Low Capacitance, 16-Channel and 8-Channel iCMOS Multiplexers with 1.2 V and 1.8 V JEDEC Logic Compliance
 FEATURES
 FUNCTIONAL BLOCK DIAGRAMS

- <1 pC charge injection over full signal range
- 1.5 pF off capacitance
- 120Ω on resistance
- Fully specified at $\pm 15 \mathrm{~V} /+12 \mathrm{~V}$
- V_{L} supply for low logic-level compatibility
- 1.8 V JEDEC standard compliant (JESD8-7A)
- 1.2 V JEDEC standard compliant (JESD8-12A.01)
- Rail-to-rail operation
- Break-before-make switching action
- 32-lead, $5 \mathrm{~mm} \times 5 \mathrm{~mm}$ LFCSP

APPLICATIONS

- Audio and video routing
- Automatic test equipment
- Data acquisition systems
- Battery-powered systems
- Sample-and-hold systems
- Communication systems
- FPGA and microcontroller systems

GENERAL DESCRIPTION

The ADG1206L/ADG1207L are monolithic ICMOS® analog multiplexers comprising sixteen single channels and eight differential channels, respectively. The ADG1206L switches one of sixteen inputs to a common output, as determined by the 4 -bit binary address lines A0, A1, A2, and A3. The ADG1207L switches one of eight differential inputs to a common differential output, as determined by the 3-bit binary address lines A0, A1, and A2. An EN input on both devices is used to enable or disable the device. When disabled, all channels are switched off. When on, each channel conducts equally well in both directions and has an input signal range that extends to the supplies.
An external low voltage $\left(V_{L}\right)$ supply provides flexibility for lower logic control. The ADG1206L/ADG1207L are both 1.2 V and 1.8 V JEDEC standard compliant.

Figure 1. ADG1206L Functional Block Diagram

Figure 2. ADG1207L Functional Block Diagram

PRODUCT HIGHLIGHTS

1. Ultralow capacitance.
2. Guaranteed switch off when digital inputs are floating.

TABLE OF CONTENTS

Features 1
Applications 1
General Description 1
Functional Block Diagrams 1
Product Highlights 1
Specifications 3
Operating Supply Voltages 3
$\pm 15 \mathrm{~V}$ Dual Supply 3
12 V Single Supply 4
Continuous Current Per Channel, SxA, SxB, or Dx. 6
Absolute Maximum Ratings 7
Thermal Resistance 7
Electrostatic Discharge (ESD) Ratings 7
ESD Caution. 7
Pin Configurations and Function Descriptions 8
Typical Performance Characteristics 11
Test Circuits 15
Terminology 18
RON. 18
$\Delta \mathrm{R}_{\mathrm{ON}}$ 18
$\mathrm{R}_{\text {FLAT(ON) }}$ 18
I_{s} (Off). 18
I_{D} (Off) 18
$I_{D}, I_{S}(O n)$ 18
$V_{D}\left(V_{S}\right)$ 18
C_{S} (Off) 18
C_{D} (Off) 18
$\mathrm{C}_{\mathrm{D}}, \mathrm{C}_{\mathrm{S}}(\mathrm{On})$ 18
C_{IN}. 18
t_{ON} (EN). 18
toff (EN) 18
$\mathrm{t}_{\text {TRANSITION }}$ 18
$t_{\text {BBM }}$. 18
$V_{\text {INL }}$ 18
$V_{\text {INH }}$ 18
$\mathrm{I}_{\mathrm{ILL}}, \mathrm{I}_{\mathrm{INH}}$ 18
ID. 18
Iss 18
Off Isolation 18
Chanel-to-Channel Crosstalk 18
Charge Injection 18
-3 dB Bandwidth 18
On Response 18
Insertion Loss 18
Total Harmonic Distortion (THD). 18
Total Harmonic Distortion Plus Noise (THD +N) 18
AC Power Supply Rejection Ratio (ACPSRR) 18
Theory of Operations 20
Switch Architecture. 20
$V_{\text {L }}$ Flexibility 20
1.2 V and 1.8 V JEDEC Compliance 20
Initialization Time 20
Switches in a Known State 20
Applications Information 21
Field Programmable Gate Array (FPGA) Low Logic Compliance 21
V_{OH} and V_{OL}, and $\mathrm{V}_{\text {INH }}$ and $\mathrm{V}_{\text {INL }}$ Relationship 21
Power Supply Rails 21
Power Supply Recommendations. 22
Power Supply Sequencing 22
Outline Dimensions 23
Ordering Guide 23
Evaluation Boards 23

REVISION HISTORY

1/2023—Revision 0: Initial Version

SPECIFICATIONS

OPERATING SUPPLY VOLTAGES

Table 1.

Parameter	Min	Typ	Max	Unit

± 15 V DUAL SUPPLY

$V_{D D}=+15 \mathrm{~V} \pm 10 \%, \mathrm{~V}_{S S}=-15 \mathrm{~V} \pm 10 \%, \mathrm{GND}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{L}}=1.1 \mathrm{~V}$ to 1.95 V , unless otherwise noted.

Table 2.

