$0.5 \Omega \mathrm{R}_{\mathrm{ON}}, \pm 15 \mathrm{~V},+12 \mathrm{~V}, \pm 5 \mathrm{~V},+5 \mathrm{~V} /-12 \mathrm{~V}$, Quad SPST Switch

FEATURES

- Low $\mathrm{R}_{\mathrm{ON}} 0.5 \Omega$
- High continuous current of up to 847 mA
- Flat $R_{O N}$ across signal range, 0.003Ω
- THD of -122 dB at 1 kHz
- Improved balance between on resistance and on capacitance
- Low $\mathrm{R}_{\mathrm{ON}}(0.5 \Omega)$ and $\mathrm{C}_{\mathrm{ON}}(28 \mathrm{pF})$
- $1.8 \mathrm{~V}, 3.3 \mathrm{~V}$, and 5 V Logic compatibility
- 16-lead, 4 mm x 4 mm LFCSP
- Pin to pin compatible with the ADG1412
- Fully specified at $\pm 15 \mathrm{~V},+12 \mathrm{~V}, \pm 5 \mathrm{~V}$ and $+5 \mathrm{~V},-12 \mathrm{~V}$
- Operational with asymmetric power supplies
- $V_{S S}$ to $V_{D D}-2 V$ analog signal range

APPLICATIONS

- Automatic test equipment
- Data acquisition
- Instrumentation
- Avionics
- Audio and video switching
- Communication systems
- Relay replacement

GENERAL DESCRIPTION

The ADG2412 contains four independent single-pole/single-throw (SPST) switches. The ADG2412 switches turn on with logic 1 on the digital control inputs. Each switch conducts equally well in both directions when on, and each switch has an input signal range that extends from $\mathrm{V}_{S S}$ to $\mathrm{V}_{D D}-2 \mathrm{~V}$. When switches are open, signal levels up to the supplies are blocked.

The digital inputs are compatible with $5 \mathrm{~V}, 3.3 \mathrm{~V}$, and 1.8 V logic inputs without the requirement for a separate digital logic supply pin.

The on-resistance profile is exceptionally flat over the full-analog input range, which ensures good linearity and low distortion when switching audio signals.

FUNCTIONAL BLOCK DIAGRAM

SWITCHES SHOWN FOR A LOGIC 1 INPUT. $\bar{\circ}$

Figure 1. Functional Block Diagram

PRODUCT HIGHLIGHTS

1. Low $R_{\text {ON }}$ of 0.5Ω.
2. High continuous current carrying capability, see Table 5 to Table 8.
3. Dual-supply operation. For applications where the analog signal is bipolar, the ADG2412 can be operated from dual supplies up to $\pm 16.5 \mathrm{~V}$.
4. Single-supply operation. For applications where the analog signal is unipolar, the ADG2412 can be operated from a single rail power supply up to 16.5 V .
5. 1.8 V logic-compatible digital inputs: $\mathrm{V}_{\mathbb{I N H}}=1.3 \mathrm{~V}, \mathrm{~V}_{\mathbb{I N L}}=0.8 \mathrm{~V}$.
6. $N o V_{L}$ logic power supply required.

TABLE OF CONTENTS

Features 1
Applications 1
General Description 1
Functional Block Diagram 1
Product Highlights 1
Specifications 3
Operating Supply Voltages 3
$\pm 15 \mathrm{~V}$ Dual Supply 3
12 V Single Supply 4
Dual and Asymmetric Supply 6
Continuous Current Per Channel, Sx or Dx. 7
Absolute Maximum Ratings 9
Thermal Resistance 9
Electrostatic Discharge (ESD) Ratings 9
ESD Caution 9
Pin Configuration and Function Descriptions 10
Typical Performance Characteristics 11
Test Circuits 16
Terminology 18
ldD. 18
Iss. 18
V_{D} and V_{S} 18
$V_{\text {TRACK }}$ 18
R_{ON} 18
$\Delta \mathrm{R}_{\mathrm{ON}}$ 18
$\mathrm{R}_{\text {FLAT(ON) }}$ 18
Is (Off). 18
ID (Off) 18
$\mathrm{I}_{\mathrm{D}}(\mathrm{On})$ and $\mathrm{I}_{\mathrm{S}}(\mathrm{On})$ 18
$\mathrm{V}_{\text {INL }}$. 18
$V_{\text {INH }}$ 18
$\mathrm{I}_{\mathrm{INL}}$ and I_{NH} 18
C_{S} (Off) and C_{D} (Off) 18
$\mathrm{C}_{\mathrm{D}}(\mathrm{On})$ and $\mathrm{C}_{\mathrm{S}}(\mathrm{On})$ 18
C_{IN} 18
t_{ON} 18
$t_{\text {OFF }}$. 18
t_{D}. 18
Off Isolation 18
Charge Injection 18
Channel-to-Channel Crosstalk 18
Bandwidth 18
On Response 18
Insertion Loss 18
Total Harmonic Distortion + Noise (THD + N). 18
AC Power Supply Rejection Ratio (AC PSRR) 18
Theory of Operations 19
Switch Architecture 19
1.8 V Logic Compatibility 19
Applications Information 20
Large Voltage, High Frequency Signal Tracking 20
Power Supply Recommendations. 20
High-Current Drive and Precision Current- Sense 20
Digital Audio Channel to Ultra-Low THD 20
Outline Dimensions 21
Ordering Guide. 21
Evaluation Boards 21

REVISION HISTORY

1/2023—Revision 0: Initial Version

SPECIFICATIONS

OPERATING SUPPLY VOLTAGES

Table 1. Operating Supply Voltages

Supply Voltage	Min	Max	Unit
Dual Supply	± 4.5	± 16.5	V
Single Supply	+5	+16.5	V

± 15 V DUAL SUPPLY

$V_{D D}=+15 \mathrm{~V} \pm 10 \%, V_{S S}=-15 \mathrm{~V} \pm 10 \%, G N D=0 \mathrm{~V}$, unless otherwise noted.
Table 2. ± 15 V Dual-Supply Specifications

