9ZXL06x2E/9ZXL08xxE/9ZXL12x2E

6 to 12-Output Buffers for PCle Gen1-5 and UPI with SMBus Write Protect

The 9ZXL revision E family of Zero-Delay/Fanout Buffers (ZDB, FOB) with SMBus Write Protect are 2nd-generation enhanced performance buffers for PCle and CPU applications. The devices have hardware SMBUS write protection to prevent accidental writes. The family meets all published QPI/UPI, DB2000Q and PCle Gen1-5 jitter specifications. Devices range from 6 to 12 outputs, with each output having an OE\# pin to support the PCle CLKREQ\# function for low power states. All devices meet DB2000Q, DB1200ZL and DB800ZL jitter and skew requirements.

Applications

- Servers/High-performance Computing
- nVME Storage
- Networking
- Accelerators
- Industrial Control

Key Specifications

- Fanout Buffer Mode additive phase jitter:
- PCle Gen5 CC, UPI > 20Gb/s < 24fs RMS
- DB2000Q additive jitter < 39fs RMS
- QPI/UPI 11.4GB/s < 40fs RMS
- IF-UPI additive jitter < 70fs RMS
- ZDB Mode phase jitter:
- PCle Gen5 CC, UPI > 20Gb/s < 22fs RMS
- QPI/UPI 11.4GB/s < 120fs RMS
- IF-UPI additive jitter < 130fs RMS
- Cycle-to-cycle jitter < 50ps
- Output-to-output skew < 50ps

Features

- SMBus Write Protect pin prevents SMBus against accidental writes
- 6-12 Low-power HCSL (LP-HCSL) outputs
- Integrated terminations eliminate up to 4 resistors per output pair
- Dedicated OE\# pins support PCle CLKREQ\# function
- Up to 9 selectable SMBus addresses (9ZXL12xx, 9ZXL0853)
- Selectable PLL bandwidths minimizes jitter peaking in cascaded PLL topologies
- Hardware/SMBus control of ZDB and FOB modes allow change without power cycle
- Spread spectrum compatible
- $1-400 \mathrm{MHz}$ FOB operation (all devices)
- 100 MHz and 133.33 MHz ZDB mode (9ZXL12xx, 9ZXL08xx)
- 100 MHz ZDB mode (9ZXL06xx)
- $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ operating temperature range
- Packages: See Ordering Information for more details

PCle Cocking Architectures

- Common Clocked (CC)
- Independent Reference (IR) with and without spread spectrum (SRIS, SRNS)

Contents

1. Overview 3
1.1 Block Diagram 3
2. Pin Information 4
2.1 9ZXL06x2E Pin Assignments 4
2.2 9ZXL08x2E Pin Assignments 5
2.3 9ZXL0853E Pin Assignments 6
2.4 9ZXL12x2E Pin Assignments 7
2.5 Pin Descriptions 7
3. Specifications 11
3.1 Absolute Maximum Ratings 11
3.2 ESD Ratings 11
3.3 Thermal Specifications 11
3.4 Electrical Specifications 13
4. Power Management 21
5. Test Loads 21
6. General SMBus Serial Interface Information 23
6.1 How to Write 23
6.2 How to Read 23
7. Package Outline Drawings 27
8. Marking Diagrams 27
8.1 9ZXL06x2E 27
8.2 9ZXL08xxE 28
8.3 9ZXL12x2E 28
9. Ordering Information 29
10. Revision History 30

1. Overview

1.1 Block Diagram

2. Pin Information

2.1 9ZXL06x2E Pin Assignments

$5 \times 5 \mathrm{~mm}, 0.40 \mathrm{~mm}$ pitch 40 -VFQFPN
Pins with ^ prefix have internal 120kohm pull-up
Pins with v prefix have internal 120kohm pull-down
Figure 1. Pin Assignment for $5 \times 5 \mathrm{~mm} 40-\mathrm{VFQFPN}$ Package - Top View

2.2 9ZXL08x2E Pin Assignments

Figure 2. Pin Assignment for $6 \times 6 \mathrm{~mm} 48$-VFQFPN Package - Top View

2.3 9ZXL0853E Pin Assignments

Figure 3. Pin Assignment for $6 \times 6 \mathrm{~mm} 48-V F Q F P N$ Package - Top View

2.4 9ZXL12x2E Pin Assignments

$9 \times 9 \mathrm{~mm}, 0.5 \mathrm{~mm}$ pitch 64-VFQFPN
Pins with ^ prefix have internal 120kohm pull-up
Pins with v prefix have internal 120kohm pull-down
Figure 4. Pin Assignment for $9 \times 9 \mathrm{~mm}$ 64-VFQFPN Package - Top View

2.5 Pin Descriptions

Table 1. Pin Descriptions

Name	Type	Description	9ZXL12x2 Pin No.	9ZXL08x2 Pin No.	9ZXL0853 Pin No.	9ZXL06x2 Pin No.
^100M_133M\#	Latched In	3.3V Input to select operating frequency. This pin has an internal pull-up resistor. See <Hyperlink>Frequency Selection (PLL Mode) table for definition.	4	47	47	-
^CKPWRGD_PD\#	Input	Input notifies device to sample latched inputs and start up on first high assertion. Low enters Power Down Mode, subsequent high assertions exit Power Down Mode. This pin has internal pull-up resistor.	6	1	1	3

Table 1. Pin Descriptions (Cont.)

Name	Type	Description	$\begin{aligned} & \text { 9ZXL12x2 } \\ & \text { Pin No. } \end{aligned}$	$\begin{aligned} & \hline \text { 9ZXL08x2 } \\ & \text { Pin No. } \end{aligned}$	$\begin{array}{\|l} \text { 9ZXL0853 } \\ \text { Pin No. } \end{array}$	$\begin{array}{\|l} \text { 9ZXL06x2 } \\ \text { Pin No. } \end{array}$
^HIBW_BYPM_LO BW\#	Latched In	Tri-level input to select High BW, Bypass or Low BW Mode. This pin has an internal pull-up resistor. See <Hyperlink>PLL Operating Mode table for details.	5	48	48	2
DIF_IN	Input	HCSL true input.	9	4	3	6
DIF_IN\#	Input	HCSL complementary input.	10	5	4	7
DIFO	Output	Differential true clock output.	17	13	13	14
DIFO\#	Output	Differential complementary clock output.	18	14	14	15
DIF1	Output	Differential true clock output.	21	16	16	17
DIF1\#	Output	Differential complementary clock output.	22	17	17	18
DIF10	Output	Differential true clock output.	59	-	-	-
DIF10\#	Output	Differential complementary clock output.	60	-	-	-
DIF11	Output	Differential true clock output.	63	-	-	-
DIF11\#	Output	Differential complementary clock output.	64	-	-	-
DIF2	Output	Differential true clock output.	26	21	21	23
DIF2\#	Output	Differential complementary clock output.	27	22	22	24
DIF3	Output	Differential true clock output.	30	25	25	26
DIF3\#	Output	Differential complementary clock output.	31	26	26	27
DIF4	Output	Differential true clock output.	34	28	28	33
DIF4\#	Output	Differential complementary clock output.	35	29	29	34
DIF5	Output	Differential true clock output.	38	32	32	36
DIF5\#	Output	Differential complementary clock output.	39	33	33	37
DIF6	Output	Differential true clock output.	42	35	35	-
DIF6\#	Output	Differential complementary clock output.	43	36	36	-
DIF7	Output	Differential true clock output.	46	39	39	-
DIF7\#	Output	Differential complementary clock output.	47	40	40	-
DIF8	Output	Differential true clock output.	50	-	-	-
DIF8\#	Output	Differential complementary clock output.	51	-	-	-
DIF9	Output	Differential true clock output.	54	-	-	-
DIF9\#	Output	Differential complementary clock output.	55	-	-	-
EPAD	GND	Connect EPAD to ground.	65	49	49	41
FBOUT_NC	Output	True half of differential feedback output. This pin should NOT be connected to anything outside the chip. It exists to provide delay path matching to get 0 propagation delay.	16	9	10	11
FBOUT_NC\#	Output	Complementary half of differential feedback output. This pin should NOT be connected to anything outside the chip. It exists to provide delay path matching to get 0 propagation delay.	15	8	9	10
GND	GND	Ground pin.	23	49	49	41

Table 1. Pin Descriptions (Cont.)

