$1.5 \Omega \mathrm{R}_{\mathrm{ON}}$, Quad SPST Switch with 1.2 V and 1.8 V JEDEC Logic Compliance

FEATURES

- 1.5Ω on resistance for $\pm 15 \mathrm{~V}$ dual supply at $25^{\circ} \mathrm{C}$
- 0.3Ω on-resistance flatness for $\pm 15 \mathrm{~V}$ dual supply at $25^{\circ} \mathrm{C}$
- 0.1Ω on-resistance match between channels for $\pm 15 \mathrm{~V}$ dual supply at $25^{\circ} \mathrm{C}$
- Fully specified at $\pm 15 \mathrm{~V},+12 \mathrm{~V}, \pm 5 \mathrm{~V}$
$\pm 4.5 \mathrm{~V}$ to $\pm 16.5 \mathrm{~V}$ dual-supply operation
- 5 V to 16.5 V single-supply operation
- V_{L} supply for low logic-level compatibility
- 1.8 V JEDEC standard compliant (JESD8-7A)
1.2 V JEDEC standard compliant (JESD8-12A.01)
- Rail-to-rail operation
- 24-lead, $4 \mathrm{~mm} \times 4 \mathrm{~mm}$ LFCSP

APPLICATIONS

- Automated test equipment
- Data-acquisition systems
- Battery-powered systems
- Sample-and-hold systems
- FPGA and microcontroller systems
- Audio signal routing
- Video signal routing
- Communications systems
- Relay replacement

GENERAL DESCRIPTION

The ADG1412L is a monolithic complementary metal-oxide semiconductor (CMOS) device containing four independently selectable switches designed on an CMOS $^{\circledR}$ process. Industrial CMOS (iCMOS) is a modular manufacturing process combining high voltage CMOS and bipolar technologies.
The on-resistance profile is flat over the full analog input range, ensuring excellent linearity and low distortion (1.5Ω typical) when switching signals.

The ADG1412L contains four independent SPST switches, and these switches are turned on with Logic 1. Each switch conducts equally well in both directions when on and has an input signal range that extends to the supplies. In the off condition, signal levels up to the supplies are blocked.

An external V_{L} supply provides flexibility for lower logic control. The ADG1412L is both 1.2 V and 1.8 V JEDEC standard compliant.

FUNCTIONAL BLOCK DIAGRAM

NOTES

1. SWITCHES SHOWN FOR A 1 INPUT LOGIC. 亏̄

Figure 1. Functional Block Diagram

PRODUCT HIGHLIGHTS

1. 2.6Ω maximum on resistance over temperature.
2. Minimum distortion.
3. V_{L} supply for low logic-level compatibility.
4. JEDEC standard compliant for both 1.2 V and 1.8 V logic levels.
5. Guaranteed switch off when digital inputs are floating.
6. 24 -lead, $4 \mathrm{~mm} \times 4 \mathrm{~mm}$ LFCSP.

TABLE OF CONTENTS

Features 1
Applications 1
General Description. 1
Functional Block Diagram 1
Product Highlights 1
Specifications 3
Operating Supply Voltages 3
$\pm 15 \mathrm{~V}$ Dual Supply 3
+12 V Single Supply 4
$\pm 5 \mathrm{~V}$ Dual Supply 5
Continuous Current per Channel, Sx OR Dx. 7
Absolute Maximum Ratings 8
Thermal Resistance 8
Electrostatic Discharge (ESD) Ratings 8
ESD Caution 8
Pin Configuration and Function Descriptions 9
Typical Performance Characteristics 10
Test Circuits 14
Terminology 16
Theory of Operation. 17
Switch Architecture. 17
V_{L} Flexibility 17
1.2 V and 1.8 V JEDEC Compliance 17
Initialization Time 17
Switches in a Known State 17
Applications Information 18
Field Programmable Grid Array (FPGA) Low Logic Compliance 18
V_{OH} and V_{OL} and $\mathrm{V}_{\text {INH }}$ and $\mathrm{V}_{\text {INL }}$ Relationship. 18
Power-Supply Rails 18
Outline Dimensions. 19
Ordering Guide. 19
Evaluation Boards 19

REVISION HISTORY

8/2022—Revision 0: Initial Version

SPECIFICATIONS

OPERATING SUPPLY VOLTAGES

Table 1. Operating Supply Voltages

Parameter	Min	Typ	Max	Unit	Test Conditions/Comments
SUPPLY VOLTAGE Dual Single	± 4.5		$\begin{aligned} & \pm 16.5 \\ & 16.5 \end{aligned}$	$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \end{aligned}$	$\begin{aligned} & V_{D D} \text { to } V_{S S} \\ & V_{D D} \text { to } G N D, V_{S S}=G N D=0 V \end{aligned}$
DIGITAL VOLTAGE Single	$\begin{array}{\|l\|} 1.1 \\ 1.65 \end{array}$		$\begin{aligned} & 1.3 \\ & 1.95 \end{aligned}$	$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \end{aligned}$	V_{L} to $G N D$, INx voltage $\left(V_{\mathbb{I N x}}\right)=1.2 \mathrm{~V}$ logic V_{L} to $G N D, V_{I N x}=1.8 \mathrm{~V}$ logic

± 15 V DUAL SUPPLY

$V_{D D}=15 \mathrm{~V} \pm 10 \%, \mathrm{~V}_{\mathrm{SS}}=-15 \mathrm{~V} \pm 10 \%, G N D=0 \mathrm{~V}$, and $\mathrm{V}_{\mathrm{L}}=1.1 \mathrm{~V}$ to 1.95 V , unless otherwise noted.
Table 2. ± 15 V Dual Supply

