







### **General Description**

The LM321 brings performance and economy to low power systems . With a high unity gain frequency and a guaranteed  $0.4V/\mu s$  slew rate, the quiescent current is only  $100\mu A(5V)$ . The input common mode

range includes ground and therefore the device is able to operate in single supply applications as well as in dual supply applications. It is also capable of comfortably driving large capacitive loads.



Overall the LM321 is a low power, wide supply range performance op amp that can be designed into a wide range of applications at an economical price without sacrificing valuable board space.

The LM321 is available in the SOT-23-5L package.

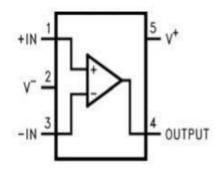
#### **Features**

- Gain-Bandwidth product 1.0MHz
- Low supply current 100μA
- Low input bias current 45nA
- Wide supply voltage range +3V to +32V

#### **Order Information**

| <b>Product Model</b> | Package Type | Marking | Packing | Packing Qty  |
|----------------------|--------------|---------|---------|--------------|
| LM321DTR             | SOT-23-5L    | A63A    | Tape    | 3000pcs/Reel |
|                      |              |         |         |              |
|                      |              |         |         |              |
|                      |              |         |         |              |
|                      |              |         |         |              |

### **Applications**


- Chargers
- Power supplies
- Industrial controls and instruments
- Desktops
- Communications infrastructure





## **Block Diagram And Pin Description** Marking Information

#### **Block Diagram**



## Absolute Maximum Ratings \*1

| Parameter Name                                                 | Value      | Unit  |
|----------------------------------------------------------------|------------|-------|
| Supply Voltage                                                 | 32         | V     |
| Input Voltage                                                  | -0.3~+32   | V     |
| Output Short Circuit to GND V <sup>+</sup> ≤15V and Ta=25。C *2 | Continuous |       |
| Junction Temperature *3                                        | 150        | 。 C   |
| Thermal Resistance to Ambient (θ <sub>JA</sub> )               | 265        | . C/W |
| Operating Temperature Range                                    | -40~+85    | 。 C   |
| Storage Temperature Range                                      | -65~+150   | 。 C   |

# Electrical Characteristics (Unless otherwise specified, V+=5.0V)

| Parameter Name                     | Test Conditions                                                 |                     | Min | Тур  | Max                 | Unit |
|------------------------------------|-----------------------------------------------------------------|---------------------|-----|------|---------------------|------|
| Input Offset Voltage               | Ta=25。 C *4                                                     |                     |     | 2    | 5                   | mV   |
| Input Bias Current                 | Ta=25。 C, IIN(+) or IIN(-), VCM                                 | ı=0V *5             |     | 45   | 150                 | nA   |
| Input Offset Current               | Ta=25。 C, IIN(+) - IIN(-), VCM=                                 | :0V                 |     | 3    | 30                  | nA   |
| Input Common-Mode Voltage Range    | Ta=25。 C, V <sup>+</sup> =30V *6                                |                     | 0   |      | V <sup>+</sup> -1.5 | V    |
| Cumply Cumpent                     | Over Full Temperature<br>Range, RL=∞ on all Op                  | V <sup>+</sup> =30V |     | 160  | 500                 |      |
| Supply Current                     | Amps                                                            | V <sup>+</sup> =5V  |     | 100  | 300                 | μA   |
| Large Signal Voltage Gain          | Ta=25。C, V <sup>+</sup> =15V, RL $\geqslant$ 2kΩ (for Vo=1~11V) |                     | 50  | 100  |                     | V/mV |
| Common-Mode Rejection Ratio        | DC, Ta=25。C, Vcm=0~V <sup>+</sup> -1.5V                         |                     | 70  | 90   |                     | dB   |
| Power Supply Rejection Ratio       | DC, Ta=25。 C, V <sup>+</sup> =5~30V                             |                     | 75  | 100  |                     | dB   |
| Amplifier-to-Amplifier<br>Coupling | Ta=25。 C,f=1∼20kHz(input                                        | referred)*7         |     | -120 |                     | dB   |