Parameter	$+25^{\circ} \mathrm{C}$	$\begin{aligned} & -40^{\circ} \mathrm{C} \text { to } \\ & +85^{\circ} \mathrm{C} \end{aligned}$	$\begin{aligned} & -40^{\circ} \mathrm{C} \text { to } \\ & +125^{\circ} \mathrm{C} \end{aligned}$	Unit	Test Conditions/Comments
ANALOG SWITCH Analog Signal Range On Resistance (R_{ON}) On-Resistance Match Between Channels ($\Delta \mathrm{R}_{\mathrm{ON}}$) On-Resistance Flatness ($\mathrm{R}_{\mathrm{FLAT}}$) (On)	$\begin{aligned} & 120 \\ & 200 \\ & 3.5 \\ & 6 \\ & 20 \\ & 64 \end{aligned}$	240 10 76	$\begin{aligned} & V_{S S} \text { to } V_{D D} \\ & 270 \\ & 12 \\ & 83 \end{aligned}$	V Ω typ Ω max Ω typ Ω max Ω typ Ω max	$\begin{aligned} & V_{D D}=+13.5 \mathrm{~V}, \mathrm{~V}_{S S}=-13.5 \mathrm{~V} \\ & V_{S}= \pm 10 \mathrm{~V}, I_{S}=-1 \mathrm{~mA}, \text { see Figure } 27 \\ & V_{S}= \pm 10 \mathrm{~V}, I_{S}=-1 \mathrm{~mA} \\ & V_{S}= \pm 5 \mathrm{~V}, I_{S}=-1 \mathrm{~mA} \end{aligned}$
LEAKAGE CURRENTS Source Off Leakage (I_{s}) (Off) Drain Off Leakage (I_{D}) (Off) Channel On Leakage $\left(I_{D}, I_{S}\right)(O n)$	$\begin{aligned} & \pm 0.03 \\ & \pm 0.2 \\ & \pm 0.05 \\ & \pm 0.2 \\ & \pm 0.08 \\ & \pm 0.2 \end{aligned}$	± 0.6 ± 0.6 ± 0.6	± 1 ± 2 ± 2	nA typ nA max nA typ nA max nA typ nA max	$\begin{aligned} & V_{D D}=+16.5 \mathrm{~V}, V_{S S}=-16.5 \mathrm{~V} \\ & V_{D}= \pm 10 \mathrm{~V}, V_{S}=\mp 10 \mathrm{~V}, \text { see Figure } 28 \\ & V_{D}= \pm 10 \mathrm{~V}, V_{S}=\mp 10 \mathrm{~V} \text {, see Figure } 28 \\ & V_{S}=V_{D}= \pm 10 \mathrm{~V} \text {, see Figure } 29 \end{aligned}$
DIGITAL INPUTS Input High Voltage $\left(\mathrm{V}_{\mathbb{N H}}\right)$ Input Low Voltage ($\mathrm{V}_{\mathrm{INL}}$) Input High Current (linh) Input Low Current ($l_{\text {inc }}$) Digital Input Capacitance $\left(\mathrm{C}_{\mathbb{N}}\right)$	55 40 2.5 5		$\begin{aligned} & 0.65 \times V_{\mathrm{L}} \\ & 0.35 \times \mathrm{V}_{\mathrm{L}} \\ & 90 \\ & 65 \\ & 8 \end{aligned}$	V min V max $\mu \mathrm{A}$ typ $\mu \mathrm{A}$ max $\mu \mathrm{A}$ typ $\mu \mathrm{A}$ max $\mu \mathrm{A}$ typ $\mu \mathrm{A}$ max pF typ	$V_{A x}=V_{L}=1.8 \mathrm{~V}$, see the Theory of Operations section $V_{A x}=V_{L}=1.2 \mathrm{~V}$, see the Theory of Operations section $V_{A x}=0 \mathrm{~V}$
DYNAMIC CHARACTERISTICS					

SPECIFICATIONS

Table 2. (Continued)

