CMOS HIGH-SPEED 8-BIT A/D CONVERTER

Precision Monolithics Inc.

PRELIMINARY

FEATURES

- Built-in Track-and-Hold Function
- No Missing Codes
- No External Clocking
- Operates from Single +5V Supply with 0 to 5V Analog Input Voltage
- Easily Interfaced to Microprocessors, or Stand-Alone
- Latched 3-State Outputs
- Logic inputs/Outputs are CMOS or TTL Compatible
- No Zero or Full-Scale Adjustment Required
- Ratiometric Operation, or Uses Reference Voltage Up to $\mathbf{V}_{\mathbf{CC}}$
- Overflow Output Available for Cascading
- Pin and Function Campatible with ADC0820, AD7820
- Conversion Speed 1.3µs

ORDERING INFORMATION [†]

	PACKAGE	OPERATING	
CERDIP 20-PIN	PLASTIC 20-PIN	TEMPERATURE RANGE	
PM0820AR*		MIL	
PM0820BR*	_	MIL	
PM0820ER	PM0820EP	XIND	
PM0820FR	PM0820FP ^{††}	XIND	

- For devices processed in total compliance to MIL-STD-883, add/883 after part number. Consult factory for 883 data sheet.
- † Burn-in is available on commercial and industrial temperature range parts in CerDIP and plastic DIP packages. For ordering information, see PMI'S Data Book, Section 2.
- tt Also available in surface mount package,

GENERAL DESCRIPTION

The PM-0\$20 is an 8-bit resolution analog-to-digital converter, with digital inputs and outputs designed for ease of use in microprocessor-based systems. A half-flash conversion technique is used, with the input signal tracked and held by on-chip circuitry. No external sample-and-hold amplifier is needed for input signals moving at less than 100mV/μs.

This CMOS device offers $1.3\mu s$ conversion time and uses only 75mW of power. It is ideally suited to a variety of A/D applications where high speed, low power, ease of use, and economy of space are required.

PIN CONNECTIONS

FUNCTIONAL DIAGRAM

This preliminary product information is based on testing of a limited number of devices. Final specifications may vary. Please contact local sales office or distributor for final data sheet.

ABSOLUTE MAXIMUM RATINGS	
V _{CC} to GND	0.3V to +7V
V _{CC} to GNDAll Digital Pins (Control and Output)	
to GND	0.3V to V _{CC} + 0.3V
V _{IN} to GND	0.3V to V _{CC} + 0.3V
V _{REF} + to GND	V _{BEE} -, V _{CC}
V _{REE} - to GND	ÖV, V _{REE} +
Junction Temperature	+150°C
Storage Temperature	65°C to +150°C
Lead Temperature (Soldering, 60 sec)	+300°C
Operating Temperature Range	
PM-0820AR/BR	55°C to +125°C
PM-0820ER/FR/EP/FP	40°C to +85°C

PACKAGE TYPE	⊖ _{jA} (Note 3)	Θ _{JC}	UNITS
20-Pin Hermetic DIP (R)	70	7	°C/W
20-Pin Plastic DIP (P)	61	24	°C/W
20-Pin SQL (S)	80	22	°C/W

NOTES:

- Absolute maximum ratings are those values beyond which the life of the device may be impaired.
- Digital inputs are zener protected; however, ESD handling precautions are recommended.
- Θ_{|A} is specified for worst case mounting conditions, i.e., Θ_{|A} is specified for device in socket for CerDIP and P-DIP packages; Θ_{|A} is specified for device soldered to printed circuit board for SOL package.

ELECTRICAL CHARACTERISTICS at $V_{CC} = +5V$, $V_{REF} + =5V$, $V_{REF} - = 0V = GND$, Pin 7 = 0 (RD Mode) unless otherwise specified. $T_A = Full$ Temperature Range as shown under Absolute Maximum Ratings, unless otherwise specified.

			•	PM-0820	1	
PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
ACCURACY						
Resolution	N		8	_	-	Bits
No Missing Codes Resolution	N		8	-	-	Bits
Total Unadjusted Error (Note 1)	TUE	PM-0820A/E/G PM-0820B/F/H	-	- -	±1/2 ±1	LSB
REFERENCE INPUT						
Input Resistance	R _{REF}	T _A = +25°C T _A = Full Temperature Range	1.4 1.25	-	5.3 6.0	kΩ
V _{REF} + Input Voltage Range	V _{REF} +		V _{REF} -	-	V _{DD}	v
V _{REF} - Input Voltage Range	V _{REF} -		GND	_	V _{REF} +	v
ANALOG INPUT						
Input Voltage Range	V _{INR}		GND - 0.1	-	V _{DD} + 0.1	٧
Input Current	l _{IN}	V _{IN} = 0V to +5V CS = V _{CC}	-	-	±3.0	μА
Input Capacitance	C _{IN}	(Note 3)	-	45	-	pF
Slew Rate Tracking	SR	(Note 2)	-	0.2	0.1	V/µs