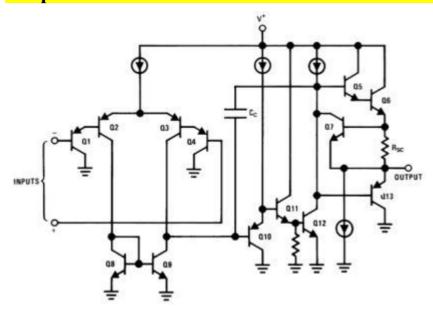




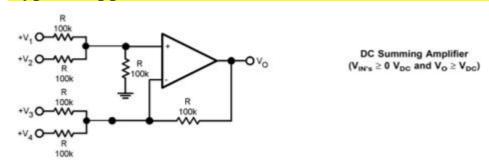


| Parameter               | Name   | Test Condition                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ons         | Min | Тур | Max      | Unit |
|-------------------------|--------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|-----|-----|----------|------|
|                         | Source | VIN(+)=1V, VIN(-)=0V, V <sup>+</sup> =7<br>Ta=25。 C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 15V, Vo=2V, | 20  | 40  |          | mA   |
| Output Current          | Sink   | V <sub>IN(-</sub> )=1V, V <sub>IN(+</sub> )=0V, V <sup>+</sup> = <sup>2</sup><br>Ta=25。 C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |             | 15  |     | mA<br>μA |      |
|                         | SILIK  | $V_{IN(-)}=1V$ , $V_{IN(+)}=0V$ , $V^{+}=V_{0}=200$ mV, $V_{0}=200$ mV, $V_{0}=2000$ mV, $V_{0}=2000$ mV, $V_{0}=2000$ mV, $V_{0}=2000$ mV, $V_{0}=2000$ mV, $V_{0}=$ |             | 50  |     |          |      |
| Short Circuit to Gro    | und    | Ta=25。C, V <sup>+</sup> =15V *2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 2           |     | 40  | 85       | mA   |
| Output Voltage<br>Swing |        | V <sup>+</sup> =30V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | RL=2kΩ      | 26  |     |          | V    |
|                         | Vон    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | RL=10kΩ     | 27  | 28  |          | V    |
|                         | VoL    | $V^{+}$ =5V, RL=10k $\Omega$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |             |     | 5   | 20       | mV   |

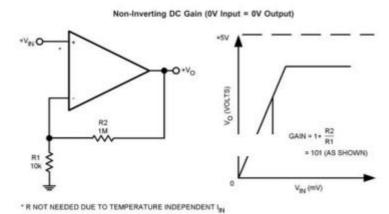
- \* 1 Absolute Maximum Ratings indicate limits beyond which damage to the device may occur. Operating Ratings indicate conditions for which the device is intended to be functional, but specific performance is not guaranteed. For guaranteed specifications and the test conditions, see the Electrical Characteristics.
- \* 2: Short circuits from the output to V can cause excessive heating and eventual destruction. When considering short circuits to ground, the maximum output current is approximately 40mA independent of the magnitude of V. At values of supply voltage in excess of +15V, continuous short-circuits can exceed the power dissipation ratings and cause eventual destruction. Destructive dissipation can result from simultaneous shorts on all amplifiers.
- \* 3: The maximum power dissipation is a function of TJ(MAX),  $\theta JA$ , and Ta. The maximum allowable power dissipation at any ambient temperature is  $PD = (TJ(MAX) Ta)/\theta JA$ . All numbers apply for packages soldered directly onto a PC board.
- \* 4: Vo=1.4V, Rs =  $0\Omega$  with V from 5V to 30V; and over the full input common-mode range (0V to V -1.5V) at 25°C
- \* 5: The direction of the input current is out of the IC due to the PNP input stage. This current is essentially constant, independent of the state of the output so no loading change exists on the input lines.
- \* 6: The input common-mode voltage of either input signal voltage should not be allowed to go negative by more than 0.3V (at 25°C). The upper end of them common-mode voltage range is V -1.5V (at 25°C), but either or both inputs can go to +32V without damage, independent of the magnitude of V.
- \*7: Due to proximity of external components, insure that coupling is not originating via stray capacitance between these external parts. This typically can be detected as this type of capacitance increases at higher frequencies.







