

JM38510/11401/11402/11403/ 11404/11405/11406

IAN IFET-INPUT OPERATIONAL AMPLIFIERS

Precision Monolithics Inc.

GENERAL DESCRIPTION

This data sheet covers the electrical requirements for a monolithic, low-power, internally-compensated JFET-input operational amplifier as specified in MIL-M-38510/114 for device types 01 to 06. Devices supplied to this data sheet are manufactured and tested at PMI's MIL-M-38510 certified facility and are listed in QPL-38510.

Complete device requirements will be found in MIL-M-38510 and MIL-M-38510/114 for Class B and Class S processed de-

GENERIC CROSS-REFERENCE INFORMATION

This cross-reference information is presented for the convience of the user. The generic-industry types listed may not have identical operational performance characteristics across the military temperature range or reliability factors equivalent to the MIL-M-38510 device.

Military Device Type	Generic-Industry Type
01	LF-155
04	LF-155A
02	LF-156
05	LF-156A
03	LF-157
06	LF-157A

SIMPLIFIED SCHEMATIC

ABSOLUTE MAXIMUM RATINGS

Supply Voltage Range	±22V
Input Voltage Range (Note 1)	±20V
Differential Input Voltage Range	±40V
Lead Temperature (Soldering, 60 sec)	300°C
Junction Temperature	
Storage Temperature Range65°C	C to +150°C
Output Short-Circuit Duration Unlimi	ted (Note 2)

NOTES:

- 2. Short circuit may be to ground to either supply. Rating applies to + 125°C case temperature or +75°C ambient temperature.
- 3. For short-term test (in the specific burn-in and life test configuration when required and up to 168 hours maximum), $T_{\rm j}=275^{\circ}$ C.

RECOMMENDED OPERATING CONDITIONS

Supply Voltage Range	±5 to ±20 VDC
Ambient Temperature Range	55°C to +125°C

ELECTRICAL CHARACTERISTICS at V_{CC} from $\pm 5V$ to $\pm 20V$; source resistance = 50 ohm; ambient temperature range = -55° C to $+125^{\circ}$ C and figure 1, unless otherwise noted.

SYMBOL	CONDITIONS					
	CONDITIONS	MIN	MAX	MIN	MAX	UNITS
	±V _{CC} = ±5V, V _{CM} = 0V	-5	5	-2	2	
			-	_	_	
v _{io}						mV
	U	-7	7	-2.5	2.5	