Parameter	$+25^{\circ} \mathrm{C}$	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	Unit	Test Conditions/Comments
ANALOG SWITCH Analog Signal Range On Resistance, RoN On-Resistance Match Between Channels, ΔR_{ON} On-Resistance Flatness, RFLAT (ON)	0.50 0.65 0.54 0.7 0.003 0.085 0.003 0.035 0.04 0.08	$\begin{aligned} & 0.8 \\ & 0.85 \\ & 0.1 \\ & 0.035 \\ & 0.1 \end{aligned}$	$\begin{aligned} & V_{D D}-2 \mathrm{~V} \text { to } V_{S S} \\ & 0.95 \\ & 1.0 \\ & 0.1 \\ & 0.035 \\ & 0.1 \end{aligned}$	V Ω typ Ω max	$\begin{aligned} & V_{D D}=+13.5 \mathrm{~V}, \mathrm{~V}_{S S}=-13.5 \mathrm{~V} \\ & \text { Source voltage }\left(\mathrm{V}_{\mathrm{S}}\right)=-13.5 \mathrm{~V} \text { to }+10 \mathrm{~V}, \\ & \text { source current }\left(I_{\mathrm{S}}\right)=-10 \mathrm{~mA} \text {, see Figure } \\ & 31 \\ & V_{S}=-13.5 \mathrm{~V} \mathrm{to}+11 \mathrm{~V}, I_{S}=-100 \mathrm{~mA} \\ & V_{S}=-13.5 \mathrm{~V} \mathrm{to}+11 \mathrm{~V}, I_{S}=-100 \mathrm{~mA} \\ & V_{S}=-13.5 \mathrm{~V} \mathrm{to}+10 \mathrm{~V}, I_{S}=-100 \mathrm{~mA} \\ & V_{S}=-13.5 \mathrm{~V} \mathrm{to}+11 \mathrm{~V}, I_{S}=-100 \mathrm{~mA} \end{aligned}$
LEAKAGE CURRENTS Source Off Leakage, IS (Off) Drain Off Leakage, I_{D} (Off) Channel On Leakage, $I_{D}(O n)$, $I_{S}(O n)$	$\begin{aligned} & \pm 1.7 \\ & \pm 4.0 \\ & \pm 1.7 \\ & \pm 4.0 \\ & \pm 0.1 \\ & \pm 1.3 \end{aligned}$	$\begin{aligned} & +40 /-5.5 \\ & +40 /-5.5 \\ & \pm 3 \end{aligned}$	$\begin{aligned} & +120 /-5.5 \\ & +120 /-5.5 \\ & +12.5 /-3 \end{aligned}$	nA typ nA max nA typ nA max nA typ nA max	$\begin{aligned} & V_{D D}=+16.5 \mathrm{~V}, V_{S S}=-16.5 \mathrm{~V} \\ & V_{S}= \pm 10 \mathrm{~V} \text {, drain voltage }\left(V_{D}\right)=\mp 10 \mathrm{~V}, \\ & \text { see Figure } 34 \\ & V_{S}= \pm 10 \mathrm{~V}, V_{D}=\mp 10 \mathrm{~V} \text {, see Figure } 34 \\ & V_{S}=V_{D}= \pm 10 \mathrm{~V} \text {, see Figure } 30 \end{aligned}$
DIGITAL INPUTS Input High Voltage, $\mathrm{V}_{\text {INH }}$ Input Low Voltage, $\mathrm{V}_{\mathbb{I N L}}$ Input Current, l_{INL}, or I_{NH} Digital Input Capacitance, $\mathrm{C}_{\mathbb{N}}$	$\begin{aligned} & 0.01 \\ & 4.6 \end{aligned}$		$\begin{aligned} & 1.3 \\ & 0.8 \end{aligned}$ ± 0.15	V min V max $\mu \mathrm{A}$ typ $\mu A \max$ pF typ	Input voltage $\left(V_{\mathbb{N}}\right)=G N D$ voltage $\left(V_{G N D}\right)$ or $V_{D D}$
DYNAMIC CHARACTERISTICS On Time, t_{on} Off Time, toff Charge Injection, $Q_{\mid N J}$ Off Isolation	$\begin{aligned} & 336 \\ & 403 \\ & 188 \\ & 221 \\ & -1.8 \\ & -76 \end{aligned}$	434 223	478 223	ns typ ns max ns typ ns max nC typ dB typ	Load resistance $\left(R_{L}\right)=300 \Omega$, load capacitance $\left(C_{L}\right)=35 \mathrm{pF}$ $\mathrm{V}_{\mathrm{S}}=10 \mathrm{~V}$, see Figure 37 $R_{L}=300 \Omega, C_{L}=35 \mathrm{pF}$ $V_{S}=10 \mathrm{~V}$, see Figure 37 $V_{S}=0 \mathrm{~V}, R_{S}=0 \Omega, C_{L}=1 \mathrm{nF}$, see Figure 38 $R_{L}=50 \Omega, C_{L}=5 p F$, frequency $=100$ kHz , see Figure 33

SPECIFICATIONS

Table 2. ± 15 V Dual-Supply Specifications (Continued)

Parameter	$+25^{\circ} \mathrm{C}$	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	Unit	Test Conditions/Comments
Channel-to-Channel Crosstalk	-105			dB typ	$R_{L}=50 \Omega, C_{L}=5 p F \text {, frequency }=100$ kHz , see Figure 32
Total Harmonic Distortion + Noise, THD + N	0.002			\% typ	$R_{L}=1 \mathrm{k} \Omega, 20 \mathrm{~V} \text { p-p, frequency }=20 \mathrm{~Hz}$ to 20 kHz , see Figure 35
Total Harmonic Distortion, THD	-122			dB typ	$\mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega, 20 \mathrm{~V}$-p, frequency $=1 \mathrm{kHz}$
	-96			dB typ	$\mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega, 20 \mathrm{~V}$-p, frequency $=20 \mathrm{kHz}$
	-80			dB typ	$\begin{aligned} & R_{\mathrm{L}}=1 \mathrm{k} \Omega, 20 \mathrm{~V} \text { p-p, frequency }=100 \\ & \mathrm{kHz} \end{aligned}$
-3 dB Bandwidth	171			MHz typ	$R_{L}=50 \Omega, C_{L}=5 \mathrm{pF} \text {, signal }=0 \mathrm{dBm} \text {, }$ see Figure 36
Insertion Loss	-0.04			dB typ	$R_{L}=50 \Omega, C_{L}=5 \mathrm{pF} \text {, frequency }=1$ MHz . see Figure 36
Source Off Capacitance, C_{S} (Off)Drain Off Capacitance, C_{D} (Off)	76			pF typ	$\mathrm{V}_{S}=0 \mathrm{~V}$, frequency $=1 \mathrm{MHz}$
	76			pF typ	$V_{S}=0 \mathrm{~V}$, frequency $=1 \mathrm{MHz}$
Drain On Capacitance, $C_{D}(O n)$, Source On Capacitance $\mathrm{C}_{\mathrm{S}}(\mathrm{On})$	28			pF typ	$\mathrm{V}_{S}=0 \mathrm{~V}$, frequency $=1 \mathrm{MHz}$
Match On Capacitance, $\mathrm{C}_{\text {MATCH }}(\mathrm{On}$)	0.84			pF typ	$\mathrm{V}_{S}=0 \mathrm{~V}$, frequency $=1 \mathrm{MHz}$
POWER REQUIREMENTS Power Supply Current, ID	170				$V_{D D}=+16.5 \mathrm{~V}, \mathrm{~V}_{S S}=-16.5 \mathrm{~V}$
				$\mu \mathrm{A}$ typ	Digital inputs $=0 \mathrm{~V}$ or 5 V
	260		260	$\mu \mathrm{A}$ max	
	225			$\mu \mathrm{A}$ typ	Digital inputs $=1.3 \mathrm{~V}$
	33085		330	$\mu \mathrm{A}$ max	
Negative Supply Current, ISS				$\mu \mathrm{A}$ typ	Digital inputs $=0 \mathrm{~V}$ or 5 V
	140		140	$\mu \mathrm{A}$ max	

