

4.75V to 18V Input, 2A Synchronous Step Down DC/DC Converter

UM5482S8 SOP8

General Description

The UM5482S8 is a synchronous buck regulator. The device integrates two $130m\Omega$ MOSFETs, and provides 2A of continuous load current over a wide input voltage of 4.75V to 18V. Current mode control provides fast transient response and cycle-by-cycle current limit.

An adjustable soft-start prevents inrush current at turn-on, and in shutdown mode the supply current drops to $1\mu A$.

This device, available in an 8-pin SOP package, provides a very compact solution with minimal external components.

Applications

- Distributed Power Systems
- Networking Systems
- FPGA, DSP, ASIC Power Supplies
- Green Electronics/Appliances
- Notebook Computers

Features

- 2A Output Current
- Wide 4.75V to 18V Operating Input Range
- Integrated 130mΩ Power MOSFET Switches
- Output Adjustable from 0.923V to 15V
- Up to 93% Efficiency
- Programmable Soft-Start
- Stable with Low ESR Ceramic Output Capacitors
- Fixed 340kHz Frequency
- Cycle-by-Cycle Over Current Protection
- Input Under Voltage Lockout
- SOP8 Package

Pin Configurations

Top View

Ordering Information

Part Number	Packaging Type	Marking Code	Shipping Qty
UM5482S8	SOP8	UM5482S8	2500pcs/13Inch Tape & Reel

Pin Description

Pin Number	Symbol	Function		
1	BS	High-Side Gate Drive Boost Input. BS supplies the drive for the high-side N-Channel MOSFET switch. Connect a 0.01μ F or greater capacitor from SW to BS to power the high side switch.		
2	IN	Power Input. IN supplies the power to the IC, as well as the step-down converter switches. Drive IN with a 4.75V to 18V power source. Bypass IN to GND with a suitably large capacitor to eliminate noise on the input to the IC.		
3	SW	Power Switching Output. SW is the switching node that supplies power to the output. Connect the output LC filter from SW to the output load. Note that a capacitor is required from SW to BS to power the high-side switch.		
4	GND	Ground.		
5	FB	Feedback Input. FB senses the output voltage to regulate that voltage. Drive FB with a resistive voltage divider from the output voltage. The feedback threshold is 0.923V.		
6	СОМР	Compensation Node. COMP is used to compensate the regulation control loop. Connect a series RC network from COMP to GND to compensate the regulation control loop. In some cases, an additional capacitor from COMP to GND is required.		
7	EN	Enable Input. EN is a digital input that turns the regulator on or off. Drive EN high to turn on the regulator, drive it low to turn it off. Pull up with $100k\Omega$ resistor for automatic startup.		
8	SS	Soft-Start Control Input. SS controls the soft start period. Connect a capacitor from SS to GND to set the soft-start period. A 0.1μ F capacitor sets the soft-start period to 15ms. To disable the soft-start feature, leave SS unconnected.		

C ()

Absolute Maximum Ratings

Parameter	Symbol	Value	Unit
Input Voltage	V_{IN}	-0.3 to 20	V
Switch Node Voltage	Vsw	21	V
Boost Voltage	V _{BS}	V_{SW} -0.3V to V_{SW} +6.0V	V
All Other Pins		-0.3V to +6.0V	V
Continuous Power Dissipation (T _A =25°C)		1.38	W
Operating Junction Temperature	T_{J}	-40 to +125	°C
Storage Temperature Range	T _{STG}	-40 to +150	°C
Maximum Lead Temperature for Soldering 10 Seconds	T _L	+260	°C

Typical Application Circuit

Electrical Characteristics

 $T_A=25^{\circ}C$, $V_{IN}=12V$ (unless otherwise noted)

Parameter	Test Conditions	Min	Тур	Max	Unit
Shutdown Supply Current	$V_{EN}=0V$		1	3	μΑ
Supply Current	V_{EN} =2.0V, V_{FB} =1.0V		0.5	0.8	mA
Feedback Voltage, V _{FB}	$4.5V \le V_{IN} \le 18V$	0.900	0.923	0.946	V
Feedback Overvotage Threshold			1.1		V
Error Amplifier Transconductance, G_{EA}	∆Ic=±10µA		200		μA/V
High-Side Switch On Resistance			130		mΩ
Low-Side Switch On Resistance			130		mΩ
High-Side Switch Leakage Current	$V_{EN}=0V, V_{SW}=0V$			10	μA
Upper Switch Current Limit	Minimum Duty Cycle	2.4	3.4		Α
Lower Switch Current Limit	From Drain to Source		1.1		Α
COMP to Current Sense Transconductance, G _{CS}			3.5		A/V
Oscillation Frequency, F _{OCS1}		305	340	375	kHz
Short Circuit Oscillation Frequency, F _{OCS2}	V _{FB} =0V		100		kHz
Maximum Duty Cycle, D _{MAX}	V _{FB} =1.0V		90		%
Minimum On Time			220		ns
EN Shutdown Threshold Voltage	V _{EN} Rising	1.1	1.6	2.0	V
EN Shutdown Threshold Voltage Hysteresis			210		mV
EN Lockout Threshold Voltage		2.2	2.5	2.7	V
EN Lockout Hysteresis			210		mV
Input Under Voltage Lockout Threshold	V _{IN} Rising	3.80	4.10	4.40	V
Input Under Voltage Lockout Threshold Hysteresis			210		mV
Soft-Start Current	V _{SS} =0V		6		μA
Soft-Start Period	$C_{SS}=0.1\mu F$		15		ms
Thermal Shutdown			160		°C

Package Information

UM5482S8: SOP8

DIMENSIONS						
Symbol	MILLIMETERS			INCHES		
Symbol	Min	Тур	Max	Min	Тур	Max
А	1.35	1.55	1.75	0.053	0.061	0.069
A1	0.10	-	0.25	0.004	-	0.010
A2	1.25	-	1.65	0.049	-	0.065
b	0.30	-	0.51	0.012	-	0.020
с	0.15	-	0.25	0.006	ŀ	0.010
D	4.70	4.90	5.10	0.185	0.193	0.200
Е	3.80	3.90	4.00	0.150	0.154	0.157
E1	5.80	6.00	6.20	0.228	0.236	0.244
e	1.27BSC		0.050 BSC			
L	0.40	-	1.27	0.016	-	0.050
θ	0°	-	8°	0°	-	8°

Land Pattern

Tape and Reel Orientation

GREEN COMPLIANCE

Union Semiconductor is committed to environmental excellence in all aspects of its operations including meeting or exceeding regulatory requirements with respect to the use of hazardous substances. Numerous successful programs have been implemented to reduce the use of hazardous substances and/or emissions.

All Union components are compliant with the RoHS directive, which helps to support customers in their compliance with environmental directives. For more green compliance information, please visit:

http://www.union-ic.com/index.aspx?cat_code=RoHSDeclaration

IMPORTANT NOTICE

The information in this document has been carefully reviewed and is believed to be accurate. Nonetheless, this document is subject to change without notice. Union assumes no responsibility for any inaccuracies that may be contained in this document, and makes no commitment to update or to keep current the contained information, or to notify a person or organization of any update. Union reserves the right to make changes, at any time, in order to improve reliability, function or design and to attempt to supply the best product possible.

Union Semiconductor, Inc Add: Unit 606, No.570 Shengxia Road, Shanghai 201210 Tel: 021-51093966 Fax: 021-51026018 Website: www.union-ic.com