		-30	30	-10	10	μV/°C
Δ1	V _{CM} = UV					
	$\pm V_{CC} = \pm 20V, V_{CM} = 0V,$					
1 ₁₀						pΑ
	T _j = 125°C	-20	20	-20	20	nA
	$\pm V_{CC} = \pm 20V$, $V_{CM} = +15V$					
	T _j = 25°C	-100	3500	-100	3500	pA
	$t \le 25 ms$ $T_j = 125 °C$	-10	60	-10	60	nA
+1 _{IB}	$\pm V_{CC} = \pm 15V, V_{CM} = +10V$					
	T _j = 25°C	-100	300	-100	300	рA
-1 _{IB}	,	~10	50	-10	50	nA
	•	-100	100	-100	100	Αq
	t ≤ 25ms T _j = 125°C	-10	50	-10	50	nA
+PSRR	$+V_{CC} = 10V, -V_{CC} = -20V$	95		05		dB
~PSRR	$+V_{CC} = 20V, -V_{CC} = -10V$	83			_	uв
0140	±V _{CC} = ±20V	25				
СМН	$V_{IN} = \pm 15V$	85	_	85	_	dB
V _{IO} ADJ (+)	±V _{CC} = ±20V	+8	_	+8	_	
V _{IO} ADJ (-)		_	~8	_	-8	mV
laa		~50	_	-50	_	mA
'OS(+)		50		30		
1	••	_	50		50	, A
'OS(=)			50	_	50	mA
					,	
		_		_		
lcc		_				mA
	**		4		4	
Von	$\pm V_{CC} = \pm 20V$, R _L = $10k\Omega$	± 16	-	±16	_	v
*OP	$\pm V_{CC} = \pm 20V$, $R_L = 2k\Omega$	± 15		±15	_	v
	$\pm V_{CC} = \pm 20V$, $V_{OUT} = \pm 15V$					
A _{VS(+)}	$R_L = 2k\Omega$, $T_A = 25^{\circ}C$	50	_	50	_	
A _{VS(-)}	-55°C ≤ T _A ≤ + 125°C	25	_	25	_	V/mV
	±V _{CC} = ±5V					
Ave	••	10	_	10	_	V/mV
	V _{OUT} = ±2V	.5				¥/111¥
	-I _{IB} +PSRR -PSRR CMR V _{IO} ADJ(+) V _{IO} ADJ(-) I _{OS(+)} I _{OS(-)} I _{CC} V _{OP}	$\begin{split} & T_A = 25^{\circ}C \\ & V_{IO} \\ & \pm V_{CC} \pm \pm 20V \\ & V_{CM} = \pm 15V, 0V \\ & -55^{\circ}C \le T_A \le + 125^{\circ}C \\ \\ & \frac{\Delta V_{IO}}{\Delta T} \\ & \pm V_{CC} = \pm 20V \\ & V_{CM} = 0V \\ \\ & \frac{\pm V_{CC} = \pm 20V, V_{CM} = 0V, \\ & T_j = 25^{\circ}C \\ & T_j = 125^{\circ}C \\ \\ & \pm V_{CC} = \pm 20V, V_{CM} = + 15V \\ & T_j = 25^{\circ}C \\ \\ & \pm V_{CC} = \pm 15V, V_{CM} = + 10V \\ & T_j = 25^{\circ}C \\ \\ & \pm V_{CC} = \pm 15V, V_{CM} = + 10V \\ & T_j = 25^{\circ}C \\ \\ & \pm V_{CC} = \pm 15V, V_{CM} = + 10V \\ & T_j = 25^{\circ}C \\ \\ & \pm V_{CC} = \pm 20V, -15V \le V_{CM} \le 0V \\ & T_j = 25^{\circ}C \\ \\ & \pm V_{CC} = \pm 20V, -15V \le V_{CM} \le 0V \\ & T_j = 25^{\circ}C \\ \\ & \pm V_{CC} = \pm 20V, -15V \le V_{CM} \le 0V \\ & T_j = 25^{\circ}C \\ \\ & \pm V_{CC} = \pm 20V, -15V \le V_{CM} \le 0V \\ & T_j = 25^{\circ}C \\ \\ & \pm V_{CC} = \pm 20V, -15V \le V_{CM} \le 0V \\ & V_{IO} = 125^{\circ}C \\ \\ & -20V, -15V \le V_{CM} \le 0V \\ & V_{IO} = 15V \\ & V_{IO} = 20V, -V_{CC} = -10V \\ \\ & V_{IO} = 15V \\ & V_{CC} = 15V, T_A = 25^{\circ}C \\ & T_A = 125^{\circ}C \\ & V_{CC} = 15V, T_A = 25^{\circ}C \\ & V_{CC} = 15V, T_A = 15V \\ & V_{CC} = 15V \\ & V_{CC}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c} T_A = 25^{\circ}C \\ V_{10} & \pm V_{CC} = \pm 20V \\ V_{CM} = \pm 15V, 0V \\ -55^{\circ}C \le T_A \le + 125^{\circ}C \\ \end{array} \qquad \begin{array}{c} -7 \\ -7 \\ -7 \\ \end{array} \qquad \begin{array}{c} -2.5 \\ \end{array}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

The absolute maximum negative input voltage is equal to the negative power supply voltage.

ELECTRICAL CHARACTERISTICS at V_{CC} from $\pm 5V$ to $\pm 20V$; source resistance = 50 ohm; ambient temperature range = -55° C to $+125^{\circ}$ C and figure 1, unless otherwise noted. (Continued)