Name	Type	Description	$\begin{array}{\|c} \hline \text { 9ZXL12x2 } \\ \text { Pin No. } \end{array}$	$\begin{gathered} \text { 9ZXL08x2 } \\ \text { Pin No. } \end{gathered}$	9ZXL0853 Pin No.	9ZXL06x2 Pin No.
GND	GND	Ground pin.	33	49	49	41
GND	GND	Ground pin.	41	49	49	-
GND	GND	Ground pin.	48	49	49	-
GND	GND	Ground pin.	58	-	-	-
GNDA	GND	Ground pin for the PLL core.	2	49	49	41
GNDR	GND	Analog ground pin for the differential input (receiver).	7	2	49	4
NC	-	No connect.	-	12,20,43,45	20,43,45	30
SMBCLK	Input	Clock pin of SMBUS circuitry.	13	7	7	9
SMBDAT	I/O	Data pin of SMBUS circuitry.	12	6	6	8
VDD	Power	Power supply, nominally 3.3V.	24	$\begin{gathered} \text { 10,15,19 } \\ 27,34,38,42 \end{gathered}$	$\begin{gathered} 11,15,19 \\ 27,34,38, \\ 42 \end{gathered}$	$\begin{aligned} & 12,16,20, \\ & 21,25,29, \\ & 31,35,39 \end{aligned}$
VDD	Power	Power supply, nominally 3.3V.	40	-	-	-
VDD	Power	Power supply, nominally 3.3V.	57	-	-	-
VDDA	Power	Power supply for PLL core.	1	44	44	40
VDDIO	Power	Power supply for differential outputs.	25	-	-	-
VDDIO	Power	Power supply for differential outputs.	32	-	-	-
VDDIO	Power	Power supply for differential outputs.	49	-	-	-
VDDIO	Power	Power supply for differential outputs.	56	-	-	-
VDDR	Power	Power supply for differential input clock (receiver). This VDD should be treated as an analog power rail and filtered appropriately. Nominally 3.3V.	8	3	2	5
vOE0\#	Input	Active low input for enabling output 0 . This pin has an internal pull-down. 1 = disable output, $0=$ enable output.	19	11	12	13
vOE1\#	Input	Active low input for enabling output 1. This pin has an internal pull-down. 1 = disable output, $0=$ enable output.	20	18	18	19
vOE10\#	Input	Active low input for enabling output 10. This pin has an internal pull-down. 1 = disable output, $0=$ enable output.	61	-	-	-
vOE11\#	Input	Active low input for enabling output 11. This pin has an internal pull-down. 1 = disable output, $0=$ enable output.	62	-	-	-
vOE2\#	Input	Active low input for enabling output 2. This pin has an internal pull-down. $1 \text { = disable output, } 0 \text { = enable output. }$	28	23	23	22
vOE3\#	Input	Active low input for enabling output 3. This pin has an internal pull-down. 1 = disable output, $0=$ enable output.	29	24	24	28

Table 1. Pin Descriptions (Cont.)

Name	Type	Description	$\begin{array}{\|l\|} \hline \text { 9ZXL12x2 } \\ \text { Pin No. } \end{array}$	$\begin{aligned} & \text { 9ZXL08x2 } \\ & \text { Pin No. } \end{aligned}$	$\begin{aligned} & \text { 9ZXL0853 } \\ & \text { Pin No. } \end{aligned}$	$\begin{aligned} & \text { 9ZXL06x2 } \\ & \text { Pin No. } \end{aligned}$
vOE4\#	Input	Active low input for enabling output 4. This pin has an internal pull-down. $1=$ disable output, $0=$ enable output.	36	30	30	32
vOE5\#	Input	Active low input for enabling output 5. This pin has an internal pull-down. $1=$ disable output, $0=$ enable output.	37	31	31	38
vOE6\#	Input	Active low input for enabling output 6. This pin has an internal pull-down. $1=$ disable output, $0=$ enable output.	44	37	37	-
vOE7\#	Input	Active low input for enabling output 7. This pin has an internal pull-down. 1 = disable output, $0=$ enable output.	45	41	41	-
vOE8\#	Input	Active low input for enabling output 8. This pin has an internal pull-down. $1=$ disable output, $0=$ enable output.	52	-	-	-
vOE9\#	Input	Active low input for enabling output 9. This pin has an internal pull-down. $1=$ disable output, $0=$ enable output.	53	-	-	-
vSADR0_tri	Input	SMBus address bit. This is a tri-level input that works in conjunction with other SADR pins, if present, to decode SMBus Addresses. It has an internal pull-down resistor. See the <Hyperlink>SMBus Addressing table.	11	-	5	-
vSADR1_tri	Input	SMBus address bit. This is a tri-level input that works in conjunction with other SADR pins, if present, to decode SMBus Addresses. It has an internal pull-down resistor. See the <Hyperlink>SMBus Addressing table.	14	-	8	-
vSMB_WRTLOCK	Input	This pin prevents SMBus writes when asserted. SMBus reads are not affected. This pin has an internal pull-down. $0=$ SMBus writes allows, $1=$ SMBus writes blocked.	3	46	46	1

3. Specifications

3.1 Absolute Maximum Ratings

CAUTION: Do not operate at or near the maximum ratings listed for extended periods of time. Exposure to such conditions can adversely impact product reliability and result in failures not covered by warranty.

Table 2. Absolute Maximum Ratings

Parameter	Symbol	Conditions	Minimum	Typical	Maximum	Unit
Supply Voltage ${ }^{[1][2]}$	$\mathrm{VDDx}^{[1]}$	-	-	-	3.9	V
Input Low Voltage ${ }^{[1]}$	V_{IL}	-	$\mathrm{GND}-0.5$	-	-	V
Input High Voltage ${ }^{[1][3]}$	V_{IH}	Except for SMBus interface.	-	-	$\mathrm{V}_{\mathrm{DD}}+0.5$	V
Input High Voltage ${ }^{[1]}$	$\mathrm{V}_{\mathrm{IHSMB}}$	SMBus clock and data pins.	-	-	3.9	V
Storage Temperature ${ }^{[1]}$	Ts	-	-65	-	150	${ }^{\circ} \mathrm{C}$
Junction Temperature ${ }^{[1]}$	Tj	-	-	-	125	${ }^{\circ} \mathrm{C}$

1. Confirmed by design and characterization, not 100% tested in production.
2. Operation under these conditions is neither implied nor guaranteed.
3. Not to exceed 3.9V.

3.2 ESD Ratings

ESD Model/Test	Rating	Unit
Human Body Model, Input ESD Protection (Tested per JS-001-2017) [1]	2500	V

1. Confirmed by design and characterization, not 100% tested in production.

3.3 Thermal Specifications

Table 3. Thermal Characteristics [1]

Parameter	Symbol	Conditions	Package	Typical Values	Unit
9ZXL12 Thermal Resistance	θ_{Jc}	Junction to case.	NLG64	14	${ }^{\circ} \mathrm{C} / \mathrm{W}$
	θ_{Jb}	Junction to base.		1	${ }^{\circ} \mathrm{C} / \mathrm{W}$
	$\theta_{\text {JAO }}$	Junction to air, still air.		28	${ }^{\circ} \mathrm{C} / \mathrm{W}$
	$\theta_{\text {JA1 }}$	Junction to air, $1 \mathrm{~m} / \mathrm{s}$ air flow.		21	${ }^{\circ} \mathrm{C} / \mathrm{W}$
	$\theta_{\text {JA3 }}$	Junction to air, $3 \mathrm{~m} / \mathrm{s}$ air flow.		19	${ }^{\circ} \mathrm{C} / \mathrm{W}$
	$\theta_{\text {JA5 }}$	Junction to air, $5 \mathrm{~m} / \mathrm{s}$ air flow.		18	${ }^{\circ} \mathrm{C} / \mathrm{W}$
9ZXL08 Thermal Resistance	$\theta_{\text {Jc }}$	Junction to case.	NDG48	19	${ }^{\circ} \mathrm{C} / \mathrm{W}$
	θ_{Jb}	Junction to base.		0	${ }^{\circ} \mathrm{C} / \mathrm{W}$
	$\theta_{\text {JAO }}$	Junction to air, still air.		30	${ }^{\circ} \mathrm{C} / \mathrm{W}$
	$\theta_{\text {JA1 }}$	Junction to air, $1 \mathrm{~m} / \mathrm{s}$ air flow.		23	${ }^{\circ} \mathrm{C} / \mathrm{W}$
	$\theta_{\text {JA3 }}$	Junction to air, $3 \mathrm{~m} / \mathrm{s}$ air flow.		20	${ }^{\circ} \mathrm{C} / \mathrm{W}$
	$\theta_{\text {JA5 }}$	Junction to air, $5 \mathrm{~m} / \mathrm{s}$ air flow.		19	${ }^{\circ} \mathrm{C} / \mathrm{W}$

Table 3. Thermal Characteristics (Cont.) [1]