12 V SINGLE SUPPLY

$V_{D D}=12 \mathrm{~V} \pm 10 \%, \mathrm{~V}_{S S}=0 \mathrm{~V}, \mathrm{GND}=0 \mathrm{~V}$, unless otherwise noted.
Table 3. 12 V Single-Supply Specifications

Parameter	$+25^{\circ} \mathrm{C}$	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	Unit	Test Conditions/Comments
ANALOG SWITCH Analog Signal Range On Resistance, R_{ON}	0.50	0.8	0 V to $\mathrm{V}_{\mathrm{DD}}-2 \mathrm{~V}$	$\begin{aligned} & V \\ & \Omega \text { typ } \end{aligned}$	$V_{D D}=10.8 \mathrm{~V}, \mathrm{~V}_{S S}=0 \mathrm{~V}$ Source voltage $\left(\mathrm{V}_{\mathrm{S}}\right)=0 \mathrm{~V}$ to 7.3 V , source current (I_{s}) $=-100 \mathrm{~mA}$, see Figure 31
	$\begin{aligned} & 0.65 \\ & 0.54 \end{aligned}$		0.95	$\begin{aligned} & \Omega \max \\ & \Omega \text { typ } \end{aligned}$	$V_{S}=0 \mathrm{~V}$ to $8.3 \mathrm{~V}, \mathrm{I}_{\mathrm{S}}=-100 \mathrm{~mA}$
	$\begin{array}{\|l} 0.7 \\ 0.003 \end{array}$	0.85	1.0	$\begin{aligned} & \Omega \max \\ & \Omega \text { typ } \end{aligned}$	$V_{S}=0 \mathrm{~V}$ to $8.3 \mathrm{~V}, \mathrm{I}_{\mathrm{S}}=-100 \mathrm{~mA}$
On-Resistance Flatness, $\mathrm{R}_{\mathrm{FLAT}(\mathrm{ON})}$	$\begin{aligned} & 0.085 \\ & 0.003 \end{aligned}$	0.1	0.1	$\begin{aligned} & \Omega \max \\ & \Omega \text { typ } \end{aligned}$	$\mathrm{V}_{S}=0 \mathrm{~V}$ to $7.3 \mathrm{~V}, \mathrm{I}_{\mathrm{S}}=-100 \mathrm{~mA}$
	0.035	0.035	0.035	Ω max	
	$\begin{aligned} & 0.04 \\ & 0.08 \end{aligned}$	0.1	0.1	$\begin{aligned} & \Omega \text { typ } \\ & \Omega \text { max } \end{aligned}$	$V_{S}=0 \mathrm{~V}$ to 8.3 $\mathrm{V}, \mathrm{I}_{\mathrm{S}}=-100 \mathrm{~mA}$
LEAKAGE CURRENTS Source Off Leakage, Is (Off)	± 1.7	+40/-5.5	+120/-5.5	nA typ nA max nA typ	$\begin{aligned} & V_{D D}=13.2 \mathrm{~V}, \mathrm{~V}_{\mathrm{SS}}=0 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{S}}=1 \mathrm{~V} / 10 \mathrm{~V} \text {, drain voltage }\left(\mathrm{V}_{\mathrm{D}}\right)= \\ & 10 \mathrm{~V} / 1 \mathrm{~V} \text {, see Figure } 34 \end{aligned}$
	± 4.0				
Drain Off Leakage, I_{D} (Off)	± 1.7				$\mathrm{V}_{\mathrm{S}}=1 \mathrm{~V} / 10 \mathrm{~V}, \mathrm{~V}_{\mathrm{D}}=10 \mathrm{~V} / 1 \mathrm{~V}$, see Figure 34

SPECIFICATIONS

Table 3. 12 V Single-Supply Specifications (Continued)

SPECIFICATIONS

DUAL AND ASYMMETRIC SUPPLY

$V_{D D}=+5 \mathrm{~V} \pm 10 \%, V_{S S}=-5 \mathrm{~V}$ to $-12 \mathrm{~V} \pm 10 \%, G N D=0 \mathrm{~V}$, unless otherwise noted.
Table 4. Dual and Asymmetric Supply Specifications