			01 LIMITS		04 LI		
PARAMETER	SYMBOL	CONDITIONS	MIN	MAX	MIN	MAX	UNITS
Transient Response Rise Time	TR _(tr)	$\pm V_{CC} = \pm 15V$, $R_L = 2k\Omega$, $A_V = 1$ $C_L = 100pF$, See Figure 2 $V_{IN} = 50mV$	_	150	_	150	ns
Transient Response Overshoot	TR _(os)	\pm V _{CC} = \pm 15V, R _L = 2k Ω , A _V = 1 C _L = 100pF, See Figure 2 V _{IN} = 50mV	-	40	_	40	%
Slew Rate	SR(+) and SR(-)	$V_{IN} = \pm 5V, \pm V_{CC} = \pm 15V$ $A_V = 1, See Figure 2$ $T_A = 25^{\circ}C$ $T_A = -55^{\circ}C, +125^{\circ}C$	2 1	_ _	3 1.5		V/μs
Settling Time	ts(+) and ts(-)	$\pm V_{CC} = \pm 15V (0.1\% \text{ error})$ $T_A = 25^{\circ}C, A_V = -1$ See Figure 3		4000	-	4000	ns
Noise (Referred to Input) Broadband	N _I (BB)	$\pm V_{CC} = \pm 20V$, $T_A = 25^{\circ}C$ Bandwidth = 5kHz	_	10	-	10	μV _{rms}
Noise (Referred to Input) Popcorn	N _J (PC)	$\pm V_{CC} = \pm 20V$, $T_A = 25^{\circ}C$ Bandwidth = 5kHz	_	40	_	40	μV_{pk}

NOTES:

- 1. Bias currents are actually junction leakage currents which double (approximately) for each 10°C increase in junction temperature T_j. Measurement of bias current is specified at T_j rather than T_A, since normal warm-up thermal transients will affect the bias currents. The measurements for bias currents must be made within 25ms or 5 loop time constants after power is first applied to the device for test. Measurement at T_A = -55° C is not necessary since expected values are too small for typical test systems.
- Bias current is sensitive to power supply voltage, common-mode voltage and temperature as shown by the following typical curves:

CASE OUTLINE

Per MIL-M-38510, Appendix C, Case Outline A-1 (8 Lead Can), Package Type Designator "G"; and Appendix C, Case Outline D-4(8 Lead Dual-in-Line) Package Type Designator "P".

POWER AND THERMAL CHARACTERISTICS

Package	Case outline		Maximum θJ—C	Maximum θJ—A
8 Lead Can (TO-99)	G	330mW at T _A = 125°C	40°C/W	150° C/W
8 Lead Hermetic DIP	Р	417mW at T _A = 125°C	50°C/W	120°C/W

- Negative I_{IB} minimum limits reflect the characteristics of device with bias current compensation.
- 4. CMR is calculated from V_{IO} measurements at $V_{CM} = +15V$ and -15V.
- Continuous limits shall be considerably lower. Protection for shorts to either supply exists providing that T_i(max) ≤ 175°C.
- Because of thermal feedback effects from output to input, open-loop gain is not guaranteed to be linear or positive over the operating range. These requirements, if needed, should be specified by the user in additional procurement documents.

PIN CONNECTIONS

ELECTRICAL CHARACTERISTICS at V_{CC} from $\pm 5V$ to $\pm 20V$; source resistance = 50 ohm; ambient temperature range = -55° C to $+125^{\circ}$ C and figure 1, unless otherwise noted.

