FEATURES

220 MHz Small Signal Bandwidth
160 MHz Large Signal BW (4 V p-p)
High Slew Rate: 1500 V/ $\mu \mathrm{s}$
Low Distortion: -66 dB @ 20 MHz
Fast Settling: 14 ns to 0.01\%
$3.5 \mathrm{nV} / \sqrt{\mathrm{Hz}}$ Spectral Noise Density
± 3 V Supply Operation
 bandwidth amplifiers utilizing a voltage feedback architecture. These amplifiers define a new level of performance for voltage feedback amplifiers, especially in the categories of large signal bandwidth, slew rate, settling, low distortion, and low noise.
Proprietary design architectures have resulted in an amplifier family that combines the most attractive attributes of both current feedback and voltage feedback amplifiers. The AD9622 exhibits extraordinarily accurate and fast pulse response characteristics (8 ns settling to 0.1%) as well as extremely wide small and large signal bandwidth previously found only in current feedback amplifiers. When combined with balanced high impedance inputs and low input noise current more common to voltage feedback architectures, the AD9622 offers performance not previously available in a monolithic operational amplifier.
*Protected by U.S. Patent $\mathbf{5 , 1 5 0 , 0 7 4}$ and others pending.

CONNECTION DIAGRAM

\# OPTIONAL CAPACITOR CB CONNECTED HERE DECREASES SETTLING TIME (SEE TEXT).

Qthor members of the AD962X mimplifier family are the AD9621 ($\mathrm{G}=+1$), AD9623 ($\mathrm{G} \leq+4$), and the AD9624 ($\mathrm{G}=+6$). A separate data sheet is availayle from/Analog Devices foreach prodel. Each generic device has been qesigned for a different mipime sable gain seting allowing users flexibility in optimizing sysem performance. Dypamic p\&rformance specifications such as slew rate, settling time, and distoftion vary from model to model. The table betorv summarizesey performance attributes for the AD962X family and came used ap a selection guide.
The AD9622 is offered in industrial and military temperature ranges. Industrial versions are available in plastic DIP, SOIC, and cerdip; MIL versions are packaged in cerdips.

PRODUCT HIGHLIGHTS

1. Wide Large Signal Bandwidth
2. High Slew Rate
3. Fast Settling
4. Low Distortion
5. Output Short-Circuit Protected
6. Low Intermodulation Distortion of High Frequencies

Parameter	AD9621	AD9622	AD9623	AD9624	Units
Minimum Stable Gain	+1	+2	+4	+6	$\mathrm{~V} / \mathrm{V}$
Harmonic Distortion (20 MHz)	-52	-66	-64	-66	dB
Large Signal Bandwidth (4 V p-p)	130	160	190	200	MHz
SSBW (0.5 V p-p)	350	220	270	300	MHz
Slew Rate	1200	1500	2100	2200	$\mathrm{~V} / \mu \mathrm{s}$
Rise/Fall Time (0.5 V Step)	2.4	1.7	1.6	1.5	ns
Settling Time (to $0.1 \% / 0.01 \%)$	$7 / 11$	$8 / 14$	$8 / 14$	$8 / 14$	ns
Input Noise (0.1 MHz - 200 MHz)	80	49	36	32	$\mu \mathrm{~V}$ rms

REV. 0

[^0]One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A. Tel: 617/329-4700

Fax: 617/326-8703

[^1]

ORDERING GUIDE

Model	Temperature Range	Package Description	Package Option
AD9622AN	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	8-Pin Plastic DIP	$\mathrm{N}-8$
AD9622AQ	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	8-Pin Cerdip	$\mathrm{Q}-8$
AD9622AR	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	8-Pin SOIC	$\mathrm{R}-8$
AD9622SQ	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	8-Pin Cerdip	$\mathrm{Q}-8$

EXPLANATION OF TEST LEVELS

Test Level

I - 100% production tested.
II - 100% production tested at $+25^{\circ} \mathrm{C}$, and sample tested at specified temperatures. AC testing of "A" grade devices done on sample basis.
III - Sample tested only.
IV - Parameter is guaranteed by design and characterization testing.
V - Parameter is a typical value only.
VI - All devices are 100% production tested at $+25^{\circ} \mathrm{C} .100 \%$ production tested at temperature extremes for extended temperature devices; sample tested at temperature extremes for commercial/industrial devices.

