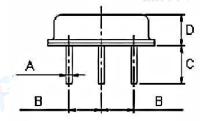
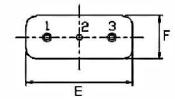


深圳市凯越翔电子有限公司

声表谐振器规格书


产品名称:	声表谐振器
产品型号:	D11/433. 92M
产品参数:	± 75KHZ
原厂型号:	KD143392
凯越翔技术部:	董宗全

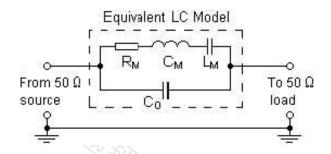

客户确	认 栏
认 证 印 章 年 月 日	负责人印章 年月日
子對 _{几萬萬英}	平 對几後第三個

工厂地址:深圳市龙华区观澜人民路蔡发工业城一栋四层 TEL: 0755-89315823 89315866 FAX: 0755-89315223 官网: www.kaiyuexiang.com

The YRR433 is a true one- port , surface- acoustic- wave(SAW) resonator in a low-profile D -11 case. It provides reliable , fundamental- mode , quartz frequency stabilization of fixed- frequency transmitters operating at 433.92 MHz.

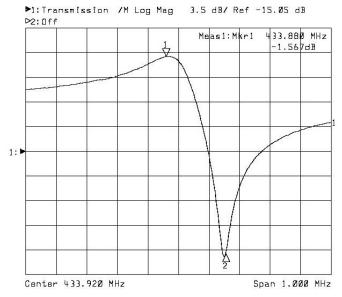
1. Package Dimension (D -11)

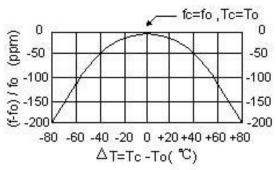
Pin	Connection		Connection	
1	Input			
2	Case Ground			
3	Output			


Dimension	Data (unit: mm)
A 75	0.45±0.05
В	2.54±0.06
С	3.0±0.20
D	3.0 max
E	8.36±0.08
F	3.45±0.08

2. Marking Circuit

3. Equivalent LC Model and Test


R433


Color: Black or Blue

5. Typical Frequency Response

6.Temperature Characteristics

The curve shown above accounts for resonator contribution only and does not include oscillator temperature characteristics.

7. Performance

7-1.Maximum Rating

Rating	Value	Units
CW RF Power Dissipation	+10	dBm
DC Voltage Between Any Two Pins	±30V	VDC
Case Temperature	-20 to +70	$^{\circ}$

7-2. Electronic Characteristics

	Characteristic	Sym	Minimum	Typical	Maximum	Units
Center Frequency	Absolute Frequency	f _C	433.845		433.995	MHz
(+25℃)	Tolerance from 433.920 MHz	Δf_{C}		±75		kHz
Insertion Loss		I _L		1.5	1.8	dB
Ovelity Feeter	Unloaded Q	Q _U		15974		
Quality Factor	50 Ω Loaded Q	Q _L		1900		
V	Turnover Temperature	To	25	40	55	°C
Temperature Stability	Turnover Frequency	f _O	1 4 7 /	fc		kHz
C.a.Jy	Frequency Temperature Coefficient	FTC	7	0.037		ppm/°C ²
Frequency Aging A	bsolute Value during the First Year	f _A		≤10		ppm/yr
DC Insulation Resis	stance Between Any Two Pins		1.0	472	/ //	МΩ
	Motional Resistance	R _M		19	23	Ω
RF Equivalent	Motional Inductance	L _M		79.137		μH
RLC Model	Motional Capacitance	См		1.8019		fF
	Pin 1 to Pin 2 Static Capacitance	Co		1.9		pF

CAUTION: Electrostatic Sensitive Device. Observe precautions for handling. Notes:

- 1. Frequency aging is the change in fc with time and is specified at +65 °C or less. Aging may exceed the specification for prolonged temperatures above +65 °C. Typically, aging is greatest the first year after manufacture, decreasing in subsequent years.
- 2. The center frequency, fc, is measured at the minimum insertion loss point, IL $_{MIN}$, with the resonator in the 50 Ω test system (VSWR \leq 1.2: 1). The shunt inductance, L $_{TEST}$, is tuned for parallel resonance with Co at fc.
- 3. Typically, equipment utilizing this device requires emissions testing and government approval, which is the responsibility of the equipment manufacturer.
- 4. Unless noted otherwise, case temperature $Tc=+25^{\circ}C \pm 2^{\circ}C$.
- 5. Derived mathematically from one or more of the following directly measured parameters: fc, IL, 3dB bandwidth, fc versus Tc, and Co.
- 6. Turnover temperature, To, is the temperature of maximum (or turnover) frequency, fo. The nominal frequency at any case temperature, Tc, may be calculated from: f=fo [1-FTC(To-Tc)²]. Typically, *oscillator* To is 20°C less than the specified *resonator* To.
- 7. This equivalent RLC model approximates resonator performance near the resonant frequency and is provided for reference only. The capacitance Co is the static (nonmotional) capacitance between Pin 1 and Pin 2 measured at low frequency (10 MHz) with a capacitance meter. The measurement includes parasitic capacitance with floating case. For usual grounded case applications (with ground connected to either pin 1 or pin 2 and to the case), add approximately 0.25pF to Co.

拟 制 成望生 审 核 董宗全 批 准 谢为亮