			02 LIMITS		05 LIMITS		
PARAMETER	SYMBOL	CONDITIONS	MIN	MAX	MIN	MAX	UNITS
		$\pm V_{CC} = \pm 5V, V_{CM} = 0V$	_				
and Office		T _A = 25°C	-5	5	-2	2	
Input Offset Voltage	V_{iO}	$\pm V_{CC} = \pm 20V$					m\
voltage		$V_{CM} = \pm 15V, 0V$	-	-	0.5	0.5	
		-55°C ≤ T _A ≤ +125°C	~7	7	-2.5	2.5	
Input Offset Voltage	Δ۷ΙΟ	±V _{CC} = ±20V	· · · · · · · · · · · · · · · · · · ·				
Temperature Sensitivity	$\frac{\Delta V_{10}}{\Delta T}$	V _{CM} = 0V	-30	30	-10	10	μV/°C
Temperature densitivity							
		$\pm V_{CC} = \pm 20V, V_{CM} = 0V,$					
Input Offset Current	I _{IO}	T _j = 25°C	-20	20	-20	20	p#
		T _j = 125°C	-20	20	-20	20	n.A
		$\pm V_{CC} = \pm 20V$, $V_{CM} = +15V$					
		T _j = 25°C	-100	3500	-100	3500	pΑ
		t ≤ 25ms T _i = 125°C	-10	60	-10	60	n/
	+1 _{1B}	$\pm V_{CC} = \pm 15V, V_{CM} = +10V$					
Input Bias Current		T _j = 25°C	-100	300	- 100	300	pA
(Note 1)	-I _{IB}	t ≤ 25ms T _j = 125°C	-10	50	-10	50	n.A
(Note 2)		$\pm V_{CC} = \pm 20V, -15V \le V_{CM} \le 0V$					
(Note 3)		T _j = 25°C	100	100	-100	100	p.A
		t ≤ 25ms T _j = 125°C	-10	50	-10	50	n.A
Power Supply	+PSRR	+V _{CC} = 10V, -V _{CC} = -20V					
Rejection Ratio	-PSRR	$+V_{CC} = 10V, -V_{CC} = -20V$ $+V_{CC} = 20V, -V_{CC} = -10V$	85	_	85	_	dB
	TOTAL	***					
Input Voltage Common-Mode	CMR	$\pm V_{CC} = \pm 20V$	85	_	85	_	dB
Rejection (Note 4)		$V_{IN} = \pm 15V$					
Adjustment for	VIO ADJ(+)	$\pm V_{CC} = \pm 20V$	+8	_	+8	_	
Input Offset Voltage	V _{IO} ADJ (-)	$\pm V_{CC} = \pm 20V$	_	-8	_	-8	m۷
	10				-		_
Output Short-Circuit Current		$\pm V_{CC} = \pm 15V$	50		50		
(for Positive Output) (Note 5)	I _{OS(+)}	t ≤ 25ms	-50	_	-50		m.A
		(Short Circuit to Ground)					
Output Short-Circuit Current		$\pm V_{CC} = \pm 15V$					
(for Negative Output)	IOS(~)	t ≤ 25ms	_	50	_	50	m.A
(Note 5)		(Short Circuit to Ground)					
		T _A = -55°C	_	11		11	
Supply Current	Icc	$\pm V_{CC} = \pm 15V, T_A = +25^{\circ}C$	_	7	_	7	m.A
	.00	T _A = +125°C	_	7	_	7	****
Output Voltage Swing	V _{OP}	$\pm V_{CC} = \pm 20V$, $R_L = 10k\Omega$	± 16	-	±16	_	V
(Maximum)		$\pm V_{CC} = \pm 20V$, $R_L = 2k\Omega$	± 15		±15		
Ones Leen Valtage Coin		$\pm V_{CC} = \pm 20V$, $V_{OUT} = \pm 15V$					
Open-Loop Voltage Gain	A _{VS(+)}	$R_L = 2k\Omega$, $T_A = 25^{\circ}C$	50	_	50	_	111-11
(Single Ended) (Note 6)	A _{VS(-)}	-55°C ≤ T _A ≤ +125°C	25	-	25	_	V/mV
		±V _{CC} = ±5V					
Open-Loop Voltage Gain	Δ	$E_{\text{CC}} = \pm 5V$ $E_{\text{L}} = 2k\Omega$	10		10	_	V/mV
(Single Ended) (Note 6)	Avs	=	10	_	10	_	¥/111¥
· · · · · · · · · · · · · · · · · · ·		V _{OUT} = ±2V					
Transient Response		$\pm V_{CC} = \pm 15V$, $R_L = 2k\Omega$, $A_V = 1$					
Rise Time	TR _(tr)	C _L = 100pF, See Figure 2	_	100	_	100	n
ruse lille		V _{IN} = 50mV					
		$\pm V_{CC} = \pm 15V$, $R_L = 2k\Omega$, $A_V = 1$					
Transient Response	TR _(os)	C _L = 100pF, See Figure 2	_	40	_	40	9/
Overshoot	(05)	V _{IN} = 50mV					,
	SR(+)	$V_{IN} = \pm 5V, \pm V_{CC} = \pm 15V$					
Slew Rate	and	A _V = 1, See Figure 2					٧/μ
	SR(-)	T _A = 25° C	7.5	_	10	_	
· · · · · · ·		T _A = -55° C, +125° C	5		7		
	ts(+)	$\pm V_{CC} = \pm 15V (0.1\% \text{ error})$					
Settling Time	and	$T_A = 25^{\circ} C, A_V = -1$	_	4000	_	4000	ns
-	ts(-)	See Figure 3					

