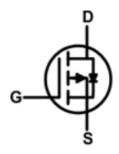


- ★ Green Device Available
- ★ Super Low Gate Charge
- ★ Excellent CdV/dt effect decline
- ★ Advanced high cell density Trench technology
- ★ 100% EAS Guaranteed

Product Summary

BVDSS	RDSON	ID	
-60V	48mΩ	-20A	


TO252 Pin Configuration

Description

The 20P06 is the high cell density trenched P-ch MOSFETs, which provide excellent RDSON and gate charge for most of the synchronous buck converter applications.

The 20P06 meet the RoHS and Green Product requirement 100% EAS guaranteed with full function reliability approved.

Absolute Maximum Ratings

Symbol	Parameter	Value	Unit
Vos	Drain-Source Voltage	-60	V
Vgs	Gate-Source Voltage	±20	V
In@Tc=25°C	Continuous Drain Current, V _{GS} @ -10V ¹	-20	Α
In@Tc=100°C	Continuous Drain Current, Vos @ -10V1	-12	А
Id@Ta=25°C	Continuous Drain Current, Vos @ -10V1	-4.5	Α
Id@Ta=70°C	Continuous Drain Current, Vos @ -10V1	-4	Α
Ірм	Pulsed Drain Current ²	-30	Α
EAS	Single Pulse Avalanche Energy ³	18.1	mJ
las	Avalanche Current	-13	Α
Pb@Tc=25°C	Total Power Dissipation ⁴	25	W
PD@Ta=25°C	Total Power Dissipation ⁴	2	W
Тѕтс	Storage Temperature Range	-55 to 150	°C
TJ	Operating Junction Temperature Range	-55 to 150	°C

Thermal Data

Symbol	Parameter	Тур.	Max.	Unit
Reja	Thermal Resistance Junction-Ambient ¹		62	°C/W
Rejc	Thermal Resistance Junction-Case ¹		5	°C/W

Electrical Characteristics (T_J =25 °C unless otherwise specified)

Symbol	Parameter	Test Condition	Min.	Тур.	Max.	Units	
BVDSS	Drain-Source Breakdown Voltage	ce Breakdown Voltage Vs=0V , lp=-250uA -60				V	
∆BVoss/∆Tj	BVbss Temperature Coefficient	Reference to 25°C , lb=-1mA		-0.023		V/°C	
Proyous	Ctatia Duniu Carres On Daniatara 2	V _G S=-10V , I _D =-10A		48	58	m O	
Rds(on)	Static Drain-Source On-Resistance ²	V _G S=-4.5V , I _D =-6A	-	56	67	$m\Omega$	
V _{GS} (th)	Gate Threshold Voltage	Vgs=Vbs , lb =-250uA	-1.2		-2.5	V	
$\triangle V_{GS(th)}$	V _{GS(th)} Temperature Coefficient	VGS-VDS, ID250UA		4		mV/°C	
lana	Drain Sauraa Laakaga Current	V _{DS} =-24V , V _{GS} =0V , T _J =25°C			-1		
Ipss	Drain-Source Leakage Current	V _{DS} =-24V , V _{GS} =0V , T _J =55°C			-5	uA	
Igss	Gate-Source Leakage Current	V _G S=±20V, V _D S=0V			±100	nA	
gfs	Forward Transconductance	V _{DS} =-5V, I _D =-15A	-	12		S	
Q _g	Total Gate Charge (-4.5V)	V _{DS} =-15V , V _{GS} =-4.5V , - I _D =-15A	-	6.1		nC	
Qgs	Gate-Source Charge			3.1			
Qgd	Gate-Drain Charge			1.8			
T _d (on)	Turn-On Delay Time			2.6			
Tr	Rise Time	VDD=-15V, VGS=-10V,		8.6		no	
T _d (off)	Turn-Off Delay Time	Rg=3.3Ω, lɒ=-15A		33.6		ns	
Tf	Fall Time			6			
Ciss	Input Capacitance		-	585			
Coss	Output Capacitance	Vbs=-15V, Vgs=0V, f=1MHz		100		pF	
Crss	Reverse Transfer Capacitance			85			