Parameter	$25^{\circ} \mathrm{C}$	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	Unit	Test Conditions/Comments
ANALOG SWITCH Analog Signal Range On Resistance, R_{ON} On-Resistance Match Between Channels, $\Delta R_{\text {ON }}$ On-Resistance Flatness, $\mathrm{R}_{\text {FLAT(ON) }}$	$\begin{aligned} & 1.5 \\ & 1.8 \\ & 0.1 \\ & \\ & 0.18 \\ & 0.3 \\ & 0.36 \end{aligned}$	2.3 0.19 0.4	$\begin{aligned} & V_{D D} \text { to } V_{S S} \\ & 2.6 \\ & 0.21 \\ & 0.45 \end{aligned}$	$\begin{aligned} & \mathrm{V} \\ & \Omega \text { typ } \\ & \Omega \text { max } \\ & \Omega \text { typ } \\ & \\ & \Omega \max \\ & \Omega \text { typ } \\ & \Omega \max \end{aligned}$	Source voltage $\left(\mathrm{V}_{\mathrm{S}}\right)= \pm 10 \mathrm{~V}$, source current $\left(\mathrm{I}_{\mathrm{S}}\right)=-10 \mathrm{~mA}$, see Figure 26 $\begin{aligned} & V_{D D}=+13.5 \mathrm{~V}, V_{S S}=-13.5 \mathrm{~V} \\ & V_{S}= \pm 10 \mathrm{~V}, I_{S}=-10 \mathrm{~mA} \end{aligned}$ $V_{S}= \pm 10 \mathrm{~V}, I_{S}=-10 \mathrm{~mA}$
LEAKAGE CURRENTS Source Off Leakage, IS (Off) Drain Off Leakage, I_{D} (Off) Channel On Leakage, $\mathrm{I}_{\mathrm{D}}, \mathrm{I}_{\mathrm{S}}(\mathrm{On})$	$\begin{aligned} & \pm 0.03 \\ & \pm 0.55 \\ & \pm 0.03 \\ & \pm 0.55 \\ & \pm 0.15 \\ & \pm 2 \\ & \hline \end{aligned}$	± 2 ± 2 ± 4	$\begin{aligned} & \pm 12.5 \\ & \pm 12.5 \\ & \pm 30 \end{aligned}$	nA typ nA max nA typ nA max nA typ nA max	$\begin{aligned} & V_{D D}=+16.5 \mathrm{~V}, V_{S S}=-16.5 \mathrm{~V} \\ & V_{S}= \pm 10 \mathrm{~V}, \text { drain voltage }\left(V_{D}\right)=\mp 10 \mathrm{~V}, \text { see Figure } 27 \\ & V_{S}= \pm 10 \mathrm{~V}, V_{D}=\mp 10 \mathrm{~V} \text {, see Figure } 27 \\ & V_{S}=V_{D}= \pm 10 \mathrm{~V}, \text { see Figure } 28 \end{aligned}$
DIGITAL INPUTS Input High Voltage, $\mathrm{V}_{\mathbb{N W}}$ Input Low Voltage, $\mathrm{V}_{\mathbb{I N}}$ Input High Current, $\mathrm{I}_{\text {NH }}$ Input Low Current, I_{NL} Digital-Input Capacitance, C_{I}	55 40 0.2 5		$\begin{aligned} & 0.65 \times V_{\mathrm{L}} \\ & 0.35 \times \mathrm{V}_{\mathrm{L}} \\ & 90 \\ & \\ & 65 \\ & 0.8 \end{aligned}$	V min V max $\mu \mathrm{A}$ typ $\mu \mathrm{A}$ max $\mu \mathrm{A}$ typ $\mu \mathrm{A}$ max $\mu \mathrm{A}$ typ $\mu \mathrm{A}$ max pF typ	$\mathrm{V}_{\mathbb{N} \mathrm{x}}=\mathrm{V}_{\mathrm{L}}=1.8 \mathrm{~V}$, see the Theory of Operation section $V_{\mathbb{N} x}=V_{L}=1.2 \mathrm{~V}$, see the Theory of Operation section $V_{\mathbb{N} x}=0 \mathrm{~V}$
DYNAMIC CHARACTERISTICS On Time, $\mathrm{t}_{\mathrm{on}}{ }^{1}$ Off Time, $\mathrm{t}_{\mathrm{OFF}}{ }^{1}$ Charge Injection, $Q_{\text {INJ }}$	$\begin{aligned} & 110 \\ & 133 \\ & 161 \\ & 200 \\ & -20 \end{aligned}$	152 225	167 245	ns typ ns max ns typ ns max pC typ	$\begin{aligned} & \text { Load resistance }\left(R_{L}\right)=300 \Omega \text {, load capacitance }\left(C_{L}\right)=35 \mathrm{pF} \\ & V_{S}=10 \mathrm{~V} \text {, see Figure } 33 \\ & R_{L}=300 \Omega, C_{L}=35 \mathrm{pF} \\ & V_{S}=10 \mathrm{~V} \text {, see Figure } 33 \\ & V_{S}=0 \mathrm{~V}, R_{S}=0 \Omega, C_{L}=1 \mathrm{nF} \text {, see Figure } 34 \end{aligned}$