ELECTRICAL CHARACTERISTICS at V_{CC} from $\pm 5V$ to $\pm 20V$; source resistance = 50 ohm; ambient temperature range = -55° C to $+125^{\circ}$ C and figure 1, unless otherwise noted. (Continued)

PARAMETER			02 LIMITS		05 LIMITS			
	SYMBOL CONDITIONS	CONDITIONS	MIN	MAX	MIN	MAX	UNITS	
Noise (Referred to Input) Broadband	N _I (BB)	$\pm V_{CC} = \pm 20V$, $T_A = 25^{\circ} C$ Bandwidth = 5kHz	_	10	-	10	μV _{rms}	
Noise (Referred to Input)	N _I (PC)	±V _{CC} = ±20V, T _A = 25° C Bandwidth = 5kHz	_	40	_	40	μV_{pk}	

NOTES:

- 1. Bias currents are actually junction leakage currents which double (approximately) for each 10°C increase in junction temperature T_j. Measurement of bias current is specified at T_j rather than T_A, since normal warm-up thermal transients will affect the bias currents. The measurements for bias currents must be made within 25ms or 5 loop time constants after power is first applied to the device for test. Measurement at T_A = -55°C is not necessary since expected values are too small for typical test systems.
- Bias current is sensitive to power supply voltage, common-mode voltage and temperature as shown by the following typical curves:

- Negative I_{IB} minimum limits reflect the characteristics of device with bias current compensation.
- 4. CMR is calculated from V_{iO} measurements at V_{CM} = +15V and -15V.
- Continuous limits shall be considerably lower. Protection for shorts to either supply exists providing that T_i(max) ≤ 175°C.
- Because of thermal feedback effects from output to input, open-loop gain is not guaranteed to be linear or positive over the operating range. These requirements, if needed, should be specified by the user in additional procurement documents.

ORDERING INFORMATION

JAN SLASH SHEET	PMI DEVICE	
JM38510/11401BGC	PM155J1/38510	
JM38510/11401BGA	PM155J5/38510	
JM38510/11401BPB	PM155Z2/38510	
JM38510/11401BPA	PM155Z5/38510	
JM38510/11404BGC	PM155AJ1/38510	
JM38510/11404BGA	PM155AJ5/38510	
JM38510/11404BPB	PM155AZ2/38510	
JM38510/11404BPA	PM155AZ5/38510	
JM38510/11402BGC	PM156J1/38510	
JM38510/11402BGA	PM156J5/38510	
JM38510/11402BPB	PM156Z2/38510	
JM38510/11402BPA	PM156Z5/38510	
JM38510/11401SGA	PM155SJ5/38510	
JM38510/11402SGA	10/11402SGA PM156SJ5/38510 ⁴	
JM38510/11404SGA	PM155SAJ5/38510	
JM38510/11405SGA	PM156SAJ5/38510	

^{*} Undergoing Part 1 qualification as of 1/90.

JAN SLASH SHEET	PMI DEVICE
JM38510/11405BGC	PM156AJ1/38510
JM38510/11405BGA	PM156AJ5/38510
JM38510/11405BPB	PM156AZ2/38510
JM38510/11405BPA	PM156AZ5/38510
JM38510/11403BGC	PM157J1/38510
JM38510/11403BGA	PM157J5/38510
JM38510/11403BPB	PM157Z2/38510
JM38510/11403BPA	PM157Z5/38510
JM38510/11406BGC	PM157AJ1/38510
JM38510/11406BGA	PM157AJ5/38510
JM38510/11406BPB	PM157AZ2/38510
JM38510/11406BPA	PM157AZ5/38510

PMI)

