

GPS/GNSS Low-Noise Amplifiers with Integrated LDO

General Description

Features

The MAX2686L/MAX2693L low-noise amplifiers (LNAs) are designed for GPS L1, Galileo, and GLONASS applications. Designed in Maxim's advanced SiGe process, the devices achieve high gain and low noise figure while maximizing the input-referred 1dB compression point and the 3rd-order intercept point. Both devices include an internal LDO ideal for battery-powered applications. For current-sensitive applications, the MAX2693L achieves excellent performance while consuming only 1.8mA current.

The devices operate from a +1.6V to +4.2V single supply. The shutdown feature reduces the supply current to less than $20\mu A$. The devices are available in a very small, lead-free, RoHS-compliant, $0.86\text{mm} \times 0.86\text{mm} \times 0.65\text{mm}$ wafer-level package (WLP).

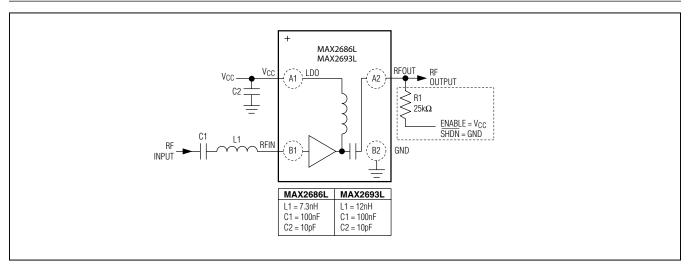
Applications

Telematics (Asset Tracking and Management)
Cellular Phones with GPS
Notebook PCs/Ultra-Mobile PCs
Recreational, Marine Navigation
Watches
Digital Cameras

♦ High Power Gain: 19dB (MAX2686L)♦ Low Noise Figure: 0.88dB (MAX2686L)

♦ Integrated 50Ω Output Matching Circuit

Low Supply Current: 1.8mA (MAX2693L)
 Wide Supply Voltage Range: 1.6V to 4.2V


♦ Low Bill of Materials: One Inductor, Two Capacitors

♦ Small Footprint: 0.86mm x 0.86mm

♦ 0.4mm Pitch WLP

Ordering Information appears at end of data sheet.

Typical Operating Circuit

GPS/GNSS Low-Noise Amplifiers with Integrated LDO

ABSOLUTE MAXIMUM RATINGS

V _{CC} to GND0.3V to +4.2V	Maximum Current into RF Input10mA
Other Pins to GND0.3V to (+ Operating VCC + 0.3V)	Operating Temperature Range40°C to +85°C
Maximum RF Input Power+5dBm	Junction Temperature+150°C
Continuous Power Dissipation ($T_A = +70^{\circ}C$)	Storage Temperature Range65°C to +160°C
WLP (derates 9.7mW/°C above +70°C)776mW	Soldering Temperature (reflow) (Note 1)+260°C

Note 1: Refer to Application Note 1891: Wafer-Level Packaging (WLP) and Its Applications.

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

DC ELECTRICAL CHARACTERISTICS

(MAX2686L/MAX2693L EV kit, V_{CC} = 1.6V to 4.2V, T_A = -40°C to +85°C, no RF signals are applied. Typical values are at V_{CC} = 3.3V and T_A = +25°C, unless otherwise noted.) (Note 2)

PARAMETER		CONDITIONS			MAX	UNITS
Supply Voltage			1.6	3.3	4.2	V
	OLIDNI L' L	MAX2686L		5		A
Supply Current	SHDN = high	MAX2693L		1.8		mA mA
	Shutdown mode, VSF	IDN = 0V			20	μΑ
Digital Input Logic-High	(Note 3)	(Note 3)				V
Digital Input Logic-Low	(Note 3)	(Note 3)			0.45	V

AC ELECTRICAL CHARACTERISTICS

(MAX2686L/MAX2693L EV kit, V_{CC} = 1.6V to 4.2V, T_A = -40°C to +85°C, f_{RFIN} = 1575.42MHz. Typical values are at V_{CC} = 3.3V and T_A = +25°C, unless otherwise noted.) (Note 2)