Parameter	$+25^{\circ} \mathrm{C}$	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	Unit	Test Conditions/Comments
ANALOG SWITCH Analog Signal Range On Resistance, RoN On-Resistance Match Between Channels, $\Delta \mathrm{R}_{\mathrm{ON}}$ On-Resistance Flatness, $\mathrm{R}_{\mathrm{FLAT}}$ (ON)	0.50 0.65 0.54 0.70 0.003 0.085 0.003 0.035 0.04 0.08	0.8 0.85 0.1 0.035 0.1	$\begin{aligned} & V_{D D}-2 \mathrm{~V} \text { to } \mathrm{V}_{S S} \\ & 0.95 \\ & 1.0 \\ & 0.1 \\ & 0.035 \\ & 0.1 \end{aligned}$	V Ω typ Ω max	$\begin{aligned} & V_{D D}=+4.5 \mathrm{~V}, V_{S S}=-13.2 \mathrm{~V} \\ & \text { Source voltage }\left(V_{S}\right)=V_{S S} \text { to }+1 \mathrm{~V}, \\ & \text { source current }\left(I_{S}\right)=-100 \mathrm{~mA}, \text { see } \\ & \text { Figure } 31 \\ & V_{S}=V_{S S} \text { to }+2 \mathrm{~V}, \mathrm{I}_{S}=-100 \mathrm{~mA} \\ & V_{S}=V_{S S} \text { to }+2 \mathrm{~V}, \mathrm{I}_{S}=-100 \mathrm{~mA} \\ & V_{S}=V_{S S} \text { to }+1 \mathrm{~V}, \mathrm{I}_{S}=-100 \mathrm{~mA} \\ & V_{S}=V_{S S} \text { to }+2 \mathrm{~V}, \mathrm{I}_{\mathrm{S}}=-100 \mathrm{~mA} \end{aligned}$
LEAKAGE CURRENTS Source Off Leakage, IS (Off) Drain Off Leakage, I_{D} (Off) Channel On Leakage, $I_{D}(O n), I_{S}(O n)$	$\begin{aligned} & \pm 1.7 \\ & \pm 4.0 \\ & \pm 1.7 \\ & \pm 4.0 \\ & \pm 0.1 \\ & \pm 1.3 \end{aligned}$	$\begin{aligned} & +40 /-5.5 \\ & +40 /-5.5 \\ & \pm 3 \end{aligned}$	$\begin{aligned} & +120 /-5.5 \\ & +120 /-5.5 \\ & +12.5 /-3 \end{aligned}$	nA typ nA max nA typ nA max nA typ nA max	$\begin{aligned} & V_{D D}=+5.5 \mathrm{~V}, V_{S S}=-13.2 \mathrm{~V} \\ & V_{S}=+1 \mathrm{~V} \text { or }-10 \mathrm{~V}, \mathrm{~V}_{\mathrm{D}}=-10 \mathrm{~V} \text { or }+1 \mathrm{~V}, \end{aligned}$ see Figure 34 $V_{S}=+1 \mathrm{~V} \text { or }-10 \mathrm{~V}, \mathrm{~V}_{\mathrm{D}}=-10 \mathrm{~V} \text { or }+1 \mathrm{~V} \text {, }$ see Figure 34 $V_{S}=V_{D}=+3 \mathrm{~V} \text { or }-10 \mathrm{~V} \text {, see Figure } 30$
DIGITAL INPUTS Input High Voltage, $\mathrm{V}_{\mathrm{INH}}$ Input Low Voltage, $\mathrm{V}_{\mathrm{INL}}$ Input Current, $l_{I_{N L}}$ or or l_{NH} Digital Input Capacitance, C_{N}	$\begin{gathered} 0.01 \\ 4.6 \end{gathered}$		$\begin{aligned} & 1.3 \\ & 0.8 \end{aligned}$ ± 0.15	V min V max $\mu \mathrm{A}$ typ $\mu \mathrm{A}$ max pF typ	Input voltage $\left(\mathrm{V}_{\mathbb{I N}}\right)=\mathrm{GND}$ voltage $\left(V_{G N D}\right)$ or $V_{D D}$
DYNAMIC CHARACTERISTICS On Time, t_{ON} Off Time, toff Charge Injection, $Q_{\mathbb{I N J}}$ Off Isolation Channel-to-Channel Crosstalk Total Harmonic Distortion + Noise, THD + N Total Harmonic Distortion, THD	$\begin{aligned} & 333 \\ & 398 \\ & 250 \\ & 292 \\ & -1.94 \\ & -70 \\ & -105 \\ & 0.002 \\ & \\ & -126 \\ & -103 \end{aligned}$	442 297	483 301	ns typ ns max ns typ ns max nC typ dB typ dB typ \% typ dB typ dB typ	$V_{D D}=+5 \mathrm{~V}, \mathrm{~V}_{S S}=-12 \mathrm{~V}$ Load resistance $\left(R_{L}\right)=300 \Omega$, load capacitance $\left(C_{L}\right)=35 \mathrm{pF}$ $\mathrm{V}_{\mathrm{S}}=1.5 \mathrm{~V}$, see Figure 37 $R_{L}=300 \Omega, C_{L}=35 \mathrm{pF}$ $V_{S}=1.5 \mathrm{~V}$, see Figure 37 $V_{S}=-3 \mathrm{~V}, R_{S}=0 \Omega, C_{L}=1 \mathrm{nF}$, see Figure 38 $R_{L}=50 \Omega, C_{L}=5 p F$, frequency $=100$ kHz , see Figure 33 $R_{L}=50 \Omega, C_{L}=5 p F$, frequency $=100$ kHz , see Figure 32 $R_{L}=1 \mathrm{k} \Omega, 3 \mathrm{~V}$-p, frequency $=20 \mathrm{~Hz}$ to 20 kHz , see Figure 35 $R_{L}=1 \mathrm{k} \Omega, 3 \mathrm{~V}-\mathrm{p}$, frequency $=1 \mathrm{kHz}$ $R_{L}=1 \mathrm{k} \Omega, 3 \mathrm{~V}-\mathrm{p}$, frequency $=20 \mathrm{kHz}$

SPECIFICATIONS

Table 4. Dual and Asymmetric Supply Specifications (Continued)