			03 LIMITS		06 LI	MITS		
PARAMETER	SYMBOL	CONDITIONS	MIN	MAX	MIN	MAX	UNITS	
		$\pm V_{CC} = \pm 5V$, $V_{CM} = 0V$	-5	5	-2	2		
		T _A = 25°C	-5	5	-2	2		
Input Offset	V _{IO}	$\pm V_{CC} = \pm 20V$					m۷	
Voltage	-10	V _{CM} = ±15V, 0V						
		-55°C ≤ T _A ≤ +125°C	-7	7	-2.5	2.5		
Input Offset Voltage	ΔV _{IO}	±V _{CC} = ±20V	-30	30	-10	10	V/9.C	
Temperature Sensitivity	ΔΤ	V _{CM} = 0V	-30	30	- 10	10	μV/°C	
		$\pm V_{CC} = \pm 20V$, $V_{CM} = 0V$,						
nput Offset Current	110	T _j = 25°C	-20	20	-20	20	рA	
		T _j = 125°C	-20	20	-20	20	n A	
		$\pm V_{CC} = \pm 20V$, $V_{CM} = +15V$						
		T _j = 25°C	-100	3500	-100	3500	pA	
		t ≤ 25ms T _j = 125°C	-10	60	-10	60	nA	
	+1 _{1B}	$\pm V_{CC} = \pm 15V, V_{CM} = +10V$						
Input Bias Current		T _j = 25°C	-100	300	-100	300	pΑ	
(Note 1)	-I _{IB}	t ≤ 25ms T _j = 125°C	-10	50	-10	50	nA	
(Note 2)		$\pm V_{CC} = \pm 20V, -15V \le V_{CM} \le 0V$						
(Note 3)		T _i = 25°C	-100	100	-100	100	pΑ	
		t ≤ 25ms T _j = 125°C	-10	50	-10	50	n.A	
Power Supply	r Supply + PSRR	+V _{CC} = 10V, -V _{CC} = -20V	85	_	85	_	d₿	
Rejection Ratio	-PSRR	$+V_{CC} = 20V, -V_{CC} = -10V$	- 65					
Input Voltage Common-Mode		$\pm V_{CC} = \pm 20V$	85	_	85	_	dB	
Rejection (Note 4)		$V_{IN} = \pm 15V$						
Adjustment for	V _{IO} ADJ (+)	$\pm V_{CC} = \pm 20V$	+8		+8	_	mV	
Input Offset Voltage	V _{IO} ADJ (-)	±V _{CC} = ±20V		-8		-8	•	
Output Short-Circuit Current		$\pm V_{CC} = \pm 15V$	_					
(for Positive Output) (Note 5)	I _{OS(+)}	t ≤ 25ms	-50	_	-50	_	mA	
(.c contro conput) (note o)		(Short Circuit to Ground)						
Output Short-Circuit Current		$\pm V_{CC} = \pm 15V$						
(for Negative Output)	I _{OS(-)}	t ≤ 25ms	_	50	_	50	mA	
(Note 5)		(Short Circuit to Ground)						
		T _A = -55°C	_	11	_	11		
Supply Current	Icc	$\pm V_{CC} = \pm 15V$, $T_A = +25$ °C $T_A = +125$ °C	-	7 7	_	7 7	mA	
Output Voltage Swing		$\pm V_{CC} = \pm 20V$, $R_L = 10k\Omega$	± 16	<u>'</u>	±16			
(Maximum)	V _{OP}	$\pm V_{CC} = \pm 20V, R_L = 10kT$ $\pm V_{CC} = \pm 20V, R_L = 2k\Omega$	± 15	_	± 15	_	٧	
		$\pm V_{CC} = \pm 20V, V_{OUT} = \pm 15V$						
Open-Loop Voltage Gain	A _{VS(+)}	$R_L = 2k\Omega$, $T_A = 25^{\circ}C$	50	_	50	_		
(Single Ended) (Note 6)	A _{VS(-)}	-55°C ≤ T _A ≤ +125°C	25	_	25		V/mV	
O L Veltore Cain		±V _{CC} = ±5V						
Open-Loop Voltage Gain	A _{VS}	$R_L = 2k\Omega$	10	_	10	_	V/mV	
(Single Ended) (Note 6)	,,,	$V_{OUT} = \pm 2V$						

ELECTRICAL CHARACTERISTICS at V_{CC} from $\pm 5V$ to $\pm 20V$; source resistance = 50 ohm; ambient temperature range = -55° C to $+125^{\circ}$ C and figure 1, unless otherwise noted. (Continued)

