CMOS HIGH-SPEED 8-BIT A/D CONVERTER #### Precision Monolithics Inc. # **PRELIMINARY** ## **FEATURES** - Built-in Track-and-Hold Function - No Missing Codes - No External Clocking - Operates from Single +5V Supply with 0 to 5V Analog Input Voltage - Easily Interfaced to Microprocessors, or Stand-Alone - Latched 3-State Outputs - Logic inputs/Outputs are CMOS or TTL Compatible - No Zero or Full-Scale Adjustment Required - Ratiometric Operation, or Uses Reference Voltage Up to $\mathbf{V}_{\mathbf{CC}}$ - Overflow Output Available for Cascading - Pin and Function Campatible with ADC0820, AD7820 - Conversion Speed 1.3µs ## ORDERING INFORMATION [†] | | PACKAGE | OPERATING | | |------------------|------------------------|----------------------|--| | CERDIP
20-PIN | PLASTIC
20-PIN | TEMPERATURE
RANGE | | | PM0820AR* | | MIL | | | PM0820BR* | _ | MIL | | | PM0820ER | PM0820EP | XIND | | | PM0820FR | PM0820FP ^{††} | XIND | | - For devices processed in total compliance to MIL-STD-883, add/883 after part number. Consult factory for 883 data sheet. - † Burn-in is available on commercial and industrial temperature range parts in CerDIP and plastic DIP packages. For ordering information, see PMI'S Data Book, Section 2. - tt Also available in surface mount package, ## GENERAL DESCRIPTION The PM-0\$20 is an 8-bit resolution analog-to-digital converter, with digital inputs and outputs designed for ease of use in microprocessor-based systems. A half-flash conversion technique is used, with the input signal tracked and held by on-chip circuitry. No external sample-and-hold amplifier is needed for input signals moving at less than 100mV/μs. This CMOS device offers $1.3\mu s$ conversion time and uses only 75mW of power. It is ideally suited to a variety of A/D applications where high speed, low power, ease of use, and economy of space are required. ### PIN CONNECTIONS ### **FUNCTIONAL DIAGRAM** This preliminary product information is based on testing of a limited number of devices. Final specifications may vary. Please contact local sales office or distributor for final data sheet. | ABSOLUTE MAXIMUM RATINGS | | |---|-------------------------------------| | V _{CC} to GND | 0.3V to +7V | | V _{CC} to GNDAll Digital Pins (Control and Output) | | | to GND | 0.3V to V _{CC} + 0.3V | | V _{IN} to GND | 0.3V to V _{CC} + 0.3V | | V _{REF} + to GND | V _{BEE} -, V _{CC} | | V _{REE} - to GND | ÖV, V _{REE} + | | Junction Temperature | +150°C | | Storage Temperature | 65°C to +150°C | | Lead Temperature (Soldering, 60 sec) | +300°C | | Operating Temperature Range | | | PM-0820AR/BR | 55°C to +125°C | | PM-0820ER/FR/EP/FP | 40°C to +85°C | | PACKAGE TYPE | ⊖ _{jA} (Note 3) | Θ _{JC} | UNITS | |-------------------------|--------------------------|-----------------|-------| | 20-Pin Hermetic DIP (R) | 70 | 7 | °C/W | | 20-Pin Plastic DIP (P) | 61 | 24 | °C/W | | 20-Pin SQL (S) | 80 | 22 | °C/W | #### NOTES: - Absolute maximum ratings are those values beyond which the life of the device may be impaired. - Digital inputs are zener protected; however, ESD handling precautions are recommended. - Θ_{|A} is specified for worst case mounting conditions, i.e., Θ_{|A} is