

Click here to ask an associate for production status of specific part numbers.

20A User-Configurable Quad-Phase Buck Converter

MAX77812

General Description

The MAX77812 is a quad-phase high-efficiency stepdown (buck) converter capable of delivering up to 20A of maximum current. Programmable startup/shutdown sequence and user-selectable phase configurations make the MAX77812 ideal for powering the latest generations of processors. With high-efficiency and small solution size, the MAX77812 is optimized for space constrained single-cell battery powered applications.

The MAX77812 uses an adaptive on-time PWM control scheme and it has SKIP and low-power SKIP modes for improved light-load efficiency. A programmable current limit reduces the overall solution footprint by optimizing inductors size. Differential sensing provides high output voltage accuracy, while enhanced transient response (ETR) allows fast output voltage adjustments to load transients. Programmable soft-start/stop and ramp-up/down slew rate provides control over an inrush current as the regulator transitions between operating states.

A 3.4MHz high-speed I²C or 30MHz SPI interface with dedicated logic inputs provide full configurability and control for system power optimization.

The MAX77812 is available in 3.408mm x 3.368mm, 64-bump 0.4mm pitch wafer-level package (WLP).

Benefits and Features

- 20A Maximum Output Current (5A per Phase)
- V_{IN} Range: 2.5V to 5.5V
- VOUT Range: 0.250V to 1.525V with 5mV Steps
- ±0.5% Initial Output Accuracy with Differential Sensing
- 5 User-Selectable Phase Configurations
- 91% Peak Efficiency (V_{IN} = 3.8V, V_{OUT} = 1.1V)
- Auto (SKIP/PWM) and Forced PWM Modes
- Enhanced Load Transient Response
- Programmable Ramp-Up/Down Slew Rates
- Programmable Startup/Shutdown Sequence
- UVLO, Short-Circuit, and Thermal Protections
- 2 User-Programmable General-Purpose Inputs
- 3.4MHz High Speed I²C and 30MHz SPI Interface
- 3.408mm x 3.368mm, 64-Bump WLP Package

Applications

- CPU/GPU, FPGAs, and DSPs Power Supply
- AR/VR Headsets and Game Consoles
- Li-ion Battery Powered Equipment
- Space Constrained Portable Electronics

Ordering Information appears at end of data sheet.

Typical Application Circuit

19-8541; Rev 12; 10/22

Absolute Maximum Ratings

SYS, VIO to AGND	
SCL, SDA/MOSI, MISO, SCS, IRQ	
WDTRSTB_IN to DGND	0.3V to (V _{VIO} + 0.3V)
PH_CFG0, PH_CFG1, PH_CFG2,	
I2C_SPI_SEL to AGND	0.3V to (V _{SYS} + 0.3V)
IN12, IN34 to PGNDx	0.3V to (V _{SYS} + 0.3V)
LX1/2/3/4 to PGNDx	0.3V to (V _{IN} + 0.3V)
LX1/2/3/4 to PGNDx (Pulsed <10n:	s Voltage)3.0V to +7.0V

PGND1/2/3/4 to AGND0-0 SNS1P, SNS2P, SNS3P, SNS4P to AGND0.3V to SNS1N, SNS2N, SNS3N, SNS4N to AGND0-0	$(V_{IN} + 0.3V)$
Continuous Power Dissipation at T _A = +70°C (derate 26.17mW/°C above +70°C)	2094mW
Junction Temperature	
Storage Temperature Range65°	
Soldering Temperature (reflow)	+200 C

Note 1: LXx node has internal clamp diodes to PGNDx and INx. Applications that give forward bias to these diodes should ensure that the total power loss does not exceed the power dissipation limit of IC package.

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

Recommended Operating Conditions

PARAMETER	SYMBOL	CONDITION	TYPICAL RANGE	UNITS
Input Voltage Range	V _{IN}		2.5 to 5.5	V
Output Current Range	l _{ООТ}	For continuous operation at 5A (per phase), the junction temperature (T _J) is limited to +115°C. If the junction temperature is higher than +115°C, the expected lifetime at 5A continuous operation is reduced	0 to 5	А
Junction Temperature Range	TJ		-40 to +125	°C

Note: These limits are not guaranteed.

Package Thermal Characteristics (Note 2)

WLP

Junction-to-Ambient Thermal Resistance (θ_{JA})33.2°C/W

Note 2: Package thermal resistances were obtained using the method described in JEDEC specification JESD51-7, using a four-layer board. For detailed information on package thermal considerations, refer to www.maximintegrated.com/thermal-tutorial.

Electrical Characteristics

Top-Level Electrical Characteristics

 $(V_{SYS} = V_{INX} = +3.8V, V_{VIO} = +1.8V, T_A = T_J = -40^{\circ}C$ to $+125^{\circ}C$, typical values are at $T_A = T_J = +25^{\circ}C$)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
GLOBAL INPUT SUPPLY						
Operating Voltage Range	V _{SYS}		2.5		5.5	V
Shutdown Supply Current	I _{SHDN}	CE = low, T _A = +25°C		2	5	μA
Standby Current	ISTBY	CE = high and all outputs are off, T _A = +25°C		25		μА

Top-Level Electrical Characteristics (continued)

 $(V_{SYS} = V_{INX} = +3.8V, \ V_{VIO} = +1.8V, \ T_A = T_J = -40^{\circ}C \ to \ +125^{\circ}C, \ typical \ values \ are \ at \ T_A = T_J = +25^{\circ}C)$

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
	I _{LP_SKIP1}	4-phase configuration (no switching)		120		
	I _{LP_SKIP2}	3 + 1-phase configuration (no switching)		190		
No Load Supply Current in Low Power Skip Mode	I _{LP_SKIP3}	2 + 2-phase configuration (no switching)		190		μA
	I _{LP_SKIP4}	2 + 1 + 1-phase configuration (no switching)		265		
	I _{LP_SKIP5}	1 + 1 + 1 + 1-phase configuration (no switching)		340	510	
	I _{SKIP1}	4-phase configuration (no switching)		150		
	I _{SKIP2}	3 + 1-phase configuration (no switching)		250		
No Load Supply Current in Skip Mode	I _{SKIP3}	2 + 2-phase configuration (no switching)		250		μA
	I _{SKIP4}	2 + 1 + 1-phase configuration (no switching)		350		
	I _{SKIP5}	1 + 1 + 1 + 1-phase configuration (no switching)		460	690	
	I _{SKIP_ETR1}	4-phase configuration (no switching, ETR enabled)		180		
	I _{SKIP_ETR2}	3 + 1-phase configuration (no switching, ETR enabled)		310		
No Load Supply Current in Skip Mode with ETR	I _{SKIP_ETR3}	2 + 2-phase configuration (no switching, ETR enabled)		310		μA
	I _{SKIP_ETR4}	2 + 1 + 1-phase configuration (no switching, ETR enabled)		440		
	I _{SKIP_ETR5}	1 + 1 + 1 + 1-phase configuration (no switching, ETR enabled)		580	870	
V _{SYS} UNDERVOLTAGE LOCKOU	V _{SYS} UNDERVOLTAGE LOCKOUT					
V _{SYS} Undervoltage Lockout	V _{UVLO_R}	V _{SYS} rising	2.375	2.50	2.625	V
Threshold	V _{UVLO_F}	V _{SYS} falling (default)		2.15		"
THERMAL PROTECTION			,			
Thermal Protection Threshold	T _{SHDN}	T _J rising, 15°C hysteresis		165		°C
Thermal Interrupt at 120°C	T _{INT120}	T _J rising, 15°C hysteresis		120		°C
Thermal Interrupt at 140°C	T _{INT140}	T _J rising, 15°C hysteresis		140		°C

Top-Level Electrical Characteristics (continued)

 $(V_{SYS} = V_{INX} = +3.8V, \ V_{VIO} = +1.8V, \ T_A = T_J = -40^{\circ}C \ to \ +125^{\circ}C, \ typical \ values \ are \ at \ T_A = T_J = +25^{\circ}C)$

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
LOGIC AND CONTROL INPUTS						
Input Low Level	V _{IL}	PH_CFG0, PH_CFG1, PH_CFG2, I2C_SPI_SEL, $V_{SYS} \le 5.5V$, $T_A = +25^{\circ}C$			0.4	V
		CE, EN, LPM, GPI0, GPI1, WDTRSTB_IN, T _A = +25°C			0.3 x V _{VIO}	
Input High Level	V _{IH}	PH_CFG0, PH_CFG1, PH_CFG2, I2C_SPI_SEL, $V_{SYS} \le 5.5V$, $T_A = +25^{\circ}C$	1.2			V
		CE, EN, LPM, GPI0, GPI1, WDTRSTB_IN, T _A = +25°C	0.7 x V _{VIO}			
	I _{LK}	PH_CFG0, PH_CFG1, PH_CFG2, I2C_SPI_SEL, V _{SYS} = 5.5V, CE = 1.8V, T _A = +25°C	-1	+0.001	+1	
Logic Input Lookogo Current		CE, EN, LPM, GPI0, GPI1, CE = 1.8V, T _A = +25°C	-1	+0.001	+1	
Logic Input Leakage Current		PH_CFG0, PH_CFG1, PH_CFG2, I2C_SPI_SEL, V _{SYS} = 5.5V, CE = 1.8V, T _A = +85°C (Note 4)		0.1		- μΑ
		CE, EN, LPM, GPI0, GPI1, CE = 1.8V, T _A = +85°C (Note 4)		0.1		
IRQ Output Low Voltage	V _{OL}	I _{SINK} = 1mA			0.4	V
IRQ Output High Leakage	luc ou	T _A = +25°C	-1	0.001	+1	μA
ing Output High Leakage	lrk_oh	T _A = +85°C (Note 4)		0.1		μΛ.
INTERNAL PULL-UP/DOWN RESI	STANCE					
WDTRSTB_IN Pullup Resistance	R _{PU}	Pullup resistance to VIO	400	800	1600	kΩ
GPI0, GPI1, EN, LPM Pulldown Resistance	R _{PD}	Pulldown resistance to DGND	400	800	1600	kΩ

Quad-Phase Buck Electrical Characteristics

 $(V_{SYS} = V_{INx} = +3.8V, V_{OUTx} = 0.85V, T_A = T_J = -40^{\circ}C$ to +125°C, typical values are at $T_A = T_J = +25^{\circ}C$

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
POWER SUPPLY						
Input Voltage Range	V _{INx}		2.5		V _{SYS}	V
Output Voltage Range	V _{OUT}	Programmable with 8-bit resolution, 5mV/LSB	0.25		1.525	V
DC OUTPUT VOLTAGE ACCUR	ACY					
Output Voltage Accuracy	V	Force PWM mode, differential remote sensing, $V_{OUT} \ge 0.65V$, $I_{OUT} = 0mA$, $C_{OUT(EFF)} = 64\mu F$, $T_A = +25^{\circ}C$	-0.5		+0.5	%
	V _{ACC_INIT}	Force PWM mode, differential remote sensing, $0.45V \le V_{OUT} < 0.6V$, $I_{OUT} = 0$ mA, $C_{OUT(EFF)} = 64\mu$ F, $T_A = +25^{\circ}$ C	-6		+6	mV
Load Regulation		Forced PWM mode, differential remote sensing, I _{OUT} = 0A to 5A, C _{OUT(EFF)} = 64µF (Note 5)		-0.001		V/A
Line Regulation		Forced PWM mode, differential remote sensing, V _{INx} = 2.5V to 5.5V, V _{OUT} = Default, I _{OUT} = 0mA, C _{OUT} (EFF) = 64µF	-0.005		+0.005	V/V
AC OUTPUT VOLTAGE ACCUR	ACY					
Line Transient Response	VDROOP	$\begin{split} &V_{\text{INx}} = 3.4 \text{V to } 2.9 \text{V to } 3.4 \text{V,} \\ &t_{\text{RISE}} = t_{\text{FALL}} = 10 \mu \text{s, } V_{\text{OUT}} \\ &= 1.1 \text{V, } I_{\text{OUT}} = 2 \text{A,} \\ &L = 220 \text{nH (DCR} = 9 \text{m}\Omega), \\ &C_{\text{OUT(EFF)}} = 16 \mu \text{F} \\ &(\text{ESR} = 5 \text{m}\Omega, \text{ESL} = 300 \text{pH}) \\ &\text{per phase (Note 5)} \end{split}$		15		mV
Load Transient Response	VDROOP	SKIP/PWM mode, differential remote sensing, V_{OUT} = 1.1V, I_{OUT} = 0.1A to 4A (100A/ μ s), L = 220nH (DCR = 9m Ω), COUT(EFF) = 16 μ F (ESR = 5m Ω , ESL = 300 μ H) per Phase (Note 5)		45		mV

Quad-Phase Buck Electrical Characteristics (continued)

 $(V_{SYS} = V_{INx} = +3.8V, V_{OUTx} = 0.85V, T_A = T_J = -40^{\circ}C$ to +125°C, typical values are at $T_A = T_J = +25^{\circ}C$

PARAMETER	SYMBOL	CONDITIONS	MIN TYP	MAX	UNITS
RAMP RATE					
		B_SS_SR[2:0] = 000b (Note 6)	1.25		
		B_SS_SR[2:0] = 001b (Note 6)	2.5		
		B_SS_SR[2:0] = 010b (Note 6)	5		
Soft-Start Slew Rate		B_SS_SR[2:0] = 011b (Note 6)	10		mV/μs
		B_SS_SR[2:0] = 100b (default) (Note 6)	20		
		B_SS_SR[2:0] = 101b (Note 6)	40		
		B_SS_SR[2:0] = 110b or 111b (Note 6)	60		
		B_SD_SR[2:0] = 000b (Note 6)	1.25	5	
		B_SD_SR[2:0] = 001b (Note 6)	2.5		
		B_SD_SR[2:0] = 010b (default) (Note 6)	5		
Shutdown Slew Rate		B_SD_SR[2:0] = 011b (Note 6)	10		mV/μs
		B_SD_SR[2:0] = 100b (Note 6)	20		
	B_SD_SR[2:0] = 101b (Note 6) B_SD_SR[2:0] = 110b 111b (Note 6)		40		
		B_SD_SR[2:0] = 110b or 111b (Note 6)	60		

Quad-Phase Buck Electrical Characteristics (continued)

 $(V_{SYS} = V_{INx} = +3.8V, V_{OUTx} = 0.85V, T_A = T_J = -40^{\circ}C$ to +125°C, typical values are at $T_A = T_J = +25^{\circ}C$

PARAMETER	SYMBOL	CONDITIONS	MIN T	YP MAX	UNITS
		B_RU_SR[2:0] = 000b (Note 6)	1	.25	
		B_RU_SR[2:0] = 001b (Note 6)	2	2.5	
		B_RU_SR[2:0] = 010b (Note 6)		5	
DVS Ramp-Up Slew Rate		B_RU_SR[2:0] = 011b (Note 6)		10	mV/μs
		B_RU_SR[2:0] = 100b (default) (Note 6)	2	20	
		B_RU_SR[2:0] = 101b (Note 6)	4	40	
		B_RU_SR[2:0] = 110b or 111b (Note 6)	(60	
		B_RD_SR[2:0] = 000b (Note 6)	1	.25	
		B_RD_SR[2:0] = 001b (Note 6)	2	2.5	
		B_RD_SR[2:0] = 010b (default) (Note 6)		5	
DVS Ramp-Down Slew Rate		B_RD_SR[2:0] = 011b (Note 6)		10	mV/μs
		B_RD_SR[2:0] = 100b (Note 6)		20	
		B_RD_SR[2:0] = 101b (Note 6)	4	40	
		B_RD_SR[2:0] = 110b or 111b (Note 6)	(60	
Turn-On Delay Time	ton_dly1	From EN signal to LXB switching with bias on (Note 6)		30	
	n Delay Time ton_DLY2	From EN signal to LXB switching with bias off (Note 5)		85	— μs

Quad-Phase Buck Electrical Characteristics (continued)

 $(V_{SYS} = V_{INx} = +3.8V, V_{OUTx} = 0.85V, T_A = T_J = -40^{\circ}C$ to +125°C, typical values are at $T_A = T_J = +25^{\circ}C$