Diode Characteristics

Symbol	Parameter	Test Condition	Min.	Тур.	Max.	Units
ls	Continuous Source Current ^{1,5}	Vo=Vo=0V Force Current			-20	А
Ism	Pulsed Source Current ^{2,5}	Vg=Vb=0V, Force Current		-	-30	Α
VsD	Diode Forward Voltage ²	Vgs=0V, Is=-1A, TJ=25°C			-1.2	V
trr	Reverse Recovery Time	lF=-15A , dl/dt=100A/μs ,		6.1		nS
Qrr	Reverse Recovery Charge	TJ=25℃		1.4		nC

- 1.The data tested by surface mounted on a 1 inch2 FR-4 board with 2OZ copper.
- 2.The data tested by pulsed , pulse width \leq 300us , duty cycle \leq 2%
- 3.The EAS data shows Max. rating . The test condition is V_{DD}=-25V,V_{GS}=-10V,L=0.1mH,IAS=-19A 4.The power dissipation is limited by 150°C junction temperature
- 5. The data is theoretically the same as ID and IDM, in real applications, should be limited by total power dissipation.

Typical Performance Characteristics

Figure1: Output Characteristics

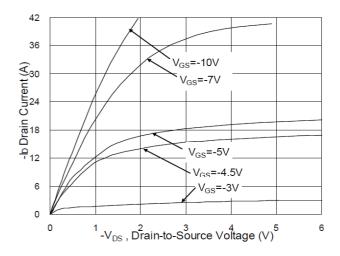


Figure 3:Forward Characteristics Of Rev

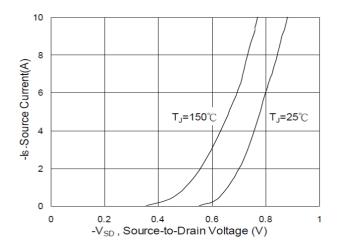


Figure 5: Normalized VGS(th) vs. TJ

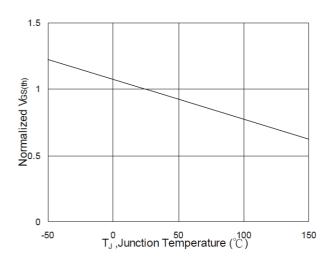


Figure 2: On-Resistance v.s Gate-Source

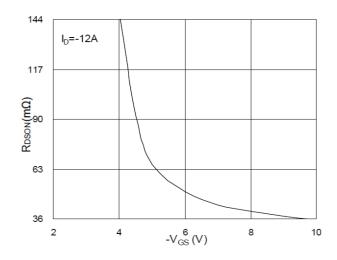


Figure 4: Gate Charge Characteristics

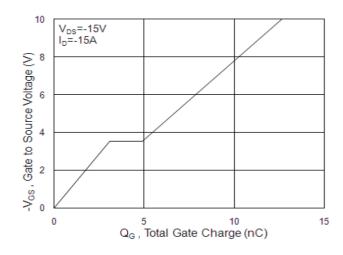
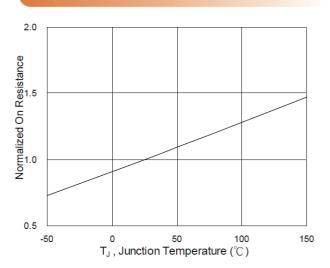