THEORY OF OPERATION

The AD9622 is a wide bandwidth voltage feedback amplifier that is guaranteed for minimum gain stability of +2 . Since its open-loop frequency response follows the conventional $6 \mathrm{~dB} /$ octave roll-off, its gain bandwidth product is basically constant. Increasing its closed-loop gain results in a corresponding decrease in small signal bandwidth. The AD9622 typically maintains a 60 degree unity loop gain phase margin with $\mathrm{R}_{\mathrm{F}} \cong 270 \Omega$. This high margin minimizes the effects of signal and noise peaking.

Feedback Resistor Choice

At minimum stable gain (+2), the AD9622 provides optimum dynamic performance with $\mathrm{R}_{\mathrm{F}}=270 \Omega$. When using this value and following the high speed layout guidelines, a shunt capacitor $\left(\mathrm{C}_{\mathrm{F}}\right)$ should not be required. This value for R_{F} provides the best combination of wide bandwidth, low peaking, and distortion.
However, if improved gain flatness is desired, a shunt capacitor $\left(\mathrm{C}_{\mathrm{F}}\right)$ will provide extra phase margin. This reduces both overshoot and peaking with only a slight reduction of bandwidth.
As an example, if the amplifier exhibits (worst case) peaking of 1 qR with $\mathrm{R}_{\mathrm{G}} \| \mathrm{R}_{\mathrm{F}}=135 \Omega\left(\mathrm{~A}_{\mathrm{V}}=2\right)$, then using a C_{F} of \approx 1. pH across R_{F} will reduce this peaking to 0 dB . In addition, opers ooot, noise, and atiling time (0.01%) will also improve. This comes at the expense of stightly decreased closed-loop pandwidth due to the $\mathrm{R}_{\mathrm{F}} \times \mathrm{C}_{\mathrm{F}}$ the constant created.
If the equivalent input capaqitance greatly exeded $\sqrt{s} 2 \mathrm{pF}$ tue to source drive of long inputtaces to the amplifien), thenradded shunt ancitence $\left(G_{F}\right)$ will be necessary to maihtaih stability. Likewise, if larger $\mathrm{R}_{G} \times \mathrm{R}_{\mathrm{F}}$ minimund-gain settink reqistors ard used, C_{F} will be necessary. As a rule of thumb, if the product of $\mathrm{R}_{\mathrm{F}} \| \mathrm{R}_{\mathrm{G}} \times \mathrm{C}_{\mathrm{I}} \leq 270 \times 10^{-12}$ seconds, then C_{F} s not required (for maximum bandwidth applications) and the amplifiers phase margin will maintain about 60°.
For $R_{F} \| R_{G}>150 \Omega$, use a C_{F} equal to $C_{I} \times R_{G} / R_{F}$. As the value of $R_{F} \| R_{G}$ increases, the bandwidth of the amplifier will begin to be controlled by the $R_{F} \times C_{F}$ time constant. Increasing C_{F} much beyond these guidelines will also cause amplifier instability.

Pulse Response

Unlike a traditional voltage feedback amplifier in which slew speed is usually dictated by its front end dc quiescent current and gain bandwidth product, the AD9622 provides "on demand" transconductance current that increases proportionally to the input "step" signal amplitude. This results in slew speeds ($1500 \mathrm{~V} / \mu \mathrm{s}$) comparable to wideband current feedback designs. This, combined with relatively low input noise current $(3.2 \mathrm{pA} / \sqrt{\mathrm{Hz}}$), gives the AD9622 the best attributes of both voltage and current feedback amplifiers.

Bootstrap Capacitor (C_{B})

In most applications, the C_{B} capacitor should not be required. Under certain conditions, it can be used to further enhance settling time performance.