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
POWER STAGE			,			
	I _{OUT(MAX)}	RMS current per phase, V _{IN} < 3.2V (Note 5)		4000		
Maximum Output Current	I _{OUT(MAX)}	RMS current per phase, 3.2V ≤ V _{IN} ≤ 5.5V (Note 5)		5000		mA
	I _{PLIM}	Mx_ILIM[2:0] = 000b		3000		
	I _{PLIM}	Mx_ILIM[2:0] = 001b		3600		
	I _{PLIM}	Mx_ILIM[2:0] = 010b		4200		
	I _{PLIM}	Mx_ILIM[2:0] = 011b		4800		
PMOS Peak Current Limit	I _{PLIM}	Mx_ILIM[2:0] = 100b		5400		mA
	I _{PLIM}	Mx_ILIM[2:0] = 101b (default)	4800	6000	7200	-
	I _{PLIM}	Mx_ILIM[2:0] = 110b		6600		
	I _{PLIM}	Mx_ILIM[2:0] = 111b	5200	7200	9200	
	I_{VLIM}	Mx_ILIM[2:0] = 000b		2000		
	I_{VLIM}	Mx_ILIM[2:0] = 001b		2400		
	I_{VLIM}	Mx_ILIM[2:0] = 010b		2800		
	I_{VLIM}	Mx_ILIM[2:0] = 011b		3200		
NMOS Valley Current Limit	I_{VLIM}	Mx_ILIM[2:0] = 100b		3600		mA
	I_{VLIM}	Mx_ILIM[2:0] = 101b (default)	3200	4000	4800	
	I _{VLIM}	Mx_ILIM[2:0] = 110b		4400		
	I_{VLIM}	Mx_ILIM[2:0] = 111b	3800	4800	5800	
NMOS Negative Current Limit	I _{NLIM}	Per phase	-2000	-1500	-1000	mA
Switching Frequency	$f_{\sf SW}$	V _{OUT} = default, Forced PWM mode	1.6	2.0	2.8	MHz
High-Side PMOS On-Resistance	R _{DSON(PMOS)}	INx to LXx, I _{LXx} = -150mA		32	70	mΩ
Low-Side NMOS On-Resistance	R _{DSON(NMOS)}	LXx to PGNDx, I _{LXx} = 150mA		15	29	mΩ
LX Active Discharge Resistance	R _{AD_LX}	Resistance from LXx to PGNDx, per phase, output disabled		100	200	Ω

Quad-Phase Buck Electrical Characteristics (continued)

 $(V_{SYS} = V_{INx} = +3.8V, V_{OUTx} = 0.85V, T_A = T_J = -40^{\circ}C$ to +125°C, typical values are at $T_A = T_J = +25^{\circ}C$

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
LV Lookago Current	I _{LKG_LX}	V _{LXx} = 0V or 5.5V, T _A = +25°C	-1	0.1	+1	
LX Leakage Current	I _{LKG_LX}	V _{LXx} = 0V or 5.5V, T _A = +85°C (Note 4)		1		- μΑ
Nominal Inductance	L _{NOM}	(Note 5)		220		nH
Minimum Effective Output Capacitance	C _{OUT(EFF_MIN)}	0μA < I _{OUT} < 5000mA per phase (Note 5)		16		μF
EFFICIENCY AND OUTPUT RI	PPLE					
Peak Efficiency	η _{РК}	L = 220nH (DCR = $9m\Omega$), COUT(EFF) = 16μ F (ESR = $5m\Omega$, ESL = 300 pH) per Phase (Note 5)		90		%
Heavy Load Efficiency	ηнεανγ	I_{OUT} = 5A, L = 220nH (DCR = 9mΩ), C _{OUT} (EFF) = 16μF (ESR = 5mΩ, ESL = 300pH) per Phase (Note 5)		75		%
Skip Mode Output Ripple	V _{RIP_SKIP}	Skip mode, I_{OUT} = 0.1A, L = 220nH (DCR = 9m Ω), C _{OUT} (EFF) = 16 μ F (ESR = 5m Ω , ESL = 300pH) per phase (Note 7)		10		mV _{P-P}
FPWM Mode Output Ripple	V _{RIP_FPWM}	Forced PWM mode, differential remote sensing, $I_{OUT} = 0.1A$, $L = 220nH$ (DCR = $9m\Omega$), $C_{OUT(EFF)}$ = $16\mu F$ (ESR = $5m\Omega$, ESL = $300pH$) per phase (Note 7)		5		mV _{P-P}
POWER OK COMPARATOR						
Output POK Trip Level		Rising threshold		90	_	- %
Catpact Oil hip Level		Falling threshold	85 90		/0	

I²C Electrical Characteristics

 $(V_{SYS} = V_{INX} = +3.8V, \ V_{VIO} = +1.8V, \ T_A = T_J = -40^{\circ}C \ to \ +125^{\circ}C, \ typical \ values \ are \ at \ T_A = T_J = +25^{\circ}C)$

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
POWER SUPPLY	1	1	ı			
VIO Supply Voltage Range	V _{VIO}		1.65	1.8	V _{SYS}	V
VIO Dynamic Supply Current	I _{VIO}	f _{SCL} = f _{SDA} = 1MHz		50		μA
V _{SYS} Dynamic Supply Current	I _{SYS}			5		μA
SDA AND SCL I/O STAGES						
SCL, SDA Input High Voltage	V _{IH}		0.7 x V _{VIO}			V
SCL, SDA Input Low Voltage	V _{IL}				0.3 x V _{VIO}	V
SCL, SDA Input Hysteresis	V _{HYS}			0.05 x V _{VIO}		V
SCL, SDA Input Hysteresis in HS Mode	V _{HYS_HS}			0.1 x V _{VIO}		V
SDA Output Low Voltage	V _{OL}	I _{SINK} = 5mA			0.4	V
SCL, SDA Input Capacitance	C _I			10		pF
SCL, SDA Input Leakage Current	live	T _A = +25°C	-1	+0.001	+1	μA
OCL, ODA IIIput Leakage Current	l _{LK}	$T_A = +85^{\circ}C \text{ (Note 4)}$		0.1		μΛ
I ² C-COMPATIBLE INTERFACE TIL	MING (STANDA	RD, FAST AND FAST MODE PLUS	S) (Note 5)			
Clock Frequency	f _{SCL}		0		1000	kHz
Bus Free Time between STOP and START Condition	t _{BUSF}		0.5			μs
Hold Time (REPEATED) START Condition	tHD_START		0.26			μs
SCL Low Period	t _{LOW}		0.5			μs
SCL High Period	tHIGH		0.26			μs
Setup Time REPEATED START Condition	tsu_start		0.26			μs
Data Hold Time	t _{HD_DATA}	Transmit mode	0		450	ns
Data Setup Time	t _{SU_DATA}		50			ns
SCL, SDA Receiving Rise Time	t _{R_REV}				120	ns
SCL, SDA Receiving Fall Time	t _{F_REV}		20 x V _{VIO} /5.5		120	ns

I²C Electrical Characteristics (continued)

 $(V_{SYS} = V_{INX} = +3.8V, \ V_{VIO} = +1.8V, \ T_A = T_J = -40^{\circ}C \ to \ +125^{\circ}C, \ typical \ values \ are \ at \ T_A = T_J = +25^{\circ}C)$

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
SCL, SDA Transmitting Fall Time	t _{F_TRA}		20 x V _{VIO} /5.5		120	ns
Setup Time for STOP Condition	tsu_stop		0.26			μs
Data Valid Time	t _{VD_DATA}				450	ns
Data Valid Acknowledge Time	t _{VD_ACK}				450	ns
Bus Capacitance	C _B				550	pF
Pulse Width of Suppressed Spikes	t _{SP}				50	ns
I ² C-COMPATIBLE INTERFACE TI	MING (HIGH-SP	EED MODE, C _B = 100pF) (Note 5)				
Clock Frequency	f _{SCL}				3.4	MHz
Hold Time (REPEATED) START Condition	t _{HD_START}		160			ns
SCL LOW Period	t _{LOW}		160			ns
SCL HIGH Period	tHIGH		60			ns
Setup Time REPEATED START Condition	t _{SU_START}		160			ns
Data Hold Time	t _{HD DATA}		0		70	ns
Data Setup Time	tsu data		10			ns
SCL Rise Time	t _{R_SCL}	T _A = +25°C	10		40	ns
SCL Rise Time after REPEATED START Condition and after Acknowledge Bit	^t R_SCL1	T _A = +25°C	10		40	ns
SCL Fall Time	t _{F SCL}	T _A = +25°C	10		40	ns
SDA Rise Time	t _{R SDA}	T _A = +25°C	10		40	ns
SDA Fall Time	t _{F_SDA}	T _A = +25°C			40	ns
Setup Time for STOP Condition	t _{SU_STOP}		160			ns
Bus Capacitance	C _B				100	pF
Pulse Width of Suppressed Spikes	t _{SP}		0		10	ns

I²C Electrical Characteristics (continued)

 $(V_{SYS} = V_{INX} = +3.8V, \ V_{VIO} = +1.8V, \ T_A = T_J = -40^{\circ}C \ to \ +125^{\circ}C, \ typical \ values \ are \ at \ T_A = T_J = +25^{\circ}C)$

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS			
I ² C-COMPATIBLE INTERFACE TIMING (HIGH-SPEED MODE, C _B = 400pF) (Note 5)									
Clock Frequency	f _{SCL}				1.7	MHz			
Hold Time (REPEATED) START Condition	tHD_START		160			ns			
SCL Low Period	t _{LOW}		320			ns			
SCL High Period	tHIGH		120			ns			
Setup Time REPEATED START Condition	tsu_start		160			ns			
DATA Hold Time	t _{HD_DATA}		0		150	ns			
DATA Setup Time	t _{SU_DATA}		10			ns			
SCL Rise Time	t _{R SCL}	T _A = +25°C	20		80	ns			
SCL Rise Time after REPEATED START Condition and after Acknowledge Bit	^t R_SCL1	T _A = +25°C	20		80	ns			
SCL Fall Time	t _{F_SCL}	T _A = +25°C	20		80	ns			
SDA Rise Time	t _{R_SDA}	T _A = +25°C	20		80	ns			
SDA Fall Time	t _{F_SDA}	T _A = +25°C			80	ns			
Setup Time for STOP Condition	t _{SU_STOP}		160			ns			
Bus Capacitance	C _B				400	pF			
Pulse Width of Suppressed Spikes	t _{SP}		0		10	ns			

SPI Electrical Characteristics

 $(V_{SYS} = V_{INx} = +3.8V, \ V_{VIO} = +1.8V, \ T_A = T_J = -40^{\circ}C \ to \ +125^{\circ}C, \ typical \ values \ are \ at \ T_A = T_J = +25^{\circ}C)$

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
POWER SUPPLY AND I/O STAGE	S					
VIO Supply Voltage Range	V _{VIO}		1.65	1.8	V _{SYS}	V
Input Leakage Current	I _{IH SPI} ,	T _A = +25°C	-1	+0.001	+1	μA
(SCS, SCL, MOSI)	l _{IL_} SPI	T _A = +85°C (Note 4)		0.1		μΛ
Input Capacitance (SCS, SCL, MOSI)	Cl			10		pF
Input LOW Voltage (SCS, SCL, MOSI)	V _{IL}				0.3 x V _{VIO}	٧
Input HIGH Voltage (SCS, SCL, MOSI)	V _{IH}		0.7 x V _{VIO}			V
Input Hysteresis (SCS, SCL, MOSI)	V _{HYS}			0.1 x V _{VIO}		
MISO Output Low Voltage	V _{OL}	I _{OL} = 1mA			0.2	V
MISO Output High Voltage	V _{OH}	I _{OH} = 1mA	V _{VIO} - 0.2			V
MISO Lookaga Current	1	High-impedance state, T _A = +25°C	-1	+0.001	+1	
MISO Leakage Current	I _{LK_HIZ}	High-impedance state, T _A = +85°C (Note 4)		0.1		μΑ
SPI INTERFACE TIMING (Note 5)						
SPI Operating Frequency	f _{SCL}			26	30	MHz
MOSI Input Valid to SCL Rising Edge	tsu_mosi		10			ns
MOSI Input Valid from SCL Rising Edge	t _{HD_MOSI}		10			ns
MISO Valid from SCL Rising Edge	t _{D_MISO}	C _L = 50pF		9		ns
MISO Rising/Falling Time	t _R , t _F	C _L = 20pF			10	ns
SCS Setup Time	t _{SU_SCS}		20			ns
SCS Hold Time	t _{HD_} scs		20			ns
Minimum SCS High Pulse Width	tscs_H(MIN)		50			ns

Note 3: Limits are 100% production tested at T_A = +25°C. Limits over the operating temperature range are guaranteed through correlation using statistical quality control methods.

Note 4: Guaranteed by ATE characterization. Not directly tested in production.

Note 5: Guaranteed by design. Not production tested.

Note 6: Guaranteed by design. Production tested through scan.

Note 7: Internal design target.

Typical Operating Characteristics

 $(V_{SYS} = 3.8V, V_{OUT} = 0.85V, I_{OUT} = 0A, CE = high, 4-Phase (1 Output), FPWM = 0, LPM = 0, ETR = 0, L = 220nH, C_{OUT} = (22\mu F + 0.1\mu F + 2 \times 4.3\mu F), T_A = +25^{\circ}C$, unless otherwise noted.)

Typical Operating Characteristics (continued)

 $(V_{SYS} = 3.8V, V_{OUT} = 0.85V, I_{OUT} = 0A, CE = high, 4-Phase (1 Output), FPWM = 0, LPM = 0, ETR = 0, L = 220nH, C_{OUT} = (22\mu F + 0.1\mu F + 2 \times 4.3\mu F), T_A = +25^{\circ}C$, unless otherwise noted.)

Typical Operating Characteristics (continued)

 $(V_{SYS} = 3.8V, V_{OUT} = 0.85V, I_{OUT} = 0A, CE = high, 4-Phase (1 Output), FPWM = 0, LPM = 0, ETR = 0, L = 220nH, C_{OUT} = (22\mu F + 0.1\mu F + 2 \times 4.3\mu F), T_A = +25^{\circ}C$, unless otherwise noted.)

Typical Operating Characteristics (continued)

 $(V_{SYS}=3.8V,\ V_{OUT}=0.85V,\ I_{OUT}=0A,\ CE=high,\ 4-Phase\ (1\ Output),\ FPWM=0,\ LPM=0,\ ETR=0,\ L=220nH,\ C_{OUT}=(22\mu F+0.1\mu F+2\times4.3\mu F),\ T_{A}=+25^{\circ}C,\ unless\ otherwise\ noted.)$

Typical Operating Characteristics (continued)

 $(V_{SYS} = 3.8V, V_{OUT} = 0.85V, I_{OUT} = 0A, CE = high, 4-Phase (1 Output), FPWM = 0, LPM = 0, ETR = 0, L = 220nH, C_{OUT} = (22\mu F + 0.1\mu F + 2 \times 4.3\mu F), T_A = +25^{\circ}C$, unless otherwise noted.)

Typical Operating Characteristics (continued)

 $(V_{SYS} = 3.8V, V_{OUT} = 0.85V, I_{OUT} = 0A, CE = high, 4-Phase (1 Output), FPWM = 0, LPM = 0, ETR = 0, L = 220nH, C_{OUT} = (22\mu F + 0.1\mu F + 2 \times 4.3\mu F), T_A = +25^{\circ}C$, unless otherwise noted.)

Typical Operating Characteristics (continued)

 $(V_{SYS} = 3.8V, V_{OUT} = 0.85V, I_{OUT} = 0A, CE = high, 4-Phase (1 Output), FPWM = 0, LPM = 0, ETR = 0, L = 220nH, C_{OUT} = (22\mu F + 0.1\mu F + 2 \times 4.3\mu F), T_A = +25^{\circ}C$, unless otherwise noted.)

Typical Operating Characteristics (continued)

 $(V_{SYS} = 3.8V, V_{OUT} = 0.85V, I_{OUT} = 0A, CE = high, 4-Phase (1 Output), FPWM = 0, LPM = 0, ETR = 0, L = 220nH, C_{OUT} = (22\mu F + 0.1\mu F + 2 \times 4.3\mu F), T_A = +25^{\circ}C$, unless otherwise noted.)

Typical Operating Characteristics (continued)

 $(V_{SYS} = 3.8V, V_{OUT} = 0.85V, I_{OUT} = 0A, CE = high, 4-Phase (1 Output), FPWM = 0, LPM = 0, ETR = 0, L = 220nH, C_{OUT} = (22\mu F + 0.1\mu F + 2 \times 4.3\mu F), T_A = +25^{\circ}C$, unless otherwise noted.)