specified for device in socket for CerDIP and P-DIP packages; Θ_{|A} is specified for device soldered to printed circuit board for SOL package. **ELECTRICAL CHARACTERISTICS** at $V_{CC} = +5V$, $V_{REF} + =5V$, $V_{REF} - = 0V = GND$, Pin 7 = 0 (RD Mode) unless otherwise specified. $T_A = Full$ Temperature Range as shown under Absolute Maximum Ratings, unless otherwise specified. | | | | • | PM-0820 | 1 | | |---|--------------------|---|--------------------|---------------|-----------------------|-------| | PARAMETER | SYMBOL | CONDITIONS | MIN | TYP | MAX | UNITS | | ACCURACY | | | | | | | | Resolution | N | | 8 | _ | - | Bits | | No Missing Codes
Resolution | N | | 8 | - | - | Bits | | Total Unadjusted
Error (Note 1) | TUE | PM-0820A/E/G
PM-0820B/F/H | - | -
- | ±1/2
±1 | LSB | | REFERENCE INPUT | | | | | | | | Input Resistance | R _{REF} | T _A = +25°C
T _A = Full Temperature Range | 1.4
1.25 | - | 5.3
6.0 | kΩ | | V _{REF} + Input
Voltage Range | V _{REF} + | | V _{REF} - | - | V _{DD} | v | | V _{REF} - Input
Voltage Range | V _{REF} - | | GND | _ | V _{REF} + | v | | ANALOG INPUT | | | | | | | | Input Voltage Range | V _{INR} | | GND - 0.1 | - | V _{DD} + 0.1 | ٧ | | Input Current | l _{IN} | V _{IN} = 0V to +5V
CS = V _{CC} | - | - | ±3.0 | μА | | Input Capacitance | C _{IN} | (Note 3) | - | 45 | - | pF | | Slew Rate
Tracking | SR | (Note 2) | - | 0.2 | 0.1 | V/µs | **ELECTRICAL CHARACTERISTICS** at $V_{CC} = +5V$, $V_{REF} + = 5V$, $V_{REF} - = 0V = GND$, Pin 7 = 0 (RD Mode) unless otherwise specified. $T_A = Full$ Temperature Range as shown under Absolute Maximum Ratings, unless otherwise specified. *Continued* | PARAMETER | SYMBOL | CONDITIONS | MIN | PM-0820
TYP | MAX | UNITS | |---------------------------------------|---------------------|---|-------------|----------------|-------------------|-------| | LOGIC INPUTS | | | | | | | | Input High
Voltage | V _{INH} | V _{CC} = +5.25V
CS, WR, RD
MODE | 2
3.5 | - | - | v | | Input Low
Voltage | V _{INL} | V _{CC} = ±4.75V
CS, WR, RD
MODE | -
- | -
- | 0.8
1.5 | V | | Input High
Current | 1 _{INH} | T _A = Full Temperature Range
CS, RD
WR
MODE | -
-
- | <u>-</u>
- | 1.0
3.0
200 | μΑ | | input Low Current | I _{INL} | CS, RD, WR, MODE | - | - | 1 | μА | | Input Capacitance
(Note 3) | C _{IN} | CS, RD, WR, MODE | _ | 5 | 8 | pF | | LOGIC OUTPUTS | | | | | | | | Output High
Voltage | V _{OH} | DB ₀ · DB ₇ · OFL, INT, V _{CC} = +4.75V
I _{OUT} = -360μA
I _{OUT} = -10μA | 2.4
- | - | -
4.5 | v | | Output Low
Voltage | v _{ol} | DB ₀ - DB ₇ , OFL, INT, RDY
V _{CC} = +4.75V, I _{OUT} = 1.6mA | _ | _ | 0.4 | V | | 3-State
Output Current | l _{oz} | DB ₀ - DB ₇ , RDY
V _{OUT} = 0V and +5V | -0.3 | - | +3.0 | μА | | Output Source
Current | SOURCE | V _{OUT} = 0V
DB ₀ - DB ₇ , OFL
INT | - | | -6
-4.5 | mA | | Output Sink Current | İsink | $V_{OUT} = +5V, DB_0 - DB_7, \overline{OFL}$ \overline{INT}, RDY | - | _ | 7 | mA | | Output Capacitance
(Note 3) | C _{OUT} | DB ₀ - DB ₇ , OFL, INT, RDY | - | - | 8 | pF | | POWER SUPPLY | | | | | | | | Supply Current | l _{cc} | CS = WR = RD = 0V | - | - | 15 | mA | | DIGITAL INTERFACE TIMIN | IG (Notes 2, 4) | | | | | | | Conversion Time