SPECIFICATIONS

Table 2. ± 15 V Dual Supply

Parameter	$25^{\circ} \mathrm{C}$	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	Unit	Test Conditions/Comments
Off Isolation Channel-to-Channel Crosstalk Total Harmonic Distortion, THD Total Harmonic Distortion + Noise, THD + N -3 dB Bandwidth Insertion Loss Source Off Capacitance, C_{S} (Off) Drain Off Capacitance, C_{D} (Off) Drain On Capacitance, $C_{D}(O n)$, Source On Capacitance, C_{S} (On)	$\begin{aligned} & \hline-76 \\ & -100 \\ & -101 \\ & -89 \\ & 0.004 \\ & 170 \\ & -0.2 \\ & 22 \\ & 23 \\ & 113 \end{aligned}$			dB typ dB typ dB typ dB typ \% typ MHz typ dB typ pF typ pF typ pF typ	$\begin{aligned} & R_{L}=50 \Omega, C_{L}=5 \mathrm{pF} \text {, frequency }=100 \mathrm{kHz} \text {, see Figure } 29 \\ & R_{L}=50 \Omega, C_{L}=5 \mathrm{pF} \text {, frequency }=1 \mathrm{MHz} \text {, see Figure } 30 \\ & R_{L}=10 \mathrm{k} \Omega, 20 \mathrm{~V} p-\mathrm{p}, \text { frequency }=20 \mathrm{kHz} \text {, see Figure } 32 \\ & R_{L}=10 \mathrm{k} \Omega, 20 \mathrm{Vp}-\mathrm{p} \text {, frequency }=100 \mathrm{kHz} \text {, see Figure } 32 \\ & R_{L}=10 \mathrm{k} \Omega, 20 \mathrm{~V} p-p \text {, frequency }=100 \mathrm{kHz} \text {, see Figure } 32 \\ & R_{L}=50 \Omega, C_{L}=5 \mathrm{pF} \text {, see Figure } 31 \\ & R_{L}=50 \Omega, C_{L}=5 \mathrm{pF} \text {, frequency }=1 \mathrm{MHz} \text {, see Figure } 31 \\ & V_{S}=0 \mathrm{~V}, \text { frequency }=1 \mathrm{MHz} \\ & V_{S}=0 \mathrm{~V} \text {, frequency }=1 \mathrm{MHz} \\ & V_{S}=0 \mathrm{~V} \text {, frequency }=1 \mathrm{MHz} \end{aligned}$
POWER REQUIREMENTS Positive Supply Current, $I_{D D}$ Negative Supply Current, ISS Digital Supply Current, IVL	55 0.01 45 30		95 1 70 55	$\mu \mathrm{A}$ typ $\mu A \max$ $\mu \mathrm{A}$ typ μA max $\mu \mathrm{A}$ typ $\mu A \max$ $\mu \mathrm{A}$ typ μA max	$\begin{aligned} & \mathrm{V}_{\mathrm{DD}}=+16.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{SS}}=-16.5 \mathrm{~V} \\ & \text { Digital inputs }=0 \mathrm{~V} \text { or } \mathrm{V}_{\mathrm{VL}} \\ & \text { Digital inputs }=0 \mathrm{~V} \text { or } \mathrm{V}_{\mathrm{VL}} \\ & \mathrm{~V}_{\mathbb{N x}}=\mathrm{V}_{\mathrm{L}}=1.8 \mathrm{~V} \\ & \mathrm{~V}_{\mathbb{N x}}=\mathrm{V}_{\mathrm{L}}=1.2 \mathrm{~V} \end{aligned}$

${ }^{1}$ A minimum $50 \mu \mathrm{~s}$ initialization time is required before applying an INx input. See the Theory of Operation section.

+12 V SINGLE SUPPLY

$V_{D D}=12 \mathrm{~V} \pm 10 \%, V_{S S}=0 \mathrm{~V}, G N D=0 \mathrm{~V}$, and $\mathrm{V}_{\mathrm{L}}=1.1 \mathrm{~V}$ to 1.95 V , unless otherwise noted.
Table 3. +12 V Single Supply

Parameter	$25^{\circ} \mathrm{C}$	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	Unit	Test Conditions/Comments
ANALOG SWITCH Analog Signal Range On Resistance, RoN On-Resistance Match Between Channels, $\Delta \mathrm{R}_{\mathrm{ON}}$ On-Resistance Flatness, $R_{\text {FLAT(ON) }}$	$\begin{aligned} & 2.8 \\ & 3.5 \\ & 0.13 \\ & 0.21 \\ & 0.6 \\ & 1.1 \end{aligned}$	4.3 0.23 1.2	$0 \mathrm{~V} \text { to } \mathrm{V}_{\mathrm{DD}}$ 4.8 0.25 1.3	V Ω typ Ω max Ω typ Ω max Ω typ Ω max	$\begin{aligned} & V_{S}=0 \mathrm{~V} \text { to } 10 \mathrm{~V}, \mathrm{I}_{\mathrm{S}}=-10 \mathrm{~mA}, \text { see Figure } 26 \\ & \mathrm{~V}_{D}=10.8 \mathrm{~V}, \mathrm{~V}_{S S}=0 \mathrm{~V} \\ & V_{S}=0 \mathrm{~V} \text { to } 10 \mathrm{~V}, \mathrm{I}_{\mathrm{S}}=-10 \mathrm{~mA} \\ & \\ & V_{S}=0 \mathrm{~V} \text { to } 10 \mathrm{~V}, \mathrm{I}_{\mathrm{S}}=-10 \mathrm{~mA} \end{aligned}$
LEAKAGE CURRENTS Source Off Leakage, IS (Off) Drain Off Leakage, I_{D} (Off) Channel On Leakage, $I_{\mathrm{D}}, \mathrm{I}_{\mathrm{S}}(\mathrm{On})$	$\begin{aligned} & \pm 0.02 \\ & \pm 0.55 \\ & \pm 0.02 \\ & \pm 0.55 \\ & \pm 0.15 \\ & \pm 1.5 \end{aligned}$	± 2 ± 2 ± 4	$\begin{aligned} & \pm 12.5 \\ & \pm 12.5 \\ & \pm 30 \end{aligned}$	nA typ nA max nA typ nA max nA typ nA max	$\begin{aligned} & V_{D D}=10.8 \mathrm{~V}, V_{S S}=0 \mathrm{~V} \\ & V_{S}=1 \mathrm{~V} / 10 \mathrm{~V}, V_{D}=10 \mathrm{~V} / 0 \mathrm{~V} \text {, see Figure } 27 \\ & V_{S}=1 \mathrm{~V} / 10 \mathrm{~V}, V_{D}=10 \mathrm{~V} / 0 \mathrm{~V} \text {, see Figure } 27 \\ & V_{S}=V_{D}=1 \mathrm{~V} / 10 \mathrm{~V} \text {, see Figure } 28 \end{aligned}$
DIGITAL INPUTS Input High Voltage, $\mathrm{V}_{\text {INH }}$ Input Low Voltage, $\mathrm{V}_{\mathbb{I N L}}$ Input High Current, I_{NH}	55		$\begin{aligned} & 0.65 \times V_{\mathrm{L}} \\ & 0.35 \times \mathrm{V}_{\mathrm{L}} \end{aligned}$	V min \checkmark max $\mu \mathrm{A}$ typ	$\mathrm{V}_{\text {INx }}=\mathrm{V}_{\mathrm{L}}=1.8 \mathrm{~V}$, see the Theory of Operation section