Figure 6: Normalized RDSON vs. TJ

Typical Performance Characteristics

Figure 7: Typical Capacitance Vs. Drain-S

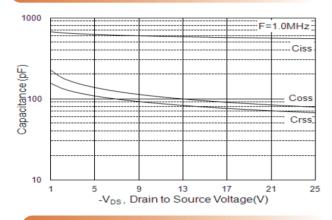


Figure 7: Safe Operating Area

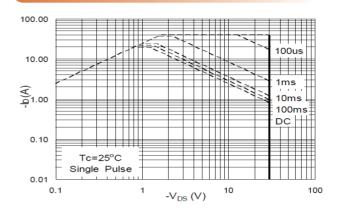


Figure 9: Normalized Maximum Transie

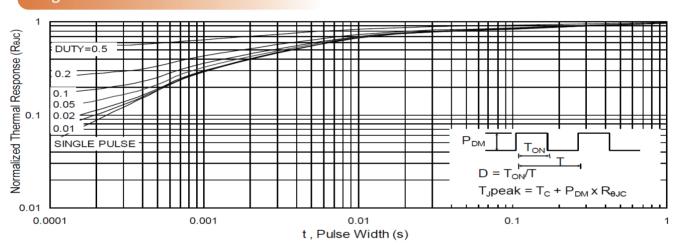
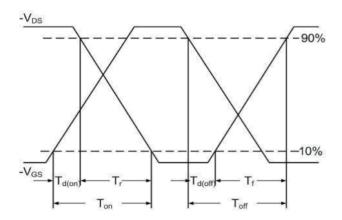
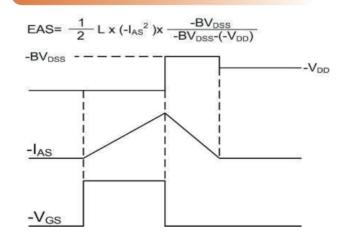
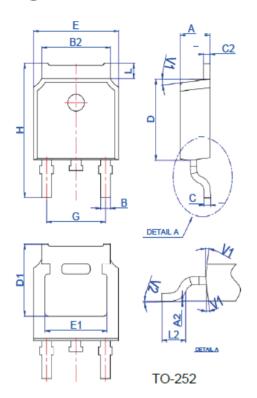
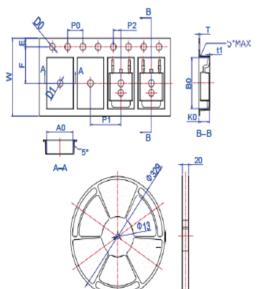




Figure 10: Switching Time Waveform




Package Mechanical Data TO 252

Package Mechanical Data TO 252

	Dimensions					
Ref.		Millimeter	S		Inches	
	Min.	Тур.	Max.	Min.	Тур.	Max.
Α	2.10		2.50	0.083		0.098
A2	0		0.10	0		0.004
В	0.66		0.86	0.026		0.034
B2	5.18		5.48	0.202		0.216
С	0.40		0.60	0.016		0.024
C2	0.44		0.58	0.017		0.023
D	5.90		6.30	0.232		0.248
D1	5.30REF			0.209REF		
Е	6.40		6.80	0.252		0.268
E1	4.63			0.182		
G	4.47		4.67	0.176		0.184
Н	9.50		10.70	0.374		0.421
L	1.09		1.21	0.043		0.048
L2	1.35		1.65	0.053		0.065
V1		7°			7°	
V2	0°		6°	0°		6°

Reel Spectification-TO-252-4R

Dimensions						
Ref.		Millimete	ers		Inches	
	Min.	Тур.	Max.	Min.	Тур.	Max.
W	15.90	16.00	16.10	0.626	0.630	0.634
Е	1.65	1.75	1.85	0.065	0.069	0.073
F	7.40	7.50	7.60	0.291	0.295	0.299
D0	1.40	1.50	1.60	0.055	0.059	0.063
D1	1.40	1.50	1.60	0.055	0.059	0.063
P0	3.90	4.00	4.10	0.154	0.157	0.161
P1	7.90	8.00	8.10	0.311	0.315	0.319
P2	1.90	2.00	2.10	0.075	0.079	0.083
A0	6.85	6.90	7.00	0.270	0.271	0.276
В0	10.45	10.50	10.60	0.411	0.413	0.417
K0	2.68	2.78	2.88	0.105	0.109	0.113
Т	0.24		0.27	0.009		0.011
t1	0.10			0.004		
10P0	39.80	40.00	40.20	1.567	1.575	1.583