Register H'FF77 Port A }}$

Bit	7	6	5	4	3	2	1	0
	-	-	-	-	PA3ODR	PA2ODR	PA1ODR	PA0ODR
Initial value :	Undefin	defin	defin	defin	d 0	0	0	0
Read/Write :	-	-	-	-	R/W	R/W	R/W	R/W

Controls the PMOS on/off status for each port A pin (PA_{3} to PA_{0})

Initial value :

7	6	5	4	3	2	1	0
$\mathrm{C} / \overline{\mathrm{A}}$	CHR	PE	O/E	STOP	MP	CKS1	CKS0
0	0	0	0	0	0	0	0
R/W							

Clock Select

0	0	ϕ clock
	1	$\phi / 4$ clock
1	0	$\phi / 16$ clock
	1	$\phi / 64$ clock

Multiprocessor Mode

0	Multiprocessor function disabled
1	Multiprocessor format selected

Stop Bit Length

0	1 stop bit
1	2 stop bits

Parity Mode

0	Even parity
1	Odd parity

Parity Enable

0	Parity bit addition and checking disabled
1	Parity bit addition and checking enabled

Character Length

0	8-bit data
1	7-bit data*

Note: * When 7-bit data is selected, the MSB (bit 7) of TDR is not transmitted.
Asynchronous Mode/Synchronous Mode Select

0	Asynchronous mode
1	Synchronous mode

SMR0—Serial Mode Register 0

H'FF78
Smart Card Interface 0
GSM Mode \qquad
Character Length

0	8 -bit data
1	Setting prohibited

0	Normal smart card interface mode operation - TEND flag generated 12.5 etu after beginning of start bit - Clock output on/off control only
1	GSM mode smart card interface mode operation - TEND flag generated 11.0 etu after beginning of start bit - Fixed high/low-level control possible (set in SCR) in addition to clock output on/off control

Note: etu (Elementary Time Unit): Interval for transfer of one bit

BRR0—Bit Rate Register 0

H'FF79 SCI0, Smart Card Interface 0

Note: See section 12.2.8, Bit Rate Register (BRR), for details.

2. Inputs a clock with a frequency 16 times the bit rate.

Transmit End Interrupt Enable

0	Transmit end interrupt (TEI) request disabled
1	Transmit end interrupt (TEI) request enabled

Multiprocessor Interrupt Enable
0 Multiprocessor interrupts disabled
[Clearing conditions]

- When the MPIE bit is cleared to 0
- When MPB = 1 data is received

1 Multiprocessor interrupts enabled
Receive interrupt (RXI) requests, receive error interrupt (ERI) requests, and setting of the RDRF, FER, and ORER flags in SSR are disabled until data with the multiprocessor bit set to 1 is received

Receive Enable

0	Reception disabled
1	Reception enabled

Transmit Enable

0	Transmission disabled
1	Transmission enabled

Receive Interrupt Enable

0	Receive data full interrupt (RXI) request and receive error interrupt (ERI) request disabled
1	Receive data full interrupt (RXI) request and receive error interrupt (ERI) request enabled

Transmit Interrupt Enable

0	Transmit data empty interrupt (TXI) requests disabled
1	Transmit data empty interrupt (TXI) requests enabled

SCR0—Serial Control Register 0

Bit

Initial value :

$:$
7
7
:---:
0

Read/Write : \qquad

$\left.$| SMCR | SMR | SCR setting | | SCK pin function | |
| :---: | :---: | :---: | :---: | :--- | :--- |
| SMIF | C/A, GM | CKE1 | CKE0 | | |
| 0 | Operates as port input
 pin | | | | |
| 1 | 0 | 0 | 0 | 1 | Clock output as SCK
 output pin |
| 1 | 0 | 0 | 0 | Fixed-low output as
 SCK output pin | |
| 1 | 1 | 0 | 1 | Clock output as SCK
 output pin | |
| 1 | 1 | 0 | 0 | Fixed-high output as
 SCK output pin | |
| 1 | 1 | 1 | 1 | 1 | 1 | | Clock output as SCK |
| :--- |
| output pin | \right\rvert\, | |
| :---: |
| 1 |

Transmit End Interrupt Enable

0	Transmit end interrupt (TEI) request disabled
1	Transmit end interrupt (TEI) request enabled

Multiprocessor Interrupt Enable

00	Multiprocessor interrupts disabled [Clearing conditions]

- When the MPIE bit is cleared to 0
- When MPB = 1 data is received

1 Multiprocessor interrupts enabled
Receive interrupt (RXI) requests, receive error interrupt (ERI) requests, and setting of the RDRF, FER, and ORER flags in SSR are disabled until data with the multiprocessor bit set to 1 is received

Receive Enable

0	Reception disabled
1	Reception enabled

Transmit Enable

0	Transmission disabled
1	Transmission enabled

Receive Interrupt Enable

0	Receive data full interrupt (RXI) request and receive error interrupt (ERI) request disabled
1	Receive data full interrupt (RXI) request and receive error interrupt (ERI) request enabled

Transmit Interrupt Enable

0	Transmit data empty interrupt (TXI) requests disabled
1	Transmit data empty interrupt (TXI) requests enabled

TDR0—Transmit Data Register 0
H'FF7B SCI0, Smart Card Interface 0

SSR0—Serial Status Register 0

H'FF7C
SCI0

Bit	7	6	5	4	3	2	1	0
	TDRE	RDRF	ORER	FER	PER	TEND	MPB	MPBT
Initial value	1	0	0	0	0	1	0	0

$\begin{array}{lllllllll}\text { Read/Write : } & R /(W))^{* 1} & R /(W)^{* 1} & R /(W)^{* 1} & R /(W)^{* 1} & R /(W)^{* 1} & R & R & R / W\end{array}$

Multiprocessor Bit Transfer

0	Data with a 0 multiprocessor bit is transmitted
1	Data with a 1 multiprocessor bit is transmitted

Multiprocessor Bit

0	[Clearing condition] When data with a 0 multiprocessor bit is received
1	[Setting condition] When data with a 1 multiprocessor bit is received

Transmit End

00	$\begin{array}{l}\text { [Clearing conditions] } \\ \\ \\ \end{array}$ When 0 is written to TDRE after reading TDRE $=1$

When 0 is written to TDRE after reading TDRE $=1$

- When the DTC*2 is activated by a TXI interrupt and write data to TDR

1 [Setting conditions]

- When the TE bit in SCR is 0
- When TDRE = 1 at transmission of the last bit of a 1-byte serial transmit character

Parity Error

0	[Clearing condition] When 0 is written to PER after reading PER $=1$
1	[Setting condition] When, in reception, the number of 1 bits in the receive data plus the parity bit does not match the parity setting (even or odd) specified by the O/E bit in SMR

Framing Error

0	[Clearing condition] When 0 is written to FER after reading FER $=$
1	$[S e t y$

1 [Setting condition]
When the SCI checks whether the stop bit at the end of the receive data is 1 when reception ends, and the stop bit is 0

Overrun Error

0	$[$ Clearing condition] When 0 is written to ORER after reading ORER $=1$
1	$[$ Setting condition $]$ When the next serial reception is completed while RDRF $=1$

Receive Data Register Full
0 [Clearing conditions]

- When 0 is written to RDRF after reading RDRF $=1$
- When the DTC*2 is activated by an RXI interrupt and read data from RDR

1 [Setting condition]
When serial reception ends normally and receive data is transferred from RSR to RDR

Transmit Data Register Empty
0 [Clearing conditions]

- When 0 is written to TDRE after reading TDRE $=1$
- When the DTC*2 is activated by a TXI interrupt and write data to TDR

1 [Setting conditions]

- When the TE bit in SCR is 0
- When data is transferred from TDR to TSR and data can be written to TDR

Notes: 1. Can only be written with 0 for flag clearing.
2. DTC can clear this bit only when DISEL is 0 with the transfer counter not being 0 .

Bit
Initial value

Read/Write

Multiprocessor Bit
0 [Clearing condition]
When data with a 0 multiprocessor bit is received
1 [Setting condition]
When data with a 1 multiprocessor bit is received
Transmit End

0	[Clearing conditions]

- When 0 is written to TDRE after reading TDRE $=1$
- When the DTC*2 is activated by a TXI interrupt and write data to TDR

1 [Setting conditions]

- On reset, or in standby mode or module stop mode
- When the TE bit in SCR is 0 and the ERS bit is 0
- When TDRE $=1$ and ERS $=0$ (normal transmission) 2.5 etu after a 1-byte serial character is sent when $\mathrm{GM}=0$
- When TDRE $=1$ and ERS $=0$ (normal transmission) 1.0 etu after a 1-byte serial character is sent when GM = 1
Note: etu: Elementary Time Unit (the time taken to transmit one bit)
Parity Error
0 [Clearing condition]
When 0 is written to PER after reading PER = 1
1 [Setting condition]
When, in reception, the number of 1 bits in the receive data plus the parity bit does not match the parity setting (even or odd) specified by the O/E bit in SMR

Error Signal Status

0	[Clearing conditions] - On reset, or in standby mode or module stop mode - When 0 is written to ERS after reading ERS = 1
1	[Setting condition] When the error signal is sampled at the low level

Note: Clearing the TE bit in SCR to 0 does not affect the ERS flag, which retains its prior state.
Overrun Error

0	[Clearing condition] When 0 is written to ORER after reading ORER $=1$
1	[Setting condition] When the next serial reception is completed while RDRF $=1$

Receive Data Register Full
0 [Clearing conditions]

- When 0 is written to RDRF after reading RDRF = 1
- When the DTC ${ }^{* 2}$ is activated by an RXI interrupt and read data from RDR
[Setting condition]
When serial reception ends normally and receive data is transferred from RSR to RDR
Transmit Data Register Empty

0	[Clearing conditions] - When 0 is written to TDRE after reading TDRE $=1$ - When the DTC*2
1	[Setting activated by a TXI interrupt and write data to TDR - When the TE bit in SCR is 0 - When data is transferred from TDR to TSR and data can be written to TDR

Notes: 1. Can only be written with 0 for flag clearing.
2. DTC can clear this bit only when DISEL is 0 with the transfer counter not being 0 .