SPECIFICATIONS

Table 3. +12 V Single Supply

Parameter	$25^{\circ} \mathrm{C}$	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	Unit	Test Conditions/Comments
Input Low Current, $I_{\text {INL }}$ Digital-Input Capacitance, $\mathrm{C}_{\mathbb{N}}$	40 0.2 5		90 65 0.8	$\mu \mathrm{A}$ max $\mu \mathrm{A}$ typ $\mu \mathrm{A}$ max $\mu \mathrm{A}$ typ $\mu A \max$ pF typ	$\mathrm{V}_{\mathbb{N} \mathrm{x}}=\mathrm{V}_{\mathrm{L}}=1.2 \mathrm{~V}$, see the Theory of Operation section $V_{\mathbb{N X} x}=0 \mathrm{~V}$
DYNAMIC CHARACTERISTICS On Time, $\mathrm{t}_{\mathrm{on}}{ }^{1}$ Off Time, $\mathrm{t}_{\mathrm{OFF}}{ }^{1}$ Charge Injection, $Q_{\text {INJ }}$ Off Isolation Channel-to-Channel Crosstalk Total Harmonic Distortion, THD Total Harmonic Distortion + Noise, THD + N -3 dB Bandwidth Insertion Loss Source Off Capacitance, C_{S} (Off) Drain Off Capacitance, C_{D} (Off) Drain On Capacitance, C_{D} (On), Source On Capacitance, C_{S} (On)	182 225 175 230 10 -76 -100 -87 -83 0.007 130 -0.3 29 30 116	$\begin{gathered} 269 \\ 262 \end{gathered}$	$\begin{aligned} & 300 \\ & 295 \end{aligned}$	ns typ ns max ns typ ns max pC typ dB typ dB typ dB typ dB typ \% typ MHz typ dB typ pF typ pF typ pF typ	
POWER REQUIREMENTS Positive Supply Current, $I_{D D}$ Digital Supply Current, IVL	55 45 30		95 70 55	$\mu \mathrm{A}$ typ $\mu \mathrm{A}$ max $\mu \mathrm{A}$ typ $\mu \mathrm{A}$ max μ A typ $\mu \mathrm{A}$ max	$\begin{aligned} & \mathrm{V}_{\mathrm{DD}}=13.2 \mathrm{~V} \\ & \text { Digital inputs }=0 \mathrm{~V} \text { or } \mathrm{V}_{\mathrm{VL}} \\ & \mathrm{~V}_{\mathrm{N} \mathrm{x}}=\mathrm{V}_{\mathrm{L}}=1.8 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{N}_{\mathrm{x}}}=\mathrm{V}_{\mathrm{L}}=1.2 \mathrm{~V} \end{aligned}$

${ }^{1}$ A minimum $50 \mu \mathrm{~s}$ initialization time is required before applying an INx input. See the Theory of Operation section.

± 5 V DUAL SUPPLY

$V_{D D}=5 \mathrm{~V} \pm 10 \%, \mathrm{~V}_{S S}=-5 \mathrm{~V} \pm 10 \%, G N D=0 \mathrm{~V}$, and $\mathrm{V}_{\mathrm{L}}=1.1 \mathrm{~V}$ to 1.95 V , unless otherwise noted.

Table 4. ± 5 V Dual Supply

Parameter	$25^{\circ} \mathrm{C}$	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	Unit	Test Conditions/Comments
ANALOG SWITCH Analog Signal Range On Resistance, Ron On-Resistance Match Between Channels, $\Delta R_{O N}$ On-Resistance Flatness, $R_{\text {FLAT(ON) }}$	$\begin{aligned} & 3.3 \\ & 4 \\ & 0.13 \\ & \\ & 0.22 \\ & 0.9 \\ & 1.1 \end{aligned}$	$\begin{aligned} & 4.9 \\ & 0.23 \\ & 1.24 \end{aligned}$	$V_{D D}$ to $V_{S S}$ 5.4 0.25 1.31	V Ω typ Ω max Ω typ Ω max Ω typ Ω max	$\begin{aligned} & V_{S}= \pm 4.5 \mathrm{~V}, I_{S}=-10 \mathrm{~mA}, \text { see Figure } 26 \\ & V_{D D}=+4.5 \mathrm{~V}, \mathrm{~V}_{S S}=-4.5 \mathrm{~V} \\ & V_{S}= \pm 4.5 \mathrm{~V}, \mathrm{I}_{\mathrm{S}}=-10 \mathrm{~mA} \\ & \\ & V_{S}= \pm 4.5 \mathrm{~V}, \mathrm{I}_{\mathrm{S}}=-10 \mathrm{~mA} \end{aligned}$
LEAKAGE CURRENTS Source Off Leakage, IS (Off)	± 0.03			nA typ	$\begin{aligned} & V_{D D}=+5.5 \mathrm{~V}, \mathrm{~V}_{S S}=-5.5 \mathrm{~V} \\ & \mathrm{~V}_{S}= \pm 4.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{D}}=\mp 4.5 \mathrm{~V} \text {, see Figure } 27 \end{aligned}$