(RD MODE) (Note 7) | t _{CRD} | Pin 7 = 0V, (Figure 1) | - | _ | 2.5 | μs | | Conversion Time
(WR-RD MODE) | t _{CWR-RD} | Pin 7 = +5V, t _{WR} = 600ns
t _{RD} = 600ns | 1.3 | - | - | μs | **ELECTRICAL CHARACTERISTICS** at $V_{CC} = +5V$, $V_{REF} + = 5V$, $V_{REF} - = 0V = GND$, Pin 7 = 0 (RD Mode) unless otherwise specified. $T_A = Full$ Temperature Range as shown under Absolute Maximum Ratings, unless otherwise specified. *Continued* | PARAMETER | SYMBOL | CONDITIONS | Min | PM-0820
TYP | MAX | UNITS | |--|-------------------|--|-----|----------------|-----------------------|-------------| | Chip Select to
RD, WR Set-up Time | t _{CSS} | | 0 | _ | · - | ns | | Chip Select to
RD, WR Hold Time | t _{csh} | | 0 | _ | - | ns | | Chip Select to
RDY Delay (RD MODE) | t _{RDY} | C _L = 50pF, Pin 7 = 0V | - | - | 100 | ns | | Data Access Time
(RD MODE) (Note 5) | t _{ACC0} | Pin 7 = 0V | _ | _ | t _{CRD} + 70 | ns | | RD to INT Delay | t _{INTH} | C _L = 50pF | _ | _ | 225 | ns | | Data Hold Time
(Note 6) | t _{DH} | $R_L = 1k\Omega$, $C_L = 10pF$ | _ | _ | 200 | ns | | Delay Time
Between Conversion | t _P | | 600 | - | - | ns | | Write Pulse Width | t _{wa} | Pin 7 = +5V | 0.6 | - | 50 | μ\$ | | Read Delay
(WR-RD MODE) | t _{RD} | Pin 7 = +5V | 600 | _ | - | ns | | Data Access Time WR-RD MODE | t _{ACC1} | Pin 7 = +5V, t _{RD} < t _{INTL}
C _L = 15pF (Figure 3) | _ | _ | 280 | ns | | WIT (18 WIESE | | C _L = 100pF | - | - | 320 | | | RD to INT Delay
(WR-RD MODE) | t _{RI} | Pin 7 = +5V, t _{RD} < INTL | - | - | 290 | ns | | WR to INT Delay
(WR-RD MODE) | t _{INTL} | Pin 7 = +5V, C _L = 50pF | - | _ | 1.3 | μs | | Data Access Time
(WR-RD MODE) | t _{ACC2} | Pin 7 = +5V, t _{RD} > INTL
C _L = 15pF (Figure 2) | - | - | 120 | | | (Note 6) | | C _L = 100pF | | | 150 | ns ns | | WR to INT Delay
(Stand-Alone MODE) | t _{iHWR} | Pin 7 = +5V, C _L = 50pF | - | - | 270 | ns | | Data Access Time
(Stand-Alone MODE) | t _{ID} | Pin 7 = +5V | - | - | 50 | ns | ### NOTES: - 1. Total unadjusted error includes offset, full-scale, and linearity errors. - Sample tested. - 3. Guaranteed by design. - All input control signals are specified with t_R = t_F = 20ns (10% to 90% of V_{DD}) and timed from a voltage level of 1.6V. - 5. Defined as the time required for an output to cross 0.8V to 2.4V. - 6. Defined as the time required for the data lines to change 0.5V. - 7. For faster conversions use WR-RD MODE. #### **DIGITAL INTERFACE** The PM-0820 can operate in two modes: RD mode and WR-RD mode (for faster conversion speeds, use the WR-RD mode). Mode selection is determined by the MODE pin. The two modes of operation are discussed below. RD MODE – Pin 7 = 0V (See Figure 1) — This mode allows the microprocessor to start a conversion and read the data at the end of conversion with a single READ instruction. The PM-0820 also provides an INT output which goes low at the end of conversion; it is reset by the rising edge of the RD or CS when CS is low. Figure 1: RD Mode (Pin 7 = 0V) Before a conversion can start, $\overline{\text{CS}}$ must first be taken low; a conversion is then started by taking $\overline{\text{RD}}$ low. $\overline{\text{RD}}$ must be held low until data appears at