Parameter	Symbol	Conditions	Package	Typical Values	Unit
9ZXL06 Thermal Resistance	θ_{Jc}	Junction to case.	NDG40	32	${ }^{\circ} \mathrm{C} / \mathrm{W}$
	θ_{Jb}	Junction to base.		2	${ }^{\circ} \mathrm{C} / \mathrm{W}$
	$\theta_{\text {JA0 }}$	Junction to air, still air.		44	${ }^{\circ} \mathrm{C} / \mathrm{W}$
	$\theta_{\mathrm{JA} 1}$	Junction to air, $1 \mathrm{~m} / \mathrm{s}$ air flow.		37	${ }^{\circ} \mathrm{C} / \mathrm{W}$
	$\theta_{\text {JA3 }}$	Junction to air, $3 \mathrm{~m} / \mathrm{s}$ air flow.		33	${ }^{\circ} \mathrm{C} / \mathrm{W}$
	$\theta_{\text {JA5 }}$	Junction to air, $5 \mathrm{~m} / \mathrm{s}$ air flow.		31	${ }^{\circ} \mathrm{C} / \mathrm{W}$

1. EPAD soldered to ground.

3.4 Electrical Specifications

$T_{A}=T_{A M B}$. Supply voltages per normal operation conditions; see Test Loads for loading conditions.
Table 4. SMBus Parameters

Parameter	Symbol	Conditions	Minimum	Typical	Maximum	Unit
SMBus Input Low Voltage	$\mathrm{V}_{\text {ILSMB }}$	-	-	-	0.8	V
SMBus Input High Voltage	$\mathrm{V}_{\text {IHSMB }}$		2.1	-	$\mathrm{V}_{\text {DDSMB }}$	V
SMBus Output Low Voltage	$\mathrm{V}_{\text {OLSMB }}$	At $\mathrm{I}_{\text {PULLUP. }}$	-	-	-	0.4
SMBus Sink Current	$\mathrm{I}_{\text {PULLUP }}$	At $\mathrm{V}_{\text {OL. }}$	V			
Nominal Bus Voltage ${ }^{[1]}$	$\mathrm{V}_{\text {DDSMB }}$		-	-	-	mA
SCLK/SDATA Rise Time ${ }^{[1]}$	$\mathrm{t}_{\text {RSMB }}$	(Max $\left.\mathrm{V}_{\text {IL }}-0.15 \mathrm{~V}\right)$ to (Min $\left.\mathrm{V}_{\text {IH }}+0.15 \mathrm{~V}\right)$.	-	-	1000	ns
SCLK/SDATA Fall Time ${ }^{[1]}$	$\mathrm{t}_{\text {FSMB }}$	(Min $\left.\mathrm{V}_{\text {IH }}+0.15 \mathrm{~V}\right)$ to (Max $\left.\mathrm{V}_{\text {IL }}-0.15 \mathrm{~V}\right)$.	-	-	300	ns
SMBus Operating Frequency ${ }^{[2]}$	$\mathrm{f}_{\text {SMB }}$	SMBus operating frequency.	-	-	400	kHz

1. Confirmed by design and characterization, not 100% tested in production.
2. The differential input clock must be running for the SMBus to be active.
3. Control input must be monotonic from 20% to 80% of input swing.
4. Time from deassertion until outputs are $>200 \mathrm{mV}$.
5. DIF_IN input.

Table 5. DIF_IN Clock Input Parameters

Parameter	Symbol	Conditions	Minimum	Typical	Maximum
Unit					
Input Crossover Voltage - DIF_IN [1]	$\mathrm{V}_{\text {CROSS }}$	Crossover voltage.	150	-	900
Input Swing - DIF_IN [1]	$\mathrm{V}_{\text {SWING }}$	Differential value.	300	-	-
Input Slew Rate - DIF_IN [1][2]	$\mathrm{dv/dt}$	Measured differentially.	mV		
Input Leakage Current	$\mathrm{I}_{\text {IN }}$	$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {DD }}, \mathrm{V}_{\text {IN }}=\mathrm{GND}$.	0.4	-	8
Input Duty Cycle [1]	$\mathrm{d}_{\text {tin }}$	Measurement from differential waveform.	45	-5	-
Input Jitter - Cycle to Cycle [1]	J $_{\text {DIFIn }}$	Differential measurement.	-	5	$\mu \mathrm{~A}$

1. Confirmed by design and characterization, not 100% tested in production.
2. Slew rate measured through $\pm 75 \mathrm{mV}$ window centered around differential zero.

Table 6. Input/Supply/Common Parameters

$T_{\text {AMB }}=$ over the specified operating range. Supply voltages per normal operation conditions; see Test Loads for loading conditions.

Parameter	Symbol	Conditions	Minimum	Typical	Maximum	Unit
Supply Voltage	$V_{D D}{ }^{\text {x }}$	Supply voltage for core and analog.	3.135	3.3	3.465	V
Output Supply Voltage ${ }^{[1]}$	$V_{\text {DDIO }}$	Supply voltage for DIF outputs, if present.	0.95	1.05	3.465	V
Ambient Operating Temperature [2]	$\mathrm{T}_{\text {AMB }}$	Extended Industrial range ($\mathrm{T}_{\text {EXIND }}$).	-40	25	105	${ }^{\circ} \mathrm{C}$
		Industrial range ($\mathrm{T}_{\text {IND }}$).	-40	25	85	${ }^{\circ} \mathrm{C}$
Input High Voltage	V_{IH}	Single-ended inputs, except SMBus, tri-level inputs.	2	-	$V_{D D}+0.3$	V

Table 6. Input/Supply/Common Parameters (Cont.)

$\mathrm{T}_{\text {AMB }}=$ over the specified operating range. Supply voltages per normal operation conditions; see Test Loads for loading conditions.

Parameter	Symbol	Conditions	Minimum	Typical	Maximum	Unit
Input Low Voltage	$\mathrm{V}_{\text {IL }}$	Single-ended inputs, except SMBus, tri-level inputs.	GND - 0.3	-	0.8	V
Input High Voltage	V_{IH}	Tri-level inputs.	2.2	-	$V_{D D}+0.3$	V
Input Mid Voltage	$\mathrm{V}_{\text {IM }}$	Tri-level inputs.	1.2	$\mathrm{V}_{\mathrm{DD}} / 2$	1.8	V
Input Low Voltage	V_{IL}	Tri-level inputs.	GND - 0.3	-	0.8	V
	IN	Single-ended inputs, $\mathrm{V}_{\mathrm{IN}}=\mathrm{GND}, \mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{DD}}$.	-5	-	5	$\mu \mathrm{A}$
Input Current	$\mathrm{I}_{\text {INP }}$	Single-ended inputs. $\mathrm{V}_{\text {IN }}=0 \mathrm{~V}$; inputs with internal pull-up resistors. $\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{DD}}$; inputs with internal pull-down resistors.	-50	-	50	$\mu \mathrm{A}$
Input Frequency	$\mathrm{F}_{\text {ibyp }}$	$\mathrm{V}_{\mathrm{DD}}=3.3 \mathrm{~V}$, Bypass Mode.	1	-	400	MHz
	$\mathrm{F}_{\text {ipll }}$	$\mathrm{V}_{\text {DD }}=3.3 \mathrm{~V}, 100 \mathrm{MHz}$ PLL Mode.	98.5	100.00	102.5	MHz
	$\mathrm{F}_{\text {ipll }}$	$\mathrm{V}_{\mathrm{DD}}=3.3 \mathrm{~V}, 133.33 \mathrm{MHz}$ PLL Mode. ${ }^{[3]}$	132	133.33	135	MHz
ppm Error Contribution	ppm	ppm error contributed to input clock.	0			ppm
Pin Inductance ${ }^{[4]}$	$\mathrm{L}_{\text {pin }}$		-	-	7	nH
Capacitance	$\mathrm{C}_{\text {IN }}$	Logic inputs, except DIF_IN. ${ }^{[4]}$	1.5	-	5	pF
	$\mathrm{C}_{\text {INDIF_IN }}$	DIF_IN differential clock inputs. ${ }^{[4][5]}$	1.5	-	2.7	pF
	$\mathrm{C}_{\text {OUT }}$	Output pin capacitance. ${ }^{[4]}$	-	-	6	pF
Clk Stabilization	$\mathrm{T}_{\text {STAB }}$	From $V_{D D}$ power-up and after input clock stabilization or deassertion of PD\# to 1st clock. [4][6]	-	1	1.8	ms
Input SS Modulation Frequency PCle	$\mathrm{f}_{\text {MODINPCle }}$	Allowable frequency for PCle applications (Triangular modulation).	30	-	33	kHz
OE\# Latency ${ }^{[4][6][7]}$	$\mathrm{t}_{\text {LAtoe }}$	DIF start after OE\# assertion. DIF stop after OE\# deassertion.	4	5	10	cloc ks
Tdrive_PD\# [4][7]	$t_{\text {DRVPD }}$	DIF output enable after PD\# deassertion.	-	-	N/A	$\mu \mathrm{s}$
Tfall [6]	t_{F}	Fall time of control inputs.	-	-	5	ns
Trise [6]	t_{R}	Rise time of control inputs.	-	-	5	ns

1. $9 Z X L 12 \times 2$ only.
2. Not all devices are available in this temperature range. See Ordering Informationfor details.
3. $9 Z X L 12 \times 2$ and $9 Z X L 08 \times 2$ only.
4. Confirmed by design and characterization, not 100% tested in production.
5. DIF_IN input.
6. Control input must be monotonic from 20% to 80% of input swing.
7. This spec only applies to current-mode HCSL outputs and is defined as the time from PD\# deassertion until outputs are $>200 \mathrm{mV}$. The limit is $300 \mu \mathrm{sec}$. LP-HCSL stay parked low/low until enabled and then drive differentially within 10 clock cycles which is $<300 \mu \mathrm{sec}$.