SPECIFICATIONS

Table 4. ± 5 V Dual Supply

Parameter	$25^{\circ} \mathrm{C}$	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	Unit	Test Conditions/Comments
Drain Off Leakage, I_{D} (Off) Channel On Leakage, $\mathrm{I}_{\mathrm{D}}, \mathrm{I}_{\mathrm{S}}(\mathrm{On})$	$\begin{aligned} & \pm 0.55 \\ & \pm 0.03 \\ & \pm 0.55 \\ & \pm 0.05 \\ & \pm 1.0 \end{aligned}$	± 2 ± 2 ± 4	$\begin{aligned} & \pm 12.5 \\ & \pm 12.5 \\ & \pm 30 \end{aligned}$	nA max nA typ nA max nA typ nA max	$V_{S}= \pm 4.5 \mathrm{~V}, V_{D}=\mp 4.5 \mathrm{~V}$, see Figure 27 $V_{S}=V_{D}= \pm 4.5 \mathrm{~V}$, see Figure 28
DIGITAL INPUTS Input High Voltage, $\mathrm{V}_{\text {INH }}$ Input Low Voltage, $\mathrm{V}_{\mathbb{I N}}$ Input High Current, I I_{NH} Input Low Current, I_{NL} Digital-Input Capacitance, $\mathrm{C}_{\mathbb{N}}$	55 40 0.2 5		$\begin{aligned} & 0.65 \times V_{\mathrm{L}} \\ & 0.35 \times \mathrm{V}_{\mathrm{L}} \\ & 90 \\ & 65 \\ & \\ & 0.8 \end{aligned}$	V min V max $\mu \mathrm{A}$ typ $\mu \mathrm{A}$ max $\mu \mathrm{A}$ typ $\mu \mathrm{A}$ max $\mu \mathrm{A}$ typ $\mu \mathrm{A}$ max pF typ	$V_{\mathbb{N} x}=V_{L}=1.8 \mathrm{~V}$, see the Theory of Operation section $V_{\mathbb{I N x}}=V_{L}=1.2 \mathrm{~V}$, see the Theory of Operation section $V_{\mathbb{N X X}}=0 \mathrm{~V}$
DYNAMIC CHARACTERISTICS On Time, $\mathrm{t}_{\mathrm{ON}}{ }^{1}$ Off Time, $\mathrm{t}_{\mathrm{OFF}}{ }^{1}$ Charge Injection, $Q_{\mathbb{N} J}$ Off Isolation Channel-to-Channel Crosstalk Total Harmonic Distortion, THD Total Harmonic Distortion + Noise, THD + N -3 dB Bandwidth Insertion Loss Source Off Capacitance, C_{S} (Off) Source Off Capacitance, C_{D} (Off) Drain On Capacitance, C_{D} (On), Source On Capacitance, C_{S} (On)	$\begin{aligned} & 252 \\ & 333 \\ & 256 \\ & 345 \\ & 10 \\ & -76 \\ & -100 \\ & -90 \\ & -78 \\ & 0.02 \\ & 130 \\ & -0.3 \\ & 32 \\ & 33 \\ & 116 \end{aligned}$	$\begin{array}{\|c} 388 \\ 391 \end{array}$	$\begin{gathered} 432 \\ 422 \end{gathered}$	ns typ ns max ns typ ns max pC typ dB typ dB typ dB typ dB typ $\%$ typ MHz typ $d B$ typ pF typ $p F$ typ pF typ	
POWER REQUIREMENTS Positive Supply Current, $I_{D D}$ Negative Supply Current, Iss Digital Supply Current, IVL	50 0.01 45 30		90 1.0 70 55	$\mu \mathrm{A}$ typ $\mu \mathrm{A}$ max $\mu \mathrm{A}$ typ $\mu \mathrm{A}$ max $\mu \mathrm{A}$ typ $\mu \mathrm{A}$ max $\mu \mathrm{A}$ typ $\mu \mathrm{A}$ max	$\begin{aligned} & \mathrm{V}_{\mathrm{DD}}=+5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{SS}}=-5.5 \mathrm{~V} \\ & \text { Digital inputs }=0 \mathrm{~V} \text { or } \mathrm{V}_{\mathrm{VL}} \\ & \text { Digital inputs }=0 \mathrm{~V} \text { or } \mathrm{V}_{\mathrm{VL}} \\ & \mathrm{~V}_{\mathrm{INx}}=\mathrm{V}_{\mathrm{L}}=1.8 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{INx}}=\mathrm{V}_{\mathrm{L}}=1.2 \mathrm{~V} \end{aligned}$