Parameter	$+25^{\circ} \mathrm{C}$	$\begin{aligned} & -40^{\circ} \mathrm{C} \text { to } \\ & +85^{\circ} \mathrm{C} \end{aligned}$	$\begin{aligned} & -40^{\circ} \mathrm{C} \text { to } \\ & +125^{\circ} \mathrm{C} \end{aligned}$	Unit	Test Conditions/Comments
Transition Time (transition $^{\text {a }}$	120			ns typ	$\mathrm{R}_{\mathrm{L}}=300 \mathrm{~S}, \mathrm{C}_{\mathrm{L}}=35 \mathrm{pF}$
	154	182	204	ns max	$\mathrm{V}_{S}=10 \mathrm{~V}$, see Figure 30
Enable Delay On Time (ton) (EN)	96			ns typ	$\mathrm{R}_{\mathrm{L}}=300 \mathrm{~S}, \mathrm{C}_{\mathrm{L}}=35 \mathrm{pF}$
	120	133	147	ns max	$\mathrm{V}_{S}=10 \mathrm{~V}$, see Figure 32
Enable Delay Off Time ($\mathrm{t}_{\text {OFF }}$) (EN)	130			ns typ	$\mathrm{R}_{\mathrm{L}}=300 \Omega, \mathrm{C}_{\mathrm{L}}=35 \mathrm{pF}$
	156	180	196	ns max	$\mathrm{V}_{S}=10 \mathrm{~V}$, see Figure 32
Break-Before-Make Time Delay (tBBM)	25			ns typ	$\mathrm{R}_{\mathrm{L}}=300 \Omega, \mathrm{C}_{\mathrm{L}}=35 \mathrm{pF}$
			22	ns min	$\mathrm{V}_{S 1}=\mathrm{V}_{S 2}=10 \mathrm{~V}$, see Figure 31
Charge Injection	0.6			pC typ	$V_{S}=0 \mathrm{~V}, R_{S}=0 \Omega, C_{L}=1 \mathrm{nF}$, see Figure 33
Off Isolation	-79			dB typ	$R_{L}=50 \Omega, C_{L}=5 p F, f=1 \mathrm{MHz}$, see Figure 34
Channel-to-Channel Crosstalk	-75			dB typ	$R_{L}=50 \Omega, C_{L}=5 p F, f=1 \mathrm{MHz}$, see Figure 36
Total Harmonic Distortion (THD)	-57			dB typ	$\mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega, 5 \mathrm{~V}_{\text {RMS }}, \mathrm{f}=20 \mathrm{~Hz}$ to 20 kHz
Total Harmonic Distortion Plus Noise (THD+N)	0.15			\% typ	$\mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega, 5 \mathrm{~V}_{\text {RMS }}, \mathrm{f}=20 \mathrm{~Hz}$ to 20 kHz , see Figure 37
-3 dB Bandwidth, ADG1206L	280			MHz typ	$\mathrm{R}_{\mathrm{L}}=50 \Omega, C_{L}=5 \mathrm{pF}$, see Figure 35
-3 dB Bandwidth, ADG1207L	490			MHz typ	$R_{L}=50 \Omega, C_{L}=5 \mathrm{pF}$, see Figure 35
Insertion Loss	-6.5			dB typ	$R_{L}=50 \Omega, C_{L}=5 \mathrm{pF}$, see Figure 35
Source Off Capacitance (C_{S}) (Off)	1.5			pF typ	$V_{S}=0 \mathrm{~V}, \mathrm{f}=1 \mathrm{MHz}$
	2			pF max	$V_{S}=0 \mathrm{~V}, \mathrm{f}=1 \mathrm{MHz}$
Drain Off Capacitance (C_{D}) (Off), ADG1206L	11			pF typ	$V_{S}=0 \mathrm{~V}, \mathrm{f}=1 \mathrm{MHz}$
	12			pF max	$V_{S}=0 \mathrm{~V}, \mathrm{f}=1 \mathrm{MHz}$
Drain Off Capacitance (C_{D}) (Off), ADG1207L	7			pF typ	$V_{S}=0 \mathrm{~V}, \mathrm{f}=1 \mathrm{MHz}$
	9			pF max	$V_{S}=0 \mathrm{~V}, \mathrm{f}=1 \mathrm{MHz}$
Drain On Capacitance (C_{D}) (On), Source On Capacitance (C_{S}) (On), ADG1206L	13			pF typ	$\mathrm{V}_{S}=0 \mathrm{~V}, \mathrm{f}=1 \mathrm{MHz}$
	15			pF max	$V_{S}=0 \mathrm{~V}, \mathrm{f}=1 \mathrm{MHz}$
Drain On Capacitance (C_{D}) (On), Source On Capacitance (C_{S}) (On), ADG1207L	8			pF typ	$V_{S}=0 \mathrm{~V}, \mathrm{f}=1 \mathrm{MHz}$
	10			pF max	$\mathrm{V}_{S}=0 \mathrm{~V}, \mathrm{f}=1 \mathrm{MHz}$
POWER REQUIREMENTS Positive Supply Current (lod	55				$\mathrm{V}_{\text {DD }}=+16.5 \mathrm{~V}, \mathrm{~V}_{S S}=-16.5 \mathrm{~V}$
			95	$\mu \mathrm{A}$ typ	$\mathrm{V}_{\text {Ax }}=0 \mathrm{~V}$ or V_{L}
				$\mu \mathrm{A}$ max	
Negative Supply Current (l_{ss})	0.001			$\mu \mathrm{A}$ typ	$V_{\text {Ax }}=0 \mathrm{~V}$ or V_{L}
			1	$\mu \mathrm{A}$ max	
Digital Supply Current (lvL)	45			μA typ	$\mathrm{V}_{\mathrm{Ax}}=\mathrm{V}_{\mathrm{L}}=1.8 \mathrm{~V}$
			70	$\mu \mathrm{A}$ max	
	30			$\mu \mathrm{A}$ typ	$\mathrm{V}_{\text {Ax }}=\mathrm{V}_{\mathrm{L}}=1.2 \mathrm{~V}$
			55	$\mu \mathrm{A}$ max	

12 V SINGLE SUPPLY

$V_{D D}=12 \mathrm{~V} \pm 10 \%, \mathrm{~V}_{S S}=0 \mathrm{~V}, \mathrm{GND}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{L}}=1.1 \mathrm{~V}$ to 1.95 V , unless otherwise noted.

Table 3.