Parameter	$+25^{\circ} \mathrm{C}$	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	Unit	Test Conditions/Comments
	-89			dB typ	$\mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega, 3 \mathrm{~V}$ p-p, frequency $=100 \mathrm{kHz}$
-3 dB Bandwidth	124			MHz typ	$R_{L}=50 \Omega, C_{L}=5 \mathrm{pF} \text {, signal }=0 \mathrm{dBm} \text {, }$ see Figure 36
Insertion Loss	-0.05			dB typ	$R_{L}=50 \Omega, C_{L}=5 \mathrm{pF} \text {, frequency }=1$ MHz see Figure 36
Source Off Capacitance, C_{S} (Off)	105			pF typ	$V_{S}=0 \mathrm{~V}$, frequency $=1 \mathrm{MHz}$
Drain Off Capacitance, C_{D} (Off)	105			pF typ	$\mathrm{V}_{S}=0 \mathrm{~V}$, frequency $=1 \mathrm{MHz}$
Drain On Capacitance, $C_{D}(O n)$, Source On Capacitance, C_{S} (On)	39			pF typ	$V_{S}=0 \mathrm{~V}$, frequency $=1 \mathrm{MHz}$
Match On Capacitance, $\mathrm{C}_{\text {Match }}(\mathrm{On})$	0.94			pF typ	$\mathrm{V}_{S}=0 \mathrm{~V}$, frequency $=1 \mathrm{MHz}$
POWER REQUIREMENTS			260	$\mu \mathrm{A}$ typ	$\mathrm{V}_{\mathrm{DD}}=+5.5 \mathrm{~V}, \mathrm{~V}_{S S}=-13.2 \mathrm{~V}$
Power Supply Current, ID	170				Digital inputs $=0 \mathrm{~V}$ or 5 V
	260			$\mu \mathrm{A}$ max	
	225			$\mu \mathrm{A}$ typ	Digital inputs $=1.3 \mathrm{~V}$
	330		330	$\mu \mathrm{A}$ max	
Negative Supply Current, ISS	85			$\mu \mathrm{A}$ typ	Digital inputs $=0 \mathrm{~V}$ or 5 V
	140		140	$\mu \mathrm{A}$ max	

CONTINUOUS CURRENT PER CHANNEL, Sx OR Dx

Table 5. One Channel On, Per Channel Specifications

Parameter	$25^{\circ} \mathrm{C}$	$85^{\circ} \mathrm{C}$	$125^{\circ} \mathrm{C}$	Unit	Test Conditions/Comments
CONTINUOUS CURRENT, Sx OR Dx					
$\begin{array}{r} V_{D D}=+15 \mathrm{~V}, V_{S S}=-15 \mathrm{~V} \\ \operatorname{LFCSP}\left(\theta_{\mathrm{JA}}=44^{\circ} \mathrm{C} / \mathrm{W}\right) \end{array}$	847	325	123	mA maximum	$V_{S}=V_{S S}$ to $\mathrm{V}_{\mathrm{DD}}-3.5 \mathrm{~V}$
$\begin{aligned} & V_{D D}=12 \mathrm{~V}, \mathrm{~V}_{S S}=0 \mathrm{~V} \\ & \quad \operatorname{LFCSP}\left(\theta_{\mathrm{JA}}=44^{\circ} \mathrm{C} / \mathrm{W}\right) \end{aligned}$	847	325	123	mA maximum	$V_{S}=V_{S S} \text { to } V_{D D}-3.5 \mathrm{~V}$
$\begin{aligned} & V_{D D}=+5 \mathrm{~V}, V_{S S}=-5 \mathrm{~V} \\ & \quad \operatorname{LFCSP}\left(\theta_{\mathrm{JA}}=44^{\circ} \mathrm{C} / \mathrm{W}\right) \end{aligned}$	847	325	123	mA maximum	$V_{S}=V_{S S}$ to $V_{D D}-3.5 \mathrm{~V}$
$\begin{aligned} & V_{D D}=+5 \mathrm{~V}, \mathrm{~V}_{\mathrm{SS}}=-12 \mathrm{~V} \\ & \quad \operatorname{LFCSP}\left(\theta_{\mathrm{JA}}=44^{\circ} \mathrm{C} / \mathrm{W}\right) \end{aligned}$	847	325	123	mA maximum	$V_{S}=V_{S S} \text { to } V_{D D}-3.5 \mathrm{~V}$

Table 6. Two Channels On, Per Channel Specifications

Parameter	$25^{\circ} \mathrm{C}$	$85^{\circ} \mathrm{C}$	$125^{\circ} \mathrm{C}$	Unit	Test Conditions/Comments
CONTINUOUS CURRENT, Sx OR Dx $V_{D D}=+15 \mathrm{~V}, \mathrm{~V}_{S S}=-15 \mathrm{~V}$ LFCSP $\left(\theta_{J A}=44^{\circ} \mathrm{C} / \mathrm{W}\right)$					
$V_{D D}=12 \mathrm{~V}, \mathrm{~V}_{S S}=0 \mathrm{~V}$					
LFCSP $\left(\theta_{J A}=44^{\circ} \mathrm{C} / \mathrm{W}\right)$	646	289	120	mA maximum	$V_{S}=V_{S S}$ to $V_{D D}-3.5 \mathrm{~V}$
$V_{D D}=+5 \mathrm{~V}, V_{S S}=-5 \mathrm{~V}$					
LFCSP $\left(\theta_{J A}=44^{\circ} \mathrm{C} / \mathrm{W}\right)$	646	289	120	mA maximum	$V_{S}=V_{S S}$ to $V_{D D}-3.5 \mathrm{~V}$
$V_{D D}=+5 \mathrm{~V}, V_{S S}=-12 \mathrm{~V}$	646	289	120	mA maximum	$V_{S}=V_{S S}$ to $V_{D D}-3.5 \mathrm{~V}$
LFCSP $\left(\theta_{J A}=44^{\circ} \mathrm{C} / \mathrm{W}\right)$	646	289	120	mA maximum	$V_{S}=V_{S S}$ to $V_{D D}-3.5 \mathrm{~V}$

Table 7. Three Channels On, Per Channel Specifications

Parameter	$25^{\circ} \mathrm{C}$	$85^{\circ} \mathrm{C}$	$125^{\circ} \mathrm{C}$	Unit	Test Conditions/Comments
CONTINUOUS CURRENT, Sx OR Dx					
$V_{D D}=+15 \mathrm{~V}, \mathrm{~V}_{S S}=-15 \mathrm{~V}$					
LFCSP $\left(\theta_{J A}=44^{\circ} \mathrm{C} / \mathrm{W}\right)$	548	265	117	mA maximum	$\mathrm{V}_{S}=V_{S S}$ to $V_{D D}-3.5 \mathrm{~V}$

SPECIFICATIONS

Table 7. Three Channels On, Per Channel Specifications (Continued)