Bump Configuration

Bump Description

BUMP	NAME	FUNCTION			
A1, B1, B2	PGND1	Phase1 Power Ground			
A2, A3, B3	LX1	Phase1 Switch Node			
A4, A5, B4, B5	IN12	Phase1/2 Input. Bypass to PGND1/2 with a 10µF capacitor.			
A6, A7, B6	LX2	Phase2 Switch Node			
A8, B7, B8	PGND2	Phase2 Power Ground			
C1, C8, E5, E8, F1, F8	AGND	Analog Ground			
C2	SNS1N	Phase1 Differential Negative Remote Sense Input			
C3	ĪRQ	Interrupt Output. A $100k\Omega$ external pullup resistor to VIO is required. High impedance when CE = low.			
C4	SNS1P	Phase 1 Differential Positive Remote Sense Input			
C5	SNS2P	Phase 2 Differential Positive Remote Sense Input			
C6	EN	Global Enable Input (Active-High, Logically ORed with GLB_EN Function of GPIs). An $800k\Omega$ internal pulldown resistance to DGND. If this pin is not used, leave it unconnected.			
C7	SNS2N	Phase 2 Differential Negative Remote Sense Input			
D1	SCL	I ² C Clock Input. High impedance in off state. A 1.5k Ω ~2.2k Ω of pullup resistor to VIO is required.			
D2	SCS	Active-Low SPI Chip Select			
D3	VIO	IO Supply Voltage Input. Bypass to DGND with a 0.1µF capacitor.			
D4	CE	Active-High Chip Enable Input. CE = High (standby), I ² C interface is enabled and regulators are ready to be turned on. CE = Low (shutdown), all regulators are turned off and all Type-O registers are reset to their POR default values.			
D5	WDTRSTB_IN	Active-Low Watchdog Timer Reset Input. An $800k\Omega$ internal pullup resistance to VIO. If this pin is not used, leave it unconnected.			
D6	LPM	Global Low Power Mode Input (Active-High, Logically ORed with GLB_LPM Function of GPIs). An $800k\Omega$ internal pulldown resistance to DGND. If this pin is not used, leave it unconnected.			
D7	I2C_SPI_SEL	Serial Interface Selection Input. Latches at V_{SYS} POR. I2C_SPI_SEL = Low: I ² C I2C_SPI_SEL = High (V_{SYS}): SPI			
D8	SYS	System (Battery) Voltage Input. Bypass to AGND with a 1µF capacitor.			
E1	SDA/MOSI	I ² C Data I/O. High Impedance in Off State. A $1.5k\Omega\sim2.2k\Omega$ of pullup resistor to VIO is required. Configured as MOSI when SPI mode is selected.			
E2	MISO	SPI Data Output. High impedance in off state.			
E3	GPI0	Active-High, General-Purpose Input. An $800k\Omega$ internal pulldown resistance to DGND. If this pin is not used, leave it unconnected.			
E4	DGND	Digital Ground			

Bump Description (continued)

BUMP	NAME	FUNCTION			
E6	PH_CFG0	Phase Configuration Selection Input. Latches at V_{SYS} POR. PH_CFG2 = low, PH_CFG1 = low, PH_CFG0 = low: 4 phase PH_CFG2 = low, PH_CFG1 = low, PH_CFG0 = high (V_{SYS}) : 3 + 1 phase PH_CFG2 = low, PH_CFG1 = high (V_{SYS}) , PH_CFG0 = low: 2 + 2 phase PH_CFG2 = low, PH_CFG1 = high (V_{SYS}) , PH_CFG0 = high (V_{SYS}) : 2 + 1 + 1 phase PH_CFG2 = high (V_{SYS}) , PH_CFG1 = X, PH_CFG0 = X: 1 + 1 + 1 + 1 phase			
E7	PH_CFG2	Phase Configuration Selection Input. Latches at V_{SYS} POR. PH_CFG2 = low, PH_CFG1 = low, PH_CFG0 = low: 4 phase PH_CFG2 = low, PH_CFG1 = low, PH_CFG0 = high (V_{SYS}) : 3 + 1 phase PH_CFG2 = low, PH_CFG1 = high (V_{SYS}) , PH_CFG0 = low: 2 + 2 phase PH_CFG2 = low PH_CFG1 = high (V_{SYS}) , PH_CFG0 = high (V_{SYS}) : 2 + 1 + 1 phase PH_CFG2 = high (V_{SYS}) , PH_CFG1 = X, PH_CFG0 = X: 1 + 1 + 1 + 1 phase			
F2	SNS4N	Phase 4 Differential Negative Remote Sense Input			
F3	GPI1	Active-High, General-Purpose Input. An $800k\Omega$ internal pulldown resistance to DGND. If this pin is not used, leave it unconnected.			
F4	SNS4P	Phase 4 Differential Positive Remote Sense Input			
F5	SNS3P	Phase 3 Differential Positive Remote Sense Input			
F6	PH_CFG1	Phase Configuration Selection Input. Latches at V_{SYS} POR. PH_CFG2 = low, PH_CFG1 = low, PH_CFG0 = low: 4 phase PH_CFG2 = low, PH_CFG1 = low, PH_CFG0 = high (V_{SYS}): 3 + 1 phase PH_CFG2 = low, PH_CFG1 = high (V_{SYS}), PH_CFG0 = low: 2 + 2 phase PH_CFG2 = low, PH_CFG1 = high (V_{SYS}), PH_CFG0 = high (V_{SYS}): 2 + 1 + 1 phase PH_CFG2 = high (V_{SYS}), PH_CFG1 = X, PH_CFG0 = X: 1 + 1 + 1 + 1 phase			
F7	SNS3N	Phase 3 Differential Negative Remote Sense Input			
G1, G2, H1	PGND4	Phase 4 Power Ground			
G3, H2, H3	LX4	Phase 4 Switch Node			
G4, G5, H4, H5	IN34	Phase 3/4 Input. Bypass to PGND3/4 with a 10µF capacitor.			
G6, H6, H7	LX3	Phase 3 Switch Node			
G7, G8, H8	PGND3	Phase 3 Power Ground			

Detailed Description

Top-Level System Management

System Faults

The MAX77812 monitors the system for the following faults:

- Undervoltage lockout
- VIO fault

Undervoltage Lockout

When the V_{SYS} voltage falls below V_{UVLO_F} (2.15V typ), the MAX77812 enters into a shutdown state and UVLO forces the MAX77812 to a dormant state until V_{SYS} voltage rises above the UVLO rising threshold (typically 2.5V). Once the V_{SYS} voltage is higher than the UVLO rising threshold, the MAX77812 comes out of shutdown mode to be securely functional. The UVLO falling threshold is programmable through I²C, but it must be set lower than UVLO rising threshold to avoid unexpected behaviors.

It is recommended to set the UVLO_F[2:0] register bits such that the UVLO falling threshold is at least 1.15V above the programmed output voltage setting.

VIO Fault

When the VIO supply falls below $V_{TH_VIO_OK}$ (1.0V typ), the MAX77812 immediately goes into a shutdown state and stays in this mode until IO supply rises beyond $V_{TH_VIO_OK}$ threshold.

Thermal Protection

The MAX77812 has a centralized thermal protection circuit which monitors temperature on the die. If the die temperature exceeds +165°C (T_{SHDN}), the MAX77812 initiates a soft-stop for all the output(s) and all Type-O registers are reset to their POR default values. However, the MAX77812 should be able to communicate with the host processor through the serial interface as long as V_{SYS} and V_{VIO} supplies are within the operating range.

In case the die temperature drops by 15°C after the thermal protection occurs, the MAX77812 recovers to the normal state and the output(s) can be turned on again.

In addition to +165°C threshold, there are two additional comparators which trip at +120°C and +140°C. Interrupts are generated in the event the die temperature reaches +120°C or +140°C.

Reset Conditions

Power-On Reset (POR)

When a valid system supply voltage is applied to the device, the MAX77812 goes into shutdown mode and stay there until CE goes high. As the V_{SYS} voltage rises above POR threshold (\approx 1.60V), the internal reference and the integrated supply are enabled and the MAX77812 starts loading the default register values from the OTPs.

System Reset

When V_{SYS} voltage drops below its POR threshold (\approx 1.50V), all Type-S1 registers are reset to their POR default values.

Off Reset

Off reset occurs by any power-off or shutdown events. This condition resets all Type-O registers to their POR default values.

Software Reset

All Type-O registers can be reset by writing '1' to SW_RST bit in REG_RESET register. This bit clears to '0' upon reset.

Watchdog Timeout Reset (WDTRSTB_IN)

In case the host processor fails to reset its watchdog timer for any system issues, WDTRSTB_IN signal goes low for about 100ms. When the MAX77812 detects that WDTRSTB_IN is low longer than its debounce timer (programmable by WDT_DEB[2:0]), the output voltage setting registers of all phases (Mx_VOUT[7:0]) reset to their POR default values and the output voltages return to their POR default values with given ramp-up/down slew rates.

Chip Enable (CE)

When V_{SYS} and V_{VIO} supplies are valid, a logic-high on CE pin puts the MAX77812 into standby mode (enabled). In standby mode, all user registers are accessible through I²C/SPI so that the host processor can overwrite the default output voltages of regulators and each regulator can be enabled by either I²C/SPI or GPI input if applicable.

When CE pin goes high, the MAX77812 turns on the internal bias circuitry which takes typically 50µs to be settled. As soon as the bias is ready, all the regulators are allowed to be turned on via I²C/SPI or EN pins. In case the regulators are enabled before the bias circuitry is ready, the regulators require longer time to startup.

When the CE pin is pulled low, the MAX77812 goes into shutdown mode (disabled) and turns off all the regulators regardless of EN pins. This event also resets all Type-O registers to their POR default values.

Enable Control

Each master phase of the MAX77812 can be enabled and disabled by a corresponding enable register bit (EN_Mx), EN input and multifunction GPIs. The enable logic is an 'OR' logic of active enable logic signals. For example, the Master1 is enabled when EN_M1 bit, GLB_EN or M1_EN logic signal is set to '1'. When all active signals are '0', the corresponding master phase is turned off.

Startup and Shutdown Sequence

The MAX77812 supports programmable startup and shutdown delay times between the master phases. The startup and shutdown sequence is initiated by either EN pin or GLB_EN function of GPIs. The startup and shutdown delay times between the master phases are programmable from 0ms to 62ms (32 steps).

The startup sequence is set by OTP bits as well as STUP_DLYx registers and the Master 1 is always turned on as soon as a startup sequence is initiated, while the shutdown sequence is programmable by SHDN_DLYx registers only and the delay times for all master phases are programmable.

If any master phase(s) is(are) turned on by EN_Mx bit or Mx_EN input before initiating startup or shutdown, global startup or shutdown sequence does not affect the master phase(s) already turned on or off.

Figure 1 shows a typical startup and shutdown sequence.

For more detailed information on programming the sequencer, refer to <u>Application Note 6826: How to Program Startup and Shutdown Sequence with MAX77812.</u>

Immediate Shutdown Events

The following events initiate an immediate shutdown:

- V_{SYS} < SYS UVLO falling threshold (V_{UVLO F})
- V_{VIO} < VIO OK threshold (V_{TH VIO OK})

The events in this category are associated with potentially hazardous system states. Powering down the host processor and resetting all Type-O registers help mitigate any issues that can occur due to these potentially hazardous conditions.

Interrupt and Mask

The $\overline{\text{IRQ}}$ output is used to indicate to the host processor that the status on the MAX77812 has changed. The $\overline{\text{IRQ}}$ output asserts (goes low) anytime an unmasked interrupt bit is triggered. The host processor reads the interrupt source register (ADDR 0x01) and the interrupt registers that are indicated by the interrupt source register to see the cause of interrupt event. Note that the interrupt register group is read by the host processor.

All the interrupt events are edge-triggered. Therefore, the same interrupt is not generated repeatedly even though the interrupt condition persists.

Each interrupt register can be read at a time and all interrupt bits are clear-on-read bits. The \overline{IRQ} output de-asserts (goes high) when all interrupt bits have been cleared. If an interrupt is captured during the read sequence, \overline{IRQ} output is held low. When \overline{IRQ} output is pulled low by an unmasked interrupt event, \overline{IRQ} output stays low until the interrupt bit is cleared by the reading operation of the host processor or the corresponding interrupt mask bit is set to '1' (masked).

Figure 1. Startup and Shutdown Sequence

Each interrupt can be masked (disabled) by setting the corresponding interrupt mask register bit.

When the corresponding mask bit is set (masked), an interrupt bit is not set for an interrupt event. As a result, the $\overline{\mbox{IRQ}}$ output stays high. When the mask bit is cleared, an active interrupt event at the time of clearing the mask bit is captured, which results in pulling the $\overline{\mbox{IRQ}}$ output low.

Interrupt mask bits are set to '1' by default and are reset to the default values at power-off events.

Status

In addition to interrupt bits, the MAX77812 has read-only STATUS bits. Those bits always represent the current status of the device. It is highly recommended that the host processor read STATUS bits whenever the MAX77812 is initialized by the host processor. These STATUS bits do not directly affect the state of interrupt bits.

Quad-Phase Buck Regulator

The MAX77812 uses Maxim's proprietary Quick-PWM™ adaptive on-time control scheme. Adaptive on-time control provides fast response to load transients, inherent compensation to input voltage variation, and stable performance at low duty cycles. On-times (high-side MOSFET on) are controlled by the on-time generator circuit. This circuit calculates an on-time based on the input voltage (V_{INx}), the output voltage (V_{OUTx}), and the target switching frequency (FSW). The on-time is modified (slightly shortened or lengthened) by the phase current balancing control circuit. Off-times (low-side MOSFET on) begin when the on-time ends. Shoot-through current from INx to PGNDx is avoided by introducing a brief period of deadtime between switching events when neither MOSFET is on. During the dead-time, the inductor current conducts through the intrinsic body diode of the low-side MOSFET.

The PWM comparator regulates VOUTx by modulating off-time. A compensation ramp is fed to the positive input of the PWM comparator and the negative input is a voltage proportional to the actual output voltage error added to the replicated AC current in the inductor. The PWM comparator begins an on-time (and resets the compensation ramp) when the error voltage plus replicated AC inductor current becomes greater than the ramp. When the calculated on-time expires, the off-time automatically begins. One PWM comparator is used to control all phases in multiphase configuration. The output is demultiplexed by a phase scheduler which controls the phase spacing of each switching stage (e.g., 2Φ is spaced 180° apart, 3Φ is spaced 120°, 4Φ is spaced 90°). Multiphase configurations permanently have all phases activated and always switches in sequence during steady-state operation (phases do not add or shed).

The switching frequency (F_{SW}) of the adaptive on-time BUCK is variable and heavily influenced by the instantaneous load. More on-time pulses in a given time (higher F_{SW}) is observed as load increases. Fewer on-times in a given time (lower F_{SW}) is observed as load decreases.

Phase/Output Configurations

The MAX77812 supports user-programmable phase configuration by PH_CFG0, PH_CFG1 and PH_CFG2 input logic state. The input logic state is latched at the POR event.

All supported phase configurations are shown in Table 1. Refer to Application Note 6804: Guidelines for the MAX77812 User-Selectable Phase Configurations and How to Select Them for a concise summary of all the information regarding phase configurations found in this data sheet.

Table 1. User-Programmable Phase/Output Configurations

PH_CFG2	PH_CFG1	PH_CFG0	PHASE CONFIGURATION
Low	Low	Low	1 Output: 4-Phase (Master 1)
Low	Low	High	2 Outputs: 3-phase (Master 1) + 1-phase (Master 4)
Low	High	Low	2 Outputs: 2-phase (Master 1) + 2-phase (Master 3)
Low	High	High	3 Outputs: 2-phase (Master 1) + 1-phase (Master 3) + 1-phase (Master 4)
High	Х	X	4 Outputs: 1-phase (Master 1) + 1-phase (Master 2) + 1-phase (Master 3) + 1-phase (Master 4)

Based on the selected phase configuration, the phase selector generates the TON signals to each power stage with different phase interleaving schemes and the master phases are assigned as shown in Figure 2.

Note that only registers for the master phase(s) are activated and the slave phase(s) are controlled by the corresponding master phase(s).

SKIP/Forced PWM Operation

In normal operating mode, buck automatically transitions from skip mode to fixed frequency operation as the load current increases. For operating modes where lowest output ripple is required, Forced PWM switching behavior can be enabled by writing '1' to Mx_FPWM bit.

Low Power Mode

Each master includes LPM (low power mode) operation to minimize the quiescent current when the host processor is in sleep state. In LPM, the ETR (enhanced transient response), ADT (adaptive dead-time control), and \overline{POK} comparator (POK = high) are disabled so that load transient response of the buck regulators are derated as the trade-off. The LPM of each master can be enabled independently by Mx LPM bits.

Startup and Soft-Start

When starting up buck regulator, the bias circuitry must be enabled and provided with adequate time to settle. The bias circuitry is guaranteed to settle within 250µs, at which time, the buck regulators power-up sequence can commence. Note that attempting to implement a power-up sequence before the BIASOK signal is generated results in all enabled regulators starting up at the same time.

The buck regulator supports starting into a prebiased output. For example, if the output capacitor has an initial voltage of 0.4V when the regulator is enabled, the regulator

gracefully increases the capacitor voltage to the required target voltage such as 1.0V. This is unlike other regulators without the start into prebias feature where they can force the output capacitor voltage to 0V before the soft-start ramp begins.