SPECIFICATIONS

Table 3. (Continued)

SPECIFICATIONS

Table 3. (Continued)

Parameter	$+25^{\circ} \mathrm{C}$	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C} \quad-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	Unit	Test Conditions/Comments
Drain On Capacitance (C_{D}) (On), Source On Capacitance (Cs) (On), ADG1207L	10 12		$\begin{aligned} & \text { pF typ } \\ & \text { pF max } \end{aligned}$	$\begin{aligned} & V_{S}=6 \mathrm{~V}, \mathrm{f}=1 \mathrm{MHz} \\ & V_{S}=6 \mathrm{~V}, \mathrm{f}=1 \mathrm{MHz} \end{aligned}$
POWER REQUIREMENTS Positive Supply Current ((lod) Digital Supply Current (lyl)	55 45 30	95 70 55	$\mu \mathrm{A}$ typ $\mu \mathrm{A}$ max $\mu \mathrm{A}$ typ $\mu \mathrm{A}$ max $\mu \mathrm{A}$ typ $\mu \mathrm{A}$ max	$\begin{aligned} & V_{D D}=13.2 \mathrm{~V}, \mathrm{~V}_{\mathrm{SS}}=0 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{Ax}}=0 \mathrm{~V} \text { or } \mathrm{V}_{\mathrm{L}} \\ & \mathrm{~V}_{\mathrm{Ax}}=\mathrm{V}_{\mathrm{L}}=1.8 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{Ax}}=\mathrm{V}_{\mathrm{L}}=1.2 \mathrm{~V} \end{aligned}$

CONTINUOUS CURRENT PER CHANNEL, SXA, SXB, OR DX
Table 4. ADG1206L, One Channel On

Parameter	$25^{\circ} \mathrm{C}$	$85^{\circ} \mathrm{C}$	$125^{\circ} \mathrm{C}$
CONTINUOUS CURRENT, Sx or			Unit
$D_{x}\left(\theta_{J A}=63.8^{\circ} \mathrm{C} /\right)^{1}$			
$V_{D D}=+15 \mathrm{~V}, \mathrm{~V}_{S S}=-15 \mathrm{~V}$	36	9.8	2.5
$V_{D D}=12 \mathrm{~V}, \mathrm{~V}_{S S}=0 \mathrm{~V}$	32	9.5	2.5

1 Sx refers to the S1 to S16 pins. Dx refers to D1.
Table 5. ADG1207L, Two Channels On

Parameter	$25^{\circ} \mathrm{C}$	$85^{\circ} \mathrm{C}$	$125^{\circ} \mathrm{C}$	Unit
CONTINUOUS CURRENT, Sx or				
$D x\left(\theta_{J A}=63.8^{\circ} \mathrm{C} / \mathrm{W}\right)^{1}$		9	2.5	mA maximum
$V_{D D}=+15 \mathrm{~V}, \mathrm{~V}_{S S}=-15 \mathrm{~V}$	27.5	8.6	2.5	mA maximum
$V_{D D}=12 \mathrm{~V}, \mathrm{~V}_{S S}=0 \mathrm{~V}$	24.6			

[^0]
ABSOLUTE MAXIMUM RATINGS

$T_{A}=25^{\circ} \mathrm{C}$, unless otherwise noted.
Table 6.

Parameter	Rating
$V_{D D}$ to $V_{S S}$	35 V
$V_{D D}$ to GND	-0.3 V to +25 V
$V_{\text {SS }}$ to GND	+0.3 V to -25 V
V_{L} to GND	-0.3 V to +2.25 V
Analog Inputs ${ }^{1}$	$V_{S S}-0.3 V \text { to } V_{D D}+0.3 V \text { or } 30$ mA, whichever occurs first
Digital Inputs ${ }^{2}$	$\text { GND }-0.3 \mathrm{~V} \text { to } 2.25 \mathrm{~V} \text {, or } 30$ mA , whichever occurs first
Peak Current, Sx or Dx ${ }^{3}$	78 mA (pulsed at 1 ms , 10% duty cycle maximum)
Continuous Current, Sx or Dx ${ }^{3}$	Data $+15 \%$
Operating Temperature Range	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Storage Temperature Range	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Junction Temperature	$150^{\circ} \mathrm{C}$
Reflow Soldering Peak Temperature, Pb-Free	As per JEDEC J-STD-020

1 Overvoltages at $\mathrm{A}, \mathrm{EN}, \mathrm{S}$, or D are clamped by internal diodes. Current must be limited to the maximum ratings given.
2 Overvoltages at the Ax and EN digital input pins are clamped by internal diodes.
${ }^{3} S x$ refers to the $S 1$ to $S 16$. Dx refers to $D A$ and $D B$.
4 See Table 3 and Table 4.
Stresses at or above those listed under Absolute Maximum Ratings may cause permanent damage to the product. This is a stress rating only; functional operation of the product at these or any other conditions above those indicated in the operational section of this specification is not implied. Operation beyond the maximum operating conditions for extended periods may affect product reliability.

Only one absolute maximum rating may be applied at any one time.

THERMAL RESISTANCE

θ_{JA} is specified for the worst-case conditions, that is, a device soldered in a circuit board for surface-mount packages. θ_{Jc} is the function to the bottom of the case value.

Table 7. Thermal Resistance

| Package Type | θ_{JA} | θ_{JC} | Unit |
| :--- | :--- | :--- | :--- | :--- |
| CP-32-7 ${ }^{1}$ | 63.8 | 32.8 | ${ }^{\circ} \mathrm{C} / \mathrm{W}$ |

1 Thermal impedance simulated values are based on the JEDEC 2S2P thermal test board without thermal vias. See JEDEC JESD-51.

ELECTROSTATIC DISCHARGE (ESD) RATINGS

The following ESD information is provided for handling of ESD-sensitive devices in an ESD protected area only.

Human body model (HBM) per ANSI/ESDA/JEDEC JS-001.
Field induced charged-device model (FICDM) per ANSI/ESDA/JEDEC JS-002.