Parameter	$25^{\circ} \mathrm{C}$	$85^{\circ} \mathrm{C}$	$125^{\circ} \mathrm{C}$	Unit	Test Conditions/Comments
$V_{D D}=12 \mathrm{~V}, \mathrm{~V}_{S S}=0 \mathrm{~V}$					
LFCSP $\left(\theta_{J A}=44^{\circ} \mathrm{C} / \mathrm{W}\right)$	548	265	117	mA maximum	$V_{S}=V_{S S}$ to $V_{D D}-3.5 \mathrm{~V}$
$V_{D D}=+5 \mathrm{~V}, \mathrm{~V}_{S S}=-5 \mathrm{~V}$					
LFCSP $\left(\theta_{J A}=44^{\circ} \mathrm{C} / \mathrm{W}\right)$	548	265	117	mA maximum	$V_{S}=V_{S S}$ to $V_{D D}-3.5 \mathrm{~V}$
$V_{D D}=+5 \mathrm{~V}, V_{S S}=-12 \mathrm{~V}$					
LFCSP $\left(\theta_{J A}=44^{\circ} \mathrm{C} / \mathrm{W}\right)$	548	265	117	mA maximum	$V_{S}=V_{S S}$ to $V_{D D}-3.5 \mathrm{~V}$

Table 8. Four Channels On, Per Channel Specifications

Parameter	$25^{\circ} \mathrm{C}$	$85^{\circ} \mathrm{C}$	$125^{\circ} \mathrm{C}$	Unit	Test Conditions/Comments
CONTINUOUS CURRENT, Sx OR Dx $V_{D D}=+15 \mathrm{~V}, V_{S S}=-15 \mathrm{~V}$ LFCSP $\left(\theta_{J A}=44^{\circ} \mathrm{C} / \mathrm{W}\right)$ $V_{D D}=12 \mathrm{~V}, V_{S S}=0 \mathrm{~V}$ LFCSP $\left(\theta_{J A}=44^{\circ} \mathrm{C} / \mathrm{W}\right)$					
$V_{D D}=+5 \mathrm{~V}, V_{S S}=-5 \mathrm{~V}$					
LFCSP $\left(\theta_{J A}=44^{\circ} \mathrm{C} / \mathrm{W}\right)$	488	248	115	mA maximum	$V_{S}=V_{S S}$ to $V_{D D}-3.5 \mathrm{~V}$
$V_{D D}=+5 \mathrm{~V}, V_{S S}=-12 \mathrm{~V}$					
LFCSP $\left(\theta_{J A}=44^{\circ} \mathrm{C} / \mathrm{W}\right)$	488	248	115	mA maximum	$V_{S}=V_{S S}$ to $V_{D D}-3.5 \mathrm{~V}$

ABSOLUTE MAXIMUM RATINGS

$T_{A}=25^{\circ} \mathrm{C}$, unless otherwise noted.
Table 9. Absolute Maximum Ratings

Parameter	Rating
$V_{D D}$ to $V_{S S}$	35 V
$V_{D D}$ to GND	-0.3 V to +25 V
$V_{\text {SS }}$ to GND	+0.3 V to -25 V
Analog Inputs ${ }^{1}$	$V_{S S}-0.3 \mathrm{~V} \text { to } \mathrm{V}_{\mathrm{DD}}+0.3 \mathrm{~V} \text { or } 30 \mathrm{~mA},$ whichever occurs first
Digital Inputs ${ }^{1}$	GND -0.3 V to +6 V or 30 mA , whichever occurs first
Peak Current, Sx or Dx Pins ${ }^{2}$	2.6 A (pulsed at $1 \mathrm{~ms}, 10 \%$ duty cycle maximum)
Continuous Current, Sx or Dx ${ }^{2}$	Data ${ }^{3}+15 \%$
Temperature	
Operating Range	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Storage Range	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Junction	$150^{\circ} \mathrm{C}$
Reflow Soldering Peak, Pb-Free	As per JEDEC J-STD-020

${ }^{1}$ Overvoltages at the $\mathrm{INx}, \mathrm{Sx}$, and Dx pins are clamped by internal diodes. Limit current to the maximum ratings given.
${ }^{2} S x$ refers to the $S 1$ to $S 4$ pins, and $D x$ refers to the $D 1$ to $D 4$ pins.
${ }^{3}$ See Table 5 to Table 8.
Stresses at or above those listed under Absolute Maximum Ratings may cause permanent damage to the product. This is a stress rating only; functional operation of the product at these or any other conditions above those indicated in the operational section of this specification is not implied. Operation beyond the maximum operating conditions for extended periods may affect product reliability.

Only one absolute maximum rating can be applied at any one time.

THERMAL RESISTANCE

Thermal performance is directly linked to printed circuit board (PCB) design and operating environment. Careful attention to PCB thermal design is required.
θ_{JA} is the natural convection junction-to-ambient thermal resistance measured in a one cubic foot sealed enclosure, and θ_{JCB} is the junction to the bottom of the case value.
Table 10. Thermal Resistance

Package Type	$\theta_{\text {JA }}$	$\theta_{\text {JCB }}$	Unit			
CP-16-17 ${ }^{1}$	44	17.4	${ }^{\circ}$ C/W			
						Thermal impedance simulated values are based on JEDEC 2 S2P thermal test
:---						
board without thermal vias. See JEDEC JESD-51.						

ELECTROSTATIC DISCHARGE (ESD) RATINGS

The following ESD information is provided for handling of ESD-sensitive devices in an ESD protected area only.

Human body model (HBM) per ANSI/ESDA/JEDEC JS-001.
Field induced charged-device model (FICDM) per ANSI/ESDA/JEDEC JS-002.

ESD Ratings for the ADG2412
Table 11. ADG2412, 16-Lead LFCSP

ESD Model	Withstand Threshold (V)	Class
HBM	± 2000	2
FICDM	± 1250	C3

ESD CAUTION

	ESD (electrostatic discharge) sensitive device. Charged devi- ces and circuit boards can discharge without detection. Although this product features patented or proprietary protection circuitry, damage may occur on devices subjected to high energy ESD. Therefore, proper ESD precautions should be taken to avoid performance degradation or loss of functionality.