[^0]
SPECIFICATIONS

CONTINUOUS CURRENT PER CHANNEL, SX OR DX
Table 5. Four Channels On

Parameter	$25^{\circ} \mathrm{C}$	$85^{\circ} \mathrm{C}$	$125^{\circ} \mathrm{C}$	Unit
CONTINUOUS CURRENT, Sx OR Dx ${ }^{1}\left(\theta_{J A}=45^{\circ} \mathrm{C} / \mathrm{C}.\right)$				
$V_{D D}=+15 \mathrm{~V}, \mathrm{~V}_{S S}=-15 \mathrm{~V}$	321	174	80	mA maximum
$V_{D D}=+5 \mathrm{~V}, \mathrm{~V}_{S S}=-5 \mathrm{~V}$	242	143	74	mA maximum
$V_{D D}=12 \mathrm{~V}, \mathrm{~V}_{S S}=0 \mathrm{~V}$	260	150	76	mA maximum

1 Sx refer to $S 1$ to $S 4$ pins, and Dx refers to the D1 to $D 4$ pins.
Table 6. One Channel On

Parameter	$25^{\circ} \mathrm{C}$	$85^{\circ} \mathrm{C}$	$125^{\circ} \mathrm{C}$	Unit
CONTINUOUS CURRENT, Sx OR Dx ${ }^{1}\left(\theta_{J A}=45^{\circ} \mathrm{C} / W.\right)$				mA maximum
$V_{D D}=+15 \mathrm{~V}, \mathrm{~V}_{S S}=-15 \mathrm{~V}$	572	244	88	mA maximum
$V_{D D}=+5 \mathrm{~V}, \mathrm{~V}_{S S}=-5 \mathrm{~V}$	436	211	85	mA maximum
$V_{D D}=12 \mathrm{~V}, \mathrm{~V}_{S S}=0 \mathrm{~V}$	467	220	86	

${ }^{1} S x$ refer to $S 1$ to $S 4$ pins, and Dx refers to the D1 to $D 4$ pins.

ABSOLUTE MAXIMUM RATINGS

$T_{A}=25^{\circ} \mathrm{C}$, unless otherwise noted.
Table 7. Absolute Maximum Ratings

Parameter	Rating
$V_{D D}$ to $V_{S S}$	35 V
$V_{D D}$ to $G N D$	-0.3 V to +25 V
$V_{\text {SS }}$ to GND	+0.3 V to -25V
V_{L} to GND	-0.3 V to +2.25 V
Analog Inputs ${ }^{1}$	$V_{S S}-0.3 \mathrm{~V} \text { to } \mathrm{V}_{D D}+0.3 \mathrm{~V} \text { or } 30 \mathrm{~mA},$ whichever occurs first
Digital Inputs ${ }^{2}$	GND - 0.3 V to 2.25 V or 30 mA , whichever occurs first
Peak Current, Sx or Dx Pins ${ }^{3}$	650 mA (pulsed at $1 \mathrm{~ms}, 10 \%$ dutycycle maximum)
Continuous Current, Sx or Dx Pins ${ }^{3}$	Data + 15\% ${ }^{4}$
Temperature	
Operating Range	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Storage Range	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Junction	$150^{\circ} \mathrm{C}$
Reflow Soldering Peak, Pb-Free	As per JEDEC J-STD-020

1 Overvoltages at the $I N x, S x$, and $D x$ pins are clamped by internal diodes. Current must be limited to the maximum ratings given.
2 Overvoltages at the INx digital-input pins are clamped by internal diodes.
${ }^{3} S x$ refers to the $S 1$ to $S 4$ pins, and $D x$ refers to the $D 1$ to $D 4$ pins.
4 See Table 5 and Table 6.
Stresses at or above those listed under Absolute Maximum Ratings may cause permanent damage to the product. This is a stress rating only; functional operation of the product at these or any other conditions above those indicated in the operational section of this specification is not implied. Operation beyond the maximum operating conditions for extended periods may affect product reliability.

THERMAL RESISTANCE

Thermal performance is directly linked to printed circuit board (PCB) design and operating environment. Careful attention to PCB thermal design is required.
θ_{JA} is the natural convection junction-to-ambient thermal resistance measured in a one cubic foot sealed enclosure, and θ_{Jc} is the junction-to-case thermal resistance.

Table 8. Thermal Resistance

Package Type	θ_{JA}	θ_{JC}	Unit
CP-24-17 ${ }^{1}$	45	4.62	${ }^{\circ} \mathrm{C} / W$

1 Thermal impedance simulated values are based on JEDEC 2S2P thermal test board without thermal vias. See JEDEC JESD-51.

ELECTROSTATIC DISCHARGE (ESD) RATINGS

The following ESD information is provided for handling of ESD-sensitive devices in an ESD protected area only.

Human body model (HBM) per ANSI/ESDA/JEDEC JS-001.
Field induced charged-device model (FICDM) per ANSI/ESDA/JEDEC JS-002.

ESD Ratings for ADG1412L
Table 9. ADG1412L, 24-Lead LFCSP

ESD Model	Withstand Threshold (V)	Class
HBM 1	± 2000	2
FICDM	± 1250	C3

1 For the input and output port to the supplies, the input and output port to the input and output port, and all other inputs.

ESD CAUTION

	ESD (electrostatic discharge) sensitive device. Charged devi- ces and circuit boards can discharge without detection. Although this product features patented or proprietary protection circuitry, damage may occur on devices subjected to high energy ESD. Therefore, proper ESD precautions should be taken to avoid performance degradation or loss of functionality.