ESD Ratings for ADG1206L/ADG1207L
Table 8. ADG1206L/ADG1207L, 32-Lead LFCSP

	Withstand Threshold $(k V)$	
HBD Model 1	± 2	Class
FICDM	± 1.25	C

1 This is the HBM for the input/output port to supplies, the input/output port to input/output port, and for all other inputs.

ESD CAUTION

	ESD (electrostatic discharge) sensitive device. Charged devi- ces and circuit boards can discharge without detection. Although this product features patented or proprietary protection circuitry, damage may occur on devices subjected to high energy ESD. Therefore, proper ESD precautions should be taken to avoid performance degradation or loss of functionality.

PIN CONFIGURATIONS AND FUNCTION DESCRIPTIONS

Figure 3. ADG1206L Pin Configuration

Table 9. ADG1206L Pin Function Descriptions

Pin No.	Mnemonic	Description
1	S16	Source Terminal 16. Can be an input or an output.
2	S15	Source Terminal 15. Can be an input or an output.
3	S14	Source Terminal 14. Can be an input or an output.
4	S13	Source Terminal 13. Can be an input or an output.
5	S12	Source Terminal 12. Can be an input or an output.
6	S11	Source Terminal 11. Can be an input or an output.
7	S10	Source Terminal 10. Can be an input or an output.
8	S9	Source Terminal 9. Can be an input or an output.
9	GND	Ground (0 V) Reference.
10	A3	Logic Control Input.
11	A2	Logic Control Input.
12, 26, 27, 28, 30, 32	NIC	No Internal Connection.
13	V	Logic Power Supply Potential.
14	A1	Logic Control Input.
15	A0	Logic Control Input.
16	EN	Active High Digital Input. When this pin is low, the device is disabled and all switches are turned off. When this pin is high, the Ax logic inputs determine which switch is turned on.
17	S1	Source Terminal 1. Can be an input or an output.
18	S2	Source Terminal 2. Can be an input or an output.
19	S3	Source Terminal 3. Can be an input or an output.
20	S4	Source Terminal 4. Can be an input or an output.
21	S5	Source Terminal 5. Can be an input or an output.
22	S6	Source Terminal 6. Can be an input or an output.
23	S7	Source Terminal 7. Can be an input or an output.
24	S8	Source Terminal 8. Can be an input or an output.
25	$\mathrm{V}_{\text {S }}$	Most Negative Power Supply Potential. In single-supply applications, this pin can be connected to ground.
29	D	Drain Terminal. Can be an input or an output.
31	$V_{D D}$	Most Positive Power Supply Potential.
	EPAD	Exposed Pad. The exposed pad must be tied to the substrate, $\mathrm{V}_{\text {SS }}$.

Table 10. ADG1206L Truth Table

A3	A2	A1	A0	EN	On Switch
X^{1}	X	X^{1}	X^{1}	0	None
0	0	0	0	1	1
0	0	0	1	1	3
0	0	1	0	1	3

PIN CONFIGURATIONS AND FUNCTION DESCRIPTIONS

Table 10. ADG1206L Truth Table (Continued)

A3	A2	A1	A0	EN	On Switch
0	0	1	1	1	4
0	1	0	0	1	5
0	1	0	1	6	
0	1	1	0	1	7
0	0	0	1	8	
1	0	0	1	9	
1	0	1	1	10	
1	1	1	1	1	11
1	1	0	1	12	13
1	1	1	1	1	14
1	1	1	1	15	
1	1	1	1	16	

[^1]

1. NIC = NO INTERNAL CONNECTION.
2. THE EXPOSED PAD IS CONNECTED INTERNALLY. FOR INCREASED RELIABILITY OF THAT THE EXPOSED PAD BE SOLDERED TO THE SUBSTRATE, v SS

Figure 4. ADG1207L Pin Configuration

Table 11. ADG1207L Pin Function Descriptions

Pin No.	Mnemonic	Description
1	S8B	Source Terminal 8B. Can be an input or an output.
2	S7B	Source Terminal 7B. Can be an input or an output.
3	S6B	Source Terminal 6B. Can be an input or an output.
4	S5B	Source Terminal 5B. Can be an input or an output.
5	S4B	Source Terminal 4B. Can be an input or an output.
6	S3B	Source Terminal 3B. Can be an input or an output.
7	S2B	Source Terminal 2B. Can be an input or an output.
8	S1B	Source Terminal 1B. Can be an input or an output.
9	GND	Ground (O V) Reference.
10	A2	Logic Control Input.
$11,12,26,28,30,32$	NIC	No Internal Connection.
13	VL	Logic Power Supply Potential
14	A1	Logic Control Input.
15	A0	Logic Control Input.
16	EN	Active High Digital Input. When this pin is low, the device is disabled and all switches are turned off. When this pin is high,
the Ax logic inputs determine which switch is turned on.		
17	S1A	Source Terminal 1A. Can be an input or an output.
18	S2A	Source Terminal 2A. Can be an input or an output.
19	S3A	Source Terminal 3A. Can be an input or an output.

PIN CONFIGURATIONS AND FUNCTION DESCRIPTIONS

Table 11. ADG1207L Pin Function Descriptions (Continued)

Pin No.	Mnemonic	Description
20	S4A	Source Terminal 4A. Can be an input or an output.
21	S5A	Source Terminal 5A. Can be an input or an output.
22	S6A	Source Terminal 6A. Can be an input or an output.
23	S7A	Source Terminal 7A. Can be an input or an output.
24	S8A	Source Terminal 8A. Can be an input or an output.
25	V	Most Negative Power Supply Potential. In single-supply applications, this pin can be connected to ground.
27	DA	Drain Terminal A. Can be an input or an output.
29	V $_{\text {DD }}$	Most Positive Power Supply Potential.
31	DB	Drain Terminal B. Can be an input or an output.