RDR0—Receive Data Register 0
H'FF7D SCI0, Smart Card Interface 0

Stores received serial data
SCMR0—Smart Card Mode Register $0 \quad$ H'FF7E SCI0, Smart Card Interface 0

Bit	7	6	5	4	3	2		1	0
	-	-	-	-	SDIR		SINV	-	SMIF
Initial value :	1	1	1	1	0	0		1	0
Read/Write :	-	-	-	-	R/W	R/W		-	R/W
								art Card face M	Select
								Smart functio	ard interface is disabled
								Smart functio	ard interface is enabled
							art Car	Data Inv	
						0	TDR	ntents data is	transmitted tored in RD
						1	TDR bein Rec in in	ontents ransmitted data is ted form	inverted be tored in RDR

0	TDR contents are transmitted LSB-first Receive data is stored in RDR LSB-first
1	TDR contents are transmitted MSB-first Receive data is stored in RDR MSB-first

Bit	7	6	5	4	3	2	1	0
	C/A	CHR	PE	O/E	STOP	MP	CKS1	CKSO
Initial value :	0	0	0	0	0	0	0	0
Read/Write :	R/W							

Clock Select

0	0	ϕ clock
	1	$\phi / 4$ clock
1	0	$\phi / 16$ clock
	1	$\phi / 64$ clock

Multiprocessor Mode

0	Multiprocessor function disabled
1	Multiprocessor format selected

Stop Bit Length

0	1 stop bit
1	2 stop bits

Parity Mode

0	Even parity
1	Odd parity

Parity Enable

0	Parity bit addition and checking disabled
1	Parity bit addition and checking enabled

Character Length

0	8-bit data
1	7-bit data*

Note: * When 7-bit data is selected, the MSB (bit 7) of TDR is not transmitted.
Asynchronous Mode/Synchronous Mode Select

0	Asynchronous mode
1	Synchronous mode

SMR1—Serial Mode Register 1
H'FF80

Stop Bit Length

0	Setting prohibited
1	2 stop bits

Parity Mode

0	Even parity
1	Odd parity

Parity Enable

0	Setting prohibited
1	Parity bit addition and checking enabled

Character Length

0	8 -bit data
1	Setting prohibited

GSM Mode \qquad

0	Normal smart card interface mode operation - TEND flag generated 12.5 etu after beginning of start bit - Clock output on/off control only
1	GSM mode smart card interface mode operation - TEND flag generated 11.0 etu after beginning of start bit - Fixed high/low-level control possible (set in SCR) in addition to clock output on/off control

Note: etu (Elementary Time Unit): Interval for transfer of one bit

BRR1—Bit Rate Register 1

H'FF81 SCI1, Smart Card Interface 1

Note: See section 12.2.8, Bit Rate Register (BRR), for details.

SCR1—Serial Control Register 1

H'FF82
SCI1

Bit	7	6	5	4	3	2		1	0	
	TIE	RIE	TE	RE	MPIE	TEIE		CKE1	1 CKE0	
Initial value :	0	0	0	0	0	0		0	0	
Read/Write :	R/W	R/W	R/W	R/W	R/W	$\frac{\mathrm{R} / \mathrm{W}}{}$		R/W	V R/W	
							Clock Enable			
							0	0	Asynchronous mode	Internal clock/SCK pin functions as I/O port
									Synchronous mode	Internal clock/SCK pin functions as serial clock output
								1	Asynchronous mode	Internal clock/SCK pin functions as clock output*1
									Synchronous mode	Internal clock/SCK pin functions as serial clock output
							1	0	Asynchronous mode	External clock/SCK pin functions as clock input*2
									Synchronous mode	External clock/SCK pin functions as serial clock input
								1	Asynchronous mode	External clock/SCK pin functions as clock input*2
									Synchronous mode	External clock/SCK pin functions as serial clock input

Notes: 1 . Outputs a clock of the same frequency as the bit rate.
2. Inputs a clock with a frequency 16 times the bit rate.

Transmit End Interrupt Enable

0	Transmit end interrupt (TEI) request disabled
1	Transmit end interrupt (TEI) request enabled

Multiprocessor Interrupt Enable
0 Multiprocessor interrupts disabled
[Clearing conditions]

- When the MPIE bit is cleared to 0
- When MPB = 1 data is received

Multiprocessor interrupts enabled
Receive interrupt (RXI) requests, receive error interrupt (ERI) requests, and setting of the RDRF, FER, and ORER flags in SSR are disabled until data with the multiprocessor bit set to 1 is received

Receive Enable

0	Reception disabled
1	Reception enabled

Transmit Enable

0	Transmission disabled
1	Transmission enabled

Receive Interrupt Enable

0	Receive data full interrupt (RXI) request and receive error interrupt (ERI) request disabled
1	Receive data full interrupt (RXI) request and receive error interrupt (ERI) request enabled

Transmit Interrupt Enable

0	Transmit data empty interrupt (TXI) requests disabled
1	Transmit data empty interrupt (TXI) requests enabled

TDR1—Transmit Data Register 1
 H'FF83 SCI1, Smart Card Interface 1

SSR1—Serial Status Register 1

H'FF84
SCI1

Bit
Initial value :

Read/Write :

0	Data with a 0 multiprocessor bit is transmitted
1	Data with a 1 multiprocessor bit is transmitted

Multiprocessor Bit
0 [Clearing condition] When data with a 0 multiprocessor bit is received [Setting condition] When data with a 1 multiprocessor bit is received

Transmit End
0 [Clearing conditions]

- When 0 is written to TDRE after reading TDRE $=1$
- When the DTC*2 is activated by a TXI interrupt and write data to TDR

1 [Setting conditions]

- When the TE bit in SCR is 0
- When TDRE = 1 at transmission of the last bit of a 1-byte serial transmit character

Parity Error

0	$[$ Clearing condition $]$ When 0 is written to PER after reading PER $=1$
	$[$ Sen

1 [Setting condition]
When, in reception, the number of 1 bits in the receive data plus the parity bit does not match the parity setting (even or odd) specified by the O/E bit in SMR

Framing Error

0	$[$ Clearing condition] When 0 is written to FER after reading FER = 1
1	$[$ Setting condition] When the SCI checks whether the stop bit at the end of the receive data is 1 when reception ends, and the stop bit is 0

Overrun Error

| 0 | [Clearing condition] |
| :--- | :--- | When 0 is written to ORER after reading ORER $=1$

[Setting condition]
When the next serial reception is completed while RDRF $=1$
Receive Data Register Full

0	[Clearing conditions] - When 0 is written to RDRF after reading RDRF $=1$ - When the DTC*2 is activated by an RXI interrupt and read data from RDR
1	[Setting condition] When serial reception ends normally and receive data is transferred from RSR to RDR

Transmit Data Register Empty

0	[Clearing conditions] - When 0 is written to TDRE after reading TDRE $=1$ - When the DTC*2 is activated by a TXI interrupt and write data to TDR
1	[Setting conditions] - When the TE bit in SCR is 0 - When data is transferred from TDR to TSR and data can be written to TDR

Notes: 1. Can only be written with 0 for flag clearing.
2. DTC can clear this bit only when DISEL is 0 with the transfer counter not being 0 .

SSR1—Serial Status Register 1

H'FF84

Note: etu: Elementary Time Unit (the time taken to transmit one bit)
Parity Error

00	[Clearing condition] When 0 is written to PER after reading PER $=1$

1 [Setting condition]
When, in reception, the number of 1 bits in the receive data plus the parity bit does not match the parity setting (even or odd) specified by the O/E bit in SMR

Error Signal Status

0	[Clearing conditions] •On reset, or in standby mode or module stop mode - When 0 is written to ERS after reading ERS $=1$
1	[Setting condition] When the error signal is sampled at the low level

Note: Clearing the TE bit in SCR to 0 does not affect the ERS flag, which retains its prior state.
Overrun Error

0	[Clearing condition]
When 0 is written to	

When 0 is written to ORER after reading ORER $=1$
1 [Setting condition]
When the next serial reception is completed while RDRF $=1$
Receive Data Register Full
0 [Clearing conditions]

- When 0 is written to RDRF after reading RDRF $=1$
- When the DTC*2 is activated by an RXI interrupt and read data from RDR
[Setting condition]
When serial reception ends normally and receive data is transferred from RSR to RDR
Transmit Data Register Empty

0	[Clearing conditions] - When 0 is written to TDRE after reading TDRE $=1$ - When the DTC
1	[Setting is activated by a TXI interrupt and write data to TDR - When the TE bit in SCR is 0 - When data is transferred from TDR to TSR and data can be written to TDR

Notes: 1. Can only be written with 0 for flag clearing.
2. DTC can clear this bit only when DISEL is 0 with the transfer counter not being 0 .