Table 7. Current Consumption - 9ZXL12

Parameter	Symbol	Conditions	Minimum	Typical	Maximum	Unit
Operating Supply Current	$I_{\text {DDA }}$	$\mathrm{V}_{\text {DDA }}$, PLL Mode at 100 MHz . ${ }^{11]}$	-	38	46	mA
		$\mathrm{V}_{\mathrm{DDA}}$, Fanout Buffer Mode at 100 MHz . ${ }^{[1]}$	-	4	5	mA
	I_{DD}	All other V_{DD} pins.	-	25	34	mA
	IDDOIO	$\mathrm{V}_{\text {DDIO }}$ for LP-HCSL outputs, if applicable.	-	90	107	mA
Power Down Current	IDDAPD	V ${ }_{\text {DDA }}$, CKPWRGD_PD\# $=0 .{ }^{\text {[1] }}$	-	3	4	mA
	IDDPD	All other $V_{\text {DD }}$ pins, CKPWRGD_PD\# $=0$.	-	1	2	mA

1. Includes $V_{D D R}$.

Table 8. Current Consumption - 9ZXL08

Parameter	Symbol	Conditions	Minimum	Typical	Maximum	Unit
Operating Supply Current	$I_{\text {dDA }}$	$\mathrm{V}_{\text {DDA }}$, PLL Mode at 100 MHz . ${ }^{[1]}$	-	37	45	mA
		$\mathrm{V}_{\text {DDA }}$, Fanout Buffer Mode at 100 MHz . ${ }^{[1]}$	-	4	5	mA
	$I_{\text {DD }}$	All other V_{DD} pins at 100 MHz .	-	60	68	mA
Power Down Current	$\mathrm{I}_{\text {dDAPD }}$	VDDA, CKPWRGD_PD\# = 0. ${ }^{[1]}$	-	3	4	mA
	IDDPD	All other $\mathrm{V}_{\text {DD }}$ pins, CKPWRGD_PD\# $=0$.	-	1	2	mA

1. Includes $V_{D D R}$.

Table 9. Current Consumption - 9ZXL06

Parameter	Symbol	Conditions	Minimum	Typical	Maximum	Unit
Operating Supply Current	$I_{\text {DDA }}$	$\mathrm{V}_{\text {DDA }}$, PLL Mode at 100 MHz . ${ }^{11]}$	-	37	45	mA
		$\mathrm{V}_{\text {DDA }}$, Fanout Buffer Mode at 100 MHz . ${ }^{[1]}$	-	4	5	mA
	$I_{\text {DD }}$	All other V_{DD} pins at 100 MHz .	-	42	50	mA
Power Down Current	I DDAPD	V ${ }_{\text {DDA }}$, CKPWRGD_PD\# $=0 .{ }^{[1]}$	-	3	4	mA
	IDDPD	All other $V_{\text {DD }}$ pins, CKPWRGD_PD\# $=0$.	-	1	2	mA

1. Includes $V_{D D R}$.

Table 10. Skew and Differential Jitter Parameters

$\mathrm{T}_{\mathrm{AMB}}=$ over the specified operating range. Supply voltages per normal operation conditions; see Test Loads for loading conditions.

Parameter	Symbol	Conditions	Minimum	Typical	Maximum	Unit
$\underset{[\overline{[1][2][3]][4][5]}}{\text { CLK_IN, }}$	$\mathrm{t}_{\text {SPO_PLL }}$	Input-to-output skew in PLL Mode at 100 MHz , nominal temperature and voltage.	-100	-	100	ps
$\underset{[1][2][4][5][6]}{\text { CLK_IN, DIF[x:0] }}$	$t_{\text {PD_BYP }}$	Input-to-output skew in Bypass Mode at 100 MHz , nominal temperature and voltage.	2	2.6	3	ns
$\underset{[1][2][4][5][6]}{\text { CLK_IN, }}$	$\mathrm{t}_{\text {DSPO_PLL }}$	Input-to-output skew variation in PLL Mode at 100 MHz , across voltage and temperature.	-50	-	50	ps
CLK_IN, DIF[x:0]	$\mathrm{t}_{\text {DSPO_BYP }}$	Input-to-output skew variation in Bypass Mode at 100 MHz , across voltage and temperature, $\mathrm{T}_{\mathrm{AMB}}=0 \mathrm{C}$ to $+70^{\circ} \mathrm{C}$. $[1][2][4][5][6]$	-250	-	250	ps
		Input-to-output skew variation in Bypass mode at 100 MHz , across voltage and temperature, $\mathrm{T}_{\text {AMB }}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$. $[1][2][4][5][6]$	-350	-	350	ps
$\underset{[\overline{[1][2][4][5][6]}}{\text { CLK_IN, DIF[x:0] }}$	$t_{\text {dTE }}$	Random Differential Tracking error between two 9ZX devices in Hi BW Mode at the same temperature and voltage (SSC Off).	-	-	5	$\begin{gathered} \mathrm{ps} \\ (\mathrm{rms}) \end{gathered}$
$\underset{[1][2][4][5][6]}{\text { CLK_IN, DIF[x:0] }}$	$t_{\text {dsste }}$	Random Differential Spread Spectrum Tracking error between two 9ZX devices in Hi BW Mode at the same temperature and voltage (-0.5% SSC).	-	-	50	ps
DIF[x:0] ${ }^{[1][2][5][6]}$	tSKEW_ALL $^{\text {d }}$	Output-to-output skew across all outputs, common to PLL and Bypass Mode, at 100 MHz .	-	-	50	ps
PLL Jitter Peaking	jpeak-hibw	LOBW\#_BYPASS_HIBW = 1.5][7]	0	1.3	2.5	dB
PLL Jitter Peaking	$\mathrm{j}_{\text {peak-lobw }}$	LOBW\#_BYPASS_HIBW $=0 .{ }^{[5][7]}$	0	1.3	2	dB
PLL Bandwidth	pll ${ }_{\text {HIBW }}$	LOBW\#_BYPASS_HIBW = 1. ${ }^{[5][8]}$	2	2.6	4	MHz
PLL Bandwidth	pll ${ }_{\text {LOBW }}$	LOBW\#_BYPASS_HIBW = 0. ${ }^{[5][8]}$	0.7	1.0	1.4	MHz
Duty Cycle	$t_{\text {b }}$	Measured differentially, PLL Mode. ${ }^{[1]}$	45	50	55	\%
Duty Cycle Distortion	$t_{\text {DCD }}$	Measured differentially, Bypass Mode at 100MHz. ${ }^{[1][9]}$	-1	0	1	\%
Jitter, Cycle to Cycle	$\mathrm{t}_{\text {jcyc-cyc }}$	PLL Mode. ${ }^{[1][10]}$	-	20	50	ps
		Additive jitter in Bypass Mode. [1][10]	-	0.1	5	ps

1. Measured into fixed $2 p F$ load cap. Input-to-output skew is measured at the first output edge following the corresponding input.
2. Measured from differential cross-point to differential cross-point. This parameter can be tuned with external feedback path, if present.
3. This parameter is deterministic for a given device.
4. Measured with scope averaging on to find mean value.
5. Confirmed by design and characterization, not 100% tested in production.
6. All Bypass Mode input-to-output specs refer to the timing between an input edge and the specific output edge created by it.
7. Measured as maximum pass band gain. At frequencies within the loop BW, highest point of magnification is called PLL jitter peaking.
8. Measured at 3 db down or half power point.
9. Duty cycle distortion is the difference in duty cycle between the output and the input clock when the device is operated in Bypass Mode.
10. Measured from differential waveform.