PIN CONFIGURATION AND FUNCTION DESCRIPTIONS

Figure 2. Pin Configuration

Table 12. Pin Function Descriptions

Pin Number	Mnemonic	Description
1	S1	Source Terminal 1. This pin can be an input or output.
2	VSS	Most Negative Power-Supply Potential. Decouple the $V_{S S}$ pin using a 0.1μ F capacitor to GND.
3	GND	Ground (O V) Reference.
4	S4	Source Terminal 4. This pin can be an input or output.
5	D4	Drain Terminal 4. This pin can be an input or output.
6	IN4	Logic Control Input 4.
7	IN3	Logic Control Input 3.
8	D3	Drain Terminal 3. This pin can be an input or output.
9	S3	Source Terminal 3. This pin can be an input or output.
10	NIC	Not Internally Connected.
11	VDD	Most Positive Power-Supply Potential. Decouple the $V_{\text {DD }}$ pin using a $0.1 \mu \mathrm{~F}$ capacitor to GND.
12	S2	Source Terminal 2. This pin can be an input or output.
13	D2	Drain Terminal 2. This pin can be an input or output.
14	IN2	Logic Control Input 2.
15	IN1	Logic Control Input 1.
16	D1	Drain Terminal 1. This pin can be an input or output.
EP	Exposed Pad	The exposed pad is connected internally. For increased reliability of the solder joints and maximum thermal
		capability, it is recommended that the pad be soldered to the substrate, VSS.

Table 13. ADG2412 Truth Table

INx	Switch Condition
1	On
0	Off

TYPICAL PERFORMANCE CHARACTERISTICS

Figure 3. R_{ON} as a Function of V_{S}, V_{D} (Dual Supply)

Figure 4. $R_{O N}$ as a Function of V_{S}, V_{D} (Dual Supply)

Figure 5. $R_{O N}$ as a Function of V_{S}, V_{D} (Dual Supply)

Figure 6. $R_{O N}$ as a Function of V_{S}, V_{D} (Single Supply)

Figure 7. $R_{O N}$ as a Function of $V_{S}\left(V_{D}\right)$ for Different Temperatures, $\pm 15 \mathrm{~V}$ Dual Supply

Figure 8. $R_{O N}$ as a Function of $V_{S}\left(V_{D}\right)$ for Different Temperatures, $\pm 5 \mathrm{~V}$ Dual Supply

TYPICAL PERFORMANCE CHARACTERISTICS

Figure 9. $R_{O N}$ as a Function of $V_{S}\left(V_{D}\right)$ for Different Temperatures, $+5 \mathrm{~V},-12 \mathrm{~V}$ Dual Supply

Figure 10. $R_{O N}$ as a Function of $V_{S}\left(V_{D}\right)$ for Different Temperatures, +12 V Single Supply

Figure 11. On Leakage Currents vs. Temperature, $\ddagger 15$ V Dual Supply

Figure 12. On Leakage Currents vs. Temperature, +12 V Single Supply

Figure 13. On Leakage Currents vs. Temperature, ± 5 V Dual Supply

Figure 14. On Leakage Currents vs. Temperature, +5 V, -12 V Dual Supply

TYPICAL PERFORMANCE CHARACTERISTICS

Figure 15. Off Leakage Currents vs. Temperature, ± 15 V Dual Supply

Figure 16. Off Leakage Currents vs. Temperature, +12 V Single Supply

Figure 17. Off Leakage Currents vs. Temperature, ± 5 V Dual Supply

Figure 18. Off Leakage Currents vs. Temperature, +5 V, -12 V Dual Supply

Figure 19. Crosstalk vs. Frequency, ± 15 V Dual Supply

Figure 20. Off Isolation vs. Frequency, ± 15 V Dual Supply

ADG2412

TYPICAL PERFORMANCE CHARACTERISTICS

Figure 21. Charge Injection vs. V_{S}

Figure 22. AC PSRR vs. Frequency, ± 15 V Dual Supply

Figure 23. Insertion Loss vs. Frequency

Figure 24. THD vs. Frequency, ± 15 V Dual Supply

Figure 25. THD $+N$ vs. Frequency, ± 15 V Dual Supply

Figure 26. Large AC Signal Voltage vs. Frequency

TYPICAL PERFORMANCE CHARACTERISTICS

Figure 27. Capacitance vs. $\mathrm{V}_{\mathrm{S}}, \pm 15 \mathrm{~V}$ Dual Supply

Figure 28. $t_{0 N}, t_{0 F F}$ Times vs. Temperature

Figure 29. Continuous Current vs. Temperature, Various Number of Switch Channels in Parallel

TEST CIRCUITS

Figure 30. On Leakage

Figure 31. On Resistance

CHANNEL-TO-CHANNEL CROSSTALK $=20 \log \frac{\mathrm{~V}_{\text {OUT }}}{\mathrm{V}_{\text {S }}}$
웅
Figure 32. Channel-to-Channel Crosstalk

Figure 33. Off Isolation

TEST CIRCUITS

Figure 37. Switching Times

Figure 38. Charge Injection

TERMINOLOGY

$I_{D D}$

The positive supply current.

$I_{s s}$

The negative supply current.

V_{D} and V_{S}

The analog voltage on Terminal D and Terminal S , respectively.

$\mathrm{V}_{\text {TRACK }}$

The difference between V_{S} and V_{D}.

R_{ON}

The ohmic resistance between Terminal D and Terminal S .

$\Delta \mathbf{R}_{\text {on }}$

The difference between the $R_{O N}$ of any two channels.

$\mathrm{R}_{\text {FLAT(ON) }}$

The difference between the maximum and minimum value of on resistance measured over the specified analog signal range.

I_{S} (Off)

The source leakage current with the switch off.

I_{D} (Off)

The drain leakage current with the switch off.

$\mathrm{I}_{\mathrm{D}}(\mathrm{On})$ and $\mathrm{I}_{\mathrm{S}}(\mathrm{On})$

The channel leakage current with the switch on.
$\mathrm{V}_{\text {INL }}$
The maximum input voltage for Logic 0 .
$\mathrm{V}_{\mathrm{INH}}$
The minimum input voltage for Logic 1.

$\mathrm{I}_{\mathrm{INL}}$ and $\mathrm{I}_{\mathrm{INH}}$

The input current of the digital input when high or when low.

C_{S} (Off) and C_{D} (Off)

The off switch source and drain capacitance for the off condition, which is measured with reference to ground.

C_{D} (On) and C_{S} (On)

The on switch drain and source capacitance for the on condition, which is measured with reference to ground.
C_{IN}
The digital input capacitance.

$t_{\text {ON }}$

The delay between applying the digital control input and the output switching on.

$t_{\text {OFF }}$

The delay between applying the digital control input and the output switching off.

t_{D}

The off-time measured between the 80% point of both switches when switching from one address state to another.