ELECTRICAL CHARACTERISTICS at $V_{CC} = +5V$, $V_{REF} + = 5V$, $V_{REF} - = 0V = GND$, Pin 7 = 0 (RD Mode) unless otherwise specified. $T_A = Full$ Temperature Range as shown under Absolute Maximum Ratings, unless otherwise specified. *Continued*

PARAMETER	SYMBOL	CONDITIONS	MIN	PM-0820 TYP	MAX	UNITS
LOGIC INPUTS						
Input High Voltage	V _{INH}	V _{CC} = +5.25V CS, WR, RD MODE	2 3.5	-	-	v
Input Low Voltage	V _{INL}	V _{CC} = ±4.75V CS, WR, RD MODE	- -	- -	0.8 1.5	V
Input High Current	1 _{INH}	T _A = Full Temperature Range CS, RD WR MODE	- - -	<u>-</u> -	1.0 3.0 200	μΑ
input Low Current	I _{INL}	CS, RD, WR, MODE	-	-	1	μА
Input Capacitance (Note 3)	C _{IN}	CS, RD, WR, MODE	_	5	8	pF
LOGIC OUTPUTS						
Output High Voltage	V _{OH}	DB ₀ · DB ₇ · OFL, INT, V _{CC} = +4.75V I _{OUT} = -360μA I _{OUT} = -10μA	2.4 -	-	- 4.5	v
Output Low Voltage	v _{ol}	DB ₀ - DB ₇ , OFL, INT, RDY V _{CC} = +4.75V, I _{OUT} = 1.6mA	_	_	0.4	V
3-State Output Current	l _{oz}	DB ₀ - DB ₇ , RDY V _{OUT} = 0V and +5V	-0.3	-	+3.0	μА
Output Source Current	SOURCE	V _{OUT} = 0V DB ₀ - DB ₇ , OFL INT	-		-6 -4.5	mA
Output Sink Current	İsink	$V_{OUT} = +5V, DB_0 - DB_7, \overline{OFL}$ \overline{INT}, RDY	-	_	7	mA
Output Capacitance (Note 3)	C _{OUT}	DB ₀ - DB ₇ , OFL, INT, RDY	-	-	8	pF
POWER SUPPLY						
Supply Current	l _{cc}	CS = WR = RD = 0V	-	-	15	mA
DIGITAL INTERFACE TIMIN	IG (Notes 2, 4)					
Conversion Time (RD MODE) (Note 7)	t _{CRD}	Pin 7 = 0V, (Figure 1)	-	_	2.5	μs
Conversion Time (WR-RD MODE)	t _{CWR-RD}	Pin 7 = +5V, t _{WR} = 600ns t _{RD} = 600ns	1.3	-	-	μs

ELECTRICAL CHARACTERISTICS at $V_{CC} = +5V$, $V_{REF} + = 5V$, $V_{REF} - = 0V = GND$, Pin 7 = 0 (RD Mode) unless otherwise specified. $T_A = Full$ Temperature Range as shown under Absolute Maximum Ratings, unless otherwise specified. *Continued*

PARAMETER	SYMBOL	CONDITIONS	Min	PM-0820 TYP	MAX	UNITS
Chip Select to RD, WR Set-up Time	t _{CSS}		0	_	· -	ns
Chip Select to RD, WR Hold Time	t _{csh}		0	_	-	ns
Chip Select to RDY Delay (RD MODE)	t _{RDY}	C _L = 50pF, Pin 7 = 0V	-	-	100	ns
Data Access Time (RD MODE) (Note 5)	t _{ACC0}	Pin 7 = 0V	_	_	t _{CRD} + 70	ns
RD to INT Delay	t _{INTH}	C _L = 50pF	_	_	225	ns
Data Hold Time (Note 6)	t _{DH}	$R_L = 1k\Omega$, $C_L = 10pF$	_	_	200	ns
Delay Time Between Conversion	t _P		600	-	-	ns
Write Pulse Width	t _{wa}	Pin 7 = +5V	0.6	-	50	μ\$
Read Delay (WR-RD MODE)	t _{RD}	Pin 7 = +5V	600	_	-	ns
Data Access Time WR-RD MODE	t _{ACC1}	Pin 7 = +5V, t _{RD} < t _{INTL} C _L = 15pF (Figure 3)	_	_	280	ns
WIT (18 WIESE		C _L = 100pF	-	-	320	
RD to INT Delay (WR-RD MODE)	t _{RI}	Pin 7 = +5V, t _{RD} < INTL	-	-	290	ns
WR to INT Delay (WR-RD MODE)	t _{INTL}	Pin 7 = +5V, C _L = 50pF	-	_	1.3	μs
Data Access Time (WR-RD MODE)	t _{ACC2}	Pin 7 = +5V, t _{RD} > INTL C _L = 15pF (Figure 2)	-	-	120	
(Note 6)		C _L = 100pF			150	ns ns
WR to INT Delay (Stand-Alone MODE)	t _{iHWR}	Pin 7 = +5V, C _L = 50pF	-	-	270	ns
Data Access Time (Stand-Alone MODE)	t _{ID}	Pin 7 = +5V	-	-	50	ns

NOTES:

- 1. Total unadjusted error includes offset, full-scale, and linearity errors.
- Sample tested.
- 3. Guaranteed by design.
- All input control signals are specified with t_R = t_F = 20ns (10% to 90% of V_{DD}) and timed from a voltage level of 1.6V.
- 5. Defined as the time required for an output to cross 0.8V to 2.4V.
- 6. Defined as the time required for the data lines to change 0.5V.
- 7. For faster conversions use WR-RD MODE.