Table 11. LP-HCSL Outputs

$T_{\text {AMB }}=$ over the specified operating range. Supply voltages per normal operation conditions; see Test Loads for loading conditions.

Parameter	Symbol	Conditions	Minimum	Typical	Maximum	Specification Limits	Unit
Slew Rate [1][2][3]	dV/dt	Scope averaging on.	2	3.1	4.3	1-4.5	V/ns
Slew Rate Matching [1][4][5]	$\Delta \mathrm{dV} / \mathrm{dt}$	Single-ended measurement.	-	7.1	20	20	\%
Maximum Voltage [5][6]	Vmax	Measurement on single-ended signal using absolute value (scope averaging off).	700	787	850	150	mV
Minimum Voltage [5][6]	Vmin		-150	-44	150	-300	
Crossing Voltage (abs) [1][5][7]	Vcross_abs	Scope averaging off.	300	369	450	250-550	mV
Crossing Voltage (var) [1][5][8]	Δ-Vcross	Scope averaging off.	-	19	50	140	mV

1. Confirmed by design and characterization, not 100% tested in production
2. Measured from differential waveform.
3. Slew rate is measured through the V swing voltage range centered around differential 0 V . This results in $\mathrm{a} \pm 150 \mathrm{mV}$ window around differential 0 V .
4. Matching applies to rising edge rate for Clock and falling edge rate for Clock\#. It is measured using a $\pm 75 \mathrm{mV}$ window centered on the average cross point where Clock rising meets Clock\# falling. The median cross point is used to calculate the voltage thresholds the oscilloscope is to use for the edge rate calculations.
5. At default SMBus settings.
6. Includes previously separate values of +300 mV overshoot and -300 mV of undershoot.
7. Vcross is defined as voltage where Clock = Clock\# measured on a component test board and only applies to the differential rising edge (i.e. Clock rising and Clock\# falling).
8. The total variation of all Vcross measurements in any particular system. Note that this is a subset of Vcross_min/max (Vcross absolute) allowed. The intent is to limit V cross induced modulation by setting Δ - V cross to be smaller than V cross absolute.

Table 12. PCle Phase Jitter Parameters
$\mathrm{T}_{\mathrm{AMB}}=$ over the specified operating range. Supply voltages per normal operation conditions; see Test Loads for loading conditions.

Parameter	Symbol	Conditions	Minimum	Typical	Maximum	Limits	Unit
PCle Phase Jitter, Low Bandwidth ZDB Mode (Common Clocked Architecture)	$\mathrm{t}_{\text {jphPCleG1-CC }}$	PCle Gen 1 (2.5 GT/s) ${ }^{[1][2]}$	-	2.30	5.46	86	$\begin{gathered} \mathrm{ps} \\ (\mathrm{p}-\mathrm{p}) \end{gathered}$
	$\mathrm{t}_{\text {jphPCleG2-CC }}$	PCle Gen 2 Hi Band ($5.0 \mathrm{GT} / \mathrm{s}$) ${ }^{[1][2]}$	-	0.08	0.13	3	$\begin{gathered} \mathrm{ps} \\ (\mathrm{RMS}) \end{gathered}$
		PCle Gen 2 Lo Band (5.0 GT/s) ${ }^{[1][2]}$	-	0.07	0.12	3.1	
	$\mathrm{t}_{\text {jphPCleG3-CC }}$	PCle Gen 3 (8.0 GT/s) ${ }^{[1][2]}$	-	0.042	0.068	1	
	$\mathrm{t}_{\text {jphPCleG4-CC }}$	PCle Gen 4 (16.0 GT/s) ${ }^{[1][2][3][4] ~}$	-	0.042	0.068	0.5	
	$\mathrm{t}_{\text {jphPCleG5-CC }}$	PCle Gen 5 (32.0 GT/s) ${ }^{[1][2][3][5][6] ~}$	-	0.016	0.024	0.15	
PCle Phase Jitter, Low Bandwidth ZDB Mode (SRIS Architecture)	$\mathrm{t}_{\text {jphPCleG2-SRIS }}$	PCle Gen 2 (5.0 GT/s) ${ }^{[1][2][7]}$	-	0.78	1.35	N/A	$\begin{gathered} \mathrm{ps} \\ (\mathrm{RMS}) \end{gathered}$
	$\mathrm{t}_{\text {jphPCleG3-SRIS }}$	PCle Gen 3 (8.0 GT/s) ${ }^{[1][2][7]}$	-	0.303	0.504		
	$\mathrm{t}_{\text {jphPCleG4-SRIS }}$	PCle Gen 4 (16.0 GT/s) ${ }^{[1][2][7]}$	-	0.193	0.288		
	$\mathrm{t}_{\text {jphPCleG5-SRIS }}$	PCle Gen 5 (32.0 GT/s) ${ }^{[1][2][7]}$	-	0.078	0.122		

Table 12. PCle Phase Jitter Parameters (Cont.)

$\mathrm{T}_{\mathrm{AMB}}=$ over the specified operating range. Supply voltages per normal operation conditions; see Test Loads for loading conditions.

Parameter	Symbol	Conditions	Minimum	Typical	Maximum	Limits	Unit
PCle Phase Jitter, High Bandwidth ZDB Mode (Common Clocked Architecture)	$\mathrm{t}_{\text {jphPCleG1-CC }}$	PCle Gen 1 ($2.5 \mathrm{GT} / \mathrm{s}$) ${ }^{1][2]}$	-	4.26	7.03	86	$\begin{gathered} \mathrm{ps} \\ (\mathrm{p}-\mathrm{p}) \end{gathered}$
	$\mathrm{t}_{\text {jphPCleG2-CC }}$	PCle Gen 2 Hi Band ($5.0 \mathrm{GT} / \mathrm{s}$) ${ }^{\text {[1][2] }}$	-	0.15	0.25	3	$\begin{gathered} \mathrm{ps} \\ \text { (RMS) } \end{gathered}$
		PCle Gen 2 Lo Band ($5.0 \mathrm{GT} / \mathrm{s}$) ${ }^{17][2]}$	-	0.08	0.12	3.1	
	$\mathrm{t}_{\text {jphPCleG3-CC }}$	PCle Gen 3 (8.0 GT/s) ${ }^{11][2]}$	-	0.076	0.126	1	
	$\mathrm{t}_{\text {jphPCleG4-CC }}$	PCle Gen 4 (16.0 GT/s) ${ }^{17][2][3][4] ~}$	-	0.076	0.126	0.5	
	$\mathrm{t}_{\text {jphPCleG5-CC }}$	PCle Gen 5 (32.0 GT/s) ${ }^{[1][2][3][5][6] ~}$	-	0.026	0.041	0.15	
PCle Phase Jitter, High Bandwidth ZDB Mode (SRIS Architecture)	$t_{\text {jphPCleG2-SRIS }}$	PCle Gen $2\left(5.0 \mathrm{GT} / \mathrm{s}\right.$) ${ }^{[1][2][7]}$	-	0.819	1.331	N/A	$\begin{gathered} \mathrm{ps} \\ \text { (RMS) } \end{gathered}$
	$\mathrm{t}_{\text {jphPCleG3-SRIS }}$	PCle Gen 3 (8.0 GT/s) ${ }^{[1][2][7]}$	-	0.312	0.480		
	$\mathrm{t}_{\text {jphPCleG4-SRIS }}$	PCle Gen 4 (16.0 GT/s) ${ }^{[1][2][7]}$	-	0.217	0.284		
	$\mathrm{t}_{\text {jphPCleG5-SRIS }}$	PCle Gen 5 (32.0 GT/s) ${ }^{[1][2][7]}$	-	0.084	0.118		

