

General Description

The MAX9420-MAX9423 are extremely fast, low-skew quad LVECL-to-LVPECL translators designed for highspeed signal and clock driver applications. The devices feature ultra-low propagation delay of 336ps and channel-to-channel skew of 17ps.

The four channels can be operated synchronously with an external clock, or in asynchronous mode, determined by the state of the SEL input. An enable input provides the ability to force all the outputs to a differential low state.

These devices operate with a negative supply voltage of -2.0V to -3.6V, compatible with LVECL input signals. The positive supply range is 2.375V to 3.6V for differential LVPECL output signals.

A variety of input and output terminations are offered for maximum design flexibility. The MAX9420 has open inputs and open-emitter outputs. The MAX9421 has open inputs and 50Ω series outputs. The MAX9422 has 100Ω differential input impedance and open-emitter outputs. The MAX9423 has 100Ω differential input impedance and 50Ω series outputs.

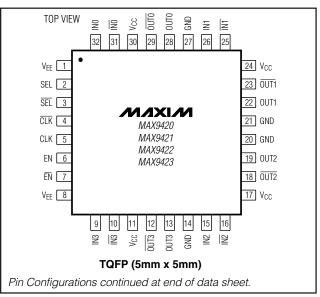
The MAX9420-MAX9423 are specified for operation from -40°C to +85°C, and are offered in space-saving 32-pin 5mm × 5mm TQFP and 32-lead 5mm × 5mm QFN packages.

Applications

Data and Clock Driver and Buffer Central Office Backplane Clock Distribution **DSLAM Backplane** Base Station **ATF**

Functional Diagram appears at end of data sheet.

Features


- ♦ >500mV Differential Output at 3.0GHz Clock
- ♦ 336ps (typ) Propagation Delay in Asynchronous Mode
- ♦ 17ps (typ) Channel-to-Channel Skew
- ♦ Integrated 50Ω Outputs (MAX9421/MAX9423)
- ♦ Integrated 100Ω Inputs (MAX9422/MAX9423)
- **♦** Synchronous/Asynchronous Operation

Ordering Information

PART	TEMP RANGE	PIN- PACKAGE	DATA INPUT	ОИТРИТ
MAX9420 EHJ	-40°C to +85°C	32 TQFP	Open	Open
MAX9420EGJ*	-40°C to +85°C	32 QFN	Open	Open
MAX9421EHJ	-40°C to +85°C	32 TQFP	Open	50Ω
MAX9421EGJ*	-40°C to +85°C	32 QFN	Open	50Ω
MAX9422EHJ	-40°C to +85°C	32 TQFP	100Ω	Open
MAX9422EGJ*	-40°C to +85°C	32 QFN	100Ω	Open
MAX9423 EHJ	-40°C to +85°C	32 TQFP	100Ω	50Ω
MAX9423EGJ*	-40°C to +85°C	32 QFN	100Ω	50Ω

^{*}Future product—contact factory for availability.

Pin Configurations

MIXIM

Maxim Integrated Products 1

ABSOLUTE MAXIMUM RATINGS

V _{CC} to GND	
VEE to GND	4.1V to +0.3V
Inputs to GND	
Differential Input Voltage	±3V
Continuous Output Current	50mA
Surge Output Current	
Continuous Power Dissipation ($T_A = +70^{\circ}$	°C)
Single-Layer PC Board	
32-Pin 5mm × 5mm TQFP	
(derate 9.5mW/°C above +70°C)	761mW
32-Lead 5mm × 5mm QFN	
(derate 21.3mW/°C above +70°C)	1.7W
Junction-to-Ambient Thermal Resistance	e in Still Air
32-Pin 5mm × 5mm TQFP	
32-Lead 5mm × 5mm QFN	+47°C/W

Junction-to-Ambient Thermal Resistance v	vith 500
32-Pin 5mm × 5mm TQFP	+73°C/W
Junction-to-Case Thermal Resistance	
32-Pin 5mm × 5mm TQFP	+25°C/W
32-Lead 5mm × 5mm QFN	+2°C/W
Operating Temperature Range	
Junction Temperature	+150°C
Storage Temperature Range	65°C to +150°C
ESD Protection	
Human Body Model (IN_, IN_)	500V
Others	
Lead Temperature (soldering, 10s)	+300°C

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

DC ELECTRICAL CHARACTERISTICS

 $(V_{EE}=-2.0V\ to\ -3.6V,\ V_{CC}=2.375V\ to\ 3.6V,\ GND=0,\ MAX9420/MAX9422\ outputs\ terminated\ with\ 50\Omega\ \pm1\%\ to\ V_{CC}-2.0V.\ Typical\ values\ are\ at\ V_{EE}=-3.3V,\ V_{CC}=3.3V,\ T_A=+25^{\circ}C,\ V_{IHD}=-0.9V,\ V_{ILD}=-1.7V,\ unless\ otherwise\ noted.)$ (Notes 1, 2, and 3)