PARAMETER	СО	CONDITIONS		TYP	MAX	UNITS
RF Frequency	L1 band			1575.42		MHz
	\/	MAX2686L	14.65	19.0		
Power Gain	$V_{CC} = 4.2V \text{ (Note 4)}$	MAX2693L	11.6	18.4		dB
Fower Gain	\/ 1.6\/	MAX2686L	14.85	19.1		ub
	$V_{CC} = 1.6V$	MAX2693L	11.6	18.7		1
Noise Figure	1 6\/ to 4 0\/	MAX2686L		0.88		dB
	$V_{CC} = 1.6V \text{ to } 4.2V$	VCC = 1.6V to 4.2V MAX2693L		1.05		ub
In-Band 3rd-Order Input	(Note 5)	MAX2686L		-4.1		dBm
Intercept Point	(Note 5)	MAX2693L		-14.3		UDIII
Out-of-Band 3rd-Order Input	(Nata C)	MAX2686L		-0.1		dBm
Intercept Point	(Note 6)	MAX2693L		-13.9		ubiii
Input 1dD Commencian Daint	(Note 7)	MAX2686L		-12.1		dD.oo
Input 1dB Compression Point	(Note 7)	(Note 7) MAX2693L		-11.0		dBm
Input Datum Lago	MAX2686L	MAX2686L		11.2		dB
Input Return Loss	MAX2693L			10.7		uB

GPS/GNSS Low-Noise Amplifiers with Integrated LDO

AC ELECTRICAL CHARACTERISTICS (continued)

(MAX2686L/MAX2693L EV kit, V_{CC} = 1.6V to 4.2V, T_A = -40°C to +85°C, f_{RFIN} = 1575.42MHz. Typical values are at V_{CC} = 3.3V and T_A = +25°C, unless otherwise noted.) (Note 2)

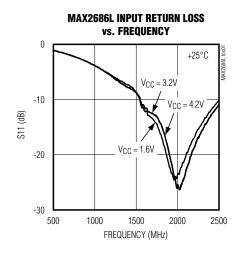
PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS
Output Return Loss	MAX2686L		22.0		٩D
	MAX2693L		14.3		- dB
Dayaraa laalatian	MAX2686L		41.0		٩D
Reverse Isolation	MAX2693L		40.0		dB

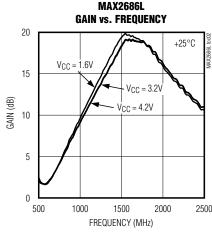
Note 2: Min and max limits guaranteed by test at $T_A = +25^{\circ}C$ and guaranteed by design and characterization at $T_A = +40^{\circ}C$ and $T_A = +85^{\circ}C$, unless otherwise noted.

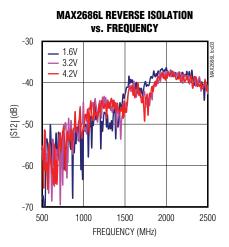
Note 3: Min and max limits guaranteed by test at $T_A = +25$ °C.

Note 4: Min limit guaranteed by design and characterization.

Note 5: Measured with the two tones located at 1MHz and 2MHz offset from the center of the GPS band with -30dBm/tone.

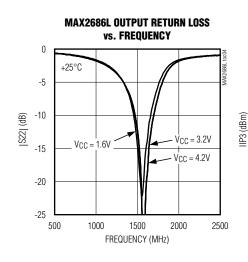

Note 6: Measured with input tones at 1713MHz (-27dBm) and 1851MHz (-39dBm).

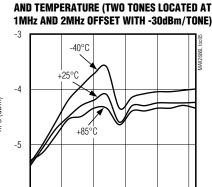

Note 7: Measured with a tone located at the center of the GPS band.


Typical Operating Characteristics

(MAX2686L/MAX2693L EV kit. Typical values are at $V_{CC} = 3.3V$, $T_A = +25^{\circ}C$, and $f_{RFIN} = 1575.42$ MHz, unless otherwise noted.)

MAX2686L




GPS/GNSS Low-Noise Amplifiers with Integrated LDO

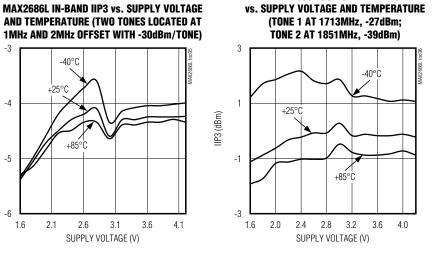
Typical Operating Characteristics (continued)

(MAX2686L/MAX2693L EV kit. Typical values are at V_{CC} = 2.85V, T_A = +25°C, and f_{RFIN} = 1575.42MHz, unless otherwise noted.)