the outputs (at the end of conversion). Also, $\overline{\text{RD}}$ will enable pin 6 (WR/RDY) and allow it to function as a status output; it can be used as a BUSY or READY signal with microprocessors that can accommodate WAIT states. Pin 6 is an open collector output, it goes low following the falling edge of $\overline{\text{RD}}$, and goes into 3-state (high impedance) at the end of conversion. Figure 2: WR-RD Mode (Pin 7 = +5V, $t_{RD} > t_{INTL}$) Figure 3: WR-RD Mode (Pin 7 = +5V, $t_{RD} < t_{INTI}$) WR-RD MODE – Pin 7 = +5V (See Figure 3) — Pin 6 (WR/RDY) is configured as the WRITE input when the PM-0820 is used in the WR-RD mode. With the CS line low, conversion starts on the falling edge of the WR signal. The PM-0820 allows several options for reading output data. Interrupt Scheme (Slower Conversion Speed) (See Figure 2) — In this scheme, the microprocessor waits until INT goes low before reading data. INT goes low approximately 800ns after the rising edge of the WR signal/ this indicates the end of conversion. Data outputs are then active when RD is taken low. Non-Interrupt Scheme (Faster Conversion Speed) (See Figure 3) — A faster conversion speed is possible by not waiting for INT to go low. Taking RD low approximately 600ns after WR goes high completes the conversion cycle; this enables the data outputs. INT goes low on the falling edge of RD. Stand-Alone Configuration (See Figure 4) — Stand-alone operation is possible with the PM-0820 by operating it in the WR-RD mode. CS and RD are first tied low, conversion is then started when WR is taken low. Data valid occurs approximately 800ns after the rising edge of the WR signal. Figure 4: WR-RD Mode – Stand-Alone Operation (Pin 7 = +5V, $\overline{CS} = \overline{RD} = 0V$) ANALOG-TO-DIGITAL CONVERTERS **TABLE 1:** Fin Function Description | PIN | NAME | FUNCTION | |-----|-----------------------|--| | 1 | V _{IN} | Analog Input; Range = V _{REF} - to V _{REF} + | | 2 | DB ₀ (LSB) | 3-State Data Output; Bit 0 | | 3 | DB ₁ | 3-State Data Output; Bit 1 | | 4 | DB ₂ | 3-State Data Output, Bit 2 | | 5 | DB ₃ | 3-State Data Output, Bit 3 | | 6 | WR/RDY | Write Control Input/Ready Status Output | | 7 | MODE | Mode Selection Intput – Internally tied to GND through a 50 µA current source. | | 8 | RD | READ Input – Activates 3-State Data Outputs | | 9 | INT | Interrupt Output – Goes low at end of conversion. | | 10 | GND | Ground | | 11 | V _{REF} - | Lower Limit of Reference Input Voltage. Range: GND to V _{REF} + | | 12 | V _{REF} + | Upper Limit of Reference Input Voltage. Range: V _{REF} - to V _{CC} | | 13 | ĊŚ | Chip Select Input. Must be low before the start of conversion (or before WR or RD is accepted by the converter). | | 14 | $DB_\mathtt{4}$ | 3-State Output; Bit 4 | | 15 | DB ₅ | 3-State Output; Bit 5 | | 16 | DB ₆ | 3-State Output; Bit 6 | | 17 | DB ₇ | 3-State Output; Bit 7 | | 18 | OFL | Overflow Output – $\overline{\text{OFL}}$ will be low at the end of conversion if V_{IN} is higher than V_{REF} +. Can be used to cascade two or more devices for more resolutuion. This output is not a 3-State Output. | | 19 | NC | No Connection | | 20 | V _{cc} | Power Supply Voltage |