RDR1—Receive Data Register 1
H'FF85 SCI1, Smart Card Interface 1

Stores received serial data

SCMR1—Smart Card Mode Register 1

H'FF86 SCI1, Smart Card Interface 1

Bit	7	6	5	4	3	2	1	0
	-	-	-	-	SDIR	SINV	-	SMIF
Initial value	1	1	1	1	0	0	1	0
Read/Write	-	-	-	-	R/W	R/W	-	R/W
							ace	Selec

0	Smart Card interface function is disabled
1	Smart Card interface function is enabled

Smart Card Data Invert

0	TDR contents are transmitted as they are Receive data is stored in RDR as it is
1	TDR contents are inverted before being transmitted Receive data is stored in RDR in inverted form

Smart Card Data Direction

0	TDR contents are transmitted LSB-first Receive data is stored in RDR LSB-first
1	TDR contents are transmitted MSB-first Receive data is stored in RDR MSB-first

Bit	7	6	5	4	3	2	1	0
	C/A	CHR	PE	O/E	STOP	MP	CKS1	CKSO
Initial value	0	0	0	0	0	0		

Read/Write :

Clock Select

0	0	ϕ clock
	1	$\phi / 4$ clock
1	0	$\phi / 16$ clock
	1	$\phi / 64$ clock

Multiprocessor Mode

0	Multiprocessor function disabled
1	Multiprocessor format selected

Stop Bit Length

0	1 stop bit
1	2 stop bits

Parity Mode

0	Even parity
1	Odd parity

Parity Enable

0	Parity bit addition and checking disabled
1	Parity bit addition and checking enabled

Character Length

0	8 -bit data
1	7 -bit data*

Note: * When 7-bit data is selected, the MSB (bit 7) of TDR is not transmitted.
Asynchronous Mode/Synchronous Mode Select

0	Asynchronous mode
1	Synchronous mode

SMR2—Serial Mode Register 2

H'FF88
Smart Card Interface 2
GSM Mode \qquad
Character Length

0	8 -bit data
1	Setting prohibited

0	Normal smart card interface mode operation - TEND flag generated 12.5 etu after beginning of start bit - Clock output on/off control only
1	GSM mode smart card interface mode operation - TEND flag generated 11.0 etu after beginning of start bit - Fixed high/low-level control possible (set in SCR) in addition to clock output on/off control

Note: etu (Elementary Time Unit): Interval for transfer of one bit

BRR2—Bit Rate Register 2
H'FF89 SCI2, Smart Card Interface 2

Note: See section 12.2.8, Bit Rate Register (BRR), for details.

Transmit End Interrupt Enable

0	Transmit end interrupt (TEI) request disabled
1	Transmit end interrupt (TEI) request enabled

Multiprocessor Interrupt Enable
0 Multiprocessor interrupts disabled [Clearing conditions]

- When the MPIE bit is cleared to 0
- When MPB = 1 data is received

1 Multiprocessor interrupts enabled Receive interrupt (RXI) requests, receive error interrupt (ERI) requests, and setting of the RDRF, FER, and ORER flags in SSR are disabled until data with the multiprocessor bit set to 1 is received

Receive Enable

0	Reception disabled
1	Reception enabled

Transmit Enable

0	Transmission disabled
1	Transmission enabled

Receive Interrupt Enable

0	Receive data full interrupt (RXI) request and receive error interrupt (ERI) request disabled
1	Receive data full interrupt (RXI) request and receive error interrupt (ERI) request enabled

Transmit Interrupt Enable

0	Transmit data empty interrupt (TXI) requests disabled
1	Transmit data empty interrupt (TXI) requests enabled

SCR2-Serial Control Register 2

H'FF8A

Bit	7	6	5	4	3	2	1	
	TIE	RIE	TE	RE	MPIE	TEIE	CKE1	CKEO
Initial value	0	0	0	0	0	0	0	0

Read/Write •

$\left.$| SMCR | SMR | SCR setting | | SCK pin function | |
| :---: | :---: | :---: | :---: | :--- | :--- |
| SMIF | C/A, GM | CKE1 | CKE0 | | |
| 0 | Operates as port input
 pin | | | | |
| 1 | 0 | 0 | 0 | 1 | Clock output as SCK
 output pin |
| 1 | 0 | 0 | 0 | Fixed-low output as
 SCK output pin | |
| 1 | 1 | 0 | 1 | Clock output as SCK
 output pin | |
| 1 | 1 | 0 | 0 | Fixed-high output as
 SCK output pin | |
| 1 | 1 | 1 | 1 | 1 | 1 | | Clock output as SCK |
| :--- |
| output pin | \right\rvert\, | |
| :---: |
| 1 |

Transmit End Interrupt Enable

0	Transmit end interrupt (TEI) request disabled
1	Transmit end interrupt (TEI) request enabled

Multiprocessor Interrupt Enable

0	Multiprocessor interrupts disabled [Clearing conditions]

[Clearing conditions]

- When the MPIE bit is cleared to 0
- When MPB = 1 data is received

1 Multiprocessor interrupts enabled
Receive interrupt (RXI) requests, receive error interrupt (ERI) requests, and setting of the RDRF, FER, and ORER flags in SSR are disabled until data with the multiprocessor bit set to 1 is received

Receive Enable

0	Reception disabled
1	Reception enabled

Transmit Enable

0	Transmission disabled
1	Transmission enabled

Receive Interrupt Enable

0	Receive data full interrupt (RXI) request and receive error interrupt (ERI) request disabled
1	Receive data full interrupt (RXI) request and receive error interrupt (ERI) request enabled

Transmit Interrupt Enable

0	Transmit data empty interrupt (TXI) requests disabled
1	Transmit data empty interrupt (TXI) requests enabled

TDR2—Transmit Data Register 2
H'FF8B SCI2, Smart Card Interface 2

SSR2—Serial Status Register 2
H'FF8C
SCI2

Bit

	TDRE	RDRF	ORER	FER	PER	TEND	MPB	MPBT
Initial value	1	0	0	0	0	1	0	0

Read/Write : $\frac{\mathrm{R} /(\mathrm{W})^{* 1}}{\square} \frac{\mathrm{R} /(\mathrm{W})^{* 1}}{\square} \frac{\mathrm{R} /(\mathrm{W})^{* 1}}{\mathrm{R} /(\mathrm{W})^{* 1}} \quad \frac{\mathrm{R} /(\mathrm{W})^{* 1}}{\square} \quad \frac{\mathrm{R}}{\square} \quad \frac{\mathrm{R}}{\square} \quad \frac{\mathrm{R} / \mathrm{W}}{\square}$
Multiprocessor Bit Transfer

0	Data with a 0 multiprocessor bit is transmitted
1	

1 Data with a 1 multiprocessor bit is transmitted

Multiprocessor Bit

0	[Clearing condition] When data with a 0 multiprocessor bit is received
1	[Setting condition] When data with a 1 multiprocessor bit is received

Transmit End

0	[Clearing conditions] - When 0 is written to TDRE after reading TDRE $=1$ - When the DTC*2 is activated by a TXI interrupt and write data to TDR
1	[Setting conditions] - When the TE bit in SCR is 0 - When TDRE $=1$ at transmission of the last bit of a 1 -byte serial transmit character

Parity Error
0 [Clearing condition]
When 0 is written to FER after reading FER = 1
[Setting condition]
When, in reception, the number of 1 bits in the receive data plus the parity bit does not match the parity setting (even or odd) specified by the O/E bit in SMR
Framing Error

0	[Clearing condition] When 0 is written to FER after reading FER $=1$
1	[Setting condition] When the SCI checks whether the stop bit at the end of the receive data is 1 when reception ends, and the stop bit is 0

Overrun Error

0	$[$ Clearing condition] When 0 is written to ORER after reading ORER $=1$
1	$[$ Setting condition $]$ When the next serial reception is completed while RDRF $=1$

Receive Data Register Full
0 [Clearing conditions]

- When 0 is written to RDRF after reading RDRF $=1$
- When the DTC*2 is activated by an RXI interrupt and read data from RDR

1 [Setting condition]
When serial reception ends normally and receive data is transferred from RSR to RDR

Transmit Data Register Empty
0 [Clearing conditions]

- When 0 is written to TDRE after reading TDRE $=1$
- When the DTC*2 is activated by a TXI interrupt and write data to TDR

1 [Setting conditions]

- When the TE bit in SCR is 0
- When data is transferred from TDR to TSR and data can be written to TDR

Notes: 1. Can only be written with 0 for flag clearing.
2. DTC can clear this bit only when DISEL is 0 with the transfer counter not being 0 .

SSR2—Serial Status Register 2

H'FF8C

Smart Card Interface 2

Notes: 1. Can only be written with 0 for flag clearing
2. DTC can clear this bit only when DISEL is 0 with the transfer counter not being 0 .

RDR2—Receive Data Register 2
H'FF8D SCI2, Smart Card Interface 2

Stores received serial data

SCMR2—Smart Card Mode Register 2

H'FF8E SCI2, Smart Card Interface 2

Bit	7	6	5	4	3	2		10
	-	-	-	-	SDIR	SINV		- SMIF
Initial value	1	1	1	1	0	0		10
Read/Write	-	-	-	-	R/W	R/W		R/W
							Sma Inte	Card \qquad ace Mode Select
							0	Smart Card interface function is disabled
							1	Smart Card interface function is enabled

Smart Card Data Invert

0	TDR contents are transmitted as they are Receive data is stored in RDR as it is
1	TDR contents are inverted before being transmitted Receive data is stored in RDR in inverted form

Smart Card Data Direction

0	TDR contents are transmitted LSB-first Receive data is stored in RDR LSB-first
1	TDR contents are transmitted MSB-first Receive data is stored in RDR MSB-first

ADDRAH—A/D Data Register AH	H'FF90	A/D Converter
ADDRAL—A/D Data Register AL	H'FF91	A/D Converter
ADDRBH—A/D Data Register BH	H'FF92	A/D Converter
ADDRBL—A/D Data Register BL	H'FF93	A/D Converter
ADDRCH—A/D Data Register CH	H'FF94	A/D Converter
ADDRCL—A/D Data Register CL	H'FF95	A/D Converter
ADDRDH—A/D Data Register DH	H'FF96	A/D Converter
ADDRDL—A/D Data Register DL	H'FF97	A/D Converter

Bit

Initial value :

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
AD9	AD8	AD7	AD6	AD5	AD4	AD3	AD2	AD1	AD0	-	-	-	-	-	-
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Stores the results of A/D conversion

Analog Input Channel	A/D Data Register
AN0	ADDRA
AN1	ADDRB
AN2	ADDRC
AN3	ADDRD

Bit
Initial value Read/Write

A/D Interrupt Enable

0	A / D conversion end interrupt (ADI) request disabled
1	A / D conversion end interrupt (ADI) request enabled

A/D End Flag

0	[Clearing conditions] - When 0 is written to the ADF flag after reading ADF = 1 - When the DTC*2 is activated by an ADI interrupt, and ADDR is read
1	[Setting conditions] - Single mode: When A/D conversion ends - Scan mode: When one round of conversion has been performed on all specified channels

Notes: 1. Can only be written with 0 for flag clearing.
2. DTC can clear this bit only when DISEL is 0 with the transfer counter not being 0 .