MAX2686L

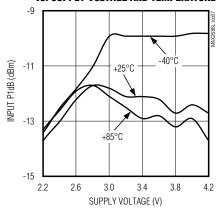
2.6

3.1

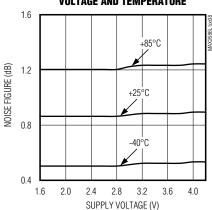

SUPPLY VOLTAGE (V)

3.6

4.1


1.6

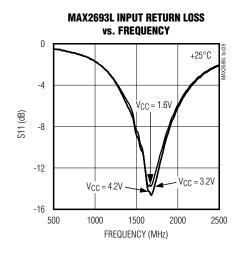
2.1

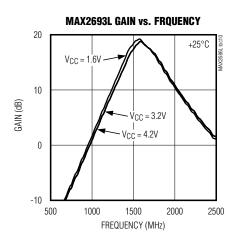


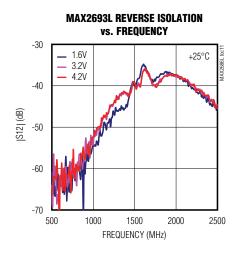
MAX2686L OUT-OF-BAND IIP3

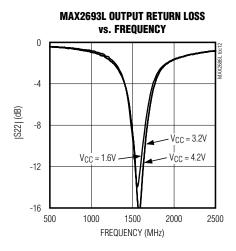
MAX2686L INPUT P1dB COMPRESSION vs. Supply voltage and temperature

MAX2686L NOISE FIGURE vs. SUPPLY VOLTAGE AND TEMPERATURE

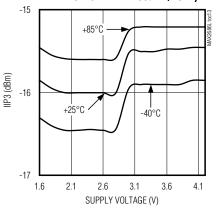



GPS/GNSS Low-Noise Amplifierswith Integrated LDO

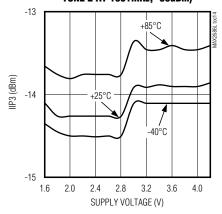

Typical Operating Characteristics (continued)


(MAX2686L/MAX2693L EV kit. Typical values are at V_{CC} = 2.85V, T_A = +25°C, and f_{RFIN} = 1575.42MHz, unless otherwise noted.)

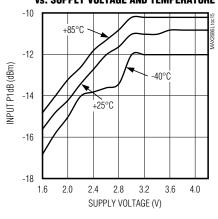
MAX2693L

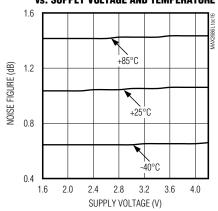

GPS/GNSS Low-Noise Amplifierswith Integrated LDO

Typical Operating Characteristics (continued)

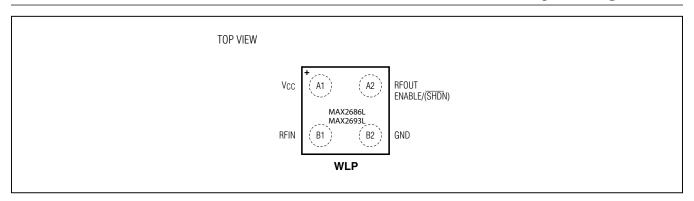

(MAX2686L/MAX2693L EV kit. Typical values are at V_{CC} = 2.85V, T_A = +25°C, and f_{RFIN} = 1575.42MHz, unless otherwise noted.)

MAX2693L


MAX2693L IN-BAND IIP3 vs. SUPPLY VOLTAGE AND TEMPERATURE (TWO TONES LOCATED AT 1MHz AND 2MHz OFFSET WITH -30dBm/TONE)


MAX2693L OUT-OF-BAND IIP3 vs. Supply voltage and temperature (Tone 1 at 1713MHz, -27dBm; Tone 2 at 1851MHz, -39dBm)

MAX2693L INPUT P1dB COMPRESSION vs. SUPPLY VOLTAGE AND TEMPERATURE



MAX2693L NOISE FIGURE vs. Supply voltage and temperature

GPS/GNSS Low-Noise Amplifiers with Integrated LDO

Bump Configuration

Bump Description

BUMP	NAME	FUNCTION
A1	VCC	Supply Voltage. Bypass to ground with a 10pF capacitor as close as possible to the IC.
A2	RFOUT ENABLE/(SHDN)	RF Output. RFOUT is internally matched to 50Ω . Pulling the DC high through the $25k\Omega$ resistor enables the IC. RFOUT(\overline{SHDN}) can be pulled to a DC low through a $25k\Omega$ resistor to shut down the IC.
B1	RFIN	RF Input. Requires a DC-blocking capacitor and external matching components.
B2	GND	Ground. Connect to the PCB ground plane.