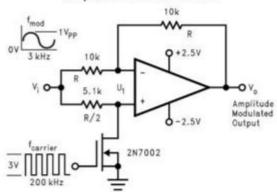


## **Simplified Schematic**



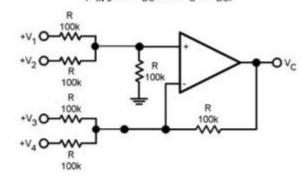
### **Typical Application**



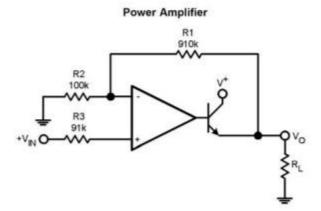
Where:  $V_0 = V_1 + V_2 - V_3 - V_4$ ,  $(V_1 + V_2) \ge (V_3 + V_4)$  to keep  $V_0 \ge 0$   $V_{DC}$ 

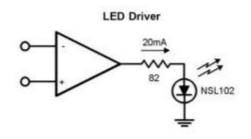




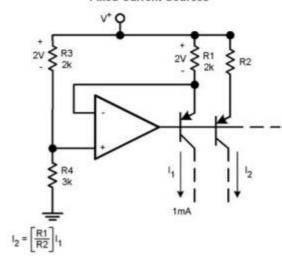




#### **Amplitude Modulator Circuit**

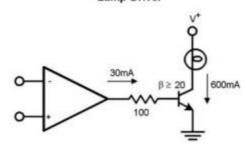



# DC Summing Amplifier $(V_{IN's} \ge 0 \ V_{DC} \ and \ V_O \ge V_{DC})$




Where:  $V_0 = V_1 + V_2 - V_3 + V_4$ ,  $(V_1 + V_2) \ge (V_3 + V_4)$  to keep  $V_0 \ge 0$   $V_{DC}$ 






 $V_0 = 0 \ V_{DC}$  for  $V_{IN} = 0 \ V_{DC}$ ,  $A_V = 10$ 

#### **Fixed Current Sources**



#### Lamp Driver











### **Application Summary**

The LM321 op amp can operate with a single or dual power supply voltage, has true-differential inputs, and remain in the linear mode with an input common-mode voltage of  $0\,\mathrm{V}$ . This amplifier operates over a wide range of power supply voltages, with little change in performance characteristics. At 25°C amplifier operation is possible down to a minimum supply voltage of  $3\mathrm{V}$ .

Large differential input voltages can be easily accommodated and, as input differential voltage protection diodes are not needed, no large input currents result from large differential input voltages. The differential input voltage

+

may be larger than V without damaging the device. Protection should be provided to prevent the input voltages from going negative more than -0.3 V (at 25°C). An input clamp diode with a resistor to the IC input terminal can be used.

To reduce the power supply drain, the amplifier has a class A output stage for small signal levels which converts to class B in a large signal mode. This allows the amplifiers to both source and sink large output currents.

Therefore both NPN and PNP external current boost transistors can be used to extend the power capability of the basic amplifiers. The output voltage needs to raise approximately 1 diode drop above ground to bias the on-chip vertical PNP transistor for output current sinking applications.

For AC applications, where the load is capacitively coupled to the output of the amplifier, a resistor should be used, from the output of the amplifier to ground to increase the class A bias current and to reduce distortion.

Capacitive loads which are applied directly to the output of the amplifier reduce the loop stability margin. Values of 50pF can be accommodated using the worst-case non-inverting unity gain connection. Large closed loop gains or resistive isolation should be used if large load capacitance must be driven by the amplifier.

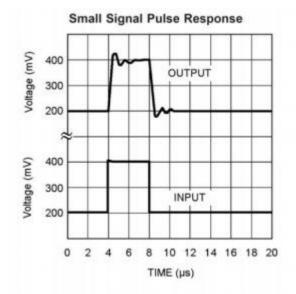
The bias network of the LM321establishes a supply current which is independent of the magnitude of the power supply voltage over the range of from 3~V to 30~V.