Table 12. ADG1207L Truth Table

A2	A1	A0	EN	On Switch Pair
X^{1}	X^{1}	X^{1}	0	None
0	0	0	1	1
0	0	1	1	3
0	1	0	1	4
0	1	1	1	5
1	0	1	6	
1	1	1	1	7
1	1	1	8	

$1 \mathrm{X}=$ don't care.

TYPICAL PERFORMANCE CHARACTERISTICS

Figure 5. On Resistance as a Function of $V_{D}\left(V_{S}\right)$ for $15 \mathrm{~V} \pm 10 \%$ Dual Supply

Figure 6. On Resistance as a Function of $V_{D}\left(V_{S}\right)$ for $5 \mathrm{~V} \pm 10 \%$ Dual Supply

Figure 7. On Resistance as a Function of $V_{D}\left(V_{S}\right)$ for $12 \mathrm{~V} \pm 10 \%$ Single Supply

Figure 8. On Resistance as a Function of $V_{D}\left(V_{S}\right)$ for Different Temperatures, Dual Supply

Figure 9. On Resistance as a Function of $V_{D}\left(V_{S}\right)$ for Different Temperatures, Single Supply

Figure 10. ADG1206L Leakage Currents as a Function of Temperature, Dual Supply

TYPICAL PERFORMANCE CHARACTERISTICS

Figure 11. ADG1206L Leakage Currents as a Function of Temperature, Single Supply

Figure 12. IVL vs. Logic Level

Figure 13. Charge Injection vs. VS, Source-to-Drain

Figure 14. Charge Injection vs. VS, Drain-to-Source

Figure 15. Transition Time ($\left.t_{\text {TRANSIIION }}\right)$ vs. Temperature

Figure 16. Off Isolation vs. Frequency

TYPICAL PERFORMANCE CHARACTERISTICS

Figure 17. Crosstalk vs. Frequency, ADG1206L

Figure 18. Crosstalk vs. Frequency, ADG1207L

Figure 19. On Response vs. Frequency

Figure 20. THD vs. Frequency

Figure 21. THD + N vs. Frequency

Figure 22. Capacitance vs. $V_{S}, \pm 15$ V Dual Supply, ADG1206L

TYPICAL PERFORMANCE CHARACTERISTICS

Figure 23. Capacitance vs. VS, 12 V Single Supply, ADG1206L

Figure 24. Capacitance vs. Vs, ± 15 V Dual Supply, ADG1207L

Figure 25. Capacitance vs. VS, 12 V Single Supply, ADG1207L

Figure 26. ACPSRR vs. Frequency

TEST CIRCUITS

Figure 27. On Resistance (IDS is the Drain to Source Current)

Figure 28. Off Leakage

Figure 29. On Leakage

Figure 30. Address to Output Switching Times, $t_{\text {TRANSIIIIN }}$ (Vout is the Output Voltage)

Figure 31. Break-Before-Make Delay, $t_{B B M}$

TEST CIRCUITS

Figure 32. Enable Delay, $\mathrm{t}_{\mathrm{ON}}(E N)$, $\mathrm{t}_{\text {OFF }}$ (EN)

Figure 33. Charge Injection

Figure 34. Off Isolation

Figure 35. Bandwidth

TEST CIRCUITS

Figure 36. Channel-to-Channel Crosstalk

Figure 37. THD + Noise

TERMINOLOGY

$\mathbf{R}_{\text {ON }}$
$R_{\text {ON }}$ is the ohmic resistance between D and S.
$\Delta \mathbf{R}_{\text {ON }}$
$\Delta R_{O N}$ is the difference between the $R_{O N}$ of any two channels.

$\mathrm{R}_{\text {FLAt(ON) }}$

$R_{F L A T(O N)}$ is defined as the difference between the maximum and minimum value of on resistance as measured.

I_{S} (Off)

I_{S} (off) is the source leakage current when the switch is off.

I_{D} (Off)

I_{D} (off) is the drain leakage current when the switch is off.
$I_{D}, I_{S}(O n)$
I_{D} and $I_{S}(o n)$ is the channel leakage current when the switch is on.
$\mathrm{V}_{\mathrm{D}}\left(\mathrm{V}_{\mathrm{S}}\right)$
$V_{D}\left(V_{S}\right)$ is the analog voltage on Terminals D and S.

C_{S} (Off)

C_{S} (off) is the channel input capacitance for the off condition.

C_{D} (Off)

C_{D} (off) is the channel output capacitance for the off condition.

$\mathrm{C}_{\mathrm{D}}, \mathrm{C}_{\mathrm{s}}$ (On)

C_{D} and $\mathrm{C}_{S}($ on $)$ is the on switch capacitance.
$\mathrm{C}_{\text {IN }}$
$\mathrm{C}_{\mathbb{N}}$ is the digital input capacitance.

t_{ON} (EN)

t_{ON} (EN) is the delay time between the 50% and 90% points of the digital input and the switch on condition.

$t_{\text {OFF }}$ (EN)

$t_{\text {OFF }}$ (EN) is the delay time between the 50% and 90% points of the digital input and the switch off condition.