Bit	7	6	5	4	3	2	1
	TRGS1	TRGS0	-	-	-	-	-
Initial value	0	0	1	1	1	1	1
Read/Write	R/W	R/W	-	-	-	-	-
	Timer Trigger Select						
	TRGS1	TRGS1	Description				
	0	0	Start of A/D conversion by external trigger is disabled				
		1	Start of A/D conversion by external trigger (TPU) is enabled				
	1	0	Start of A/D conversion by external trigger (8 -bit timer) is enabled				
		1	Start of A / D conversion by external trigger pin is enabled				

TCR0-Time Control Register 0
TCR1—Time Control Register 1

H'FFB0
H'FFB1

8-Bit Timer Channel 0

8-Bit Timer Channel 1

Bit	7	6	5	4	3	2		1	0
	CMIEB	CMIEA	OVIE	CCLR1	CCLRO	CKS2		CKS1	CKS0
Initial value :	0	0	0	0	0	0		0	0
Read/Write :	R/W	R/W	R/W	R/W	R/W	R/W		R/W	R/W
						Clock	Sele		
						0	0	0	Clock input disabled
								1	Internal clock: counted at falling edge of $\phi / 8$
							1	0	Internal clock: counted at falling edge of $\phi / 64$
								1	Internal clock: counted at falling edge of $\phi / 8192$
						1	0	0	For channel 0 : Count at TCNT1 overflow signal* For channel 1: Count at TCNT0 compare match A*
								1	External clock: counted at rising edge
							1	0	External clock: counted at falling edge
								1	External clock: counted at both rising and falling edges

Note: * If the count input of channel 0 is the TCNT1 overflow signal and that of channel 1 is the TCNT0 compare match signal, no incrementing clock is generated. Do not use this setting.

Counter Clear

0	0	Clear is disabled
	1	Clear by compare match A
1	0	Clear by compare match B
	1	Clear by rising edge of external reset input

Timer Overflow Interrupt Enable

0	OVF interrupt requests (OVI) are disabled
1	OVF interrupt requests (OVI) are enabled

Compare Match Interrupt Enable A

0	CMFA interrupt requests (CMIA) are disabled
1	CMFA interrupt requests (CMIA) are enabled

Compare Match Interrupt Enable B

0	CMFB interrupt requests (CMIB) are disabled
1	CMFB interrupt requests (CMIB) are enabled

TCSR0-Timer Control/Status Register 0
TCSR1—Timer Control/Status Register 1

H'FFB2
H'FFB3

8-Bit Timer Channel 0

8-Bit Timer Channel 1

TCSRO Bit

TCSR1 Bit

Read/Write :
$R /(W){ }^{* 1}$

Output Select

0	0	No change when compare match A occurs
	1	0 is output when compare match A occurs
1	0	1 is output when compare match A occurs
1	Output is inverted when compare match A occurs (toggle output)	

Output Select

0	0	No change when compare match B occurs
	1	0 is output when compare match B occurs
1	0	1 is output when compare match B occurs
	1	Output is inverted when compare match B occurs (toggle output)

A/D Trigger Enable (TCSR0 only)

0	A/D converter start requests by compare match A are disabled
1	A/D converter start requests by compare match A are enabled

Timer Overflow Flag

0	[Clearing condition] Cleared by reading OVF when OVF $=1$, then writing 0 to OVF
1	[Setting condition] Set when TCNT overflows (changes from H'FF to H'00)

Compare Match Flag A

0	[Clearing conditions] - Cleared by reading CMFA when CMFA = 1, then writing 0 to CMFA - When the DTC*2 is activated by a CMIA interrupt, while DISEL bit of MRB in DTC is 0.
1	[Setting condition] Set when TCNT matches TCORA

Compare Match Flag B

0	[Clearing conditions] • Cleared by reading CMFB when CMFB $=1$, then writing 0 to CMFB - When the DTC ${ }^{* 2}$ is activated by a CMIB interrupt, while DISEL bit of MRB in DTC is 0. 1$[$ Setting condition $]$ Set when TCNT matches TCORB

Notes: 1. Only 0 can be written to bits 7 to 5 , to clear these flags.
2. DTC can clear this bit only when DISEL is 0 with the transfer counter not being 0 .

TCORA0-Time Constant Register A0
TCORA1—Time Constant Register A1

H'FFB4
H'FFB5

TCORAO

Initial value

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

Read/Write : R/W R/W

TCORB0—Time Constant Register B0	H'FFB6	8-Bit Timer Channel 0
TCORB1—Time Constant Register B1	H'FFB7	8-Bit Timer Channel 1

TCORB0
TCORB1
Bit

Initial value:

Read/Write : R/W R/W

TCNT0—Timer Counter 0	H'FFB8	8-Bit Timer Channel 0
TCNT1—Timer Counter 1	H'FFB9	8 -Bit Timer Channel 1

	TCNTO								TCNT1							
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Initial value	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Read/Write : R/W R/W

Timer Enable starts counting up from $\mathrm{H}^{\prime} \mathrm{OO}$ until overflow occurs.

0	TCNT is initialized to H'00 and halted
1	TCNT counts

Timer Mode Select

0	Interval timer mode: Sends the CPU an interval timer interrupt request (WOVI) when TCNT overflows
1	Watchdog timer mode: Generates the $\overline{\text { WDTOVF signal when }}$ TCNT overflows

Overflow Flag

0	[Clearing condition] Cleared by reading TCSR when OVF $=1$, then writing 0 to $\mathrm{OVF}^{* 2}$
1	[Setting condition] Set when TCNT overflows from H'FF to H'00 in interval timer mode

Notes: The method for writing to TCSR is different from that for general registers to prevent accidental overwriting.
For details see section 11.2.4, Notes on Register Access.

1. Can only be written with 0 for flag clearing.
2. When polling OVF with the interval timer interrupt disabled, read TSCR twice or more while OVF is set to 1 .

TCNT—Timer Counter

Note: The method for writing to TCNT is different from that for general registers to prevent accidental overwriting. For details see section 11.2.4, Notes on Register Access.

Notes: The method for writing to RSTCSR is different from that for general registers to prevent accidental overwriting. For details see section 11.2.4, Notes on Register Access.

* Can only be written with 0 for flag clearing.

Bit	7	6	5	4	3	2	1	0
		-	-	-	-	CST2	CST1	CST0
Initial value :	0	0	0	0	0	0	0	0
Read/Write :	-	-	-	-	-	R/W	R/W	R/W
					Counter Start			
					0	$\mathrm{TCNT}_{\mathrm{n}}$ cour	t opera	is stopped
					1	$\mathrm{TCNT}_{\mathrm{n}}$ pe	rms co	operation

Note: $\mathrm{n}=2$ to 0

Note: If 0 is written to the CST bit during operation with the TIOC pin designated for output, the counter stops but the TIOC pin output compare output level is retained. If TIOR is written to when the CST bit is cleared to 0 , the pin output level will be changed to the set initial output value.

TSYR—Timer Synchro Register
H'FFC1
TPU

Timer Synchronization

$\left.$| 0 |
| :--- |
| 1 | | TCNTn operates independently (TCNT presetting/ |
| :--- |
| clearing is unrelated to other channels) | \right\rvert\, | TCNTn performs synchronous operation |
| :--- |
| TCNT synchronous presetting/synchronous clearing |
| is possible |

Notes: 1. To set synchronous operation, the SYNC bits for at least two channels must be set to 1 .
2. To set synchronous clearing, in addition to the SYNC bit , the TCNT clearing source must also be set by means of bits CCLR2 to CCLRO in TCR.

Bit	7	6	5	4	3	2		1	0
	CCLR2	CCLR1	CCLR0	CKEG1	CKEGO		TPSC2	TPSC1	TPSC0
Initial value :	0	0	0	0	0	0		0	0
Read/Write :	R/W	R/W	R/W	R/W	R/W	R/W		R/W	R/W
					Time Prescaler				
					0	0	Internal clock: counts on $\phi / 1$		
							Internal clock: counts on $\phi / 4$		
						1	Internal clock: counts on $\phi / 16$		
							1 Int	Internal clock: counts on $\phi / 64$	
					1	0	External clock: counts on TCLKA pin input		
							1 Ex	External clock: counts on TCLKB pin input	
						1	0 Ex	External clock: counts on TCLKC pin input	
							External clock: counts on TCLKD pin input		

Clock Edge

0	0	Count at rising edge
	1	Count at falling edge
1	-	Count at both edges

Counter Clear

0	0	0	TCNT clearing disabled
		1	TCNT cleared by TGRA compare match/input capture
	1	0	TCNT cleared by TGRB compare match/input capture
		1	TCNT cleared by counter clearing for another channel performing synchronous clearing/synchronous operation
0	0	TCNT clearing disabled	
	1	0	TCNT cleared by TGRC compare match/input capture
		1	TCNT cleared by TGRD compare match/input capture performing synchronous clearing/synchronous operation

Bit	7	6	5	4	3		2	1	0
	-	-	BFB	BFA	MD3		MD2	MD1	MD0
Initial value :	1	1	0	0	0		0	0	0
Read/Write :	-	-	R/W	R/W	R/W		R/W	R/W	R/W
					Mode				
					00	0	0 N	al oper	
							1 R	rved	
						1	0 P	mode	
							1 P	mode	
					1	0	0	e count	mode 1
							1 P	e count	mode 2
						1	0 P	e count	mode 3
							1 P	e count	mode 4
					1	*	*		

Legend: *: Don't care
Notes: 1. MD3 is a reserved bit. In a write, it should always be written with 0 .
2. Phase counting mode cannot be set for channels 0 and 3 . In this case, 0 should always be written to MD2.