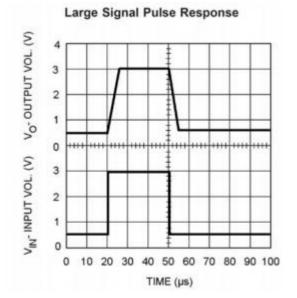
Output short circuits either to ground or to the positive power supply should be of short time duration. Units can be destroyed, not as a result of the short circuit current causing metal fusing, but rather due to the large increase in IC chip dissipation which will cause eventual failure due to excessive junction temperatures. The larger value of

output source current which is available at 25°C provides a larger output current capability at elevated temperatures than a standard IC op amp.

The circuits presented in the section on typical applications emphasize operation on only a single power supply voltage. If complementary power supplies are available, all of the standard op amp circuits can be used.

In general, introducing a pseudo-ground (a bias voltage reference of V /2) will allow operation above and below this value in single power supply systems. Many application circuits are shown which take advantage of the wide input common-mode voltage range which includes ground. In most cases, input biasing is not required and input voltages which range to ground can easily be accommodated.



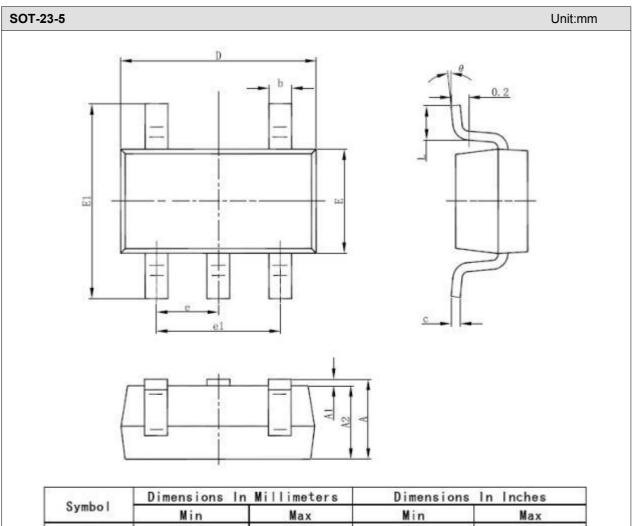





## **Characteristics Curves**














# **Outline Dimensions**



| Symbol | Dimensions In | Millimeters | Dimensions | In Inches |
|--------|---------------|-------------|------------|-----------|
|        | Min           | Max         | Min        | Max       |
| Α      | 1.050         | 1.250       | 0.041      | 0.049     |
| A1     | 0.000         | 0.100       | 0.000      | 0.004     |
| A2     | 1.050         | 1.150       | 0.041      | 0.045     |
| b      | 0.300         | 0.500       | 0.012      | 0.020     |
| С      | 0.100         | 0.200       | 0.004      | 0.008     |
| D      | 2.820         | 3.020       | 0.111      | 0.119     |
| E      | 1.500         | 1.700       | 0.059      | 0.067     |
| E1     | 2.650         | 2.950       | 0.104      | 0.116     |
| е      | 0.950(E       | 0.950(BSC)  |            | (BSC)     |
| e1     | 1.800         | 2.000       | 0.071      | 0.079     |
| L      | 0.300         | 0.600       | 0.012      | 0.024     |
| θ      | 0°            | 8°          | 0°         | 8°        |









#### Statement:

- ♦ Shenzhen xinbole electronics co., ltd. reserves the right to change the product specifications, without notice! Before placing an order, the customer needs to confirm whether the information obtained is the latest version, and verify the integrity of the relevant information.
- ♦ Any semiconductor product is liable to fail or malfunction under certain conditions, and the buyer shall be responsible for complying with safety standards in the system design and whole machine manufacturing using Shenzhen xinbole electronics co., ltd products, and take appropriate security measures to avoid the potential risk of failure may result in personal injury or property losses of the situation occurred!
- ♦ Product performance is never ending, Shenzhen xinbole electronics co., ltd will be dedicated to provide customers with better performance, better quality of integrated circuit products.