PIN CONFIGURATION AND FUNCTION DESCRIPTIONS

Figure 2. Pin Configuration

Table 10. Pin Function Descriptions

Pin No.	Mnemonic	Description
1	D1	Drain Terminal. The D1 pin can be an input or output.
2	S1	Source Terminal. The S1 pin can be an input or output.
3	VSS	Most Negative Power-Supply Potential.
4,10	GND	Ground (O V) Reference. The GND pins must be tied together.
5	S4	Source Terminal. The S4 pin can be an input or output.
6	D4	Drain Terminal. The D4 pin can be an input or output.
$7,8,11,12,16,19,24$	VIC	No Internal Connection. This pin is not connected internally.
9	D3	Logic Power-Supply Potential.
13	S3	Drain Terminal. The D3 pin can be an input or output.
14	VDD	Source Terminal. The S3 pin can be an input or output.
15	S2	Most Positive Power-Supply Potential.
17	D2	Source Terminal. The S2 pin can be an input or output.
18	IN4	Drain Terminal. The D2 pin can be an input or output.
20	IN3	Logic Control Input.
21	IN2	Logic Control Input.
22	IN1	Logic Control Input.
23	EPAD	Logic Control Input.

Table 11. ADG1412L Truth Table

INx	Switch Condition
0	Off
1	On

TYPICAL PERFORMANCE CHARACTERISTICS

Figure 3. On Resistance vs. V_{D} or V_{S}, Dual Supply

Figure 4. On Resistance vs. V_{D} or V_{S}, Dual Supply

Figure 5. On Resistance vs. V_{D} or V_{S}, Single Supply

Figure 6. On Resistance vs. V_{D} or V_{S} for Different Temperatures, ± 15 V Dual Supply

Figure 7. On Resistance vs. V_{D} or V_{S} for Different Temperatures, ± 5 V Dual Supply

Figure 8. On Resistance vs. V_{D} or V_{S} for Different Temperatures, +12 V Single Supply

TYPICAL PERFORMANCE CHARACTERISTICS

Figure 9. On Resistance vs. V_{D} or V_{S} for Different Current Levels, ± 5 V Dual Supply

Figure 10. Leakage Currents vs. Temperature, ± 15 V Dual Supply

Figure 11. Leakage Currents vs. Temperature, $\pm 5 \mathrm{~V}$ Dual Supply

Figure 12. Leakage Currents vs. Temperature, 12 V Single Supply

Figure 13. IVL vs. Logic Level

Figure 14. Charge Injection vs. V_{S}

TYPICAL PERFORMANCE CHARACTERISTICS

Figure 15. $\mathrm{t}_{\mathrm{ON}} / \mathrm{t}_{\mathrm{OFF}}$ Time vs. Temperature for Single Supply (SS) and Dual Supply (DS)

Figure 16. Off Isolation vs. Frequency, ± 15 V Dual Supply

Figure 17. Crosstalk vs. Frequency, ± 15 V Dual Supply

Figure 18. Insertion Loss vs. Frequency, ± 15 V Dual Supply

Figure 19. AC PSRR vs. Frequency, ± 15 V Dual Supply

Figure 20. THD $+N$ vs. Frequency, ± 15 V Dual Supply

TYPICAL PERFORMANCE CHARACTERISTICS

Figure 21. THD $+N$ vs. Frequency, ± 5 V Dual Supply

Figure 22. THD $+N$ vs. Frequency, $+12 V$ Single Supply

Figure 23. THD vs. Frequency, +12 V Single Supply

Figure 24. THD vs. Frequency, ± 15 V Dual Supply

Figure 25. THD vs. Frequency, ± 5 V Dual Supply

TEST CIRCUITS

Figure 26. On Resistance

Figure 27. Off Leakage

Figure 28. On Leakage

Figure 29. Off Isolation

CHANNEL-TO-CHANNEL CROSSTALK $=20 \log \frac{\mathrm{~V}_{\text {OUT }}}{\mathrm{V}_{\mathbf{S}}}$

Figure 31. Bandwidth

Figure 32. THD + Noise

Figure 30. Channel-to-Channel Crosstalk

TEST CIRCUITS

Figure 33. Switching Times

Figure 34. Charge Injection

TERMINOLOGY

IDD

The positive supply current.

$I_{s s}$

The negative supply current.
IVL
The digital supply current.

V_{D} and V_{S}

The analog voltage on Terminal D and Terminal S .

R_{ON}

The ohmic resistance between Terminal D and Terminal S .

$\mathrm{R}_{\text {FLAt(ON) }}$

The difference between the maximum and minimum value of on resistance measured over the specified analog signal range.

$\Delta R_{\text {ON }}$

The difference between the R_{ON} of any two channels.

I_{s} Off

The source leakage current with the switch off.

I_{D} Off

The drain leakage current with the switch off.

$I_{D} I_{S}$ On

The channel leakage current with the switch on.
\mathbf{V}_{D} AND V_{S}
Analog voltages on Terminal D and Terminal S.
$V_{\text {INL }}$
The maximum input voltage for Logic 0 .
$\mathrm{V}_{\mathrm{INH}}$
The minimum input voltage for Logic 1.

$\mathbf{I}_{\text {INL }}, \mathbf{I}_{\text {INH }}$

The input current of the digital input when high or when low.

C_{S} (Off) and C_{D} (Off)

The off switch source and drain capacitance for the off condition, which is measured with reference to ground.

C_{D} (On) and C_{S} (On)

The on switch drain and source capacitance for the on condition, which is measured with reference to ground.

THEORY OF OPERATION

SWITCH ARCHITECTURE

The ADG1412L is a set of low logic controlled, quad SPST switches that are compatible with 1.2 V or 1.8 V logic depending on the V_{L} input.

\mathbf{V}_{L} FLEXIBILITY

An external V_{L} supply provides flexibility for lower logic levels. The following V_{L} conditions must be satisfied for the switch to operate in either 1.2 V or 1.8 V logic operation:

- $\mathrm{V}_{\mathrm{L}}=1.1 \mathrm{~V}$ to 1.3 V for 1.2 V logic
- $V_{L}=1.65 \mathrm{~V}$ to 1.95 V for 1.8 V logic

1.2 V AND 1.8 V JEDEC COMPLIANCE

The ADG1412L is both 1.2 V and 1.8 V JEDEC standard compliant (normal range) to the digital-input threshold. This compliance with the digital-input threshold ensures low voltage CMOS logic compatibility when operating with a valid logic power-supply range.