The buck regulator supports programmable soft-start rate from 1.25mV/ μ s to 60mV/ μ s. The controlled soft-start rate and buck regulator current limit (ILIM_PEAK) limit the input inrush current to the output capacitor (IINRUSH). IINRUSH = min (ILIM_PEAK & COUT x dv/dt). Note that the input current of the buck regulator is lower than the inrush current to the output capacitor by the ratio of output to input voltage.

Output Voltage Setting

The output voltage is programmable from 0.25V to 1.525V in 5mV steps to allow fine adjustment to the processor supply voltage under light load conditions to minimize power loss within the processor. Each master phase have three output voltage control registers. Mx_VOUT[7:0] register is for normal operation and Mx_VOUT_D[7:0] and Mx_VOUT_S[7:0] are used for voltage selection function by GPIx. See the *Multifunction GPIs* section. The default output voltages are set by an OTP option at the factory. The default output voltages can be overwritten by changing the contents in Mx_VOUT[7:0] register prior to enabling the regulator. It is recommended to maintain at least 1.15V of headroom between VSYS and the programmed output voltage setting.

For some applications, an output voltage higher than 1.525V is required. The MAX77812 supports higher output voltage with the addition of an external voltage-divider network. For more details, refer to Application Note 6823: Generating a Higher Output Voltage than 1.525V Using the MAX77812.

Figure 2. Buck Phase Configuration

Changing Output Voltage During Operation

In a typical smartphone or tablet application, there are several power domains in which the operating frequency of the processor is increased or decreased (DVFS). When the operating frequency needs to be changed, it is expected that the buck regulator responds to a command to change the output voltages to new target values quickly. The high peak current limit, coupled with low inductance and small output capacitance, allows the buck regulator to respond to a positive step change in output voltage and settle to the new target value quickly. The buck regulator provides programmable ramp-up slew rates to accommodate different requirements.

For a negative step change in output voltage, the settling time is not critical. In Forced PWM mode (either Mx_FPWM bit or Mx_FSREN bit is enabled), the negative inductor current through NMOS discharges energy from the output capacitor, which helps the output voltage to decrease to the new target value faster. In skip mode, the negative inductor current is not allowed so that the output voltage settling time is dependent on the load current and the output capacitance.

Output Voltage Slew Rate Control

The buck regulator supports programmable slew rate control feature when increasing and decreasing the output voltage. The ramp-up slew rate can be set to 1.25mV/ $\mu s, 2.5mV/\mu s, 5mV/\mu s, 10mV/\mu s, 20mV/\mu s 40mV/\mu s or 60mV/\mu s independently via B_RU_SR[2:0] bits, while the ramp-down slew rate is programmable to 1.25mV/ <math display="inline">\mu s, 2.5mV/\mu s, 5mV/\mu s, 10mV/\mu s, 20mV/\mu s 40mV/\mu s or 60mV/\mu s through B_RD_SR[2:0].$

Remote Output Voltage Sensing

All phases support differential remote output voltage sensing feature for improving point of load regulation. Differential feedback (SNSxP and SNSxN) enables voltage sensing directly at the point of load, ensuring best voltage regulation at the load, regardless of power plane impedances.

Output Active Discharge

BUCK provides an internal 100Ω resistor for output active discharge function. If the active discharge function is enabled (Mx_AD = 1), the internal resistor discharges the energy stored in the output capacitor to PGNDx whenever the regulator is disabled.

Either the regulator remains enabled or the active discharge function is disabled $(Mx_AD = 0)$, the internal

resistor is disconnected from the output. If the active discharge function is disabled, the output voltage decays at a rate that is determined by the output capacitance and the load current when the regulator is turned off.

Enhanced Transient Response

The MAX77812 features the enhanced transient response (ETR) function to improve the output-voltage transient responses with very fast load changes. When enabled, the ETR function monitors the output voltage and detects high dv/dt undershoot and overshoot separately.

When the negative ETR (NETR) is detected during output-voltage undershoot, the buck controllers turn on all master and slave phases assigned to the same output at the same time (in-phase) until the NETR is de-asserted. This allows the multi-phase buck converters (no significant impact on single-phase buck) to pump up energy to the output in order to recover from the undershoot quickly.

When the positive ETR (PETR) is detected, the buck controllers turn off the corresponding low-side MOSFETs to discharge excessive energy stored in the inductors, which results in suppressing output-voltage overshoot. When the PETR is released, the buck controllers operate in FPWM mode for about 5ms before returning to normal operation.

Both NETR and PETR functions are enabled by default, but they can be turned off to reduce quiescent current by clearing the B_NETR_EN and B_PETR_EN bits in the GLB CFG3 register.

Inductor Selection

The buck regulator is optimized for 220nH to 470nH inductors. The lower the inductor DCR, the higher the buck efficiency is. Users need to trade off inductor size with DCR value and choose a suitable inductor for the buck.

Inductor Current Limit

A cycle-by-cycle current limit provides overcurrent protection by monitoring the current in the high-side and low-side MOSFETs. The peak current limit (I_{PLIM}) triggers during on-time and prevents the inductor current from running away. If I_{PLIM} trips, the on-time ends and the low-side MOSFET turns on to reduce the inductor current until it hits the valley current limit (I_{VLIM}). Once the current falls to I_{VLIM}, normal operation resumes. Note that the buck output current is limited to (I_{PLIM} + I_{VLIM})/2. For more detailed information, refer to Application Note 6820: How Overcurrent Protections Works in the MAX77812.

Input and Output Capacitor Selection

The input capacitor, C_{IN} , reduces the current peaks drawn from the battery or input power source and reduces switching noise in the device. The impedance of C_{IN} at the switching frequency should be kept very low. Ceramic capacitors with X5R or X7R dielectrics are highly recommended due to their small size, low ESR, and small temperature coefficients. For most applications a $10\mu F$ capacitor is sufficient.

The output capacitor, C_{OUT} , is required to keep the output voltage ripple small and to ensure regulation loop stability. C_{OUT} must have low impedance at the switching frequency. Ceramic capacitors with X5R or X7R dielectric are highly recommended due to their small size, low ESR, and small temperature coefficients. Due to the unique feedback network, the output capacitance can be very low. The recommended minimum output capacitance per phase is $22\mu F$.

Unused Outputs

Follow these guidelines when the application has unused buck outputs:

- Connected unused inputs (INx) to SYS.
- Leave unused LXx pins unconnected (open).
- Connect unused SNSxN and PGNDx pins to ground.

- Connect unused SNSxP pins to either input or ground, depending on the state of the unused output in the application:
 - If the unused output can be enabled at any point in the application, either by the global enable input pin (EN) or a GPIx set to be a global enable, connect the unused SNSxP to INx.
 - If the unused output is disabled by default and will never be enabled, connect the unused SNSxP to ground.

Do not confuse unused outputs with unused phases. Phases configured under a master controller in a multiphase configuration must connect according to Table 1.

If possible, do not enable unused outputs. An unused output with a floating LX pin might try switching the LX node indefinitely (depending on the SNSxP connection), which wastes supply current.

PCB Trace Resistance

The evaluation kit (and the typical PCB on which the MAX77812 is expected to be designed in) utilize 1/3oz. Cu, which is plated up to 0.5oz. 0.5oz. Cu has a typical resistance of $1m\Omega$ per square.

Power-OK (POK)

The POK comparator is active whenever the regulator is enabled, soft-start has finished, and the regulator is not in low-power mode. The Mx_POK bits are '0' by default and assert to '1' if the output falls below the output POK trip falling threshold level while the output is enabled.

Table 2. Suggested Inductors

MFGR.	SERIES	NOMINAL INDUCTANCE (nH)	TYPICAL DC RESISTANCE (mΩ)	CURRENT RATING (A) -30% (∆L/L)	CURRENT RATING [A] ∆T = +40°C RISE	DIMENSIONS L x W x H (mm)
Cyntec	HMLE20161B-R22MDR	220	13	5.8	5.3	2.0 x 1.6 x 1.2
TOKO	DFE201610-E-R24N	240	16	7.0	5.5	2.0 x 1.6 x 1.0
ALPS	GLULMR2201A	220	9	6.5	7.0	2.5 X 2.0 X 1.2

Table 3. Suggested Capacitors

MFGR.	SERIES	NOMINAL CAPACITANCE (µF)	RATED VOLTAGE (V)	TEMPERATURE CHARACTERISTICS	CASE SIZE (Imperial)	DIMENSIONS L x W x H (mm)
Murata	GRM188R60J106ME84	10 ±20%	6.3	X5R	0603	1.6 x 0.8 x 0.8
Murata	GRM188R60J226MEA0	22 ±20%	6.3	X5R	0603	1.6 x 0.8 x 0.8

GPIx_FUNC[3:0]	FUNCTION	REMARK
0000b	GLB_EN	Global Enable (Master 1 through Master 4)
0001b	M1_EN	Master 1 Enable
0010b	M2_EN	Master 2 Enable
0011b	M3_EN	Master 3 Enable
0100b	M4_EN	Master 4 Enable
0101b	GLB_VSEL	Global Voltage Selection (Master 1 through Master 4)
0110b	M1_VSEL	Master 1 Voltage Selection
0111b	M2_VSEL	Master 2 Voltage Selection
1000b	M3_VSEL	Master 3 Voltage Selection
1001b	M4_VSEL	Master 4 Voltage Selection
1010b	GLB_LPM	Global Low Power Mode Select (Master 1 through Master 4)
1011b	M1_LPM	Master 1 Low Power Mode Enable
1100b	M2_LPM	Master 2 Low Power Mode Enable
1101b	M3_LPM	Master 3 Low Power Mode Enable
1110b	M4_LPM	Master 4 Low Power Mode Enable
1111b	No function	_

Table 4. Multifunction GPI Configurations

Multifunction GPIs

General Description

The MAX77812 has two general purpose inputs (GPI0 and GPI1) that can be configured as the enable of regulators, the output voltage selection, the low power mode control and no function. The function of these two inputs is programmable through I²C/SPI (GPI_FUNC register) on the fly. **Application Note 6822:** *How to Use Multi-Function GPIs?* provides an in-depth look at programming the GPIs for their various functions.

Enable Control by GPI

When the GPIx are configured as output enable pins, the enable logic of a specific regulator is an 'OR' logic of the GPIx and the corresponding enable register bit (Mx_EN). For example, if GPI0_FUNC[3:0] = 0001b, the buck Master 1 enable is controlled by GPI0 and M1 EN bit.

In case the two GPIs are configured as the same enable function (i.e., GPI0_FUNC[3:0] = GPI1_FUNC[3:0] = 0010b), those inputs are ORed with M2_EN bit. GLB_EN function (GPI0_FUNC[3:0] = 0000b) allows the host processor to enable all the masters in sequence based on STUP_DLYx registers. Note that M1 thru M4 are defined by PH CFG0, PH CFG1 and PH CFG2 inputs.

Voltage Selection by GPI

The buck has two additional output voltage control registers (Mx_VOUT_D[7:0] and Mx_VOUT_S[7:0]) besides one (Mx_VOUT[7:0]) for normal operation. Those two additional registers are for storing the default output voltage and the system sleep mode output voltage for a specific host processor.

When GPIx are configured as voltage selection pins, the output voltage of a specific regulator is set by Mx_VOUT_D[7:0] and Mx_VOUT_S[7:0] registers based on the input logic. For example, if GPI0_FUNC[3:0] = 0101b, the output voltages of all the masters are set by Mx_VOUT_D[7:0] and Mx_VOUT_S[7:0] when GPI0 = high and GPI0 = low, respectively. In case the two GPIs are configured as the same voltage selection function, those inputs are ORed. During the output voltage transition, the ramp-up/down slew rate is controlled by B_RU_SR[2:0] and B_RD_SR[2:0]. Note that M1 thru M4 are defined by PH CFG0, PH CFG1 and PH CFG2 inputs.

Low Power Mode by GPI

When GPIx are configured as low power mode enable pins, the low power mode enable logic of a specific regulator is an 'OR' logic of GPIx and the corresponding enable register bit (Mx_LPM). For example, if GPI0_FUNC[3:0] = 1011b, the buck Master 1 low power mode enable is controlled by GPI0 and M1 LPM bit.

In case the two GPIs are configured as the same enable function (i.e., GPI0_FUNC[3:0] = GPI0_FUNC[3:0] = 1100b), those inputs are ORed with M2_LPM bit. GLB_LPM function (GPI0_FUNC[3:0] = 1010b) allows the host processor to enable low power mode of all the masters at the same time. Note that M1 thru M4 are defined by PH_CFG0, PH_CFG1, and PH_CFG2 inputs.

I²C Serial Interface

General Description

The I²C-compatible 2-wire serial interface is used for regulator on/off control, setting output voltages, and other functions. See the *Register Map* section for details.

The I²C serial bus consists of a bidirectional serial-data line (SDA) and a serial clock (SCL). I²C is an open-drain bus. SDA and SCL require pullup resistors (500Ω or greater). Optional 24 Ω resistors in series with SDA and SCL help to protect the device inputs from high voltage spikes on the bus lines. Series resistors also minimize crosstalk and undershoot on bus lines.

System Configuration

The I²C bus is a multimaster bus. The maximum number of devices that can attach to the bus is only limited by bus capacitance.

Figure 3 shows an example of a typical I²C system. A device on I²C bus that sends data to the bus in called a transmitter. A device that receives data from the bus is called a receiver. The device that initiates a data transfer and generates SCL clock signals to control the data transfer is a master. Any device that is being addressed by the master is considered a slave. When the MAX77812 I²C-compatible interface is operating, it is a slave on I²C bus and it can be both a transmitter and a receiver.

Bit Transfer

One data bit is transferred for each SCL clock cycle. The data on SDA must remain stable during the high portion of SCL clock pulse. Changes in SDA while SCL is high are control signals (START and STOP conditions).

Figure 3. Functional Logic Diagram for Communications Controller

Figure 4. I²C Bit Transfer

START and STOP Conditions

When I²C serial interface is inactive, SDA and SCL idle high. A master device initiates communication by issuing a START condition. A START condition is a high-to-low transition on SDA with SCL high. A STOP condition is a low-to-high transition on SDA, while SCL is high.

A START condition from the master signals the beginning of a transmission to the MAX77812. The master terminates transmission by issuing a NOT ACKNOWLEDGE followed by a STOP condition.

A STOP condition frees the bus. To issue a series of commands to the slave, the master can issue REPEATED START (Sr) commands instead of a STOP command in order to maintain control of the bus. In general, a REPEATED START command is functionally equivalent to a regular START command.

Figure 5. I²C Start Stop

When a STOP condition or incorrect address is detected, the MAX77812 internally disconnects SCL from I²C serial interface until the next START condition, minimizing digital noise and feedthrough.

Acknowledge

Both the I²C bus master and the MAX77812 (slave) generate acknowledge bits when receiving data. The acknowledge bit is the last bit of each nine bit data packet. To generate an ACKNOWLEDGE (A), the receiving device must pull SDA low before the rising edge of the acknowledge-related clock pulse (ninth pulse) and keep it low during the high period of the clock pulse. To generate a NOT ACKNOWLEDGE (nA), the receiving device allows SDA to be pulled high before the rising edge of the acknowledge-related clock pulse and leaves it high during the high period of the clock pulse.

Monitoring the acknowledge bits allows for detection of unsuccessful data transfers. An unsuccessful data transfer occurs if a receiving device is busy or if a system fault has occurred. In the event of an unsuccessful data transfer, the bus master should reattempt communication at a later time.

Slave Address

The I²C slave address is set by buck phase configuration as shown in <u>Table 5</u>. If two MAX77812 devices with the same phase configuration need to be connected to the same I²C bus, contact a Maxim representative.

Table 5. I²C Slave Address

			SLAVE ADDRESS	SLAVE ADDRESS	SLAVE ADDRESS				
PH_CFG2	PH_CFG1	PH_CFG0	(7-BIT)	(WRITE)	(READ)				
MAX77812EWB+, MAX77812AEWB+, MAX77812BEWB+, MAX77812CEWB+, MAX77812DEWB+									
Low	Low	Low	011 0000	0x60 (0110 0000)	0x61 (0110 0001)				
Low	Low	High	011 0001	0x62 (0110 0010)	0x63 (0110 0011)				
Low	High	Low	011 0010	0x64 (0110 0100)	0x65 (0110 0101)				
Low	High	High	011 0011	0x66 (0110 0110)	0x67 (0110 0111)				
High	X	X	011 0100	0x68 (0110 1000)	0x69 (0110 1001)				
MAX77812FEWI	B+								
Low	Low	Low	011 1000	0x70 (0111 0000)	0x71 (0111 0001)				
Low	Low	High	011 1001	0x72 (0111 0010)	0x73 (0111 0011)				
Low	High	Low	011 1010	0x74 (0111 0100)	0x75 (0111 0101)				
Low	High	High	011 1011	0x76 (0111 0110)	0x77 (0111 0111)				
High	Х	Х	011 1100	0x78 (0111 1000)	0x79 (0111 1001)				

Figure 6. Slave Address Byte Example

Clock Stretching

In general, the clock signal generation for I²C bus is the responsibility of the master device. I²C specification allows slow slave devices to alter the clock signal by holding down the clock line. The process in which a slave device holds down the clock line is typically called clock stretching. The MAX77812 does not use any form of clock stretching to hold down the clock line.