1. The Refclk jitter is measured after applying the filter functions found in PCI Express Base Specification 5.0, Revision 1.0. See the Test Loads section of the data sheet for the exact measurement setup. The worst case results for each data rate are summarized in this table. Equipment noise is removed from all results.
2. Jitter measurements shall be made with a capture of at least 100,000 clock cycles captured by a real-time oscilloscope (RTO) with a sample rate of $20 \mathrm{GS} / \mathrm{s}$ or greater. Broadband oscilloscope noise must be minimized in the measurement. The measured PP jitter is used (no extrapolation) for RTO measurements. Alternately, jitter measurements may be used with a Phase Noise Analyzer (PNA) extending (flat) and integrating and folding the frequency content up to an offset from the carrier frequency of at least 200 MHz (at 300 MHz absolute frequency) below the Nyquist frequency. For PNA measurements for the $2.5 \mathrm{GT} / \mathrm{s}$ data rate, the RMS jitter is converted to peak-to-peak jitter using a multiplication factor of 8.83 . In the case where real-time oscilloscope and PNA measurements have both been done and produce different results, the RTO result must be used.
3. SSC spurs from the fundamental and harmonics are removed up to a cutoff frequency of 2 MHz taking care to minimize removal of any non-SSC content.
4. Note that 0.7 ps RMS is to be used in channel simulations to account for additional noise in a real system.
5. Note that 0.25 ps RMS is to be used in channel simulations to account for additional noise in a real system.
6. This specification also applied to UPI data rates $>20 \mathrm{~Gb} / \mathrm{s}$.
7. The PCI Express Base Specification 5.0, Revision 1.0 provides the filters necessary to calculate SRIS jitter values, however, it does not provide specification limits, hence the n / a in the Limit column. SRIS values are informative only. In general, a clock operating in an SRIS system must be twice as good as a clock operating in a Common Clock system. For RMS values, twice as good is equivalent to dividing the $C C$ value by $\sqrt{ } 2$. An additional consideration is the value for which to divide by $\sqrt{ } 2$. The conservative approach is to divide the ref clock jitter limit, and the case can be made for dividing the channel simulation values by $\sqrt{ } 2$, if the ref clock is close to the $T x$ clock input. An example for Gen4 is as follows. A "rule-of-thumb" SRIS limit would be either 0.5 ps RMS $/ \sqrt{ } 2=0.35$ ps RMS if the clock chip is far from the clock input, or 0.7 ps RMS $/ \sqrt{ } 2=0.5$ ps RMS if the clock chip is near the clock input.

Table 13. Additive PCle Phase Jitter for Fanout Buffer Mode
$\mathrm{T}_{\mathrm{AMB}}=$ over the specified operating range. Supply voltages per normal operation conditions; see Test Loads for loading conditions.

Parameter	Symbol	Conditions	Minimum	Typical	Maximum	Limits	Unit
Additive PCle Phase Jitter, Fanout Buffer Mode ${ }^{88}$ (Common Clocked Architecture)	$\mathrm{t}_{\text {jphPCleG1-CC }}$	PCle Gen1 ($2.5 \mathrm{GT} / \mathrm{s}$) ${ }^{[1][2]}$	-	0.9	1.4	86	ps (p-p)
	$\mathrm{t}_{\text {jphPCleG2-CC }}$	PCle Gen2 Hi Band (5.0 GT/s) [1][2]	-	0.06	0.13	3	ps (RMS)
		PCle Gen2 Lo Band (5.0 GT/s) [1][2]	-	0.04	0.07	3.1	ps (RMS)
	$\mathrm{t}_{\text {jphPCleG3-CC }}$	PCle Gen3 (8.0 GT/s) ${ }^{[1][2]}$	-	0.040	0.068	1	ps (RMS)
	$\mathrm{t}_{\text {jphPCleG4-CC }}$	PCle Gen4 (16.0 GT/s) [1][2][3][4]	-	0.040	0.068	0.5	ps (RMS)
	$\mathrm{t}_{\text {jphPCleG5-CC }}$	PCle Gen5 (32.0 GT/s) [1][2][3][5][6]	-	0.016	0.028	0.15	ps (RMS)
Additive PCle Phase Jitter, Fanout Buffer Mode ${ }^{[8]}$ (SRIS Architecture)	$\mathrm{t}_{\text {jphPCleG2-SRIS }}$	PCle Gen2 (5.0 GT/s) ${ }^{[1][2][7]}$	-	0.100	0.151	N/A	ps (RMS)
	$\mathrm{t}_{\text {jphPCleG3-SRIS }}$	PCle Gen3 (8.0 GT/s) ${ }^{[1][2][7]}$	-	0.026	0.040		ps (RMS)
	$\mathrm{t}_{\text {jphPCleG4-SRIS }}$	PCle Gen4 (16.0 GT/s) ${ }^{[1][2][7]}$	-	0.027	0.042		ps (RMS)
	$\mathrm{t}_{\text {jphPCleG5-SRIS }}$	PCle Gen5 (32.0 GT/s) ${ }^{[1][2][7]}$	-	0.024	0.041		ps (RMS)

1. The Refclk jitter is measured after applying the filter functions found in PCI Express Base Specification 5.0, Revision 1.0. See the Test Loads section of the data sheet for the exact measurement setup. The total Ref Clk jitter limits for each data rate are listed for convenience. The worst case results for each data rate are summarized in this table. Equipment noise is removed from all results.
2. Jitter measurements shall be made with a capture of at least 100,000 clock cycles captured by a real-time oscilloscope (RTO) with a sample rate of $20 \mathrm{GS} /$ s or greater. Broadband oscilloscope noise must be minimized in the measurement. The measured PP jitter is used (no extrapolation) for RTO measurements. Alternately, jitter measurements may be used with a Phase Noise Analyzer (PNA) extending (flat) and integrating and folding the frequency content up to an offset from the carrier frequency of at least 200 MHz (at 300 MHz absolute frequency) below the Nyquist frequency. For PNA measurements for the $2.5 \mathrm{GT} / \mathrm{s}$ data rate, the RMS jitter is converted to peak-to-peak jitter using a multiplication factor of 8.83 . In the case where real-time oscilloscope and PNA measurements have both been done and produce different results, the RTO result must be used.
3. SSC spurs from the fundamental and harmonics are removed up to a cutoff frequency of 2 MHz taking care to minimize removal of any non-SSC content.
4. Note that 0.7 ps RMS is to be used in channel simulations to account for additional noise in a real system.
5. Note that 0.25 ps RMS is to be used in channel simulations to account for additional noise in a real system.
6. This specification also applied to UPI data rates $>20 \mathrm{~Gb} / \mathrm{s}$.
7. The PCI Express Base Specification 5.0, Revision 1.0 provides the filters necessary to calculate SRIS jitter values, however, it does not provide specification limits, hence the n / a in the Limit column. SRIS values are informative only. In general, a clock operating in an SRIS system must be twice as good as a clock operating in a Common Clock system. For RMS values, twice as good is equivalent to dividing the $C C$ value by $\sqrt{ } 2$. An additional consideration is the value for which to divide by $\sqrt{ } 2$. The conservative approach is to divide the ref clock jitter limit, and the case can be made for dividing the channel simulation values by $\sqrt{ } 2$, if the ref clock is close to the $T x$ clock input. An example for Gen4 is as follows. A "rule-of-thumb" SRIS limit would be either 0.5 ps RMS $/ \sqrt{ } 2=0.35$ ps RMS if the clock chip is far from the clock input, or 0.7 ps RMS $/ \sqrt{ } 2=0.5$ ps RMS if the clock chip is near the clock input.
8. Additive jitter for RMS values is calculated by solving for "b" where $b=\sqrt{ }(c 2-a 2)$ and " a " is rms input jitter and " c " is rms output jitter.

Table 14. Filtered Phase Jitter Parameters - QPI/UPI, IF-UPI and DB2000Q

$\mathrm{T}_{\mathrm{AMB}}=$ over the specified operating range. Supply voltages per normal operation conditions; see Test Loads for loading conditions.

Parameter	Symbol	Conditions	Minimum	Typical	Maximum	Specification Limits	Unit
Additive Phase Jitter, Fanout Mode	$\mathrm{t}_{\text {jphIF-UPI }}$	IF-UPI, Lo-BW ZDB Mode [1][2][3]	-	0.10	0.13	1	$\begin{gathered} \mathrm{ps} \\ (\mathrm{RMS}) \end{gathered}$
		IF-UPI, Hi-BW ZDB Mode ${ }^{[1][2][3]}$	-	0.17	0.20	1	$\begin{gathered} \mathrm{ps} \\ (\mathrm{RMS}) \end{gathered}$
		IF-UPI, Fanout Mode ${ }^{[1][2][3]}$	-	0.06	0.07	1	$\begin{gathered} \mathrm{ps} \\ (\mathrm{RMS}) \end{gathered}$
	$\mathrm{t}_{\text {jphDB2000Q }}$	DB2000Q, Fanout Mode [1][4]	-	22	25	80	$\begin{gathered} \mathrm{fs} \\ (\mathrm{RMS}) \end{gathered}$

1. Applies to all differential outputs, guaranteed by design and characterization. See Test Loads for measurement setup details. Legacy QPI and UPI specifications (100 MHz or 133.33 MHz clocking with data rates of $4.8 \mathrm{~Gb} / \mathrm{s}$ to $11.4 \mathrm{~Gb} / \mathrm{s}$ are automatically met in all operating modes when the PCI Gen5 CC requirements are met. See Table 12 and Table 13.
2. For RMS values, additive jitter is calculated by solving for "b" where $b=\sqrt{ }(c 2-a 2)$, " a " is rms input jitter and " c " is rms total jitter.
3. Calculated from phase noise analyzer with Intel-specified brick-wall filter applied. This is an additive jitter specification regardless of buffer operating mode. The enhanced 9ZXL devices meet this specification in all operating modes.
4. Calculated from Intel-supplied clock jitter tool.

