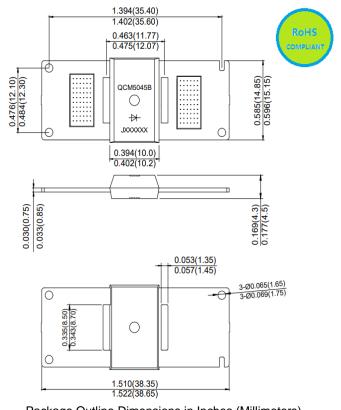


Photovoltaic Solar Cell Protection Schottky Diode

Features

- Low power loss, high efficiency
- High surge current capabity
- Guardring for overvoltage potection
- High temperature reverse characteristic is excellent
- Trench Schottky Technology
- Metal of silicon rectifier, majority carrier conduction


Mechanical Data

- Case:QC3Q, Molded plastic body Molding compound meets UL 94 V-0 flammability rating
- Terminal: Mattle tin plated leads, solderable per JESD22-B102
- Polarity: As marked on body
- Weight: 4.9grams(approximately)

Typical Applications

- Photovoltaic solar cell protection
- Switching power supplies, converters, freewheeling diodes, and reverse battery protection

Bypass Diode Module For PV Forward Current - 50 Amperes

Package Outline Dimensions in Inches (Millimeters)

Maximum Ratings and Electrical Characteristics

Rating at 25°C ambient temperature unless otherwise specified.

Single phase, half wave, 60Hz, resistive or inductive load.

For capacitive load, derate current by 20%.

1 of capacitive lead, defaile callent by 2076.				
Characteristics		SYM	QCM5045B-180T1	Unit
Maximum Repetitive Peak Reverse Voltage		Vrrm	45	V
Maximum RMS Voltage		VRMS	31.5	V
Maximum DC Blocking Voltage		VDC	45	V
Maximum Average Forward Rectified Current @ Tc=125 $^{\circ}\mathrm{C}$		I(AV)	50	Α
Peak Forward Surge Current, 8.3mS Single Half Sine-Wave,		Ігѕм	400	Α
Superimposed on Rated Load (JEDEC Method)				
Peak Forward Voltage at	30A DC (Note 1)	VF	0.49	V
	40A DC (Note 1)		0.55	
Maximun DC Reverse Current at Rated DC Blocking Voltage	@TJ=25℃	lr	0.15	mA
	@TJ=100°C		20	
Typical Thermal Resistance Junction to Case		Rejc	1.5	°C/W
Junction Temperature Range (Note2)		TJ	-55 to+200	${\mathbb C}$
Storage Temperature Range		Тѕтс	-55 to+150	${\mathbb C}$

Notes: 1. 300uS pulse width, 2%duty cycle.

- Junction Temperature In DC forward current without reverse bias, ,t≤1 h (Fig.1). Meets the Requirements of IEC 61215 Ed. 2 bypass diode
 thermal test.
- 3. The typical data above is for reference only.
- 4. Products made by JUXIN semiconductor

Rating and Characteristic Curves

Fig. 1 - Forward Current Derating Curve

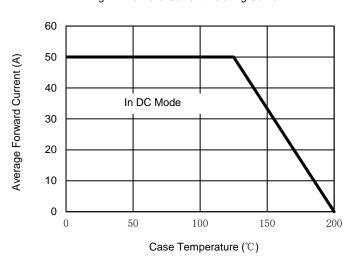
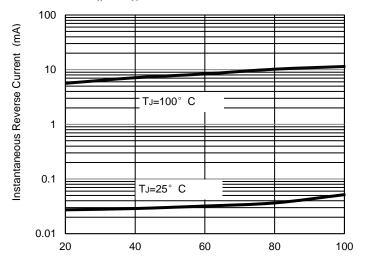
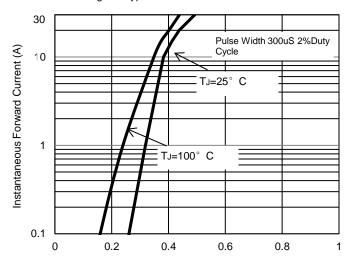



Fig. 2 - Maximum Non-Repetitive Surge Current

450
400
8.3mS Single Half-Sine-Wave (JEDEC METHOD)

350
250
200
150
0
1 100
100


Fig. 3 - Typical Reverse Characteristics

Percent of Rated Peak Reverse Voltage (%)

Fig. 4 - Typical Forward Characteristics

Number of Cycles at 60Hz

Instantaneous Forward Voltage (V)

version: 02