Detailed Description

The MAX2686L/MAX2693L are LNAs designed for GPS L1, Galileo, and GLONASS applications. The devices feature an optional power-shutdown control mode to eliminate the need for an external supply switch. The devices achieve high gain and low noise figure in an ultra-small package ideal for space-sensitive applications. These integrated ICs eliminate the need for an external LDO.

Input and Output Matching

The devices require an off-chip input matching. Only an inductor in series with a DC-blocking capacitor is needed to form the input matching circuit. The *Typical Operating Circuit* shows the recommended input-matching network. These values are optimized for the best simultaneous gain, noise figure, and return loss performance. The value of the input coupling capacitor affects IIP3. A smaller coupling capacitor results in lower IIP3. The

devices integrate an on-chip output matching to 50Ω at the output, eliminating the need for external matching components. <u>Table 1</u> and <u>Table 2</u> list typical device S parameters and K_f values. Typical noise parameters are shown in Table 3 and Table 4.

ENABLE/(SHDN)

The devices include a shutdown feature to turn off the entire chip. The devices are placed in active mode by default once VCC is applied, due to the off-chip pullup resistor to VCC at the RFOUT bump. To shut down the part, apply a logic-low to the RFOUT bump through an external resistor with an adequate value, e.g., $25 k\Omega$, in order not to load the RF output signal during active operation.

To enable the part, apply a logic-high to the RFOUT bump through the external $25k\Omega$ resistor.

GPS/GNSS Low-Noise Amplifierswith Integrated LDO

Table 1. MAX2686L Typical S Parameter Values and K-Factor

FREQ (MHz)	S11 MAG (dB)	S11 PHASE (DEGREES)	S21 MAG (dB)	S21 PHASE (DEGREES)	S12 MAG (dB)	S12 PHASE (DEGREES)	S22 MAG (dB)	S22 PHASE (DEGREES)	K _f
1000	-2.7	-88.3	7.9	162.0	-56.7	101.9	-1.9	-153.8	16.1
1100	-2.9	-95.0	9.6	150.5	-48.5	57.5	-2.4	-169.9	9.8
1200	-3.2	-101.7	11.2	136.9	-45.5	64.8	-3.1	172.8	7.4
1300	-3.4	-107.4	12.8	122.2	-49.2	51.0	-4.4	153.8	6.6
1400	-3.5	-113.3	14.4	104.8	-47.4	1.8	-6.8	132.5	6.9
1500	-3.3	-120.2	16.0	85.4	-50.7	19.3	-11.9	102.3	7.8
1575	-3.5	-125.7	16.8	66.9	-44.6	29.9	-26.0	46.7	5.9
1600	-3.7	-126.8	16.8	58.4	-43.4	15.5	-24.3	-79.5	5.1
1700	-3.6	-131.1	16.5	34.7	-49.8	-7.5	-10.1	-125.4	6.5
1800	-3.5	-139.0	16.1	12.9	-51.0	39.5	-5.4	-148.1	4.0
1900	-3.7	-146.3	15.2	-7.7	-41.9	7.5	-3.0	-169.7	2.2
2000	-4.0	-152.0	13.8	-24.4	-41.8	-10.7	-1.9	170.5	2.0