Buffer Operation Setting A

0	TGRA operates normally
1	TGRA and TGRC used together for buffer operation

Buffer Operation Setting B

0	TGRB operates normally
1	TGRB and TGRD used together for buffer operation

Bit	7	6	5	4		3	2	1	0
	IOB3	IOB2	IOB1	1 OB		IOA3	IOA2	IOA1	IOAO
Initial value :	0	0	0	0		0	0	0	0
Read/Write :	R/W	R/W	R/W	R/W		R/W	R/W	R/W	R/W
			TGROA I/O Control						
			0	0	0	TGROA is output compare register	Output disabled		
							Initial output is 0 output		0 output at compare match
					1				1 output at compare match
									Toggle output at compare match
				1	0		Output disabled		
							Initial output is 1 output		0 output at compare match
					1				1 output at compare match
									Toggle output at compare match
			1	0	0	TGROA is input capture register	Capture input source is TIOCAO pin		Input capture at rising edge
									Input capture at falling edge
					1				Input capture at both edges
				1	*		Setting prohibited		

TGROB I/O Control
Legend: *: Don't care

0	0	0		0	TGROB is output compare register	Output disabled	
				1		Initial output is 0 output	0 output at compare match
				0			1 output at compare match
				1			Toggle output at compare match
	1	0		0		Output disabled	
				1		Initial output is 1 output	0 output at compare match
		1		0			1 output at compare match
				1			Toggle output at compare match
1	0	0	0	0	TGROB is input capture register	Capture input source is TIOCBO pin	Input capture at rising edge
				1			Input capture at falling edge
			1	*			Input capture at both edges
	1			*		Setting prohibited	

Legend: *: Don't care

Legend: *: Don't care
Note: 1. When the BFA bit in TMDRO is set to 1 and TGROC is used as a buffer register, this setting is invalid and input capture/output compare is not generated.
TGROD I/O Control

0	0	0		0	TGROD is output compare register	Output disabled	
				1		Initial output is 0 output	0 output at compare match
		1		0			1 output at compare match
				1			Toggle output at compare match
	1	0		0		Output disabled	
				1		Initial output is 1 output	0 output at compare match
		1		0			1 output at compare match
				1			Toggle output at compare match
1	0	0		0	TGROD is input capture register* ${ }^{*}$	Capture input source is TIOCDO pin	Input capture at rising edge
				1			Input capture at falling edge
		1		*			Input capture at both edges
	1	*		*		Setting prohibited	

Legend: *: Don't care
Note: 1. When the BFB bit in TMDRO is set to 1 and TGROD is used as a buffer register, this setting is invalid and input capture/output compare is not generated.

Note: When TGRC or TGRD is designated for buffer operation, this setting is invalid and the register operates as a buffer register.

Bit	7	6	5	4	3	2	1	0
	TTGE	-	-	TCIEV	TGIED	TGIEC	TGIEB	TGIEA
Initial value	0	1	0	0	0	0	0	0
Read/Write	R/W	-	-	R/W	R/W	R/W	R/W	R/W
								R Interrupt Enable A
							0	Interrupt requests (TGIA) by TGFA bit disabled
								Interrupt requests (TGIA) by TGFA bit enabled
							TGR Inter	rrupt Enable B
							0	errupt requests (TGIB) TGFB bit disabled
							1	errupt requests (TGIB) TGFB bit enabled
						TGR Int	rrupt Enab	e C
						0	errupt req GFC bit dis	uests (TGIC) by abled
						1	errupt req GFC bit en	uests (TGIC) by abled
					TGR Int	rrupt Ena	le D	
						rrupt requ disabled	ests (TGID)	by TGFD
						rrupt requ enabled	ests (TGID)	by TGFD
				Overflow	ow Interrup	Enable		
				0	Interrupt requ	quests (TCIV	IV) by TC	V disabled
				1	Interrupt requ	quests (TCIV	IV) by TC	V enabled

A/D Conversion Start Request Enable

0	A/D conversion start request generation disabled
1	A/D conversion start request generation enabled

TSR0—Timer Status Register 0

H'FFD5

Bit
Initial value :

TGRA•Input Capture/Output Compare Flag

0	[Clearing conditions]

- When DTC* ${ }^{* 2}$ is activated by TGIA interrupt while DISEL bit of MRB in DTC is 0 .
- When 0 is written to TGFA after reading TGFA $=1$
1 [Setting conditions]
- When TCNT = TGRA while TGRA is functioning as output compare register
- When TCNT value is transferred to TGRA by input capture signal while TGRA is functioning as input capture register
TGRB.Input Capture/Output Compare Flag

0	[Clearing conditions] - When DTC*2 is activated by TGIB interrupt while DISEL bit of MRB in DTC is 0.
1	- When 0 is written to TGFB after reading TGFB $=1$
- When TCNT $=$ TGRB while TGRB is functioning as output compare register - When TCNT value is transferred to TGRB by input capture signal while TGRB is functioning as input capture register	

TGRC•Input Capture/Output Compare Flag
0 [Clearing conditions]

- When DTC ${ }^{* 2}$ is activated by TGIC interrupt while DISEL bit of MRB in DTC is 0
- When 0 is written to TGFC after reading TGFC $=1$

1 [Setting conditions]

- When TCNT = TGRC while TGRC is functioning as output compare register
- When TCNT value is transferred to TGRC by input capture signal while TGRC is functioning as input capture register

TGRD.Input Capture/Output Compare Flag

0	[Clearing conditions] - When DTC*2 is activated by TGID interrupt while DISEL bit of MRB in DTC - is 0
1	When 0 is written to TGFD after reading TGFD $=1$
Setting conditions]	
- When TCNT $=$ TGRD while TGRD is functioning as output compare register	
- When TCNT value is transferred to TGRD by input capture signal while	
TGRD is functioning as input capture register	

Overflow Flag

0	Clearing condition] When 0 is written to TCFV after reading TCFV $=1$
1	$[$ Setting condition $]$ When the TCNT value overflows (changes from H'FFFF to H'0000)

Notes: 1. Can only be written with 0 for flag clearing.
2. DTC can clear this bit only when DISEL is 0 with the transfer counter not being 0 .

Bit

Initial value :

Read/Write : R/W R/W

> Up-counter

TGR0A—Timer General Register 0A	H'FFD8	TPU0
TGR0B—Timer General Register 0B	H'FFDA	TPU0
TGR0C—Timer General Register 0C	H'FFDC	TPU0
TGR0D-Timer General Register 0D	H'FFDE	TPU0

Bit

Initial value :

Read/Write : R/W R/W

TCR1—Timer Control Register 1
H'FFE0
TPU1

Note: This setting is ignored when channel 1 is in phase counting mode.

Clock Edge

0	0	Count at rising edge
	1	Count at falling edge
1	-	Count at both edges

Note: This setting is ignored when channel 1 is in phase counting mode.
Counter Clear

0	0	TCNT clearing disabled
	1	TCNT cleared by TGRA compare match/input capture
	0	TCNT cleared by TGRB compare match/input capture
	1	TCNT cleared by counter clearing for another channel performing synchronous clearing/synchronous operation

Legend: *: Don't care
Note: MD3 is a reserved bit. In a write, it should always be written with 0 .

TIOR1—Timer I/O Control Register 1

H'FFE2
TPU1

Bit	7	6	5	4	3	2	1	0
	IOB3	IOB2	IOB1	IOBO	IOA3	IOA2	IOA1	IOAO
Initial value	0	0	0	0	0	0	0	0
Read/Write	R/W							

TGR1A I/O Control

0	0		0	0	TGR1A is output compare register	Output disabled	
				1		Initial output is 0 output	0 output at compare match
			1	0			1 output at compare match
				1			Toggle output at compare match
	1	0		0		Output disabled	
				1		Initial output is 1 output	0 output at compare match
		1		0			1 output at compare match
				1			Toggle output at compare match
1	0	0		0	TGR1A is input capture register	Capture input source is TIOCA1 pin	Input capture at rising edge
				1			Input capture at falling edge
			1	*			Input capture at both edges
	1		*	*		Setting prohibited	

Legend: *: Don't care
TGR1B I/O Control

0	0	01	0	TGR1B is output compare register	Output disabled	
			1		Initial output is 0 output	0 output at compare match
			0			1 output at compare match
			1			Toggle output at compare match
	1	0	0		Output disabled	
			1		Initial output is 1 output	0 output at compare match
		1	0			1 output at compare match
			1			Toggle output at compare match
1	0	0	0	TGR1B is input capture register	Capture input source is TIOCB1 pin	Input capture at rising edge
			1			Input capture at falling edge
		1	*			Input capture at both edges
	1		*		Setting prohibited	