$t_{\text {TRANSITION }}$

$t_{\text {TRANSITION }}$ is the delay time between the 50% and 90% points of the digital inputs and the switch on condition when switching from one address state to another.

$t_{\text {BBM }}$

$t_{\text {BBM }}$ is the off time measured between the 80% point of both switches when switching from one address state to another.
$\mathrm{V}_{\mathrm{INL}}$
$\mathrm{V}_{\text {INL }}$ is the maximum input voltage for Logic 0 .
$\mathrm{V}_{\mathrm{INH}}$
$\mathrm{V}_{\mathbb{I N H}}$ is the minimum input voltage for Logic 1.
$\mathbf{I}_{\text {INL }}, \mathbf{l}_{\text {INH }}$
$I_{\mathbb{I N L}}$ and $I_{\mathbb{N H}}$ is the input current of the digital input.
$I_{D D}$
$I_{D D}$ is the positive supply current.
Iss
$I_{S S}$ is the negative supply current.

Off Isolation

Off isolation is a measure of unwanted signal coupling through an off channel.

Chanel-to-Channel Crosstalk

Channel-to-channel crosstalk is a measure of unwanted signal that is coupled through from one channel to another as a result of parasitic capacitance.

Charge Injection

Charge injection is a measure of the glitch impulse transferred from the digital input to the analog output during switching.

-3 dB Bandwidth

The -3 dB bandwidth is the frequency at which the output is attenuated by 3 dB .

On Response

On response is the frequency response of the on switch.

Insertion Loss

Insertion loss is the loss due to the on resistance of the switch.

Total Harmonic Distortion (THD)

THD is the sum of the powers of all harmonic components to the power of the fundamental frequency.

Total Harmonic Distortion Plus Noise (THD + N)

THD +N is the ratio of the harmonic amplitude plus noise of the signal to the fundamental.

AC Power Supply Rejection Ratio (ACPSRR)

ACPSRR measures the ability of a device to avoid coupling noise and spurious signals that appear on the supply voltage pin to the output of the switch. The dc voltage on the device is modulated by

TERMINOLOGY

a sine wave of 0.62 V p-p. The ratio of the amplitude of signal on the output to the amplitude of the modulation is the ACPSRR.

THEORY OF OPERATIONS

SWITCH ARCHITECTURE

The ADG1206L/ADG1207L are multiplexers that are compatible with 1.2 V or 1.8 V logic depending on the V_{L} input.

\mathbf{V}_{L} FLEXIBILITY

An external V_{L} supply provides logic control flexibility for lower logic levels.

The following V_{L} conditions must be satisfied for the switch to operate in either 1.2 V or 1.8 V logic operation:

- 1.2 V logic: $\mathrm{V}_{\mathrm{L}}=1.1 \mathrm{~V}$ to 1.3 V
- 1.8 V logic: $\mathrm{V}_{\mathrm{L}}=1.65 \mathrm{~V}$ to 1.95 V

1.2 V AND 1.8 V JEDEC COMPLIANCE

The ADG1206L/ADG1207L are both 1.2 V and 1.8 V JEDEC standard compliant (normal range) to the digital input threshold. This compliance with the digital-input threshold ensures low voltage CMOS logic compatibility when operating with a valid logic powersupply range.
The following are the switch digital input requirements for both 1.2 V and 1.8 V logic:

- $V_{\text {INH }}=0.65 \times V_{\mathrm{L}}$
- $V_{\text {INL }}=0.35 \times V_{L}$

INITIALIZATION TIME

The digital section of the ADG1206L/ADG1207L go through an initialization phase during $\mathrm{V}_{\mathrm{DD}}, \mathrm{V}_{S S}$, and V_{L} power up. After V_{DD}, $V_{S S}$, and V_{L} power-up, ensure that there is a minimum of $50 \mu \mathrm{~s}$ from the time of power-up before any digital input is issued.

Ensure that $\mathrm{V}_{\mathrm{DD}}, \mathrm{V}_{\mathrm{SS}}$, and V_{L} do not drop out during the $50 \mu \mathrm{~s}$ initialization phase because it may result in an incorrect timing performance of the ADG1206L/ADG1207L.

SWITCHES IN A KNOWN STATE

The ADG1206L/ADG1207L switches are off when the digital inputs are floating, which prevents unwanted signals passing through the switches. This built-in feature of the ADG1206L/ADG1207L eliminates the need for an external pull-down resistor to be installed. The ADG1206L/ADG1207L can pull-down floating digital inputs against leakage currents up to half of l_{NH}.

APPLICATIONS INFORMATION

FIELD PROGRAMMABLE GATE ARRAY (FPGA) LOW LOGIC COMPLIANCE

Figure 38 shows a typical application where the ADG1206L/ ADG1207L is used together with an FPGA or microcontroller. The flexible V_{L} pin can be tied to the digital supply voltage ($\mathrm{V}_{\mathrm{C} C O}$), and the INx input can be tied directly to the digital IOx ports for ease of use.

Figure 38. Typical Application
The ADG1206L/ADG1207L is 1.2 V and 1.8 V JEDEC standard compliant, which ensures that the logic input specifications, $\mathrm{V}_{\text {INH }}$
 maximum $V_{O L}$, of the FPGA or microcontroller. Common implementations do not guarantee logic level compatibility, which can introduce implementation risks. The ADG1206L/ADG1207L eliminate these risks by complying with the widely accepted 1.2 V and 1.8 V logic level standard.

