

FAX: 0755-89315223 官网: www.kaiyuexiang.com

- Ideal for 433.92 MHz Transmitters
- Very Low Series Resistance
- Quartz Stability
- Rugged, Hermetic, Low-Profile TO39 or F11 Case

TheYRR433.92 is a true one-port, surface-acoustic-wave (SAW) resonator in a low-profile TO39 or F11 case. It provides reliable, fundamental-mode, quartz stabilization of fixed-frequency transmitters operating at 433.92 MHz. The YRR433.92 is designed specifically for remote control and wireless security transmitters operating in Europe under ETSI I-ETS 300 220 and in Germany under FTZ 17 TR 2100.

1. Marking

R433 Color:Black or Blue Center Frequnecy:433.92 MHz

2. Package Dimension

3. Equivalent LC Model

4. Test Circuit

5. Absolute Maximum Ratings

Value	Units
+0	dBm
±30	VDC
-40 to ± 85	° C
-20 to ± 70	° C
	Value +0 ±30 -40 to ±85 -20 to ±70

6. Electrical Characteristics

Characteristic		Svc	Min	Typical	Max	Units
Center	Absolute Frequency	fc	433.845	433.920	433.995	MHz
Frequency(+25℃)	Tolerance from 433.920MHz	∆fc		J-	±75	kHz
Insertion Loss		IL		1.5	2.0	dB
Quality Factor	Unloaded Q	QU		12,800	了公	
	50Ω Loaded Q	QL		2,000		
Temperarture Stability	Turnover Temperature	To	24	39	54	°C
	Turnover Frequency	fo		fc+2.7		kHz
	Freq. Temp. Coefficient	FTC		0.037		ppm/°C ²
Frequency Aging		f _A		≤10		ppm/yr
Absolute Value during the First Year						
DC Insulation Resistance between Any Two Pins				1.0		MΩ
RF Equivalent RLC Model	Motional Resistance	R _M	21	18	26	Ω
	Motional Inductance	L _M		86.0075		μH
	Motional Capacitance	C _M		1.56417		fF
	Pin 1 to 2 Static Capacitance	Co	1.7	2.0	2.3	pF
Transducer Static Capacitance		Ср		1.7		pF
Test Fixture Shunt Inductance		LTEST		78		nH

CAUTION: Electrostatic Sensitive Device. Observe precautions for handling.

Notes:

- 1. Frequency aging is the change in fc with time and is specified at +65 °C or less. Aging may exceed the specification for prolonged temperatures above +65 °C. Typically, aging is greatest the first year after manufacture, decreasing in subsequent years.
- 2. The center frequency, fc, is measured at the minimum insertion loss point, IL _{MIN}, with the resonator in the 50 Ω test system (VSWR \leq 1.2: 1). The shunt inductance, L _{TEST}, is tuned for parallel resonance with Co at fc.
- 3. Typically, equipment utilizing this device requires emissions testing and government approval, which is the responsibility of the equipment manufacturer.
- 4. Unless noted otherwise, case temperature $Tc=+25^{\circ}C \pm 2^{\circ}C$.
- 5. Derived mathematically from one or more of the following directly measured parameters: fc,

IL, 3dB bandwidth, fc versus Tc, and Co.

- Turnover temperature, To, is the temperature of maximum (or turnover) frequency, fo. The nominal frequency at any case temperature, Tc, may be calculated from: f=fo [1-FTC(To-Tc)²]. Typically, *oscillator* To is 20°C less than the specified *resonator* To.
- 7. This equivalent RLC model approximates resonator performance near the resonant frequency and is provided for reference only. The capacitance Co is the static (nonmotional) capacitance between Pin 1 and Pin 2 measured at low frequency (10 MHz) with a capacitance meter. The measurement includes parasitic capacitance with floating case. For usual grounded case applications (with ground connected to either pin 1 or pin 2 and to the case), add approximately 0.25pF to Co.
- 7. Application Circuits

Local Oscillator Application

8. Typical Frequency Response

9. Reliability

- Mechanical Shocks: The components 1 remain within the electrical specifications after 1000 shocks, acceleration 392m/s² duration 6 milliseconds.
- Vibration Fatigue: The components shall remain within the electrical specifications after loaded vibration at 20 Hz, amplitude 1.5 mm, for 2 hours.
- Terminal Strength: The components shall remain within the electrical specifications after pulled 2 Kgs weight for 10 seconds towards an axis of each terminal.
- High Temperature Storage: The components shall remain within the electrical specifications after being kept at the $85^{\circ}C \pm 2^{\circ}C$ for 48 hours, then kept at room temperature for 2 hours.
- Low Temperature Storage: The components shall remain within the electrical specifications after being kept at the $-25^{\circ}C \pm 2^{\circ}C$ for 48 hours, then kept at room temperature for 2 hours.
- Temperature Cycle: The components shall remain within the electrical specifications after 5 Cycles of high and low temperature testing (one cycle: 80°C for 30 minutes → 25°C for 5 minutes → -25°C for 30 minutes) than kept at room temperature for 2 hours.
- Solder-heat Resistance: The components shall remain within the electrical specifications after dipped in the solder at 260 °C for 10±1 seconds, then kept at room temperature for 2 hours (Terminal must be dipped leaving 1.5 mm from the case).
- Solderability: Solderability of terminal shall be kept at more than 80% after dipped in the solder flux at 230°C±5°C for 5±1 seconds.

拟 制	成望生	审 核	董宗全	批准	谢为亮	
				N. K. K.		