Legend: *: Don't care

A/D Conversion Start Request Enable

0	A/D conversion start request generation disabled
1	A/D conversion start request generation enabled

TSR1—Timer Status Register 1
H'FFE5
TPU1

Bit

Initial value

Read/Write :

TGRA Input Capture/Output Compare Flag
0 [Clearing conditions]

- When DTC is activated by TGIA interrupt while DISEL bit of MRB in DTC*2 is 0 .
- When 0 is written to TGFA after reading TGFA = 1

1 [Setting conditions]

- When TCNT = TGRA while TGRA is functioning as output compare register
- When TCNT value is transferred to TGRA by input capture signal while TGRA is functioning as input capture register

TGRB Capture/Output Compare Flag

0	[Clearing conditions] - When DTC*2 is activated by TGIB interrupt while DISEL bit of MRB in DTC is 0.			
- When 0 is written to TGFB after reading TGFB $=1$		$	$	[Setting conditions]
:---				
1When TCNT $~$ TGRB while TGRB is functioning as - When compare register capture signal while TGRB is functioning as input capture register				

Overflow Flag

0	[Clearing condition] When 0 is written to TCFV after reading TCFV $=1$
1	[Setting condition] When the TCNT value overflows (changes from H'FFFF to H'0000))

Underflow Flag

0	[Clearing condition] When 0 is written to TCFU after reading TCFU $=1$
1	$[$ Setting condition] When the TCNT value underflows (changes from H'OOOO to H'FFFF)

Count Direction Flag

0	TCNT counts down
1	TCNT counts up

Notes: 1. Can only be written with 0 for flag clearing.
2. DTC can clear this bit only when DISEL is 0 with the transfer counter not being 0 .

Bit

Initial value :

Read/Write : R/W R/W

> Up/down-counter*

Note: * This timer counter can be used as an up/down-counter only in phase counting mode or when performing overflow/underflow counting on another channel. In other cases it functions as an up-counter.

TGR1A—Timer General Register 1A	H'FFE8	TPU1
TGR1B—Timer General Register 1B	H'FFEA	TPU1

Bit

Initial value :

Read/Write : R/W R/W

Bit	7	6	5	4	3		2	1	0
	-	CCLR1	CCLRO	CKEG1	CKEGO		SC2	TPSC1	TPSC0
Initial value	0	0	0	0	0		0	0	0
Read/Write	-	R/W	R/W	R/W	R/W		R/W	R/W	R/W
					Time	Pres	scaler	\square	
					0	0	0 In	rnal clock	counts on $\phi / 1$
							1 In	rnal clock	counts on $\phi / 4$
						1	0 In	rnal clock	counts on $\phi / 16$
							1 In	rnal clock	counts on $\phi / 64$
					1	0	0 E	ernal clock	: counts on TCLKA pin input
							1 E	ernal clock	: counts on TCLKB pin input
						1		ernal clock	: counts on TCLKC pin input
								rnal clock	counts on $\phi / 1024$

Note: This setting is ignored when channel 2 is in phase counting mode.

Clock Edge

0	0	Count at rising edge
	1	Count at falling edge
1	-	Count at both edges

Note: This setting is ignored when channel 2 is in phase counting mode.

Counter Clear

0	0	TCNT clearing disabled
	1	TCNT cleared by TGRA compare match/input capture
	0	TCNT cleared by TGRB compare match/input capture
	1	TCNT cleared by counter clearing for another channel performing synchronous clearing/synchronous operation

Bit

Initial value : | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| - | - | - | - | MD3 | MD2 | MD1 | MD0 |
| 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 |
| - | - | - | - | R/W | R/W | R/W | R/W |

0	0	0	0	Normal operation
			1	Reserved
		1	0	PWM mode 1
			1	PWM mode 2
	1	0	0	Phase counting mode 1
			1	Phase counting mode 2
		1	0	Phase counting mode 3
			1	Phase counting mode 4
1	*	*	*	-

Legend: *: Don't care
Note: MD3 is a reserved bit. In a write, it should always be written with 0 .

TIOR2—Timer I/O Control Register 2
H'FFF2
TPU2

Bit	7	6	5	4			3	2	1	0
	IOB3	IOB2	IOB1		IOB0		IOA3	IOA2	IOA1	IOAO
Initial value :	0	0	0	0			0	0	0	0
Read/Write :	R/W	R/W	R/W	R/W			R/W	R/W	R/W	R/W
			TGR2A I/O Control				-			
			0	0	0	0	TGR2A is output compare register	Output disabled		
						1		Initial output is 0 output		0 output at compare match
					1	0				1 output at compare match
						1				Toggle output at compare match
				1	0	0		Output disabled		
						1		Initial output is 1 output		0 output at compare match
					1	0				1 output at compare match
						1				Toggle output at compare match
			1	*	0	0	TGR2A is input capture register	Capture input source is TIOCA2 pin		Input capture at rising edge
						1				Input capture at falling edge
					1	*				Input capture at both edges

Legend: *: Don't care
TGR2B I/O Control

0	0	0	0	TGR2B is output compare register	Output disabled	
			1		Initial output is 0 output	0 output at compare match
		1	0			1 output at compare match
			1			Toggle output at compare match
	1	0	0		Output disabled	
			1		Initial output is 1 output	0 output at compare match
		1	0			1 output at compare match
			1			Toggle output at compare match
1	*	0	0	TGR2B is input capture register	Capture input source is TIOCB2 pin	Input capture at rising edge
			1			Input capture at falling edge
		1	*			Input capture at both edges

Legend: *: Don't care

TIER2-Timer Interrupt Enable Register 2
H'FFF4
TPU2

Bit
Initial value

7	6	5	4	3	2	1	0
TTGE	-	TCIEU	TCIEV	-	-	TGIEB	TGIEA
0	1	0	0	0	0	0	0

Read/Write :

- -

TGR Interrupt Enable A

0	Interrupt requests (TGIA) by TGFA bit disabled
1	Interrupt requests (TGIA) by TGFA bit enabled

TGR Interrupt Enable B

0	Interrupt requests (TGIB) by TGFB bit disabled
1	Interrupt requests (TGIB) by TGFB bit enabled

Overflow Interrupt Enable

0	Interrupt requests (TCIV) by TCFV disabled
1	Interrupt requests (TCIV) by TCFV enabled

Underflow Interrupt Enable

0	Interrupt requests (TCIU) by TCFU disabled
1	Interrupt requests (TCIU) by TCFU enabled

A/D Conversion Start Request Enable

0	A/D conversion start request generation disabled
1	A/D conversion start request generation enabled

TSR2—Timer Status Register 2
H'FFF5
TPU2

Bit

Initial value

Underflow Flag

0	[Clearing condition] When 0 is written to TCFU after reading TCFU = 1
1	$[$ Setting condition $]$ When the TCNT value underflows (changes from H'0000 to H'FFFF)

Count Direction Flag

0	TCNT counts down
1	TCNT counts up

Notes: 1. Can only be written with 0 for flag clearing.
2. DTC can clear this bit only when DISEL is 0 with the transfer counter not being 0 .

Bit

Initial value :

Read/Write : R/W R/W

Up/down-counter*
Note: * This timer counter can be used as an up/down-counter only in phase counting mode or when performing overflow/underflow counting on another channel. In other cases it functions as an up-counter.

TGR2A-Timer General Register 2A

H'FFF8
TPU2
TGR2B—Timer General Register 2B
H'FFFA
TPU2

Read/Write : R/W R/W

Appendix C I/O Port Block Diagrams

C. 1 Port 1 Block Diagram

Figure C. 1 (a) Port 1 Block Diagram (Pins $\mathrm{P1}_{0}$ and $\mathrm{P1}_{1}$)

Figure C. 1 (b) Port 1 Block Diagram ($\mathbf{P i n s} \mathbf{P 1}_{2}$ and $\mathbf{P 1}_{3}$)

Figure C. 1 (c) Port 1 Block Diagram ($\mathbf{P i n s} \mathbf{P 1}_{4}$ and $\mathbf{P 1}{ }_{6}$)

Figure C. 1 (d) Port 1 Block Diagram (Pins P1 $_{5}$ and P1 ${ }_{7}$)

C. 2 Port 2 Block Diagram

Figure C. 2 (a) Port 2 Block Diagram (Pins P2 $\mathbf{0}_{0}$ and P2)

Figure C. 2 (b) Port 2 Block Diagram (Pins P2 2_{2} and P2 ${ }_{4}$)

Figure C. 2 (c) Port 2 Block Diagram (Pins $\mathbf{P 2}_{3}$ and P2 ${ }_{5}$)

Legend:
WDDR2 : Write to P2DDR
WDR2 : Write to P2DR
RDR2 : Read P2DR
RPOR2 : Read port 2
Note: $\mathrm{n}=6$ or 7
Figure C. 2 (d) Port 2 Block Diagram (Pins $\mathbf{P 2}_{6}$ and P2 ${ }_{7}$)

C. 3 Port 3 Block Diagram

Notes: $\mathrm{n}=0$ or 1

1. Output enable signal
2. Open drain control signal

Figure C. 3 (a) Port 3 Block Diagram (Pins P3 ${ }_{0}$ and P3 $)_{1}$)

Figure C. 3 (b) Port 3 Block Diagram (Pins $\mathbf{P 3}_{2}$ and $\mathbf{P 3}_{3}$)

Figure C. 3 (c) Port 3 Block Diagram (Pins $\mathrm{P3}_{4}$ and $\mathrm{P3}_{5}$)

C. 4 Port 4 Block Diagram

Figure C. 4 Port 4 Block Diagram (Pins P4 to P_{3})

C. 5 Port 5 Block Diagram

Figure C. 5 (a) Port 5 Block Diagram (Pin P5)