General Call Address

The MAX77812 does not implement the I^2C specification general call address. If the MAX77812 sees general call address (00000000b), it does not issue an ACKNOWLEDGE (A).

Communication Speed

The MAX77812 provides an I^2C 3.0-compatible (3.4MHz) serial interface.

- I²C Revision 3 Compatible Serial Communications Channel
 - 0Hz to 100kHz (Standard Mode)
 - 0Hz to 400kHz (Fast Mode)
 - 0Hz to 1MHz (Fast Mode Plus)
 - 0Hz to 3.4MHz (High-speed Mode)
- Does not utilize I²C Clock Stretching

Operating in standard mode, fast mode and fast mode plus does not require any special protocols. The main consideration when changing the bus speed through this range is the combination of the bus capacitance and pullup resistors. Higher time constants created by the bus capacitance and pullup resistance (C x R) slow the bus operation. Therefore, when increasing bus speeds the pullup resistance must be decreased to maintain a reasonable time constant. See the *Pullup Resistor Sizing* section of the I²C revision 3.0 specification for detailed guidance on the pullup resistor selection. In general, for bus capacitance of 200pF, a 100kHz bus needs $5.6k\Omega$ pullup resistors, a 400kHz bus needs about a $1.5k\Omega$ pullup resistors, and a 1MHz bus needs 680Ω pullup resistors. Note that the pullup resistor is dissipating power when the open-drain bus is low. The lower the value of the pullup resistor, the higher the power dissipation (V²/R).

Operating in high-speed mode requires some special considerations. For the full list of considerations, see the I²C 3.0 specification. The major considerations with respect to the MAX77812 are:

- I²C bus master use current source pullups to shorten the signal rise times.
- I²C slave must use a different set of input filters on its SDA and SCL lines to accommodate for the higher bus speed.
- The communication protocols need to utilize the high-speed master code.

At power-up and after each STOP condition, the MAX77812 inputs filters are set for standard mode, fast mode, or fast mode plus (i.e., 0Hz to 1MHz). To switch the input filters for high-speed mode, use the high-speed master code protocols that are described in the *Protocols* section.

Communication Protocols

The MAX77812 supports both writing and reading from its registers.

Writing to a Single Register

<u>Figure 7</u> shows the protocol for I²C master device to write one byte of data to the MAX77812. This protocol is the same as SMBus specification's write byte protocol.

The write byte protocol is as follows:

- 1) The master sends a START command (S).
- 2) The master sends the 7-bit slave address followed by a write bit $(R/\overline{W} = 0)$.
- 3) The addressed slave asserts an ACKNOWLEDGE

- (A) by pulling SDA low.
- 4) The master sends an 8-bit register pointer.
- 5) The slave acknowledges the register pointer.
- 6) The master sends a data byte.
- 7) The slave acknowledges the data byte. At the rising edge of SCL, the data byte is loaded into its target register and the data becomes active.
- 8) The master sends a STOP condition (P) or a RE-PEATED START condition (Sr). Issuing a P ensures that the bus input filters are set for 1MHz or slower operation. Issuing a REPEATED START (Sr) leaves the bus input filters in their current state.

Figure 7. Writing to a Single Register with Write Byte Protocol

20A User-Configurable Quad-Phase Buck Converter

Writing to Sequential Registers

<u>Figure 8</u> shows the protocol for writing to a sequential registers. This protocol is similar to the write byte protocol, except the master continues to write after it receives the first byte of data. When the master is done writing it issues a STOP or REPEATED START

The writing to sequential registers protocol is as follows:

- 1) The master sends a START command (S).
- 2) The master sends the 7-bit slave address followed by a write bit $(R/\overline{W} = 0)$.
- The addressed slave asserts an ACKNOWLEDGE (A) by pulling SDA low.
- 4) The master sends an 8-bit register pointer.
- 5) The slave acknowledges the register pointer.

- The master sends a data byte.
- 7) The slave acknowledges the data byte. At the rising edge of SCL, the data byte is loaded into its target register and the data becomes active.
- 8) Steps 6 to 7 are repeated as many times as the master requires.
- During the last acknowledge related clock pulse, the master issues an ACKNOWLEDGE (A).
- 10) The master sends a STOP condition (P) or a RE-PEATED START condition (Sr). Issuing a P ensures that the bus input filters are set for 1MHz or slower operation. Issuing a REPEATED START (Sr) leaves the bus input filters in their current state.

Figure 8. Writing to Sequential Registers "X" to "N"

20A User-Configurable Quad-Phase Buck Converter

Writing Multiple Bytes using Register-Data Pairs

Figure 9 shows the protocol for I²C master device to write multiple bytes to the MAX77812 using register-data pairs. This protocol allows I²C master device to address the slave only once and then send data to multiple registers in a random order. Registers may be written continuously until the master issues a STOP condition.

The "Multiple Byte Register-Data Pair" protocol is as follows:

- 1) The master sends a START command.
- 2) The master sends the 7-bit slave address followed by a write bit.

- 3) The addressed slave asserts an ACKNOWLEDGE (A) by pulling SDA LOW.
- 4) The master sends an 8-bit register pointer.
- 5) The slave acknowledges the register pointer.
- 6) The master sends a data byte.
- 7) The slave acknowledges the data byte. At the rising edge of SCL, the data byte is loaded into its target register and the data will become active.
- 8) Steps 4 to 7 are repeated as many times as the master requires.
- 9) The master sends a STOP condition.

Figure 9. Writing to Multiple Registers with Multiple Byte Register Data Pairs Protocol

MAX77812

20A User-Configurable Quad-Phase Buck Converter

Reading from a Single Register

I²C master device reads one byte of data to the MAX77812. This protocol is the same as SMBus specification's read byte protocol.

The read byte protocol is as follows:

- 1) The master sends a START command (S).
- 2) The master sends the 7-bit slave address followed by a write bit $(R/\overline{W} = 0)$.
- 3) The addressed slave asserts an ACKNOWLEDGE (A) by pulling SDA low.
- 4) The master sends an 8-bit register pointer.
- 5) The slave acknowledges the register pointer.
- 6) The master sends a REPEATED START command (Sr).
- 7) The master sends the 7-bit slave address followed by a read bit $(R/\overline{W} = 1)$.
- 8) The addressed slave asserts an ACKNOWLEDGE (A) by pulling SDA low.
- 9) The addressed slave places 8-bits of data on the bus from the location specified by the register pointer.
- 10) The master issues a NOT ACKNOWLEDGE (nA).
- 11) The master sends a STOP condition (P) or a RE-PEATED START condition (Sr). Issuing a P ensures that the bus. input filters are set for 1MHz or slower operation. Issuing a REPEATED START (Sr) leaves the bus input filters in their current state.

Note that every time the MAX77812 receives a STOP, its register pointer is set to 0x00. If reading register 0x00 after a STOP has been issued, steps 1 to 6 in the above algorithm can be skipped.

Reading from Sequential Registers

<u>Figure 10</u> shows the protocol for reading from sequential registers. This protocol is similar to the read byte protocol except the master issues an ACKNOWLEDGE (A) to sig-

nal the slave that it wants more data. When the master has all the data it requires, it issues a NOT ACKNOWLEDGE (nA) and a STOP (P) to end the transmission.

The continuous read from sequential registers protocol is as follows:

- 1) The master sends a START command (S).
- 2) The master sends the 7-bit slave address followed by a write bit $(R/\overline{W} = 0)$.
- 3) The addressed slave asserts an ACKNOWLEDGE (A) by pulling SDA low.
- 4) The master sends an 8-bit register pointer.
- 5) The slave acknowledges the register pointer.
- 6) The master sends a REPEATED START command (Sr).
- 7) The master sends the 7-bit slave address followed by a read bit $(R/\overline{W} = 1)$.
- 8) The addressed slave asserts an ACKNOWLEDGE (A) by pulling SDA low.
- 9) The addressed slave places 8 bits of data on the bus from the location specified by the register pointer.
- 10) The master issues an ACKNOWLEDGE (A) signaling the slave that it wishes to receive more data.
- 11) Steps 9 to 10 are repeated as many times as the master requires. Following the last byte of data, the master must issue a NOT ACKNOWLEDGE (nA) to signal that it wishes to stop receiving data.
- 12) The master sends a STOP condition (P) or a RE-PEATED START condition (Sr). Issuing a STOP (P) ensures that the bus input filters are set for 1MHz or slower operation. Issuing a REPEATED START (Sr) leaves the bus input filters in their current state.

Note that every time the MAX77812 receives a STOP its register pointer is set to 0x00. If reading register 0x00 after a STOP has been issued, steps 1 to 6 in the above algorithm can be skipped.

20A User-Configurable Quad-Phase Buck Converter

Engaging HS Mode for Operation Up to 3.4MHz

<u>Figure 11</u> shows the protocol for engaging HS mode operation. HS mode operation allows for a bus operating speed up to 3.4MHz.

The engaging HS mode protocol is as follows:

- Begin the protocol while operating at a bus speed of 1MHz or lower.
- 2) The master sends a START command (S).
- The master sends the 8-bit master code of 00001xxxb where xxxb are don't care bits.
- The addressed slave issues a NOT ACKNOWL-EDGE (nA).
- 5) The master can now increase its bus speed up to 3.4MHz and issue any read/write operation.

The master can continue to issue high-speed read/write operations until a STOP (P) is issued. Issuing a STOP (P) ensures that the bus input filters are set for 1MHz or slower operation.

The MAX77812 I²C supports the HS mode extension feature. The HS extension feature keeps the high-speed operation even after STOP condition. This eliminates the needs of HS master code issued by the I²C master controller when the I²C master controller wants to stay in HS mode for multiple read/write cycles.

As shown in the state diagram, the HS extension mode can be enabled by setting HS_EXT bit in I²C_CFG register (ADDR 0x15) from LS mode only (entering HS extension mode from HS mode is not supported).

SPI Slave Controller

The serial interface includes a SPI slave controller and the selection between I²C and SPI slave controller is done by I²C_SPI_SEL input pin. The SPI slave controller requires a reset every time before the SPI master controller starts a new frame. This can be done by setting SCS (SPI chip select, active low) input high for more than 50ns. When SCS is held high, the MISO output is in a high-impedance state.

Figure 10. Reading Continuously from Sequential Registers "X" to "N"

Figure 11. Engaging HS Mode

20A User-Configurable Quad-Phase Buck Converter

Features

The SPI slave controller has following features:

- Slave Only
- Single Read/Write Support
- Multiple Read/Write Support
- Up to 30MHz (26MHz typ)

General Description

The SPI slave controller works with CKPOL = 0, CKPHA = 0 setting in the SPI master controller. In other words, idle state of SCL is low and the SPI controller samples data in the rising edge of SCL. Besides single read/write cycle, the SPI salve controller also supports multiple read/write cycles.

<u>Figure 13</u>, <u>Figure 14</u>, and <u>Figure 15</u> show single and multiple read/write frame structures.

Figure 12. I²C Operating Mode State Diagram

Figure 13. SPI Timing Diagram

Figure 14. SPI Single Read/Write Frame Structure

Figure 15. SPI Multiple Read/Write Frame Structure

Frame Structure

Read/Write Bit (R/W)

The first bit indicates either read (0) or write (1) frame.

Single/Multiple Bit (S/M)

The second bit determines either single read/write frame (0) or multiple read/write frame (1).

Reserved Bits (RESERVED[3:0])

There are 4 reserved bits followed by read/write and single/multiple bits. The MAX77812 SPI slave controller ignores those bits.

Address Bits (ADDR[9:0])

The SPI master controller loads 10 address bits on MOSI, however, the MAX77812 has only 8-bit address bus so that the SPI slave controller ignores attempt to access to overflowed addresses (beyond 0xFF).

Packet Length Bits (PACKET_LENGTH[7:0])

The length of single read/write frame is organized as 32-bit (packet length bits are ignored).

For multiple read/write frame, PACKET_LENGTH[7:0] bits determine the number of data bytes. The total length of the multiple read/write frame is '32 + 8 x n' bits, where 'n' is the packet length.

Data Bits (RDATA[7:0]/WDATA[7:0])

The SPI slave controller has 8-bit data bus. While the slave controller is loading data onto MISO, it ignores the data on MOSI. When MISO is inactive, it is held low by the SPI slave controller.

Multiple Write Cycles

Figure 16 is the timing diagram of multiple write cycle. The first data (WDATA0[7:0]) is written at ADDR[9:0] if the address is valid. For the next data byte, the register address automatically increases by one. The total number of data bytes are determined by PACKET_LENGTH[7:0] and the MAX77812 slave controller ignores the any data bytes beyond the total number of data bytes (PACKET_LENGTH[7:0] + 1). While the SPI master controller is writing data onto MOSI, the SPI controller keeps MISO to a low state.

20A User-Configurable Quad-Phase Buck Converter

Multiple Read Cycles

The timing diagram of multiple read cycle is shown in Figure 17. The first data (RDATA0[7:0]) is read at ADDR[9:0] if the address is valid. For the next data byte, the register address automatically increases by one. The total number of data bytes are determined by PACKET_LENGTH[7:0] and the MAX77812 slave controller stops loading data beyond the total number of data

bytes (PACKET_LENGTH[7:0] + 1). While the SPI master controller is writing data onto MOSI, the MAX77812 SPI controller keeps MISO to a low state. When the SPI slave controller loads the data on MISO, the data on MOSI are ignored (don't care) by the SPI slave controller.

In case the SPI master controller tries to read nonexisting registers, the MAX77812 SPI slave controller returns zero values (MISO = low).

Figure 16. SPI Multiple Write Cycle

Figure 17. SPI Multiple Read Cycle

20A User-Configurable Quad-Phase Buck Converter

PMIC Registers Register Reset Conditions

Type-S1: Registers are reset when V_{SYS} < POR (≈1.50V)

Type-O: Registers are reset when VSys < VUVLO_F or VVIO < VTH_VIO_OK or CE = low or TOK = low or SW_RST = 1.