Off Isolation

A measure of unwanted signal coupling through an off switch.

Charge Injection

A measure of the glitch impulse transferred from the digital input to the analog output during switching.

Channel-to-Channel Crosstalk

A measure of unwanted signal that is coupled through from one channel to another as a result of parasitic capacitance.

Bandwidth

The frequency at which the output is attenuated by 3 dB .

On Response

The frequency response of the on switch.

Insertion Loss

The loss due to the on resistance of the switch.

Total Harmonic Distortion + Noise (THD + N)

The ratio of the harmonic amplitude plus noise of the signal to the fundamental.

AC Power Supply Rejection Ratio (AC PSRR)

The ratio of the amplitude of signal on the output to the amplitude of the modulation. This is a measure of the ability of the part to avoid coupling noise and spurious signals that appear on the supply voltage pin to the output of the switch. The DC voltage on the device is modulated by a sine wave of 0.62 V p-p.

THEORY OF OPERATIONS

SWITCH ARCHITECTURE

The ADG2412 contains four independent SPST, N-channel diffused metal-oxide semiconductor (NDMOS) switches, which allows for an excellent R_{ON} performance. Using an NDMOS only architecture results in a reduction of signal headroom, meaning signals are limited to $\mathrm{V}_{D D}-2 \mathrm{~V}$. To achieve the lowest on resistance, on-resistance flatness, and total harmonic distortion, it is recommended the signal stays less than $\mathrm{V}_{\mathrm{DD}}-3.5 \mathrm{~V}$.
To guarantee correct operation of the ADG2412, a minimum of 0.1 $\mu \mathrm{F}$ decoupling capacitors are required on both the V_{DD} and $\mathrm{V}_{S S}$ supply pins.
The ADG2412 is compatible with single-supply systems that have a $V_{D D}$ of up to 16.5 V , dual-supply systems of up to $\pm 16.5 \mathrm{~V}$, as well as asymmetric power supplies.

1.8 V LOGIC COMPATIBILITY

For ease of use, the ADG2412 does not have a V_{L} logic reference voltage. The digital inputs are compatible with 1.8 V logic levels over the full-operating supply range. The limits for 1.8 V logic are: $\mathrm{V}_{\mathbb{I N H}}=1.3 \mathrm{~V}, \mathrm{~V}_{\mathbb{N L}}=0.8 \mathrm{~V} .1 .8 \mathrm{~V}$ logic-level inputs enable the ADG2412 to be compatible with processors that have lower supply rails, eliminating the need for an external translator.

If full 1.8 V and 1.2 V JEDEC compliance is required, refer to the Analog Devices, Inc., L range part numbers, such as the ADG1412L.

APPLICATIONS INFORMATION

LARGE VOLTAGE, HIGH FREQUENCY SIGNAL TRACKING

Figure 26 shows the voltage range and corresponding frequencies that the ADG2412 can reliably convey. The tracking voltage ($V_{\text {TRACK }}$) in the figure shows the source voltage and the drain voltage difference, which is less than 50 mV for a given amplitude and frequency. For large voltage, high frequency signals, the frequency must be kept below 10 MHz . If the required frequency is greater than 10 MHz , decrease the signal range appropriately to ensure signal integrity.

POWER SUPPLY RECOMMENDATIONS

Analog Devices has a wide range of power management products to meet the requirements of high performance signal chains.
An example of a bipolar solution is shown in Figure 39. The LT3463 (a dual switching regulator), generates a positive and negative supply rail for the ADG2412, an amplifier, and/or a precision converter in a typical signal chain. Also, two optional low-dropout regulators (LDOs), the ADP7142 and the ADP7182 (positive and negative LDOs, respectively) are shown in Figure 39, which can reduce the output ripple of the LT3463 in ultra-low noise sensitive applications.

Figure 39. Bipolar Power Solution
Table 14. Recommended Power Management Devices

Product	Description
LT3463	Dual micropower, DC to DC converter with Schottky diodes
ADP7142	$40 \mathrm{~V}, 200 \mathrm{~mA}$, low noise, CMOS, LDO linear regulator
ADP7182	$-28 \mathrm{~V},-200 \mathrm{~mA}$, low noise, LDO linear regulator

HIGH-CURRENT DRIVE AND PRECISION CURRENT-SENSE

Figure 40 shows an example application for the ADG2412. In automated test equipment (ATE) and instrumentation applications, when driving a current to a device under test (DUT), there is a requirement to have multiple sense resistors for multiple current ranges to facilitate large current output ranges from micro amps to amps. The low on-resistance of the ADG2412 is ideally suited to switching the force current output path in this application because it allows for high continuous current carrying as seen in Table 5 to Table 8.

Figure 40. High-Current Drive and Precision Current-Sense Application

DIGITAL AUDIO CHANNEL TO ULTRA-LOW THD

Figure 41 shows an example application for the ADG2412. For precision audio signal chains, THD is a key specification. The THD performance of a switch is related to the on-resistance flatness, and the ADG2412 has exceptionally low on-resistance flatness of approximately $3 \mathrm{~m} \Omega$. Here, the ADG2412 is set up as a gain selection switch for an audio preamplifier to allow flexibility for the user to select multiple gain ranges. The THD performance of the ADG2412 maximizes the signal fidelity, and the low on-resistance minimizes any gain error in the system.

Figure 41. Digital Audio Channel to Ultra-Low THD Application

OUTLINE DIMENSIONS

COMPLIANT TO JEDEC STANDARDS MO-220-WGGC.
Figure 42. 16-Lead Lead Frame Chip Scale Package [LFCSP] $4 \mathrm{~mm} \times 4 \mathrm{~mm}$ Body and 0.75 mm Package Height (CP-16-17)
Dimensions shown in millimeters
Updated: December 16, 2022

ORDERING GUIDE

Model 1	Temperature Range	Package Description	Packing Quantity	Package Option
ADG2412BCPZ-REEL7	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	LFCSP:LEADFRM CHIP SCALE	Reel, 1500	CP-16-17

$1 \mathrm{Z}=$ RoHS-Compliant Part.

EVALUATION BOARDS

Table 15. Evaluation Boards

Model 1	Description
EVAL-ADG2412EBZ	Evaluation Board
${ }^{1} \mathrm{Z}=$ RoHS-Compliant Part.	