Figure 2. Noninverting Gain Connection Diagram

The C_{B} capacitor $(\phi .001 \mu \mathrm{~F})$ connects the thernal hish inz- Dayout Considerations pedance nodes of the amptifiet. Using this capacitor whil reduce the large signal $(4 \mathrm{~V})$ step output settlink time y y 3 ns to β ns for 0.05% or greater accuracy. For setting accurady 1 sss than 0.05% or for smaller step sizes, its effect witl be less apparctet.
Under heavy slew conditions, this capacitor forces the intemal signal (initial step) amplitude to be controlled by the "on" (slewed) transistor, preventing its complement from completely turning off. This allows for faster settling time of these internal nodes and also the output.
In the frequency domain, total (high frequency) distortion will be approximately the same with or without C_{B}. Typically, the 3rd harmonic will be greater than the 2 nd without C_{B}. This will be reversed with C_{B} in place.

APPLICATIONS

The AD9622 is a voltage feedback amplifier and is well suited for such applications as active filters, and \log amplifiers. The device's wide bandwidth (230 MHz), phase margin (55°), low noise current ($3.2 \mathrm{pA} / \sqrt{\mathrm{Hz}}$), and slew rate ($1500 \mathrm{~V} / \mu \mathrm{s}$) give higher performance capabilities to these applications over previous voltage feedback designs.
With a settling time of 15 ns to 0.01% and 8 ns to 0.1%, the device is an excellent choice for DAC I/V conversion. The same characteristics along with low harmonic distortion make it a good choice for ADC buffering/ amplification. With its superb linearity at relatively high signal frequencies, it is an ideal driver for ADCs up to 14 bits.

As with all/wide bandwidth components, printed circuit layout is qritical oo obtain best dymaic performance with the AD9622. The round plane in he of the amplifier and its associated compondnts should fove as much o the component side of the boadd as possible (of first interior layer of a mpltilay er surface The ground and board. shouta be removed in
The ground palas shouta be removed in the area of he haputs and R_{F} and R_{G} to minimize straf capactance at the inppre. The same precaution should be used for C_{H}, if ased. Each power supply trace should be decoupled close to the package a $0.1 \mu \mathrm{~F}$ ceramic capacitor, plus a $6.8 \mu \mathrm{~F}$ tantalum nearby
All lead lengths for input, output, and feedback resistor should be kept as short as possible. All gain setting resistors should be chosen for low values of parasitic capacitance and inductance, i.e., microwave resistors and/or carbon resistors.

Microstrip techniques should be used for lead lengths in excess of one inch. Sockets should be avoided if at all possible because of their high series inductance. If sockets are necessary, individual pin sockets such as AMP p/n 6-330808-3 should be used. These contribute far less stray reactance than molded socket assemblies.
An evaluation board is available from Analog Devices for a nominal charge.

Figure 3. Open-Loop Gain and Phase

Figure 6. Harmonic Distortion vs. Frequency

Figure 9. Frequency Response vs. $R_{\text {LOAD }}$

Figure 12. Input Spectral Noise Density

Figure 4. Inverting Frequency Response

Figure 5. Noninverting Frequency Response

Figure 7. Third Order Intercep

Figure 10. Short-Term Settling Time

Figure 13. Output Level and Supply Current vs. Supply Voltage

Figure 14. Settling Time vs.
Capacitive Load

Figure 15. Large Signal Pulse

Figure 16. Small Signal Pulse Response

Figure 17. Settling Time vs. Noninverting Gain

MECHANICAL INFORMATION

Dimensions shown in inches and (mm).

Plastic SOIC (Suffix R)

[^0]: Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices.

[^1]: NOTES
 ${ }^{1}$ Measured at $\mathrm{A}_{\mathrm{V}}=21$.
 ${ }^{2}$ Effective large signal bandwidth; the device should not be stressed above $250 \mathrm{~V} \times \mathrm{MHz}$ ($\mathrm{V}_{\text {OUT }}$ p-p \times Frequency) to ensure long term reliability.
 ${ }^{3}$ Measured with a $0.001 \mu \mathrm{~F} \mathrm{C}_{\mathrm{B}}$ capacitor connected across Pins 1 and 8.
 Specifications subject to change without notice.