Register Map

											QI	ua	u-	PII	as	e e	DU	JCI	((ان	IIV	erter
RESET	0x00	00×0	0x02	00x0	0x13	I	00x0	00×0	00×0	0x00	00×0	0000	0000	0x00	0x02	0x43	0x11	0x11	0x0F	0x82	0x00	
BIT0	SW RST	TOPSYS_ INT	TOPSYS_ INT_M	TJCT_ 120C_INT	TJCT_ 120C_M	TJCT_ 120C	EN_M1												GP10_PD		HS_EXT	
BIT1	RESERVED	BUCK_INT	BUCK_ INT_M	TJCT_ 140C_INT	TJCT_ 140C_M	TJCT_ 140C	EN_M1_ LPM	:0]	:0]	:0]	[0:	[0:	[0:	:0]	WDT_DEB[2:0]	INC[3:0]	:B[2:0]	_DEB[2:0]	GP11_PD	UVLO_F[2:0]	PAIR	
BIT2	RESERVED	RESERVED	RESERVED	TSHDN_	TSHDN_M	TSHDN	EN_M2	M2_STUP_DLY[4:0]	M3_STUP_DLY[4:0]	M4_STUP_DLY[4:0]	M1_SHDN_DLY[4:0]	M2_SHDN_DLY[4:0]	M3_SHDN_DLY[4:0]	M4_SHDN_DLY[4:0]	M	GP10_FUNC[3:0]	EN_DEB[2:0]	GP10_DI	EN_PD	1	RESERVED	
BIT3	RESERVED	RESERVED RESERVED	RESERVED	UVLO_INT	M_OVUO_M	NALO	EN_M2_ LPM	M2	M3	M4_	M1	M2	M3	M4	RESERVED				LPM_PD	RESERVED	RESERVED RESERVED RESERVED	
BIT4	RESERVED	RESERVED	RESERVED	WDTRSTB _INT	WDTRSTB _M	RESERVED	EN_M3								RESERVED RESERVED				RESERVED	RESERVED		
BIT5	RESERVED	RESERVED	RESERVED	RESERVED	RESERVED	RESERVED	EN_M3_ LPM	RESERVED	RESERVED RESERVED	INC[3:0]	EB[2:0]	EB[2:0]	RESERVED	RESERVED	RESERVED							
BIT6	RESERVED	RESERVED	RESERVED	RESERVED	RESERVED	RESERVED	EN_M4	RESERVED	GP11_FUNC[3:0]	LPM_DEB[2:0]	GP11_DEB[2:0]	RESERVED	RESERVED	RESERVED								
BIT7	RESERVED	RESERVED	RESERVED	RESERVED	RESERVED	RESERVED	EN_M4_ LPM	DLY_STEP	RESERVED				RESERVED	TSHDN_EN	RESERVED							
RW	M/C	~	R/W	R/C	R/W	ď	R/W	R/W	R/W	R/W	R/W	R/W	RW	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	
RESET	Type-0	Type-O	Type-O	Type-S1	Type-O	Type-O	Type-O	Type-O	Type-O	Type-O	Type-O	Type-O	Type-O	Type-O	Type-O	O-ed\(L	Type-O	Type-O	Type-O	Type-O	Type-O	
REGISTER	REG RESET	INT_SRC	INT_SRC_M	TOPSYS_INT	TOPSYS_INT_M	TOPSYS_STAT	EN_CTRL	STUP_DLY1	STUP_DLY2	STUP_DLY3	SHDN_DLY1	SHDN_DLY2	SHDN_DLY3	SHDN_DLY4	WDTRSTB_DEB	GPI_FUNC	GPI_DEB1	GPI_DEB2	GPI_PD_CTRL	PROT_CFG	I2C_CFG	RESERVED
ADDR	00×00	0x01	0x02	0x03	0x04	0x05	90×0	0×07	0×08	60×0	0x0A	0x0B	0x0C	0x0D	0x0E	0x0F	0x10	0x11	0x12	0x13	0x15	0x16 - 0x1F

MAX77812

20A User-Configurable Quad-Phase Buck Converter

Register Map (continued)

⊢ш				Γ.	Ι.		T .																
RESET		0x0F	'	0x20	0x20	0x46	0x46	0x78	0x78	0x78	0x78	0x1E	0x1E	0x1E	0x1E	0xD1	0xD1	0xD1	0xD1	0x24	0x24	0x5F	
BIT0	M1_ POKn_INT	M1_ POKn_M	M1_POKn													FSREN FSREN	M2_ FSREN	M3_ FSREN	M4_ FSREN			B_NETR_ EN	
BIT1	M2_POKn _INT	M2_POKn_M	M2_POKn													M1_FPWM	M2_FPWM	M3_FPWM	M4_FPWM	SS_SR[2:0]	B_RU_SR[2:0]	B_PETR_ EN	
BIT2	M3_POKn _INT	M3_POKn _M	M3_POKn													RESERVED	RESERVED	RESERVED	RESERVED	B	В	RESERVED	
BIT3	M4_POKn _INT	M4_POKn _M	M4_POKn	T[7:0]	T[7:0]	T[7:0]	T[7:0]	_D[7:0]	_D[7:0]	_D[7:0]	_D[7:0]	[0: 2]s	[0: /]s ⁻	[0: 2]s	[0: 2]S_	RESE	RESE	BSBR	BSBA	RESERVED	RESERVED	RESERVED	
BIT4	RESERVED	RESERVED	RESERVED	M1_VOUT[7:0]	M2_VOUT[7:0]	M3_VOUT[7:0]	M4_VOUT[7:0]	M1_VOUT_D[7:0]	M2_VOUT_D[7:0]	M3_VOUT_D[7:0]	M4_VOUT_D[7:0]	M1_VOUT_S[7:0]	M2_VOUT_S[7:0]	M3_VOUT_S[7:0]	M4_VOUT_S[7:0]							RESERVED	
BIT5	RESERVED	RESERVED	RESERVED													M1_ILIM[2:0]	M2_ILIM[2:0]	M3_ILIM[2:0]	M4_ILIM[2:0]	B_SD_SR[2:0]	B_RD_SR[2:0]	RESERVED	
BIT6	RESERVED	RESERVED	RESERVED																		ш	RESERVED	
BIT7	RESERVED	RESERVED	RESERVED													M1_AD	M2_AD	M3_AD	M4_AD	RESERVED	RESERVED	RESERVED	
R/W	R/C	RW	~	RW	R/W	RW	RW	RW	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R	R/W	RW	R/W	R/W	R/W	R/W	
RESET	Type-S1	Type-O	Type-O	Type-O	Type-O	Type-O	Type-O	Type-O	Type-O	Type-O	Type-O	Type-O	Type-O	Type-O	Type-O	Type-O	Type-O	Type-O	Type-O	Type-O	Type-O	Type-O	
REGISTER	BUCK_INT	BUCK_INT_M	BUCK_STAT	M1_VOUT	M2_VOUT	M3_VOUT	M4_VOUT	M1_VOUT_D	M2_VOUT_D	M3_VOUT_D	M4_VOUT_D	M1_VOUT_S	M2_VOUT_S	M3_VOUT_S	M4_VOUT_S	M1_CGF	M2_CGF	M3_CGF	M4_CGF	GLB_CFG1	GLB_CFG2	GLB_CFG3	RESERVED
ADDR	0x20	0x21	0x22	0x23	0x24	0x25	0x26	0x27	0x28	0x29	0x2A	0x2B	0x2C	0x2D	0x2E	0x2F	0x30	0x31	0x32	0x33	0x34	0x35	0x36 - 0xFF

'R/W: Read and write

R: Read only R/C: Read and clear W/C: Write and clear

REG_RESET Register Reset Control Register

ADDRESS	MODE		TYPE: O	RESET VALUE: 0x00		
0x00	W/C		TIPE. O	RESET VALUE. 0X00		
BIT	NAME POR		DESCRIPTION			
7:1	RESERVED 0000 000					
0	SW_RST	0	Type-O Register Re 1: Reset all Type-O This bit clears to '	registers to their POR default values.		

INT_SRC Interrupt Source Register

ADDRESS	MODE		TYPE: O	RESET VALUE: 0x00			
0x01	R		TIPE. O	RESET VALUE: UXUU			
BIT	NAME	POR		DESCRIPTION			
7:2	RESERVED 0000 00						
1	BUCK_INT	0	1: Interrupt event on BUCK is detected				
0	TOPSYS_INT	0	1: Interrupt event o	n TOPSYS is detected			

INT_SRC_M Interrupt Source Mask Register

ADDRESS	MODE		TYPE: O	RESET VALUE: 0x02	
0x02	R/W		TIPE. O	RESET VALUE. 0X02	
BIT	NAME POR		DESCRIPTION		
7:4	RESERVED	000 00			
1	BUCK_INT_M 1		0: Enable BUCK_IN 1: Mask BUCK_INT		
0	TOPSYS_INT_M	SYS_INT_M 0		_INT NT	

TOPSYS_INT TOPSYS Interrupt Register

ADDRESS	MODE		TYPE: S1	RESET VALUE: 0x00		
0x03	R/C		TIPE. SI	RESET VALUE. 0X00		
BIT	NAME	POR	DESCRIPTION			
7:5	RESERVED	000				
4	WDTRSTB_INT	0	1: WDTRSTB interr	upt has triggered.		
3	UVLO_INT	0	1: UVLO interrupt h	as triggered.		
2	TSHDN_INT	0	1: TSHDN interrupt	has triggered.		
1	TJCT_140C_INT	0	1: TJCT_140C interrupt has triggered.			
0	TJCT_120C_INT	0	1: TJCT_120C inter	rupt has triggered.		

TOPSYS_INT_M TOPSYS Interrupt Mask Register

ADDRESS	MODE		TYPE: O	RESET VALUE: 0x13	
0x04	R/W		TIPE. O	RESET VALUE. 0X13	
BIT	NAME	POR		DESCRIPTION	
7:5	RESERVED	000			
4	WDTRSTB_M	1	0: Enable WDTRSTB_INT. 1: Mask WDTRSTB_INT.		
3	UVLO_M	0	0: Enable UVLO_IN 1: Mask UVLO_IN		
2	TSHDN_M	0	0: Enable TSHDN_ 1: Mask TSHDN_IN		
1	TJCT_140C_M	1	0: Enable TJCT_140C_INT. 1: Mask TJCT_140C_INT.		
0	TJCT_120C_M	1	0: Enable TJCT_12 1: Mask TJCT_120		

TOPSYS_STAT TOPSYS Status Register

ADDRESS	MODE R		TYPE: O	RESET VALUE: N/A		
0x05			TIPE. O	RESET VALUE. N/A		
BIT	NAME	POR	DESCRIPTION			
7:4	RESERVED	_				
3	UVLO	_	0: V _{SYS} ≥ V _{UVLO} _F 1: V _{SYS} < V _{UVLO} _F			
2	TSHDN	_		ature (T _{JCT}) ≤ +165°C ature (T _{JCT}) > +165°C		
1	TJCT_140C	_	0: Junction Temperature (T _{JCT}) ≤ +140°C 1: Junction Temperature (T _J CT) > +140°C			
0	TJCT_120C	_	0: Junction Temperature (T _{JCT}) ≤ +120°C 1: Junction Temperature (T _{JCT}) > +120°C			

EN_CTRL Regulator Enable Control Register

ADDRESS	MODE		TVDE: O	DECET VALUE: 0::00			
0x06	R/W		TYPE: O	RESET VALUE: 0x00			
BIT	NAME	POR	DESCRIPTION				
7	EN_M4_LPM	0	0: Disable BUCK Master 4 low power mode.1: Enable BUCK Master 4 low power mode.				
6	EN_M4	0	0: Disable BUCK Master 4 output. 1: Enable BUCK Master 4 output ('OR' logic with GPIx input).				
5	EN_M3_LPM	0	Disable BUCK Master 3 low power mode. Enable BUCK Master 3 low power mode.				
4	EN_M3	0	0: Disable BUCK Master 3 output. 1: Enable BUCK Master 3 output ('OR' logic with GPIx input).				
3	EN_M2_LPM	0		laster 2 low power mode. aster 2 low power mode.			
2	EN_M2	0	0: Disable BUCK Master 2 output. 1: Enable BUCK Master 2 output ('OR' logic with GPIx input).				
1	EN_M1_LPM	0	0: Disable BUCK Master 1 low power mode. 1: Enable BUCK Master 1 low power mode.				
0	EN_M1	0	0: Disable BUCK Master 1 output. 1: Enable BUCK Master 1 output ('OR' logic with GPIx input).				

STUP_DLY1 Global Startup Delay Setting Register 1

ADDRESS	MODE		TYPE: O (OTP)	RESET VALUE: 0x00				
0x07	R/W		TIPL. O (OIP)	RESET VALUE. 0X00				
BIT	NAME	POR		DESCRIPTION				
7	DLY_STEP	0	Delay Time Step Selection 0: 1ms 1: 2ms					
6:5	RESERVED	00						
4:0	M2_STUP_DLY[4:0]	0 0000	BUCK Master 2 Startup Delay Time Setting (Delay from Rising Edge of EN Pin or GLB_EN) 0 0000b = 0ms 0 0001b = 1 x DLY_STEP 0 0010b = 2 x DLY_STEP 1 1110b = 30 x DLY_STEP 1 1111b = 31 x DLY_STEP					

STUP_DLY2 Global Startup Delay Setting Register 2

ADDRESS	MODE		TVDE: O (OTD)	RESET VALUE: 0x00			
0x08	R/W		TYPE: O (OTP)	RESET VALUE. 0X00			
BIT	NAME	POR	DESCRIPTION				
7:5	RESERVED	000					
4:0	M3_STUP_DLY[4:0]	0 0000	BUCK Master 3 Sta of EN Pin or GLB_E 0 0000b = 0ms 0 0001b = 1 x DLY_0 0 0010b = 2 x DLY	_STEP _STEP			

STUP_DLY3 Global Startup Delay Setting Register 3

ADDRESS	MODE R/W		TVDE: O (OTD)	RESET VALUE: 0x00			
0x09			TYPE: O (OTP)	RESET VALUE. 0X00			
BIT	NAME	POR		DESCRIPTION			
7:5	RESERVED	000					
4:0	M4_STUP_DLY[4:0]	0 0000	BUCK Master 4 Sta of EN Pin or GLB_E 0 0000b = 0ms 0 0001b = 1 x DLY_ 0 0010b = 2 x DLY_ 	_STEP _STEP			

SHDN_DLY1 Global Shutdown Delay Setting Register 1

_			<u> </u>	
ADDRESS 0x0A	MODE R/W		TYPE: O	RESET VALUE: 0x00
BIT	NAME	POR		DESCRIPTION
7:5	RESERVED	000		
4:0	M1_SHDN_DLY[4:0]	0 0000	BUCK Master 1 Sh Edge of EN Pin or 0 0000b = 0ms 0 0001b = 1 x DLY 0 0010b = 2 x DLY 	_STEP _STEP

SHDN_DLY2 Global Shutdown Delay Setting Register 2

ADDRESS	MODE		TYPE: O	DESET VALUE, 0x00
0x0B	R/W		TIPE: U	RESET VALUE: 0x00
BIT	NAME	POR		DESCRIPTION
7:5	RESERVED	000		
4:0	M2_SHDN_DLY[4:0]	0 0000	BUCK Master 2 Sh Edge of EN Pin or 0 0 0000b = 0ms 0 0001b = 1 x DLY_0 0 0010b = 2 x DLY 	_STEP _STEP

SHDN_DLY3 Global Shutdown Delay Setting Register 3

_		,	3 3	
ADDRESS 0x0C	MODE R/W		TYPE: O	RESET VALUE: 0x00
BIT	NAME	POR		DESCRIPTION
7:5	RESERVED	000		
4:0	M3_SHDN_DLY[4:0]	0 0000	BUCK Master 3 Sh Edge of EN Pin or 0 0 0000b = 0ms 0 0001b = 1 x DLY_0 0 0010b = 2 x DLY_0 	_STEP _STEP

SHDN_DLY4 Global Shutdown Delay Setting Register 4

ADDRESS	MODE		TYPE: O	DESET VALUE, 0::00
0x0D	R/W		TYPE: U	RESET VALUE: 0x00
BIT	NAME	POR		DESCRIPTION
7:5	RESERVED	000		
4:0	M4_SHDN_DLY[4:0]	0 0000	BUCK Master 4 Sh Edge of EN Pin or 0 0 0000b = 0ms 0 0001b = 1 x DLY_0 0 0010b = 2 x DLY_0 	_STEP _STEP

WDTRSTB_DEB WDTRSTB_IN Input Debounce Time Setting Register

ADDRESS	MODE		TYPE: O	RESET VALUE: 0x02
0x0E	R/W		TIPE: U	RESET VALUE: 0X02
BIT	NAME	POR		DESCRIPTION
7:3	RESERVED	0000 0		
2:0	WDT_DEB[2:0]	010	WDTRSTB_IN Deb 000b = 0ms 001b = 0.8ms 010b = 1.6ms 011b = 3.2ms 100b = 6.4ms 101b = 12.8ms 111b = 51.2ms	oounce Time Setting

GPI_FUNC GPI Function Selection Register

ADDRESS	MODE		TYPE: O	DESET VALUE: 0x42
0x0F	R/W		TTPE: 0	RESET VALUE: 0x43
BIT	NAME	POR		DESCRIPTION
7:4	GPI1_FUNC[3:0]	0100	GPI1 Function Select 0000b: GLB_EN 0001b: M1_EN 0010b: M2_EN 0011b: M3_EN 0100b: M4_EN 0101b: GLB_VSEL 0110b: M1_VSEL 0111b: M2_VSEL	1000b: M3_VSEL 1001b: M4_VSEL 1010b: GLB_LPM 1011b: M1_LPM 1100b: M2_LPM
3:0	GPI0_FUNC[3:0]	0011	GPI0 Function Select 0000b: GLB_EN 0001b: M1_EN 0010b: M2_EN 0011b: M3_EN 0100b: M4_EN 0101b: GLB_VSEL 0110b: M1_VSEL 0111b: M2_VSEL	1000b: M3_VSEL 1001b: M4_VSEL 1010b: GLB_LPM 1011b: M1_LPM 1100b: M2_LPM

GPI_DEB1 GPI Debounce Time Setting Register 1

ADDRESS	MODE		TYPE: O	RESET VALUE: 0x11
0x10	R/W		TIPE: 0	RESET VALUE: 0X11
BIT	NAME	POR		DESCRIPTION
7:4	LPM_DEB[3:0]	0001	LPM Debounce Tir $0000b = 0\mu s$ $0001b = 64\mu s$ $0010b = 128\mu s$ $0011b = 192\mu s$ $0100b = 256\mu s$ $0101b = 320\mu s$ $0110b = 384\mu s$ $0111b = 448\mu s$	1000b = 512μs
3:0	EN_DEB[3:0]	0001	EN Debounce Tim 0000b = 0µs 0001b = 64µs 0010b = 128µs 0011b = 192µs 0100b = 256µs 0101b = 320µs 0110b = 384µs 0111b = 448µs	1000b = 512μs