Table 2. MAX2693L Typical S Parameter Values and K-Factor

FREQ (MHz)	S11 MAG (dB)	S11 PHASE (DEGREES)	S21 MAG (dB)	S21 PHASE (DEGREES)	S12 MAG (dB)	S12 PHASE (DEGREES)	S22 MAG (dB)	S22 PHASE (DEGREES)	K _f
1000	-1.0	-77.4	-2.5	-148.6	-55.5	78.6	-0.9	-138.2	16.1
1100	-1.1	-84.8	0.1	-159.7	-51.0	85.5	-1.2	-154.2	9.8
1200	-1.2	-92.5	2.7	-172.2	-48.0	70.0	-1.6	-172.0	7.4
1300	-1.3	-99.4	5.6	171.7	-46.4	56.0	-2.3	167.2	6.6
1400	-1.5	-106.5	8.4	152.1	-45.9	35.6	-3.8	140.1	6.9
1500	-1.6	-113.2	11.0	124.7	-46.3	22.2	-8.0	96.8	7.8
1575	-1.6	-118.5	12.2	99.5	-44.0	38.3	-14.8	23.5	5.9
1600	-1.7	-120.6	12.3	88.4	-42.4	22.2	-14.9	-33.4	5.1
1700	-1.9	-126.6	11.5	55.8	-45.3	-9.5	-6.5	-117.5	6.5
1800	-1.8	-133.6	10.0	30.2	-43.6	12.4	-3.3	-152.3	4.0
1900	-2.0	-140.7	8.4	10.0	-40.1	-8.1	-2.0	-176.5	2.2
2000	-2.1	-146.9	6.9	-4.9	-39.6	-29.9	-1.5	164.9	2.0

Table 3. MAX2686L Simulated Typical Noise Parameters ($V_{CC} = 3.3V$, $T_A = +25^{\circ}C$)

FREQUENCY (MHz)	FMIN (dB)	IГ <mark>ОРТ</mark> I	IΓ _{OPT} I ANGLE	R _N (Ω)
1550	0.70	0.43	45	8.45
1560	0.70	0.43	45	8.43
1570	0.70	0.42	45	8.42
1580	0.70	0.42	45	8.41
1590	0.70	0.42	46	8.39
1600	0.71	0.42	46	8.38

GPS/GNSS Low-Noise Amplifiers with Integrated LDO

Table 4. MAX2693L Simulated Typical Noise Parameters (V_{CC} = 3.3V, T_A = +25°C)

FREQUENCY (MHz)	FMIN (dB)	IΓ _{OPT} I	IΓ _{OPT} I ANGLE	R _N (Ω)
1550	0.88	0.69	32	24.27
1560	0.88	0.69	32	24.22
1570	0.88	0.68	32	24.17
1580	0.88	0.68	32	24.12
1590	0.88	0.68	32	24.07
1600	0.88	0.68	33	24.03

Applications Information

A properly designed PCB is essential to any RF microwave circuit. Use controlled-impedance lines on all high-frequency inputs and outputs. Bypass V_{CC} with decoupling capacitors located close to the device. For long V_{CC} lines, it may be necessary to add decoupling capacitors. Locate these additional capacitors further away from the device package. Proper grounding of the GND bump is essential. If the PCB uses a topside RF ground, connect it directly to the GND bump. For a board where the ground is not on the component layer, connect the GND bump to the board with multiple vias close to the package. For general layout guidelines, refer to www.maximintegrated.com/app-notes/index.mvp/id/5100.

Refer to www.maximintegrated.com/datasheet/index.mvp/id/6934/t/do for the MAX2686L/MAX2693L EV kit schematic, Gerber data, PADS layout file, and BOM information.

Ordering Information

PART	TEMP RANGE	PIN-PACKAGE
MAX2686LEWS+T	-40°C to +85°C	4 WLP
MAX2693LEWS+T	-40°C to +85°C	4 WLP

⁺Denotes a lead(Pb)-free/RoHS-compliant package. T = Tape and reel

Chip Information

PROCESS: SiGe BiCMOS

Package Information

For the latest package outline information and land patterns (footprints), go to www.maximintegrated.com/packages. Note that a "+", "#", or "-" in the package code indicates RoHS status only. Package drawings may show a different suffix character, but the drawing pertains to the package regardless of RoHS status.

PACKAGE	PACKAGE	OUTLINE	LAND
TYPE	CODE	NO.	PATTERN NO.
4 WLP	W40A0+1	<u>21-0480</u>	

GPS/GNSS Low-Noise Amplifierswith Integrated LDO

Revision History

1	EVISION UMBER	REVISION DATE	DESCRIPTION	PAGES CHANGED
	0	3/12	Initial release	_
	1	2/15	Updated Typical Operating Circuit, Bump Description, and Detailed Description to show that the external resistor is now required and not optional	1, 7

Maxim Integrated cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim Integrated product. No circuit patent licenses are implied. Maxim Integrated reserves the right to change the circuitry and specifications without notice at any time. The parametric values (min and max limits) shown in the Electrical Characteristics table are guaranteed. Other parametric values quoted in this data sheet are provided for guidance.