DIGITAL INTERFACE

The PM-0820 can operate in two modes: RD mode and WR-RD mode (for faster conversion speeds, use the WR-RD mode). Mode selection is determined by the MODE pin. The two modes of operation are discussed below.

RD MODE – Pin 7 = 0V (See Figure 1) — This mode allows the microprocessor to start a conversion and read the data at the end of conversion with a single READ instruction. The PM-0820 also provides an INT output which goes low at the end of conversion; it is reset by the rising edge of the RD or CS when CS is low.

Figure 1: RD Mode (Pin 7 = 0V)

Before a conversion can start, $\overline{\text{CS}}$ must first be taken low; a conversion is then started by taking $\overline{\text{RD}}$ low. $\overline{\text{RD}}$ must be held low until data appears at the outputs (at the end of conversion). Also, $\overline{\text{RD}}$ will enable pin 6 (WR/RDY) and allow it to function as a status output; it can be used as a BUSY or READY signal with microprocessors that can accommodate WAIT states. Pin 6 is an open collector output, it goes low following the falling edge of $\overline{\text{RD}}$, and goes into 3-state (high impedance) at the end of conversion.

Figure 2: WR-RD Mode (Pin 7 = +5V, $t_{RD} > t_{INTL}$)

Figure 3: WR-RD Mode (Pin 7 = +5V, $t_{RD} < t_{INTI}$)

WR-RD MODE – Pin 7 = +5V (See Figure 3) — Pin 6 (WR/RDY) is configured as the WRITE input when the PM-0820 is used in the WR-RD mode. With the CS line low, conversion starts on the falling edge of the WR signal. The PM-0820 allows several options for reading output data.

Interrupt Scheme (Slower Conversion Speed) (See Figure 2) — In this scheme, the microprocessor waits until INT goes low before reading data. INT goes low approximately 800ns after the rising edge of the WR signal/ this indicates the end of conversion. Data outputs are then active when RD is taken low.

Non-Interrupt Scheme (Faster Conversion Speed) (See Figure 3) — A faster conversion speed is possible by not waiting for INT to go low. Taking RD low approximately 600ns after WR goes high completes the conversion cycle; this enables the data outputs. INT goes low on the falling edge of RD.

Stand-Alone Configuration (See Figure 4) — Stand-alone operation is possible with the PM-0820 by operating it in the WR-RD mode. CS and RD are first tied low, conversion is then started when WR is taken low. Data valid occurs approximately 800ns after the rising edge of the WR signal.

Figure 4: WR-RD Mode – Stand-Alone Operation (Pin 7 = +5V, $\overline{CS} = \overline{RD} = 0V$)

ANALOG-TO-DIGITAL CONVERTERS

TABLE 1: Fin Function Description

PIN	NAME	FUNCTION
1	V _{IN}	Analog Input; Range = V _{REF} - to V _{REF} +
2	DB ₀ (LSB)	3-State Data Output; Bit 0
3	DB ₁	3-State Data Output; Bit 1
4	DB ₂	3-State Data Output, Bit 2
5	DB ₃	3-State Data Output, Bit 3
6	WR/RDY	Write Control Input/Ready Status Output
7	MODE	Mode Selection Intput – Internally tied to GND through a 50 µA current source.
8	RD	READ Input – Activates 3-State Data Outputs
9	INT	Interrupt Output – Goes low at end of conversion.
10	GND	Ground
11	V _{REF} -	Lower Limit of Reference Input Voltage. Range: GND to V _{REF} +
12	V _{REF} +	Upper Limit of Reference Input Voltage. Range: V _{REF} - to V _{CC}
13	ĊŚ	Chip Select Input. Must be low before the start of conversion (or before WR or RD is accepted by the converter).
14	$DB_\mathtt{4}$	3-State Output; Bit 4
15	DB ₅	3-State Output; Bit 5
16	DB ₆	3-State Output; Bit 6
17	DB ₇	3-State Output; Bit 7
18	OFL	Overflow Output – $\overline{\text{OFL}}$ will be low at the end of conversion if V_{IN} is higher than V_{REF} +. Can be used to cascade two or more devices for more resolutuion. This output is not a 3-State Output.
19	NC	No Connection
20	V _{cc}	Power Supply Voltage