GPI_DEB2 GPI Debounce Time Setting Register 2

ADDRESS	MODE		TYPE: O	RESET VALUE: 0x11
0x11	R/W		TIPE. 0	RESET VALUE. UXTI
BIT	NAME	POR		DESCRIPTION
7:4	GPI1_DEB[3:0]	0001	GPI1 Debounce Ti 0000b = 0µs 0001b = 64µs 0010b = 128µs 0011b = 192µs 0100b = 256µs 0101b = 320µs 0110b = 384µs 0111b = 448µs	1000b = 512µs
3:0	GPI0_DEB[3:0]	0001	GPI0 Debounce Ti 0000b = 0µs 0001b = 64µs 0010b = 128µs 0011b = 192µs 0100b = 256µs 0101b = 320µs 0110b = 384µs 0111b = 448µs	1000b = 512µs 1001b = 576µs

GPI_PD_CTRL GPI Pulldown Resistor Control Register

ADDRESS	MODE		TYPE: O	RESET VALUE: 0x0F
0x12	R/W		TIPE. O	RESET VALUE. UXUF
BIT	NAME	POR		DESCRIPTION
7:4	RESERVED	0000		
3	LPM_PD	1	LPM Input Pulldown Resistor Enable Setting 0: Disable 1: Enable	
2	EN_PD	1	EN Input Pulldown Resistor Enable Setting 0: Disable 1: Enable	
1	GPI1_PD	1	GPI1 Input Pulldown Resistor Enable Setting 0: Disable 1: Enable	
0	GPI0_PD	1	GPI0 Input Pulldown Resistor Enable Setting 0: Disable 1: Enable	

PROT_CFG Protection Configuration Register

ADDRESS	MODE		TYPE: O	RESET VALUE: 0x82
0x13	R/W		TIPE: 0	RESET VALUE. 0X02
BIT	NAME	POR		DESCRIPTION
7	TSHDN_EN	1	Thermal Protection Enable Control 0: Disable (TSHDN_INT is not disabled) 1: Enable	
6:3	RESERVED	000 0		
2:0	UVLO_F[2:0]	010	V _{SYS} UVLO Falling Threshold 000b = 1.95V 001b = 2.05V 010b = 2.15V 011b = 2.25V 100b = 2.35V 101b = 2.45V 110b = 2.55V 111b = Disabled	

0x14: RESERVED

I2C_CFG I²C Configuration Register

ADDRESS	MODE		TYPE: O	RESET VALUE: 0x00
0x15	R/W		TIPE. O	RESET VALUE. 0X00
BIT	NAME	POR		DESCRIPTION
7:4	RESERVED	NA		
3:2	RESERVED	00	Write '00'	
1	PAIR	0	Register Data Pair Mode 0: Disable (Sequential Mode) 1: Enable	
0	HS_EXT	0	HS Mode Extension 0: Disable HS mode extension (I ² C Rev. 4 Compliant). 1: Enable HS mode extension. (HS mode is extended during/after 'STOP' condition.)	

0x16 - 0x1F: RESERVED

BUCK_INT Regulators Interrupt Register

ADDRESS	MODE		TYPE: S1	RESET VALUE: 0x00
0x20	R/C		TIPE. 31	RESET VALUE. 0X00
BIT	NAME POR			DESCRIPTION
7:4	RESERVED	0000		
3	M4_POK_INT	0	1: BUCK Master 4 POK interrupt has triggered.	
2	M3_ POK _INT	0	1: BUCK Master 3 POK interrupt has triggered.	
1	M2_ POK _INT	0	1: BUCK Master 2 POK interrupt has triggered.	
0	M1_POK_INT	0	1: BUCK Master 1	POK interrupt has triggered.

BUCK_INT_M BUCK Interrupt Mask Register

ADDRESS	MODE		TYPE: O	RESET VALUE: 0x0F
0x21	R/W		TIPE. O	RESET VALUE. UXUF
BIT	NAME	POR		DESCRIPTION
7:4	RESERVED	0000		
3	M4_ POK _M	1	0: Enable M4_POK_INT. 1: Mask M4_POK_INT.	
2	M3_ POK _M	1	0: Enable M3_POK_INT. 1: Mask M3_POK_INT.	
1	M2_ POK _M	1	0: Enable M2_POK_INT. 1: Mask M2_POK_INT.	
0	M1_POK_M	1	0: Enable M1_POK 1: Mask M1_POK_	

BUCK_STAT BUCK Status Register

ADDRESS	MODE		TYPE: O	RESET VALUE: N/A
0x22	R		TIPE. O	RESET VALUE. N/A
BIT	NAME POR			DESCRIPTION
7:4	RESERVED	0000		
3	M4_POK	0	BUCK Master 4 POK Status	
2	M3_POK	0	BUCK Master 3 POK Status	
1	M2_POK	0	BUCK Master 2 POK Status	
0	M1_POK	0	BUCK Master 1 PC	K Status

M1_VOUT BUCK Master1 Output Voltage Setting Register

ADDRESS	MODE		TYPE: O	RESET VALUE: 0x50
0x23	R/W		(OTP)	RESET VALUE. 0X30
BIT	NAME	POR	DESCRIPTION	
7:0	M1_VOUT[7:0]	01010000	BUCK Master 1 Output Voltage	

M2_VOUT BUCK Master 2 Output Voltage Setting Register

ADDRESS	MODE		TYPE: O	RESET VALUE: 0x50
0x24	R/W		(OTP)	RESET VALUE. 0030
BIT	NAME	POR	DESCRIPTION	
7:0	M2_VOUT[7:0]	01010000	BUCK Master 2 Output Voltage	

M3_VOUT BUCK Master 3 Output Voltage Setting Register

ADDRESS	MODE		TYPE: O	RESET VALUE: 0x46
0x25	R/W		(OTP)	RESET VALUE. 0X40
BIT	NAME	POR		DESCRIPTION
7:0	M3_VOUT[7:0]	01000110	BUCK Master 3 Output Voltage	

M4_VOUT BUCK Master 4 Output Voltage Setting Register

ADDRESS	MODE		TYPE: O	RESET VALUE: 0x46
0x26	R/W		(OTP)	RESET VALUE. 0X46
BIT	NAME	POR		DESCRIPTION
7:0	M4_VOUT[7:0]	01000110	BUCK Master 4 Output Voltage	

M1_VOUT_D BUCK Master 1 Default Output Voltage Setting Register

ADDRESS 0x27	MODE R/W		TYPE: O	RESET VALUE: 0x78
BIT	NAME	POR	DESCRIPTION	
7:0	M1_VOUT_D[7:0]	0111 1000	Buck Master 1 Default Output Voltage. Sets the output voltage when DVS = 1 through a GPI.	

M2_VOUT_D BUCK Master 2 Default Output Voltage Setting Register

ADDRESS	MODE		TYPE: O	RESET VALUE: 0x78
0x28	R/W		111 2.0	NEGET VALUE. 0X10
BIT	NAME	POR	DESCRIPTION	
7:0	M2_VOUT_D[7:0]	0111 1000	Buck Master 2 Default Output Voltage. Sets the output voltage when DVS = 1 through a GPI.	

M3_VOUT_D BUCK Master 3 Default Output Voltage Setting Register

ADDRESS	MODE		TYPE: O	RESET VALUE: 0x78
0x29	R/W			
BIT	NAME	POR	DESCRIPTION	
7:0	M3_VOUT_D[7:0]	0111 1000	Buck Master 3 Default Output Voltage. Sets the output voltage wher DVS = 1 through a GPI.	

M4_VOUT_D BUCK Master 4 Default Output Voltage Setting Register

ADDRESS	MODE		TYPE: O	RESET VALUE: 0x78
0x2A	R/W		TIPE. O	RESET VALUE. 03/6
BIT	NAME	POR	DESCRIPTION	
7:0	M4_VOUT_D[7:0]	0111 1000	Buck Master 4 Default Output Voltage. Sets the output voltage whe DVS = 1 through a GPI.	

M1_VOUT_S BUCK Master1 Sleep Mode Output Voltage Setting Register

ADDRESS 0x2B	MODE R/W		TYPE: O	RESET VALUE: 0x1E
BIT	NAME	POR	DESCRIPTION	
7:0	M1_VOUT_S[7:0]	0001 1110	Buck Master 1 Sleep Mode Output Voltage. Sets the output voltag when DVS = 0 through a GPI.	

M2_VOUT_S BUCK Master 2 Sleep Mode Output Voltage Setting Register

ADDRESS	MODE		TYPE: O	RESET VALUE: 0x1E
0x2C	R/W		111 2.0	NEOLI VALUE. UXIL
BIT	NAME	POR	DESCRIPTION	
7:0	M2_VOUT_S[7:0]	0001 1110	Buck Master 2 Sleep Mode Output Voltage. Sets the output voltage when DVS = 0 through a GPI.	

M3_VOUT_S BUCK Master 3 Sleep Mode Output Voltage Setting Register

ADDRESS 0x2D	MODE R/W		TYPE: O	RESET VALUE: 0x1E		
BIT	NAME	POR	DESCRIPTION			
7:0	M3_VOUT_S[7:0]	0001 1110	Buck Master 3 Sleep Mode Output Voltage. Sets the output voltage when DVS = 0 through a GPI.			

M4_VOUT_S BUCK Master 4 Sleep Mode Output Voltage Setting Register

ADDRESS	MODE		TYPE: O	RESET VALUE: 0x1E		
0x2E	R/W	R/W		NESET VALUE. UXTE		
BIT	NAME	POR	DESCRIPTION			
7:0	M4_VOUT_S[7:0]	0001 1110	Buck Master 4 Sleep Mode Output Voltage. Sets the output voltage when DVS = 0 through a GPI.			

Buck Output Voltage Table

0x00 =	0x20 =	0x40 =	0x60 =	0x80 =	0xA0 =	0xC0 =	0xE0 =
0.25000V	0.41000V	0.57000V	0.73000V	0.89000V	1.05000V	1.21000V	1.37000V
0x01 =	0x21 =	0x41 =	0x61 =	0x81 =	0xA1 =	0xC1 =	0xE1 =
0.25500V	0.41500V	0.57500V	0.73500V	0.89500V	1.05500V	1.21500V	1.37500V
0x02 =	0x22 =	0x42 =	0x62 =	0x82 =	0xA2 =	0xC2 =	0xE2 =
0.26000V	0.42000V	0.58000V	0.74000V	0.90000V	1.06000V	1.22000V	1.38000V
0x03 =	0x23 =	0x43 =	0x63 =	0x83 =	0xA3 =	0xC3 =	0xE3 =
0.26500V	0.42500V	0.58500V	0.74500V	0.90500V	1.06500V	1.22500V	1.38500V
0x04 =	0x24 =	0x44 =	0x64 =	0x84 =	0xA4 =	0xC4 =	0xE4 =
0.27000V	0.43000V	0.59000V	0.75000V	0.91000V	1.07000V	1.23000V	1.39000V
0x05 =	0x25 =	0x45 =	0x65 =	0x85 =	0xA5 =	0xC5 =	0xE5 =
0.27500V	0.43500V	0.59500V	0.75500V	0.91500V	1.07500V	1.23500V	1.39500V
0x06 =	0x26 =	0x46 =	0x66 =	0x86 =	0xA6 =	0xC6 =	0xE6 =
0.28000V	0.44000V	0.60000V	0.76000V	0.92000V	1.08000V	1.24000V	1.40000V
0x07 =	0x27 =	0x47 =	0x67 =	0x87 =	0xA7 =	0xC7 =	0xE7 =
0.28500V	0.44500V	0.60500V	0.76500V	0.92500V	1.08500V	1.24500V	1.40500V
0x08 =	0x28 =	0x48 =	0x68 =	0x88 =	0xA8 =	0xC8 =	0xE8 =
0.29000V	0.45000V	0.61000V	0.77000V	0.93000V	1.09000V	1.25000V	1.41000V
0x09 =	0x29 =	0x49 =	0x69 =	0x89 =	0xA9 =	0xC9 =	0xE9 =
0.29500V	0.45500V	0.61500V	0.77500V	0.93500V	1.09500V	1.25500V	1.41500V
0x0A =	0x2A =	0x4A =	0x6A =	0x8A =	0xAA =	0xCA =	0xEA =
0.30000V	0.46000V	0.62000V	0.78000V	0.94000V	1.10000V	1.26000V	1.42000V
0x0B =	0x2B =	0x4B =	0x6B =	0x8B =	0xAB =	0xCB =	0xEB =
0.30500V	0.46500V	0.62500V	0.78500V	0.94500V	1.10500V	1.26500V	1.42500V
0x0C =	0x2C =	0x4C =	0x6C =	0x8C =	0xAC =	0xCC =	0xEC =
0.31000V	0.47000V	0.63000V	0.79000V	0.95000V	1.11000V	1.27000V	1.43000V
0x0D =	0x2D =	0x4D =	0x6D =	0x8D =	0xAD =	0xCD =	0xED =
0.31500V	0.47500V	0.63500V	0.79500V	0.95500V	1.11500V	1.27500V	1.43500V

20A User-Configurable Quad-Phase Buck Converter

Buck Output Voltage Table (continued)

		•	•				
0x0E =	0x2E =	0x4E =	0x6E =	0x8E =	0xAE =	0xCE =	0xEE =
0.32000V	0.48000V	0.64000V	0.80000V	0.96000V	1.12000V	1.28000V	1.44000V
0x0F =	0x2F =	0x4F =	0x6F =	0x8F =	0xAF =	0xCF =	0xEF =
0.32500V	0.48500V	0.64500V	0.80500V	0.96500V	1.12500V	1.28500V	1.44500V
0x10 =	0x30 =	0x50 =	0x70 =	0x90 =	0xB0 =	0xD0 =	0xF0 =
0.33000V	0.49000V	0.65000V	0.81000V	0.97000V	1.13000V	1.29000V	1.45000V
0x11 = 0.33500V	0x31 =	0x51 =	0x71 =	0x91 =	0xB1 =	0xD1 =	0xF1 =
	0.49500V	0.65500V	0.81500V	0.97500V	1.13500V	1.29500V	1.45500V
0x12 =	0x32 =	0x52 =	0x72 =	0x92 =	0xB2 =	0xD2 =	0xF2 =
0.34000V	0.50000V	0.66000V	0.82000V	0.98000V	1.14000V	1.30000V	1.46000V
0x13 =	0x33 =	0x53 =	0x73 =	0x93 =	0xB3 =	0xD3 =	0xF3 =
0.34500V	0.50500V	0.66500V	0.82500V	0.98500V	1.14500V	1.30500V	1.46500V
0x14 =	0x34 =	0x54 =	0x74 =	0x94 =	0xB4 =	0xD4 =	0xF4 =
0.35000V	0.51000V	0.67000V	0.83000V	0.99000V	1.15000V	1.31000V	1.47000V
0x15 =	0x35 =	0x55 =	0x75 =	0x95 =	0xB5 =	0xD5 =	0xF5 =
0.35500V	0.51500V	0.67500V	0.83500V	0.99500V	1.15500V	1.31500V	1.47500V
0x16 =	0x36 =	0x56 =	0x76 =	0x96 =	0xB6 =	0xD6 =	0xF6 =
0.36000V	0.52000V	0.68000V	0.84000V	1.00000V	1.16000V	1.32000V	1.48000V
0x17 =	0x37 =	0x57 =	0x77 =	0x97 =	0xB7 =	0xD7 =	0xF7 =
0.36500V	0.52500V	0.68500V	0.84500V	1.00500V	1.16500V	1.32500V	1.48500V
0x18 =	0x38 =	0x58 =	0x78 =	0x98 =	0xB8 =	0xD8 =	0xF8 =
0.37000V	0.53000V	0.69000V	0.85000V	1.01000V	1.17000V	1.33000V	1.49000V
0x19 =	0x39 =	0x59 =	0x79 =	0x99 =	0xB9 =	0xD9 =	0xF9 =
0.37500V	0.53500V	0.69500V	0.85500V	1.01500V	1.17500V	1.33500V	1.49500V
0x1A =	0x3A =	0x5A =	0x7A =	0x9A =	0xBA =	0xDA =	0xFA =
0.38000V	0.54000V	0.70000V	0.86000V	1.02000V	1.18000V	1.34000V	1.50000V
0x1B =	0x3B =	0x5B =	0x7B =	0x9B =	0xBB =	0xDB =	0xFB =
0.38500V	0.54500V	0.70500V	0.86500V	1.02500V	1.18500V	1.34500V	1.50500V
0x1C =	0x3C =	0x5C =	0x7C =	0x9C =	0xBC =	0xDC =	0xFC =
0.39000V	0.55000V	0.71000V	0.87000V	1.03000V	1.19000V	1.35000V	1.51000V
0x1D =	0x3D =	0x5D =	0x7D =	0x9D =	0xBD =	0xDD =	0xFD =
0.39500V	0.55500V	0.71500V	0.87500V	1.03500V	1.19500V	1.35500V	1.51500V
0x1E =	0x3E =	0x5E =	0x7E =	0x9E =	0xBE =	0xDE =	0xFE =
0.40000V	0.56000V	0.72000V	0.88000V	1.04000V	1.20000V	1.36000V	1.52000V
0x1F =	0x3F =	0x5F =	0x7F =	0x9F =	0xBF =	0xDF =	0xFF =
0.40500V	0.56500V	0.72500V	0.88500V	1.04500V	1.20500V	1.36500V	1.52500V