Table 15. Phase Jitter Parameters - 12kHz to 20MHz
$\mathrm{T}_{\mathrm{AMB}}=$ over the specified operating range. Supply voltages per normal operation conditions; see Test Loads for loading conditions.

Parameter	Symbol	Conditions	Minimum	Typical	Maximum	Specification Limits
Unit						
Additive Phase Jitter, Fanout Buffer Mode $[1][2][3]$	$t_{j p h 12 k-20 M F O B}$	Fanout Buffer Mode, SSC OFF, 100 MHz	-	102	125	N/A
(RMS)						

1. Applies to all differential outputs, guaranteed by design and characterization. See Test Loadsfor measurement setup details.
2. 12 kHz to 20 MHz brick wall filter.
3. For RMS values, additive jitter is calculated by solving for "b" where $b=\sqrt{ }(c 2-a 2)$, " a " is rms input jitter and " c " is rms total jitter.

4. Power Management

Table 16. Power Management

CKPWRGD_PD\#	DIF_IN	SMBus EN bit	OE[x]\# Pin	DIF[x]	PLL State (in ZDB Mode)
0	X	X	X	Low/Low	OFF
1	1	0	0	Low/Low	ON
		0	1	Low/Low	ON
		1	0	Running	ON
		1	1	Low/Low	ON

Table 17. Frequency Selection (PLL Mode)

100M_133M\#	DIF_IN MHz	DIF[x]
1	100.00	DIF_IN
0	133.33	DIF_IN

Note: 9ZXL12xx and 9ZXL08xx only. 9ZXL06xx is 100 MHz only.

Table 18. PLL Operating Mode

HiBW_BypM_LoBW\#	Mode	PLL
Low	PLL Lo BW	Running
Mid	Bypass	Off
High	PLL Hi BW	Running

Note: See SMBus Byte 0, bits 7 and 6 for additional information.

5. Test Loads

Figure 5. Test Load for AC/DC Measurements

Table 19. Parameters for AC/DC Measurements

Clock Source	Device Under Test (DUT)	Rs (Ω)	Differential Zo (Ω)	$\mathbf{L}(\mathbf{c m})$	$\mathbf{C}_{\mathbf{L}}(\mathbf{p F})$	Parameters Measured
SMA100B	$9 Z X L x x 3 x$	27 External	85	25.4	2	AC/DC parameters
SMA100B	$9 Z X L x \times 5 x$	Internal	85	25.4	2	

Figure 6. Test Load for Phase Jitter Measurements using Phase Noise Analyzer

Table 20. Parameters for Phase Jitter Measurements using Phase Noise Analyzer

Clock Source	Device Under Test (DUT)	Rs (Ω)	Differential Zo (Ω)	L (cm)	$C_{L}(\mathrm{pF})$	Notes	Parameters Measured
SMA100B	9ZXLxx3x	27 External	85	25.4	N/A	Fanout Mode	PCle, IF-UPI,DB2000Q
9FGV1006	9ZXLxx3x	27 External	85	25.4		ZDB Mode	
SMA100B	9ZXLxx5x	Internal	85	25.4		Fanout Mode	
$\begin{aligned} & \text { 9FGV1006 or } \\ & \text { 9SQ440 } \end{aligned}$	9ZXLxx5x	Internal	85	25.4		ZDB Mode	

Figure 7. Test Load for Phase Jitter Measurements using Oscilloscope

Table 21. Parameters for Phase Jitter Measurements using Oscilloscope

Clock Source	Device Under Test (DUT)	Rs ($\mathbf{\Omega}$)	Differential Zo ($\mathbf{\Omega}$)	L (cm)	$\mathrm{C}_{\mathrm{L}}(\mathrm{pF})$	Notes	Parameters Measured
SMA100B	9ZXLxx3x	27 External	85	25.4	N/A	Fanout Mode	QPI/UPI
9FGV1006	9ZXLxx3x	27 External	85	25.4		ZDB Mode	
SMA100B	9ZXLxx5x	Internal	85	25.4		Fanout Mode	
$\begin{aligned} & \text { 9FGV1006 or } \\ & \text { 9SQ440 } \end{aligned}$	9ZXLxx5x	Internal	85	25.4		ZDB Mode	

6. General SMBus Serial Interface Information

6.1 How to Write

- Controller (host) sends a start bit
- Controller (host) sends the write address
- Renesas clock will acknowledge
- Controller (host) sends the beginning byte location $=\mathrm{N}$
- Renesas clock will acknowledge
- Controller (host) sends the byte count = X
- Renesas clock will acknowledge
- Controller (host) starts sending Byte \mathbf{N} through Byte N+X-1
- Renesas clock will acknowledge each byte one at a time
- Controller (host) sends a stop bit

6.2 How to Read

- Controller (host) will send a start bit
- Controller (host) sends the write address
- Renesas clock will acknowledge
- Controller (host) sends the beginning byte location $=\mathrm{N}$
- Renesas clock will acknowledge
- Controller (host) will send a separate start bit
- Controller (host) sends the read address
- Renesas clock will acknowledge
- Renesas clock will send the data byte count $=X$
- Renesas clock sends Byte N+X-1
- Renesas clock sends Byte 0 through Byte X (if $X_{(H)}$ was written to Byte 8)
- Controller (host) will need to acknowledge each byte
- Controller (host) will send a not acknowledge bit
- Controller (host) will send a stop bit

Index Block Read Operation			
Controller (Host)			Renesas
T	starT bit		
Slave Address			
WR	WRite		
			ACK
Beginning Byte $=\mathrm{N}$			
			ACK
RT	Repeat starT		
Slave Address			
RD	ReaD		
			ACK
			Data Byte Count = X
ACK			
		$\stackrel{\stackrel{N}{\infty}}{\stackrel{N}{\infty}}$	Beginning Byte N
ACK			
			0
	0		O
	0		0
0			
			Byte N+X-1
N	Not acknowledge		
P	stoP bit		

Table 22. SMBus Addressing

Pin		SMBus Address		
SADR1_tri	SADR0_tri	$\begin{aligned} & \text { 9ZXL12x2 } \\ & \text { 9ZXL0853 } \end{aligned}$	9ZXL08x2	9ZXL06x2
0	0	D8	D8	D8
0	M	DA	-	-
0	1	DE	-	-
M	0	C2	-	-
M	M	C4	-	-
M	1	C6	-	-
1	0	CA	-	-
1	M	CC	-	-
1	1	CE	-	-

Note: 9ZXL08x2 and 9ZXL06x2 do not have SMBus address select pins. Their address is D8.
Table 23. Byte 0: PLL Mode and Frequency Select Register

Byte 0	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
Control Function	PLL Operating Mode Readback 1	PLL Operating Mode Readback 0	Reserved	Reserved	Enable software control of PLL BW	PLLOperating Mode 1	PLL Operating Mode 0	Frequency Select Readback
Type	R	R			RW	RW	RW	R
0	$\begin{gathered} 00=\text { Low BW } \\ \text { ZDB Mode } \end{gathered}$	$01 \text { = Bypass }$ (Fanout Buffer)			HW Latch	$\begin{gathered} 00=\text { Low BW } \\ \text { ZDB Mode } \end{gathered}$	$\begin{gathered} 01 \text { = Bypass } \\ \text { (Fanout Buffer) } \end{gathered}$	133 MHz
1	$10=$ Reserved	11 = High BW ZDB Mode			SMBus Control	$\begin{gathered} 10= \\ \text { Reserved } \end{gathered}$	11 = High BW ZDB Mode	100 MHz
Name	PLL Rdbk[1]	PLL Rdbk[0]			PLL_SW_EN	PLL Mode[1]	PLL Mode[0]	100M_133M\#
Default	Latch	Latch	0	0	0	1	1	Latch

Note: Setting bit 3 to ' 1 ' allows the user to override the latch value from pin 5 via use of bits 2 and 1 . A warm system reset is required if the user changes these bits. Bit 0 defaults to 1 on the 9 ZXL06x2 devices.