Figure C. 5 (b) Port 5 Block Diagram (Pin P5 $)_{1}$

Figure C. 5 (c) Port 5 Block Diagram (Pin P5 $)_{2}$

Figure C. 5 (d) Port 5 Block Diagram (Pin P53)

C. 6 Port A Block Diagram

Figure C. 6 Port A Block Diagram ($\mathbf{P i n s}^{\mathbf{P A}_{0}}$ to $\mathbf{P A}_{3}$)

C. 7 Port B Block Diagram

Figure C. 7 Port B Block Diagram (Pins $\mathbf{P B}_{0}$ to $\mathbf{P B}_{7}$)

C. 8 Port C Block Diagram

Figure C. 8 Port C Block Diagram (Pins PC $_{\mathbf{0}}$ to PC_{7})

C. 9 Port D Block Diagram

Figure C. 9 Port D Block Diagram (Pins PD ${ }_{0}$ to PD $_{7}$)
C. 10 Port E Block Diagram

Figure C. 10 Port E Block Diagram (Pins PE $_{0}$ to PE $_{7}$)

C. 11 Port F Block Diagram

Figure C. 11 (a) Port F Block Diagram (Pin PF ${ }_{0}$)

Figure C. 11 (b) Port F Block Diagram (Pin PF 1)

Figure C. 11 (c) Port F Block Diagram (Pin PF ${ }_{2}$)

Figure C. 11 (d) Port F Block Diagram (Pin PF_{3})

Figure C. 11 (e) Port F Block Diagram (Pin $\mathbf{P F}_{4}$)

Figure C. 11 (f) Port F Block Diagram (Pin PF_{5})

Figure C. 11 (g) Port F Block Diagram (Pin PF_{6})

Figure C. 11 (h) Port F Block Diagram (Pin PF ${ }_{7}$)

C. 12 Port G Block Diagram

Figure C. 12 (a) Port G Block Diagram (Pin PG $\mathbf{0}^{\text {(}}$)

Figure C. 12 (b) Port G Block Diagram (Pin PG $_{1}$)

Figure C. 12 (c) Port G Block Diagram (Pins $\mathbf{P G}_{2}$ and PG $_{3}$)

Figure C. 12 (d) Port G Block Diagram (Pin PG $_{4}$)

Appendix D Pin States

D. 1 Port States in Each Mode

Table D. 1 I/O Port States in Each Processing State

Port Name Pin Name	MCU Operating Mode	Power-On Reset	Manual Reset	Hardware Standby Mode	Software Standby Mode	Bus Release State	Program Execution State Sleep Mode
P17/TIOCB2/ TCLKD P1 ${ }_{6} /$ TIOCA2 P1 1 /TIOCB1/ TCLKC P1 ${ }_{4}$ /TIOCA1	1 to 7	T	kept	T	kept	kept	I/O port
$\mathrm{P} 13^{\text {/TIOCD0/ }}$	1 to 3, 7	T	kept	T	kept	kept	I/O port
TCLKB/A ${ }_{23}$ P1 ${ }_{2}$ /TIOCC0/ TCLKA/A ${ }_{22}$ P1,/TIOCB0/ A_{21} P1 ${ }_{0}$ /TIOCA0/ A_{20}	4 to 6	T	kept	T	$\begin{aligned} & {[D D R \cdot O P E=0]} \\ & T \\ & {\left[\begin{array}{l} \text { [DDR } \cdot O P E=1] \\ \text { kept } \end{array}\right.} \end{aligned}$	T	[DDR $=0$] Input port [DDR = 1] Address output
Port 2	1 to 7	T	kept	T	kept	kept	I/O port
Port 3	1 to 7	T	kept	T	kept	kept	I/O port
Port 4	1 to 7	T	T	T	T	T	Input port
Port 5	1 to 7	T	kept	T	kept	kept	I/O port
Port A	1 to 3, 7	T	kept	T	kept	kept	I/O port
	4, 5	L	kept	T	$\begin{aligned} & {[O P E=0]} \\ & T \\ & {[O P E=1]} \\ & \text { kept } \end{aligned}$	T	Address output
	6	T	kept	T	$\begin{aligned} & {[\mathrm{DDR} \cdot \mathrm{OPE}=0]} \\ & \mathrm{T} \\ & {[\mathrm{DDR} \cdot \mathrm{OPE}=1]} \\ & \text { kept } \end{aligned}$	T	[DDR = 0] Input port [DDR = 1] Address output

Port Name Pin Name	MCU Operating Mode	Power-On Reset	Manual Reset	Hardware Standby Mode	Software Standby Mode	Bus Release State	Program Execution State Sleep Mode
Port B	1, 4, 5	L	kept	T	$\begin{aligned} & {[\mathrm{OPE}=0]} \\ & \mathrm{T} \\ & {[\mathrm{OPE}=1]} \\ & \mathrm{kept} \end{aligned}$	T	Address output
	2, 6	T	kept	T	$\begin{aligned} & {[D D R \cdot O P E=0]} \\ & T \\ & {[D D R \cdot O P E=1]} \\ & \text { kept } \end{aligned}$	T	$[D D R=0\}$ Input port $[\mathrm{DDR}=1]$ Address output
	3, 7	T	kept	T	kept	kept	I/O port
Port C	1,4,5	L	kept	T	$\begin{aligned} & {[\mathrm{OPE}=0]} \\ & \mathrm{T} \\ & {[\mathrm{OPE}=1]} \\ & \mathrm{kept} \end{aligned}$	T	Address output
	2, 6	T	kept	T	$\begin{aligned} & {[D D R \cdot O P E=0]} \\ & T \\ & {[\mathrm{DDR} \cdot \mathrm{OPE}=1]} \\ & \mathrm{kept} \end{aligned}$	T	$[D D R=0]$ Input port $[D D R=1]$ Address output
	3, 7	T	kept	T	kept	kept	I/O port
Port D	1, 2, 4 to 6	T	T	T	T	T	Data bus
	3, 7	T	kept	T	kept	kept	1/O port
Port E	1, 2, 8-bit 4 to 6 bus	T	kept	T	kept	kept	I/O port
	16-bit bus	T	T	T	T	T	Data bus
	3, 7	T	kept	T	kept	kept	I/O port

Port Name Pin Name	MCU Operating Mode	Power-On Reset	Manual Reset	Hardware Standby Mode	Software Standby Mode	Bus Release State	Program Execution State Sleep Mode
$\mathrm{PF}_{7} / \mathrm{\phi}$	1, 2, 4 to 6	Clock output	[DDR = 0] Input port [DDR = 1] Clock output	T	$[D D R=0]$ Input port $\begin{aligned} & {[\mathrm{DDR}=1]} \\ & \mathrm{H} \end{aligned}$	[DDR = 0] Input port $[D D R=1]$ Clock output	[DDR = 0] Input port $[\mathrm{DDR}=1]$ Clock output
	3, 7	T	kept	T	$[D D R=0]$ Input port $\begin{aligned} & {[\mathrm{DDR}=1]} \\ & \mathrm{H} \end{aligned}$	$[D D R=0]$ Input port $[\mathrm{DDR}=1]$ Clock output	[DDR = 0] Input port $[\mathrm{DDR}=1]$ Clock output
$\begin{aligned} & \hline \mathrm{PF}_{6} / \overline{\mathrm{AS}} \\ & \mathrm{PF}_{5} / \overline{\mathrm{RD}} \\ & \mathrm{PF}_{4} / \overline{\mathrm{HWR}} \\ & \mathrm{PF}_{3} / \overline{\mathrm{LWR}} / \\ & \mathrm{IRQ3} \end{aligned}$	1, 2, 4 to 6	H	H	T	$\begin{aligned} & {[\mathrm{OPE}=0]} \\ & \mathrm{T} \\ & {[\mathrm{OPE}=1]} \\ & \mathrm{H} \end{aligned}$	T	$\overline{\mathrm{AS}}, \overline{\mathrm{RD}}$, HWR, $\overline{\text { LWR }}$
	3, 7	T	kept	T	kept	kept	I/O port
$\begin{aligned} & \overline{\mathrm{PF}_{2} / \overline{\mathrm{WAIT}} /} \\ & \overline{\mathrm{BREQO} /} \\ & \overline{\mathrm{IRQ2}} \end{aligned}$	1, 2, 4 to 6	T	kept	T	$\begin{aligned} & {[\text { } \mathrm{BREQOE}+} \\ & \text { WAITE }=0] \\ & \mathrm{kept} \\ & {[\text { BREQOE }=1 \text {, }} \\ & \text { WAITE }=0] \\ & \mathrm{kept} \\ & {[\text { BREQOE }=0 \text {, }} \\ & \text { WAITE = 1] } \\ & T \end{aligned}$	$\begin{aligned} & {[\mathrm{BREQOE}+} \\ & \mathrm{WAITE}=0] \\ & \text { kept } \\ & {[\mathrm{BREQOE}=1,} \\ & \text { WAITE }=0] \\ & \hline \text { BREQO } \\ & {[\mathrm{BREQOE}=0,} \\ & \mathrm{WAITE}=1] \\ & \mathrm{T} \end{aligned}$	$\begin{aligned} & {[\text { } \mathrm{BREQOE}+} \\ & \text { WAITE }=0] \\ & \text { l/O port } \\ & {[\text { BREQOE }=1,} \\ & \text { WAITE }=0] \\ & \hline \text { BREQO } \\ & {[\text { BREQOE }=0,} \\ & \text { WAITE }=1] \\ & \text { WAIT } \end{aligned}$
	3, 7	T	kept	T	kept	kept	I/O port
$\frac{\overline{\mathrm{PF}} / \overline{\mathrm{BACK}} /}{\frac{\mathrm{IRQ} 1}{}}$	1, 2, 4 to 6	T	kept	T	$\begin{aligned} & {[\mathrm{BRLE}=0]} \\ & \mathrm{kept} \\ & {[\mathrm{BRLE}=1]} \\ & \mathrm{H} \end{aligned}$	L	$\begin{aligned} & {[\mathrm{BRLE}=0]} \\ & \mathrm{I} / \mathrm{O} \text { port } \\ & {[\mathrm{BRLE}=1]} \\ & \frac{\mathrm{BACK}}{} \end{aligned}$
	3, 7	T	kept	T	kept	kept	I/O port
$\begin{aligned} & \hline \frac{\mathrm{PF} / \overline{\mathrm{BREQ}} / \overline{\mathrm{R}}}{\overline{\mathrm{RQO}}} \end{aligned}$	1, 2, 4 to 6	T	kept	T	$\begin{aligned} & {[\mathrm{BRLE}=0]} \\ & \text { kept } \\ & {[\mathrm{BRLE}=1]} \\ & \mathrm{T} \end{aligned}$	T	[$\mathrm{BRLE}=0$] I/O port $\left.\frac{[\mathrm{BRLE}}{\mathrm{BREQ}}=1\right]$
	3, 7	T	kept	T	kept	kept	I/O port