M1_CFG BUCK Master 1 Configuration Register

ADDRESS	MODE		7/77 4		
0x2F	R/W		TYPE: O	RESET VALUE: 0xD1	
BIT	NAME	POR		DESCRIPTION	
7	M1_AD	1	BUCK Master 1 Ou 0: Disable 1: Enable	utput Active Discharge	
6:4	M1_ILIM[2:0]	101	BUCK Master 1 PMOS Peak/NMOS Valley Current Limit Setting 000b: 3.0A/2.0A 001b: 3.6A/2.4A 010b: 4.2A/2.8A 011b: 4.8A/3.2A 100b: 5.4A/3.6A 101b: 6.0A/4.0A 110b: 6.6A/4.4A 111b: 7.2A/4.8A		
2:3	RESERVED	00	Write '00'		
1	M1_FPWM	0	BUCK Master 1 Forced PWM 0: Turn off Forced PWM (Automatic skip mode operation under light load) 1: Turn on Forced PWM mode		
0	M1_FSREN	1	O: Disable BUCK Master 1 op down (only if M1_F the low-side FET is rate is a function of light load condition rate is limited to the that the internal fee output. 1: Enable BUCK Master 1 op voltage ramp-down current from the ou decreases at the ra ensure a smooth of	1: Turn on Forced PWM mode BUCK Master 1 Falling Slew Rate Control 0: Disable BUCK Master 1 operates in skip mode during the output voltage ramp down (only if M1_FPWM = 0). In skip mode, negative current through the low-side FET is not allowed so that the output voltage falling slew rate is a function of the output capacitance and the external load unde light load condition. If the load is heavy, the output voltage falling slew rate is limited to the ramp-down slew rate set by B_RD_SR[1:0]. Note that the internal feedback string always imposes a 2μA load on the output. 1: Enable BUCK Master 1 operates in Forced PWM mode during the output voltage ramp-down. In Forced PWM mode, BUCK Master 1 can sink current from the output capacitor to ensure that the output voltage decreases at the ramp-down slew rate set by B_RD_SR[1:0]. To ensure a smooth output voltage ramp-down, Forced PMW mode remains engaged for 50μs after the output voltage decreases to its	

M2_CFG BUCK Master 2 Configuration Register

ADDRESS	MODE	_	TVDE O DECET VALUE O DA			
0x30	R/W		TYPE: O RESET VALUE: 0xD1			
BIT	NAME	POR		DESCRIPTION		
7	M2_AD	1	BUCK Master 2 Ou 0: Disable 1: Enable	tput Active Discharge		
6:4	M2_ILIM[2:0]	101	BUCK Master 2 PMOS Peak/NMOS Valley Current Limit Setting 000b: 3.0A/2.0A 001b: 3.6A/2.4A 010b: 4.2A/2.8A 011b: 4.8A/3.2A 100b: 5.4A/3.6A 101b: 6.0A/4.0A 110b: 6.6A/4.4A 111b: 7.2A/4.8A			
2:3	RESERVED	00	Write '00'			
1	M2_FPWM	0	BUCK Master 2 Forced PWM 0: Turn off Forced PWM (Automatic skip mode operation under light load) 1: Turn on Forced PWM mode			
0	M2_FSREN	1	1: Turn on Forced PWM mode BUCK Master 2 Falling Slew Rate Control 0: Disable BUCK Master 2 operates in skip mode during the output voltage ramp-down (only if M2_FPWM = 0). In skip mode, negative current through the low-side FET is not allowed so that the output voltage falling slew rate is a function of the output capacitance and the external load under light load condition. If the load is heavy, the output voltage falling slew rate is limited to the ramp-down slew rate set by B_RD_SR[1:0]. Note that the internal feedback string always imposes a 2µA load on the output. 1: Enable BUCK Master 2 operates in Forced PWM mode during the output voltage ramp-down. In Forced PWM mode, BUCK Master 2 can sink current from the output capacitor to ensure that the output voltage decreases at the ramp-down slew rate set by B_RD_SR[1:0]. To ensure a smooth output voltage ramp-down, Forced PMW mode remains engaged for 50µs after the output voltage decreases to its target voltage.			

M3_CFG BUCK Master 3 Configuration Register

ADDRESS	MODE		TVDE Q DESETVALUE Q D4				
0x31	R/W		TYPE: O	RESET VALUE: 0xD1			
BIT	NAME	POR		DESCRIPTION			
7	M3_AD	1	BUCK Master 3 Ou 0: Disable 1: Enable	utput Active Discharge			
6:4	M3_ILIM[2:0]	101	BUCK Master 3 PMOS Peak/NMOS Valley Current Limit Setting 000b: 3.0A/2.0A 001b: 3.6A/2.4A 010b: 4.2A/2.8A 011b: 4.8A/3.2A 100b: 5.4A/3.6A 101b: 6.0A/4.0A 110b: 6.6A/4.4A 111b: 7.2A/4.8A				
2:3	RESERVED	00	Write '00'				
1	M3_FPWM	0	0: Turn off Forced F (Automatic skip mo	BUCK Master 3 Forced PWM 0: Turn off Forced PWM (Automatic skip mode operation under light load) 1: Turn on Forced PWM mode			
0	M3_FSREN	1	0: Disable BUCK Master 3 opramp-down (only if through the low-sid falling slew rate is a external load under voltage falling slew set by B_RD_SR[1 imposes a 2µA load 1: Enable BUCK Master 3 opvoltage ramp-down current from the oudecreases at the raensure a smooth of	erates in skip mode during the output voltage M3_FPWM = 0). In skip mode, negative current to FET is not allowed so that the output voltage a function of the output capacitance and the relight load condition. If the load is heavy, the output rate will be limited to the ramp-down slew rate 1:0]. Note that the internal feedback string always don the output. Therefore a function of the output rate will be limited to the ramp-down slew rate 1:0]. Note that the internal feedback string always don the output. Therefore a function of the output string always don't be output. Therefore a function of the output woltage are string always don't be output. Therefore a function of the output always don't be output.			

M4_CFG BUCK Master 4 Configuration Register

ADDRESS	MODE		TVD= 0		
0x32	R/W		TYPE: O	RESET VALUE: 0xD1	
BIT	NAME	POR		DESCRIPTION	
7	M4_AD	1	BUCK Master 4 Ou 0: Disable 1: Enable	utput Active Discharge	
6:4	M4_ILIM[2:0]	101	BUCK Master 4 PMOS Peak/NMOS Valley Current Limit Setting 000b: 3.0A/2.0A 001b: 3.6A/2.4A 010b: 4.2A/2.8A 011b: 4.8A/3.2A 100b: 5.4A/3.6A 101b: 6.0A/4.0A 110b: 6.6A/4.4A 111b: 7.2A/4.8A		
2:3	RESERVED	00	Write '00'		
1	M4_FPWM	0	BUCK Master4 Forced PWM 0: Turn off Forced PWM (Automatic skip mode operation under light load) 1: Turn on Forced PWM mode		
0	M4_FSREN	1	0: Disable BUCK Master 4 op down (only if M4_F the low-side FET is rate is a function of light load condition rate is limited to the that the internal fee output. 1: Enable BUCK Master 4 op voltage ramp-down current from the ou decreases at the ra ensure a smooth o	erates in skip mode during the output voltage ramp-PWM = 0). In skip mode, negative current through a not allowed so that the output voltage falling slew of the output capacitance and the external load under and the load is heavy, the output voltage falling slew be ramp-down slew rate set by B_RD_SR[1:0]. Note edback string always imposes a 2µA load on the detail in Forced PWM mode during the output and in In Forced PWM mode, BUCK Master 4 can sink attput capacitor to ensure that the output voltage amp-down slew rate set by B_RD_SR[1:0]. To utput voltage ramp-down, Forced PMW mode for 50µs after the output voltage decreases to its	

GLB_CFG1 BUCK Global Configuration Register 1

ADDRESS	MODE		TYPE: O	RESET VALUE: 0x24	
0x33	R/W		TIPE. O	RESET VALUE: 0X24	
BIT	NAME	POR		DESCRIPTION	
7	RESERVED	0			
6:4	B_SD_SR[2:0]	010	Shutdown Slew Rate 000b: 1.25mV/µs 001b: 2.5mV/µs 010b: 5mV/µs 011b: 10mV/µs 100b: 20mV/µs 101b: 40mV/µs 111b: 60mV/µs		
3	RESERVED	0			
0:2	B_SS_SR[2:0]	100	Soft Start Slew Rat 000b: 1.25mV/µs 001b: 2.5mV/µs 010b: 5mV/µs 011b: 10mV/µs 100b: 20mV/µs 101b: 40mV/µs 110b: 60mV/µs	e	

GLB_CFG2 BUCK Global Configuration Register 2

ADDRESS	MODE		TYPE: O	RESET VALUE: 0x24	
0x34	R/W		TIPE. O RESET VALUE: 0X24		
BIT	NAME	POR		DESCRIPTION	
7	RESERVED	0			
6:4	B_RD_SR[2:0]	010	Ramp-Down Slew 000b: 1.25mV/µs 001b: 2.5mV/µs 010b: 5mV/µs 011b: 10mV/µs 100b: 20mV/µs 101b: 40mV/µs 110b: 60mV/µs 111b: 60mV/µs	Rate	
3	RESERVED	0			
0:2	B_RU_SR[2:0]	100	Ramp-Up Slew Rat 000b: 1.25mV/µs 001b: 2.5mV/µs 010b: 5mV/µs 011b: 10mV/µs 100b: 20mV/µs 101b: 40mV/µs 110b: 60mV/µs	te	

GLB_CFG3 BUCK Global Configuration Register 3

ADDRESS	MODE		TYPE: O	RESET VALUE: 0x5F		
0x35	R/W		TIPE. O	RESET VALUE. 0X9F		
BIT	NAME	POR		DESCRIPTION		
7	RESERVED	0				
6	RESERVED	1				
5	RESERVED	0				
4	RESERVED	1				
3	RESERVED	1				
2	RESERVED	1				
1	B_PETR_EN	1	Positive Enhanced Transi 0: Disable 1: Enable	ient Response Control		
0	B_NETR_EN	1	Negative Enhanced Trans 0: Disable 1: Enable	sient Response Control		

0x36 - 0xFF: RESERVED

PCB Layout Guidelines

Careful circuit board layout is critical to low-power switching losses and clean stable operation.

For more details on PCB layout recommendations for the MAX77812, refer to Application Note 6819: MAX77812 PCB Layout Guide.

Simplified Block Diagram

Ordering Information

	DEFAULT OUTPUT VOLTAGE (V)				STARTU	I ² C SLAVE		
PART	M1_VOUT	M2_VOUT	M3_VOUT	M4_VOUT	M2_STUP _DLY	M3_STUP _DLY	M4_STUP _DLY	ADDRESS
MAX77812EWB+T	0.650	0.650	0.600	0.600	0	0	0	0x60-0x69
MAX77812AEWB+T	0.700	0.700	0.800	1.100	0	0	2	0x60-0x69
MAX77812BEWB+T	1.120	1.120	0.920	0.950	0	0	0	0x60-0x69
MAX77812CEWB+T	0.720	1.495	0.820	0.820	5	1	3	0x60-0x69
MAX77812DEWB+T	0.720	1.200	0.900	0.750	3	6	9	0x60-0x69
MAX77812FEWB+T	0.620	1.100	0.900	1.495	0	0	0	0x70-0x79

⁺Denotes a lead(Pb)-free/RoHS-compliant package.

Package Information

For the latest package outline information and land patterns (footprints), go to www.maximintegrated.com/packages. Note that a "+", "#", or "-" in the package code indicates RoHS status only. Package drawings may show a different suffix character, but the drawing pertains to the package regardless of RoHS status.

PACKAGE TYPE	PACKAGE CODE	OUTLINE NO.	LAND PATTERN NO.
64 WLP	W643C3+1	<u>21-100087</u>	Refer to Application Note 1891: Wafer-Level Packaging (WLP) and Its Applications

T = Tape and reel.

20A User-Configurable Quad-Phase Buck Converter

Revision History

REVISION NUMBER	REVISION DATE	DESCRIPTION	PAGES CHANGED
0	6/16	Initial release	_
1	3/17	Updated <i>Applications</i> section, updated <i>Benefits and Features</i> section, updated MIN/TYP/MAX values in the <i>Electrical Characteristics</i> section and changed inductor to 220nH, DCR = 16mΩ, added Cyntec information to <i>Table 2</i> , added I ² C slave addresses for OTP = 1 to <i>Table 5</i> , updated Figures 6–9 and communication protocols description, updated GPI_FUNC, M1_CFG, M2_CFG, M3_CFG, M4_CFG, GLB_CFG1, GLB_CFG2 registers in the <i>Register Map</i> table, updated <i>Typical Application Circuit</i>	1–14, 29, 32–36, 42, 43, 49, 56, 60–66
2	6/17	Updated <i>Benefits and Features</i> section and <i>Register Map</i> table, fixed various typos	1, 2, 4–6, 8, 11, 12, 14, 15, 23, 25, 26, 31, 33-38, 42, 43, 46-48, 62–64
3	8/17	Updated title, <i>Benefits and Features</i> section, and <i>Electrical Characteristics</i> table, corrected label error to Output Voltage Error (%) in <i>Typical Operating Characteristics</i> , corrected errors to register name and removed error statement in HS mode in <i>Detailed Description</i> section, removed inductor from <i>Table 2</i> , corrected error in POR bits in the <i>GPI_PD_CTRL GPI Pulldown Resistor Control Register</i> table	1, 10, 14, 16, 26, 29, 30, 38, 51
4	1/18	Updated Applications and Benefits and Features sections, added Simplified Block Diagram, added LX1/2/3/4 pulsed ratings, updated Electrical Characteristics tables, updated Detailed Description section, added ALPS 220nH, removed process information	1–4, 11, 15, 26–29, 30, 31, 38, 67
5	5/18	Updated General Description, Benefits and Features, and Applications sections, renamed Typical Application Circuit and moved to page 1, updated Absolute Maximum Ratings for LXx RMS current, updated Electrical Characteristics tables, updated Typical Operating Characteristics global conditions and TOCs, updated Description sections, Table 1, Figure 2, Table 5, corrected errors in Registers information, renamed Simplified Block Diagram and updated to 2+1+1 configuration, updated Ordering Information table	1–3, 14, 16, 17, 26, 28–30, 32, 34, 35, 47–50, 59–62, 66, 67
6	7/18	Corrected typo in <i>Electrical Characteristics</i> table and other sections, updated <i>Ordering Information</i> table	1, 13, 22, 24–43, 53, 63, 65
7	6/19	Updated Table 5 and Ordering Information table	32, 65
8	8/19	Updated Typical Operating Characteristics global conditions and TOCs, corrected label error to Output Voltage Error (%) in Typical Operating Characteristics, updated Output Voltage Setting section, added Enhanced Transient Response section, and added PCB Layout Guidelines section	14-15, 28-29, 63
9	9/19	Updated Typical Operating Characteristics section	14–22

MAX77812

20A User-Configurable Quad-Phase Buck Converter

Revision History (continued)

REVISION NUMBER	REVISION DATE	DESCRIPTION	PAGES CHANGED
10	4/20	Updated Startup and Shutdown Sequence section, Phase/Output Configurations section, Multifunction GPIs General Description section, Register Map table, M1_VOUT_D, M2_VOUT_D, M3_VOUT_D, M4_VOUT_D, M1_VOUT_S, M2_VOUT_S, M3_VOUT_S, and M4_VOUT_S register descriptions, and GLB_CFG3 BUCK Global Configuration Register 3 table; added Inductor Current Limit section and Unused Outputs section	27–28, 31–32, 45, 56–57, 65
11	12/20	Updated Absolute Maximum Ratings section, added Recommended Operating Conditions table, and updated global conditions in Electrical Characteristics tables	1–13
12	10/22	Updated Undervoltage Lockout and Output Voltage Setting sections, added Power-OK (POK) section	26, 29, 31