V_{OH} AND V_{OL}, AND $\mathrm{V}_{\text {INH }}$ AND $\mathrm{V}_{\text {INL }}$ RELATIONSHIP

It is recommended to confirm that the logic output high $\left(\mathrm{V}_{\mathrm{OH}}\right)$ of the FPGA or microcontroller is higher than the input logic high ($\mathrm{V}_{\mathbb{I N H}}$). In addition, the logic output low (VOL) of the FPGA or microcontroller must be lower than the input low ($\mathrm{V}_{\text {INL }}$). Figure 39 shows the 1.2 V logic compatibility relationship between V_{OH} and V_{OL} of the FPGA or the microcontroller with the INx inputs of the ADG1206L/ $A D G 1207 \mathrm{~L}, \mathrm{~V}_{\mathbb{N} H}$ and $\mathrm{V}_{\mathbb{I N L}}$.

Figure 39. 1.2 V Logic Compatibility Between $V_{O H}$ and $V_{O L}$ and $V_{I N H}$ and $V_{I N L}$
Figure 40 shows the 1.8 V logic compatibility relationship between $\mathrm{V}_{\text {OH }}$ and V_{OL} of the FPGA or the microcontroller with the INx inputs of the ADG1206L/ADG1207L, $\mathrm{V}_{\mathbb{I N H}}$ and $\mathrm{V}_{\text {INL }}$.

Figure 40.1.8 V Logic Compatibility Between $V_{O H}$ and $V_{O L}$ and $V_{I N H}$ and $V_{I N L}$

POWER SUPPLY RAILS

To guarantee correct operation of the ADG1206L/ADG1207L, a minimum of $0.1 \mu \mathrm{~F}$ and $10 \mu \mathrm{~F}$ decoupling capacitors are required on the $V_{D D}, V_{S S}$, and V_{L} supply pins.

The ADG1206L/ADG1207L can operate with V_{DD} and $\mathrm{V}_{S S}$ dual supplies between $\pm 5 \mathrm{~V}$ to $\pm 16.5 \mathrm{~V}$. This device can also operate with $\mathrm{V}_{D D}$ single supply between 5 V to 16.5 V and a V_{L} between 1.1 V to 1.95 V . However, the $\mathrm{V}_{D D}$ to $\mathrm{V}_{S S}$ range must not exceed 18 V , and the V_{L} range must not exceed 2.25 V , as stated in the Absolute Maximum Ratings section.
It is possible to operate the ADG1206L and ADG1207L with asymmetrical supplies or at other voltage supplies within the range shown in Table 1. However, the switch characteristics change. These changes include, but are not limited to, analog signal range, on resistance, leakage, $\mathrm{V}_{\mathbb{I N H}}, \mathrm{V}_{I N L}$, and switching times. The typical performance characteristics can be used as a guide to switch performance vs. supply voltage.

APPLICATIONS INFORMATION

POWER SUPPLY RECOMMENDATIONS

Analog Devices, Inc., has a wide range of power management products to meet the requirements of most high performance signal chains.

An example of a symmetrical bipolar power solution is shown in Figure 41. The ADP5070 (dual switching regulator) generates a positive and negative supply rail for the ADG1206L/ADG1207L. Also shown in Figure 41 are two optional positive and negative, low dropout (LDO) regulators, the ADP7118 and ADP7182, respectively, that can reduce the output ripple of the ADP5070 in ultralow noise sensitive applications.

Figure 41. Bipolar Power Solution

POWER SUPPLY SEQUENCING

Take care to ensure correct power supply sequencing. Incorrect power supply sequencing can result in the device being subjected to stresses beyond the maximum ratings listed in Table 6. Ensure that the analog power supplies ($\mathrm{V}_{D D}$ and $\mathrm{V}_{S S}$) and ground (GND) are present before applying V_{L}, the digital inputs, and the analog inputs. Failure to adhere to this sequence may result in damage to the device.

OUTLINE DIMENSIONS

COMPLIANT TO JEDEC STANDARDS MO-220-WHHD
Figure 42. 32-Lead Lead Frame Chip Scale Package [LFCSP] $5 \mathrm{~mm} \times 5 \mathrm{~mm}$ Body and 0.75 mm Package Height (CP-32-7) Dimensions shown in millimeters
Updated: January 11, 2023
ORDERING GUIDE

Model 1	Temperature Range	Package Description	Packing Quantity	Option
ADG1206LYCPZ-REEL7	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	32 -Lead LFCSP $(5 \mathrm{~mm} \times 5 \mathrm{~mm}$ w/ EP $)$	Reel, 1500	CP-32-7
ADG1207LYCPZ-REEL7	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	$32-$ Lead LFCSP $(5 \mathrm{~mm} \times 5 \mathrm{~mm}$ w/ EP $)$	Reel, 1500	CP-32-7

1 Z = RoHS Compliant Part.

EVALUATION BOARDS

Model 1	Description
EVAL-ADG1206LEBZ	Evaluation Board
EVAL-ADG1207LEBZ	Evaluation Board

1 Z = RoHS Compliant Part.

[^0]: $1 S x$ refers to the $S 1 A$ to $S 8 A$ and $S 1 B$ to $S 8 B$ pins. Dx refers to $D A$ and $D B$ pins.

[^1]: $1 \mathrm{X}=$ don't care.