Port Name Pin Name	MCU Operating Mode	Power-On Reset	Manual Reset	Hardware Standby Mode	Software Standby Mode	Bus Release State	Program Execution State Sleep Mode
$\overline{\mathrm{PG}} / \overline{\mathrm{CSO}}$	1, 4, 5	H	kept	T	$\begin{aligned} & {[\mathrm{DDR} \cdot \mathrm{OPE}=0]} \\ & \mathrm{T} \end{aligned}$	T	$[D D R=0]$ Input port
	2, 6	T			$\begin{aligned} & \text { [DDR } \cdot O P E=1] \\ & H \end{aligned}$		$\begin{aligned} & \left.\hline \frac{[\mathrm{DDR}}{\mathrm{CSO}}=1\right] \\ & \text { (in sleep } \\ & \text { mode, } \mathrm{H} \text {) } \end{aligned}$
	3, 7	T	kept	T	kept	kept	I/O port
$\begin{aligned} & \hline \mathrm{PG}_{3} / \overline{\mathrm{CS} 1} \\ & \mathrm{PG}_{2} / \overline{\mathrm{CS} 2} \\ & \mathrm{PG}_{1} / \overline{\mathrm{CS} 3} / \\ & \overline{\mathrm{RQ} 0} \end{aligned}$	1 to 3, 7	T	kept	T	kept	kept	I/O port
	4 to 6	T	kept	T	$\begin{aligned} & {[D D R \cdot O P E=0]} \\ & T \\ & {[D D R \cdot O P E=1]} \\ & H \end{aligned}$	T	$[D D R=0]$ Input port $\left.\frac{[\mathrm{DDR}}{\overline{\mathrm{CS}} \text { to }}=1\right]$
$\begin{aligned} & \overline{\mathrm{PG}_{0} / \overline{\mathrm{ADTRG}} /} \\ & \hline \mathrm{RQ6} \end{aligned}$	1 to 7	T	kept	T	kept	kept	I/O port
Legend:							
H :	High level						
L:	Low level						
T:	High imped	nce					
kept:	Input port b	comes high	-impeda	ce, output	port retains state		
DDR:	Data directio	n register					
OPE:	Output port	nable					
WAITE:	Wait input	nable					
BRLE:	Bus release	enable					
BREQOE: BREQO pin enable							

Appendix E Pin States at Power-On

Note that pin states at power-on depend on the state of the $\overline{\text { STBY }}$ pin and NMI pin. The case in which pins settle* from an indeterminate state at power-on, and the case in which pins settle* from the high-impedance state, are described below.

After reset release, power-on reset exception handling is started.
Note: * "Settle" refers to the pin states in a power-on reset in each MCU operating mode.

E. 1 When Pins Settle from an Indeterminate State at Power-On

When the NMI pin level changes from low to high after powering on, the chip goes to the poweron reset state after a high level is detected at the NMI pin. While the chip detects a low level at the NMI pin, the manual reset state is established. The pin states are indeterminate during this interval. (Ports may output an internally determined value after powering on.)

The NMI setup time $\left(\mathrm{t}_{\text {NMIS }}\right)$ is necessary for the chip to detect a high level at the NMI pin.

Figure E. 1 When Pins Settle from an Indeterminate State at Power-On

E. 2 When Pins Settle from the High-Impedance State at Power-On

When the $\overline{\text { STBY }}$ pin level changes from low to high after powering on, the chip goes to the poweron reset state after a high level is detected at the $\overline{\text { STBY }}$ pin. While the chip detects a low level at the $\overline{\text { STBY }}$ pin, it is in the hardware standby mode. During this interval, the pins are in the highimpedance state.

After detecting a high level at the $\overline{\text { STBY }}$ pin, the chip starts oscillation.

Figure E. 2 When Pins Settle from the High-Impedance State at Power-On

Appendix F Timing of Transition to and Recovery from Hardware Standby Mode

Timing of Transition to Hardware Standby Mode

(1) To retain RAM contents with the RAME bit set to 1 in SYSCR, drive the $\overline{\operatorname{RES}}$ signal low at least 10 states before the $\overline{\text { STBY }}$ signal goes low, as shown figure F.1. $\overline{\text { RES }}$ must remain low until $\overline{\text { STBY }}$ goes low (delay from $\overline{\text { STBY }}$ fall to $\overline{\mathrm{RES}}$ rise: minimum 0 ns).
$\overline{S T B Y}$
$\overline{\text { RES }}$

Figure F. 1 Timing of Transition to Hardware Standby Mode

(2) To retain RAM contents with the RAME bit cleared to 0 in SYSCR, or when RAM contents do not need to be retained, $\overline{\text { RES }}$ does not have to be driven low as in (1).

Timing of Recovery from Hardware Standby Mode

Drive the $\overline{\mathrm{RES}}$ signal low and the NMI signal high approximately 100 ns or more before $\overline{\mathrm{STBY}}$ goes high, and execute a power-on reset.

Figure F. 2 Timing of Recovery from Hardware Standby Mode

Appendix G Product Code Lineup

Appendix H Package Dimensions

The package dimension that is shown in the Renesas Semiconductor Package Data Book has priority.

Figure H. 1 FP-100B Package Dimensions

Figure H. 2 TFP-100B Package Dimensions

Renesas 16-Bit Single-Chip Microcomputer Hardware Manual H8S/2245 Group

Publication Date: 1st Edition, December 1996
Rev.3.00, March 26, 2007
Published by: Sales Strategic Planning Div.
Edited by: Customer Support Department Global Strategic Communication Div. Renesas Solutions Corp.
© 2007. Renesas Technology Corp., All rights reserved. Printed in Japan.

Renesas Technology Corp. sales Strategic Planning Div. Nippon Bldg., 2-6-2, Ohte-machi, Chiyodaku, Tokyo 100-0004, Japan
ReNESAS

RENESAS SALES OFFICES

http://www.renesas.com
Refer to "http://www.renesas.com/en/network" for the latest and detailed information.
Renesas Technology America, Inc.
450 Holger Way, San Jose, CA' 95134 -1368, U.S.A
Tel: <1> (408) 382-7500, Fax: <1> (408) 382-7501
Renesas Technology Europe Limited
Dukes Meadow, Millboard Road, Bourne End, Buckinghamshire, SL8 5FH, U.K.
Tel: <44> (1628) 585-100, Fax: <44> (1628) 585-900
Renesas Technology (Shanghai) Co., Ltd.
Unit 204, 205, AZIACenter, No. 1233 Lujiazui Ring Rd, Pudong District, Shanghai, China 200120
Tel: <86> (21) 5877-1818, Fax: <86> (21) 6887-7898
Renesas Technology Hong Kong Ltd.
7th Floor, North Tower, World Finance Centre, Harbour City, 1 Canton Road, Tsimshatsui, Kowloon, Hong Kong Tel: <852> 2265-6688, Fax: <852> 2730-6071

Renesas Technology Taiwan Co., Ltd.
10th Floor, No.99, Fushing North Road, Taipei, Taiwan
Tel: <886> (2) 2715-2888, Fax: <886> (2) 2713-2999
Renesas Technology Singapore Pte. Ltd.
1 Harbour Front Avenue, \#06-10, Keppel Bay Tower, Singapore 098632
Tel: <65> 6213-0200, Fax: <65> 6278-8001
Renesas Technology Korea Co., Ltd.
Kukje Center Bldg. 18th FI., 191, 2-ka, Hangang-ro, Yongsan-ku, Seoul 140-702, Korea
Tel: <82> (2) 796-3115, Fax: <82> (2) 796-2145
Renesas Technology Malaysia Sdn. Bhd
Unit 906, Block B, Menara Amcorp, Amcorp Trade Centre, No.18, Jalan Persiaran Barat, 46050 Petaling Jaya, Selangor Darul Ehsan, Malaysia Tel: <603> 7955-9390, Fax: <603> 7955-9510

H8S/2245 Group Hardware Manual

Renesas

[^0]: Notes: 1. $\overline{\mathrm{IRQ3}}$ cannot be used in modes $1,2,4,5$, and 6 , or in the $\mathrm{H} 8 \mathrm{~S} / 2240$.

[^1]: Note: $\mathrm{n}=7$ to 0

[^2]: Rev.3.00 Mar. 26, 2007 Page 189 of 772 REJ09B0355-0300

[^3]: Legend: x: Don't care

[^4]: Legend: *: Don't care

[^5]: Legend: *: Don't care

[^6]: Notes: 1. r is the register specification field.
 2. aa is the absolute address specification.

