

- ★ Green Device Available
- ★ Super Low Gate Charge
- ★ Excellent CdV/dt effect decline
- ★ Advanced high cell density Trench technology
- ★ 100% EAS Guaranteed

Product Summary

BVDSS	RDSON	ID
30V	5.0mΩ	62A

Description

The S60N03D is the high cell density trenched N-ch MOSFETs, which provide excellent RDSON and gate charge for DC/DC converters application.

The S60N03D meet the RoHS and Green Product, requirement 100% EAS guaranteed with full function reliability approved.

PDFN3*3 Pin Configuration

Absolute Maximum Ratings

Symbol	Parameter	Value	Unit
Vos	Drain-Source Voltage	30	V
Vgs	Gate-Source Voltage	±20	V
Ib@Tc=25°C	Continuous Drain Current, Vos @ -10V1	62	Α
Ib@Tc=100°C	Continuous Drain Current, Vcs @ -10V1	38	А
Id@Ta=25°C	Continuous Drain Current, Vcs @ -10V1	27	А
Id@Ta=70°C	Continuous Drain Current, Vos @ -10V ¹		Α
Ірм	Pulsed Drain Current ²	135	Α
EAS	Single Pulse Avalanche Energy ³	29.8	mJ
las	Avalanche Current	27	А
Pp@Tc=25°C	Total Power Dissipation ⁴		W
Тѕтс	Storage Temperature Range		°C
TJ	T _J Operating Junction Temperature Range		°C

Thermal Data

Symbol	Parameter	Тур.	Max.	Unit
Reja Thermal Resistance Junction-Ambient 1			50	°C/W
Rыс	Thermal Resistance Junction-Case ¹		4.6	°C/W

Electrical Characteristics (T_J =25 °C unless otherwise specified)

Symbol	Parameter	Test condition	Min.	Тур.	Max.	Units
BVoss Drain-Source Breakdown Voltage		Vgs=0V, Ip=250uA	30			V
Dagger	Static Drain-Source On-Resistance	Vgs=10V, Ip=20A		5	6.3	m ()
RDS(ON)	Static Drain-Source On-Resistance2	V _{GS} =4.5V , I _D =15A		6.9	9	mΩ
VGS(th)	Gate Threshold Voltage	Vgs=Vps, lp =250uA	1.2		2.5	V
Ipss	Drain-Source Leakage Current	V _{DS} =24V, V _{GS} =0V, T _J =25°C			1	uA
IDSS	Dialii-Source Leakage Current	V _D s=24V , V _G s=0V , T _J =55°C			5	uA
Igss	Gate-Source Leakage Current	$V_{GS}=\pm 20V$, $V_{DS}=0V$			±100	nA
gfs	Forward Transconductance	V _{DS} =5V, I _D =20A		67		S
Rg	Gate Resistance	V _{DS} =0V, V _{GS} =0V, f=1MHz		1.7		Ω
Qg	Qg Total Gate Charge (4.5V)			8		
Qgs	Gate-Source Charge	Vps=15V, Vgs=4.5V, Ip=15A		2.4		nC
Qgd	Gate-Drain Charge			3.2		
T _{d(on)}	Turn-On Delay Time			7.1		
Tr	Rise Time	V_{DD} =15 V , V_{GS} =10 V , R_{G} =3.3 Ω		40		
Td(off)	Turn-Off Delay Time	I _D =15A		15		ns
Tf	Fall Time			6		
Ciss	Input Capacitance			814		
Coss Output Capacitance		V _{DS} =15V, V _{GS} =0V, f=1MHz		498		pF
Crss	Reverse Transfer Capacitance			41		

Diode Characteristics

Symbol	Parameter	Test condition	Min.	Тур.	Max.	Units
Is	Continuous Source Current _{1,6}	V _G =V _D =0V, Force Current			60	Α
VsD	Diode Forward Voltage2	Vgs=0V, Is=1A, TJ=25℃			1	V
trr	Reverse Recovery Time	lr=20A , di/dt=100A/μs ,		15	-	nS
Qrr	Reverse Recovery Charge	TJ=25℃		25		nC

1.The data tested by surface mounted on a 1 inch2 FR-4 board with 2OZ copper.

2.The data tested by pulsed , pulse width \leq 300us , duty cycle \leq 2%

3.The EAS data shows Max. rating . The test condition is V_{DD} =25V, V_{GS} =10V,L=0.1mH,Ias=24A 4.The power dissipation is limited by 150°C junction temperature

5.The data is theoretically the same as ID and IDM, in real applications, should be limited by total power dissipation.

Typical Performance Characteristics

Figure1: Output Characteristics

Figure 3:Source Drain Forward Characte

Figure 5: Normalized VGS(th) vs TJ

Figure 2: Typical Transfer Characteristic

Figure 4: Gate-Charge Characteristics

Figure 6: Normalized RDSON vs TJ

Typical Performance Characteristics

Figure 7: Capacitance

Figure 8: Safe Operating Area

Figure 9: Normalized Maximum Transie

Figure 11: Switching Time Waveform

Figure 10: Unclamped Inductive Switchin

PDFN3*3-8L Package Information

C1 . 1	MILLMETER				
Symbol Symbol	MIN	MON	MAX		
A	0.70	0.80	0.90		
A1	0.00	0.03	0.05		
b	0. 24	0.30	0.35		
С	0.10	0.15	0.20		
D	3. 25	3. 32	3.40		
D1	3.05	3. 15	3. 25		
D2	2.40	2.50	2.60		
Е	3.00	3. 10	3. 20		
E1	1. 35 1. 45		1.55		
е	0. 65BSC.				
Н	3. 20	3. 30	3. 40		
L	0.30	0.40	0.50		
L1	0.10	0.15	0.20		
L2	1.13REF.				