			03 LI	03 LIMITS		06 LIMITS	
PARAMETER	SYMBOL	CONDITIONS	MIN	MAX	MIN	MAX	UNITS
Transient Response Rise Time	TR _(tr)	\pm V _{CC} = \pm 15V, R _L = 2k Ω , A _V = 5 C _L = 100pF, See Figure 2 V _{IN} = 50mV	_	450	_	450	ns
Transient Response Overshoot	TR _(OS)	\pm V _{CC} = \pm 15V, R _L = 2k Ω , A _V = 5 C _L = 100pF, See Figure 2 V _{IN} = 50mV	_	25	_	25	%
Slew Rate	SR(+) and SR(-)	$V_{IN} = \pm 1V, \pm V_{CC} = \pm 15V$ $A_V = 5$, See Figure 2 $T_A = 25^{\circ} C$ $T_A = -55^{\circ} C, +125^{\circ} C$	30 20	_ _	40 25	-	V/µs
Settling Time	ts(+) and ts(-)	$\pm V_{CC} = \pm 15V (0.1\% \text{ error})$ $T_A = 25^{\circ} \text{ C}, A_V = -5$ See Figure 3	_	800	_	800	ns
Noise (Referred to Input) Broadband	N _I (BB)	$\pm V_{CC} = \pm 20V$, $T_A = 25^{\circ} C$ Bandwidth = 5kHz	_	10	_	10	μV _{rms}
Noise (Referred to Input) Popcorn	N _I (PC)	$\pm V_{CC} = \pm 20V$, $T_A = 25^{\circ} C$ Bandwidth = 5kHz	_	40	_	40	μV _{pk}

NOTES:

- 1. Bias currents are actually junction leakage currents which double (approximately) for each 10°C increase in junction temperature T_i. Measurement of bias current is specified at T_i rather than T_A, since normal warm-up thermal transients will affect the bias currents. The measurements for bias currents must be made within 25ms or 5 loop time constants after power is first applied to the device for test. Measurement at T_A = -55°C is not necessary since expected values are too small for typical test systems.
- Bias current is sensitive to power supply voltage, common-mode voltage and temperature as shown by the following typical curves:

- Negative I_{IB} minimum limits reflect the characteristics of device with bias current compensation.
- 4. CMR is calculated from V_{tO} measurements at V_{CM} = +15V and -15V.
- Continuous limits shall be considerably lower. Protection for shorts to either supply exists providing that T_i(max) ≤ 175° C.
- Because of thermal feedback effects from output to input, open-loop gain is not guaranteed to be linear or positive over the operating range. These requirements, if needed, should be specified by the user in additional procurement documents.

NOTES:

PMI)

- 1. All resistors are $\pm 0.1\%$ tolerance and all capacitors are $\pm 10\%$ tolerance, unless otherwise specified.
- Precautions shall be taken to prevent damage to the D.U.T. during insertion into socket and change of state of relays (i.e. disable voltage supplies, current limit ± V_{CC}, etc.).
- 3. Compensation capacitors should be added as required for test circuit stability. Two general methods for stability compensation exist. One method is with a capacitor for nulling amp feedback. The other method is with a capacitor in parallel with the 49.9kΩ closed-loop feedback resistor. Both methods should not be used simultaneously. Proper wiring procedures shall be followed to prevent unwanted coupling and oscillations, etc. Loop response and
- settling time shall be consistent with the test rate such that any value has settled for at least five loop time constants before the value is measured.
- Adequate settling time should be allowed such that each parameter has settled to within 5% of its final value.
- 5. All relays are shown in the normal de-energized state.
- The nulling amplifier shall be a M38510/10101XXX. Saturation of the nulling amplifier is not allowed on tests where the E (Pin 5) value is measured.
- 7. The load resistors 2050Ω and $11.1k\Omega$ yield effective load resistances of $2k\Omega$ and $10k\Omega$ respectively.
- 8. Any oscillation greater than 300mV in amplitude (peak-to-peak) shall be cause for device failure.

Figure 1. Test Circuit for Static Tests

Figure 2. Test Circuit for Transient Response and Slew Rate.

Figure 3. Test Circuit for Settling Time

BURN-IN

Devices supplied by PMI have been subjected to burn-in per Method 1015 of MIL-STD-883 using test condition C with circuit shown on Figure 4 or test condition F using circuit shown on Figure 5.

Figure 4. Test Circuit, Burn-In (Steady-State Power and Reverse Blas) and Operating Life Test

Figure 5. Accelerated Burn-In and Life Test Circuit