Table 24. Byte 1: Output Control Register 1

Byte 1	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
Control Function	Output Enable							
Type	RW							
0	Low/Low							
1	OE\# Pin Control							
$\begin{array}{\|c} \begin{array}{c} 9 Z X L 12 x x \\ \text { Name } \end{array} \\ \hline \end{array}$	DIF7_en	DIF6_en	DIF5_en	DIF4_en	DIF3_en	DIF2_en	DIF1_en	DIFO_en
$\begin{array}{\|c} 9 Z X L 12 x x \\ \text { Default } \end{array}$	1	1	1	1	1	1	1	1
$\begin{array}{\|l} \text { 9ZXL08xx } \\ \text { Name } \end{array}$	DIF5_en	DIF4_en	DIF3_en	DIF2_en	Reserved	DIF1_en	DIF0_en	Reserved
$\begin{array}{\|c} \text { 9ZXL08xx } \\ \text { Default } \end{array}$	1	1	1	1	0	1	1	0
$\begin{array}{\|l\|l\|} \text { 9ZXL06xx } \\ \text { Name } \end{array}$	Reserved	DIF3_en	DIF2_en	Reserved	Reserved	DIF1_en	DIF0_en	Reserved
$\left\lvert\, \begin{gathered} \text { 9ZXL06xx } \\ \text { Default } \end{gathered}\right.$	0	1	1	0	0	1	1	0

Table 25. Byte 2: Output Control Register 2

Byte 2	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
Control Function	Output_enable							
Type	RW							
0	Low/Low							
1	OE\# Pin Control							
$\begin{aligned} & \text { 9ZXL12xx } \\ & \text { Name } \end{aligned}$	Reserved	Reserved	Reserved	Reserved	DIF11_en	DIF10_en	DIF9_en	DIF8_en
$\begin{gathered} \text { 9ZXL12xx } \\ \text { Default } \end{gathered}$	0	0	0	0	1	1	1	1
$\begin{aligned} & \text { 9ZXL08xx } \\ & \text { Name } \end{aligned}$	Reserved	Reserved	Reserved	Reserved	Reserved	DIF7_en	Reserved	DIF6_en
$\begin{gathered} \text { 9ZXL08xx } \\ \text { Default } \end{gathered}$	0	0	0	0	0	1	0	1
$\begin{aligned} & \text { 9ZXL06xx } \\ & \text { Name } \end{aligned}$	Reserved	Reserved	Reserved	Reserved	Reserved	DIF5_en	DIF4_en	Reserved
$\begin{aligned} & \text { 9ZXL06xx } \\ & \text { Default } \end{aligned}$	0	0	0	0	0	1	1	0

Bytes 3 and 4 are Reserved

Table 26. Byte 5: Revision and Vendor ID Register

Byte 5	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
Control Function	Revision ID				Vendor ID			
Type	R	R	R	R	R	R	R	R
0	E rev $=0010$				IDT/Renesas = 0001			
1								
Name	RID3	RID2	RID1	RID0	VID3	VID2	VID1	VIDO
Default	0	1	0	0	0	0	0	1

Table 27. Byte 6: Device ID Register

Byte 6	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
Control Function	N/A							
Type	R	R	R	R	R	R	R	R
0 1	Device ID							
Name	DevID 7	DevID 6	DevID 5	DevID 4	DevID 3	DevID 2	Devid 1	Devid 0
9ZXL1232E	OhE8							
9ZXL1252E	OhF8							
9ZXL0832E	OhE6							
9ZXL0852E	OhF6							
9ZXL0853E								
9ZXL0632E	OhE4							
9ZXL0652E	OhF4							

Table 28. Byte 7: Byte Count Register

Byte 7	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
Control Function	Reserved	Reserved	Reserved	Writing to this register configures how many bytes will be read back on a block read.				
Type				RW	RW	RW	RW	RW
0				Default value is 8 .				
Name				BC4	BC3	BC2	BC1	BCO
Default	0	0	0	0	1	0	0	0

7. Package Outline Drawings

The package outline drawings are located at the end of this document and are accessible from the Renesas website (see Ordering Information for POD links). The package information is the most current data available and is subject to change without revision of this document.

8. Marking Diagrams

8.1 9ZXL06x2E

- Lines 1 and 2: truncated part number
- Line 3: "YYWW" is the last two digits of the year and the work week the part was assembled.
- Line 4: "COO" denotes country of origin.
- Line 5: "LOT" denotes the lot number.

8.2 9ZXL08xxE

8.3 9ZXL12x2E

- Lines 1 and 2: truncated part number
- Line 3: "LOT" denotes the lot number.
- Line 4: "COO" denotes country of origin; "YYWW" is the last two digits of the year and the work week the part was assembled.

9. Ordering Information

Table 29. Ordering Information

Number of Clock Outputs	Output Impedance	Part Number	Temperature Range	Package	Part Number Suffix and Shipping Method
6	33Ω	9ZXL0632EKILF	-40° to $+85^{\circ} \mathrm{C}$	$\begin{gathered} 5 \times 5 \times 0.4 \mathrm{~mm} \\ 40 \text {-VFQFPN } \end{gathered}$	None $=$ Trays "T" = Tape and Reel, Pin 1 Orientation: EIA-481C (see <Hyperlink>Table 30 for more details)
		9ZXL0632EKILFT			
	85Ω	9ZXL0652EKILF			
		9ZXL0652EKILFT			
8	33Ω	9ZXL0832EKILF	-40° to $+85^{\circ} \mathrm{C}$	$\begin{gathered} 6 \times 6 \times 0.4 \mathrm{~mm} \\ 48 \text {-VFQFPN } \end{gathered}$	
		9ZXL0832EKILFT			
		9ZXL0852EKILF			
		9ZXL0852EKILFT			
		9ZXL0853EKILF			
		9ZXL0853EKILFT			
12	33Ω	9ZXL1232EKILF	-40° to $+85^{\circ} \mathrm{C}$	$\begin{gathered} 9 \times 9 \times 0.5 \mathrm{~mm} \\ 64-\text {-VFQFPN } \end{gathered}$	
		9ZXL1232EKILFT			
	85Ω	9ZXL1252EKILF			
		9ZXL1252EKILFT			

" E " is the device revision designator (will not correlate with the datasheet revision).
"LF" denotes Pb-free configuration, RoHS compliant.
Table 30. Pin 1 Orientation in Tape and Reel Packaging

Part Number Suffix	Pin 1 Orientation	Illustration
T	Quadrant 1 (EIA-481-C)	

10. Revision History

Revision	Date	Description
1.02	Dec 22, 2022	- Minor updates to electrical tables and minor formatting fixes. - Removed legacy QPI/UPI data since meeting that specification is guaranteed by meeting the PCle Gen5 specifications. - Reformatted datasheet to the latest template.
-	Aug 25, 2020	Updated PCle Gen5 CC, DB2000Q, and QPI/UPI specifications in Key Specifications section on front page.
-	May 21,2020	Initial release.

IMPORTANT NOTICE AND DISCLAIMER

RENESAS ELECTRONICS CORPORATION AND ITS SUBSIDIARIES ("RENESAS") PROVIDES TECHNICAL SPECIFICATIONS AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING, WITHOUT LIMITATION, ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for developers skilled in the art designing with Renesas products. You are solely responsible for (1) selecting the appropriate products for your application, (2) designing, validating, and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, or other requirements. These resources are subject to change without notice. Renesas grants you permission to use these resources only for development of an application that uses Renesas products. Other reproduction or use of these resources is strictly prohibited. No license is granted to any other Renesas intellectual property or to any third party intellectual property. Renesas disclaims responsibility for, and you will fully indemnify Renesas and its representatives against, any claims, damages, costs, losses, or liabilities arising out of your use of these resources. Renesas' products are provided only subject to Renesas' Terms and Conditions of Sale or other applicable terms agreed to in writing. No use o any Renesas resources expands or otherwise alters any applicable warranties or warranty disclaimers for these products.
(Disclaimer Rev.1.0 Mar 2020)

Corporate Headquarters

TOYOSU FORESIA, 3-2-24 Toyosu,
Koto-ku, Tokyo 135-0061, Japan
www.renesas.com

Contact Information

For further information on a product, technology, the most up-to-date version of a document, or your nearest sales office, please visit: www.renesas.com/contact/

Trademarks

Package Code:NDG40P2

TOP VIEW

BOTTOM VIEW

NOTES:

1. JEDEC compatible.
2. All dimensions are in mm and angles are in degrees.
3. Use $\pm 0.05 \mathrm{~mm}$ for the non-toleranced dimensions.
4. Numbers in () are for references only.

RECOMMENDED LAND PATTERN
(PCB Top View, NSMD Design)