Note that the switch digital-input requirement for both the 1.2 V and 1.8 V logic levels are the following:

- $\mathrm{V}_{\mathrm{INH}}=0.65 \times \mathrm{V}_{\mathrm{L}}$
- $V_{\text {INL }}=0.35 \times V_{L}$

INITIALIZATION TIME

The digital section of the ADG1412L goes through an initialization phase during $V_{D D}, V_{S S}$, and V_{L} power up. After $V_{D D}, V_{S S}$, and V_{L} power up, ensure that a minimum of $50 \mu \mathrm{~s}$ has passed and that $V_{D D}, V_{S S}$, and V_{L} do not drop before issuing an INx input.

SWITCHES IN A KNOWN STATE

The switches within the ADG1412L are off when the INx pins are floating, which prevents unwanted signals from passing through these switches. This built-in feature of the ADG1412L eliminates the need to install an external pull-down resistor. The ADG1412L can pull down the floating INx inputs against the leakage currents up to half of the l_{INH}.

APPLICATIONS INFORMATION

FIELD PROGRAMMABLE GRID ARRAY (FPGA) LOW LOGIC COMPLIANCE

Figure 35 shows a typical application where the ADG1412L is used together with an FPGA or microcontroller. The flexible V_{L} pin can be tied to the digital-supply voltage ($V_{c c o}$), and the INx input can be tied directly to the digital IO port for ease of use.

Figure 35. Typical Application
The ADG1412L is 1.2 V and 1.8 V JEDEC standard compliant, which ensures that the logic-input specifications, $\mathrm{V}_{\mathbb{I N H}}$ and $\mathrm{V}_{\mathrm{INL}}$, meet the digital-output specifications, minimum V_{OH} and maximum $V_{\text {OL }}$, of the FPGA or microcontroller. Common implementations do not guarantee logic-level compatibility, which can introduce implementation risks. The ADG1412L eliminates these risks by complying with the widely accepted 1.2 V and 1.8 V logic-level standard.

$\mathrm{V}_{\text {OH }}$ AND $\mathrm{V}_{\text {OL }}$ AND $\mathrm{V}_{\text {INH }}$ AND $\mathrm{V}_{\text {INL }}$ RELATIONSHIP

It is recommended to confirm that the logic output high, V_{OH}, of the FPGA or microcontroller is higher than the input logic high, $\mathrm{V}_{\mathbb{1 N}}$. In addition, the logic output low, V_{OL}, of the FPGA or microcontroller must be lower than the input low, $\mathrm{V}_{\mathbb{I N L}}$.

Figure 36 shows the 1.2 V logic compatibility relationship between $\mathrm{V}_{\text {OH }}$ and V_{OL} of the FPGA or the microcontroller with the INx inputs of the $A D G 1412 L, V_{\mathbb{I N H}}$ and $V_{\mathbb{I N L}}$.

Figure 36. 1.2 V Logic Compatibility Between V_{OH} and V_{OL} and $V_{I N H}$ and $V_{I N L}$
Figure 37 shows the 1.8 V logic compatibility relationship between $V_{\text {OH }}$ and $V_{O L}$ of the FPGA or the microcontroller with the INx inputs of the $A D G 1412 L, V_{\text {INH }}$ and $V_{\text {INL }}$.

Figure 37. 1.8 V Logic Compatibility Between $V_{O H}$ and $V_{O L}$ and $V_{I N H}$ and $V_{I N L}$

POWER-SUPPLY RAILS

To guarantee correct operation of the ADG1412L, a minimum of $0.1 \mu \mathrm{~F}$ decoupling capacitors are required on the $\mathrm{V}_{\mathrm{DD}}, \mathrm{V}_{\mathrm{SS}}$, and V_{L} supply pins.

The ADG1412L can operate with $\mathrm{V}_{D D}$ and $\mathrm{V}_{S S}$ dual supplies between $\pm 4.5 \mathrm{~V}$ to $\pm 16.5 \mathrm{~V}$. This device can also operate with a V_{D} single supply between 5 V to 16.5 V and $\mathrm{V} \mathrm{V}_{\mathrm{L}}$ of between 1.1 V to 1.95 V . However, the V_{DD} to $\mathrm{V}_{S S}$ range must not exceed 35 V , and the V_{L} range must not exceed 2.25 V , as stated in the Absolute Maximum Ratings section.

OUTLINE DIMENSIONS

Figure 38. 24-Lead Lead Frame Chip Scale Package [LFCSP] $4 \mathrm{~mm} \times 4 \mathrm{~mm}$ Body and 0.95 mm Package Height (CP-24-17)
Dimensions shown in millimeters

ORDERING GUIDE

Table 12. Ordering Guide

Model 1	Temperature	Package Description	Package Option	Package Quantity
ADG1412LYCPZ-REEL7	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	24-Lead Lead Frame Chip Scale Package [LFCSP]	CP-24-17	Reel, 1500

$1 \mathrm{Z}=$ RoHS Compliant Part.

EVALUATION BOARDS

Table 13. Evaluation Boards

Model 1	Description
EVAL-ADG1412LEBZ	Evaluation Board
${ }^{1}$ Z $=$ RoHS Compliant Part.	

[^0]: ${ }^{1}$ A minimum $50 \mu \mathrm{~s}$ initialization time is required before applying an INx input. See the Theory of Operation section.