PARAMETER	SYMBOL		CONDITIONS	MIN	TYP	MAX	UNITS					
LVECL INPUTS (IN_, IN_, CLK, CLK, EN, EN, SEL, SEL)												
Differential Input High Voltage	VIHD	Figure 1		V _{EE} + 1.4		0	V					
Differential Input Low Voltage	V _{ILD}	Figure 1		VEE		-0.2	V					
Differential Input Valtage	\/.=	Ciguro 1	V _{EE} ≤ -3.0V	0.2		3.0	V					
Differential Input Voltage	V _{ID}	Figure 1	V _{EE} > -3.0V	0.2		VEE	V					
land the Course		MAX9420/ MAX9421	EN, $\overline{\text{EN}}$, SEL, $\overline{\text{SEL}}$, IN_, $\overline{\text{IN}}$, CLK, or $\overline{\text{CLK}}$ = V _{IHD} or V _{ILD}	-10		25						
Input Current	l _{IH} , l _{IL}	MAX9422/ MAX9423	EN, EN, SEL, SEL, CLK, or CLK = V _{IHD} or V _{ILD}	-10		25	μΑ					
Differential Input Resistance (IN, $\overline{\text{IN}}$)	R _{IN}	MAX9422/MA>	(9423	86	100	114	Ω					
LVPECL OUTPUTS (OUT_, OUT_)											
Differential Output Voltage	V _{OH} -	Figure 1		600		660	mV					
Output Common-Mode Voltage	Vocm	Figure 1		V _{CC} - 1.5	V _{CC} - 1.25	V _{CC} -	V					
Internal Current Source	Isink	MAX9421/MAX	K9423, Figure 2	6.5	8.2	10.0	mA					
Output Impedance	Rout	MAX9421/MAX	(9423, Figure 2	40	50	60	Ω					

DC ELECTRICAL CHARACTERISTICS (continued)

 $(V_{EE}=-2.0V \text{ to } -3.6V, V_{CC}=2.375V \text{ to } 3.6V, \text{GND}=0, \text{MAX9420/MAX9422}$ outputs terminated with 50Ω ±1% to V_{CC} - 2.0V. Typical values are at $V_{EE}=-3.3V, V_{CC}=3.3V, T_{A}=+25^{\circ}C, V_{IHD}=-0.9V, V_{ILD}=-1.7V, \text{unless otherwise noted.})$ (Notes 1, 2, and 3)

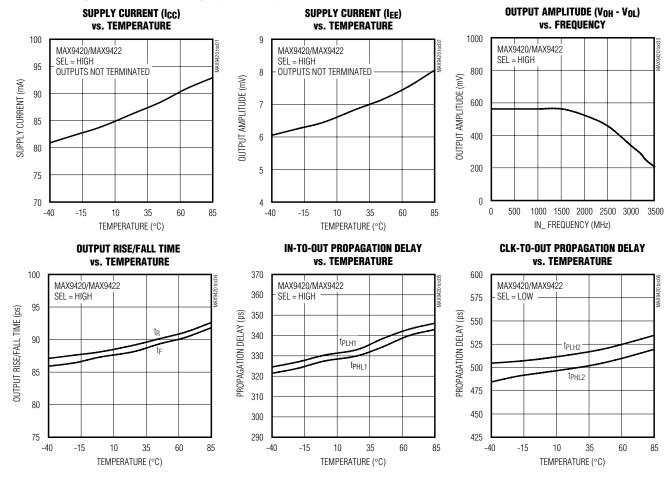
PARAMETER	SYMBOL	CONDITIONS			TYP	MAX	UNITS
POWER SUPPLY							
Negative Supply Current	lEE	OUT_, OUT_ open	MAX9421/MAX9422/ MAX9423		7	10	mA
Desitive Cumply Current	loo	OUT_, OUT_	MAX9421/MAX9423		153	-180	m ^
Positive Supply Current	Icc	open	MAX9420/MAX9422		87	105	mA

AC ELECTRICAL CHARACTERISTICS

 $(V_{EE}=-2.0V\ to\ -3.6V,\ V_{CC}=2.375V\ to\ 3.6V,\ GND=0,\ outputs\ terminated\ with\ 50\Omega\ \pm1\%\ to\ V_{CC}-2.0V.\ For\ SEL=high,\ CLK=high\ or\ low,\ f_{IN}=2.0GHz.\ For\ SEL=low,\ F_{IN}=1.5GHz,\ CLK=3.0GHz,\ input\ transition\ time=125ps\ (20\%\ to\ 80\%),\ V_{IHD}=V_{EE}+1.4V\ to\ 0,\ V_{ILD}=V_{EE}\ to\ -0.2V,\ V_{IHD}-V_{ILD}=0.2V\ to\ the\ smaller\ of\ 3.0V\ or\ IV_{EE}I.\ Typical\ values\ are\ at\ V_{EE}=-3.3V,\ V_{CC}=3.3V,\ GND=0,\ T_{A}=+25^{\circ}C,\ V_{IHD}=-0.9V,\ V_{ILD}=-1.7V,\ unless\ otherwise\ noted.)$

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
IN-to-OUT Differential	tPLH1, tPHL1	SEL = high, Figure 3	250	336	450	ps
CLK-to-OUT Differential	tplH2, tpHL2	SEL = low, Figure 4	350	506	575	ps
IN-to-OUT Channel-to-Channel Skew (Note 5)	tskD1	SEL = high		17	60	ps
CLK-to-OUT Channel-to- Channel Skew (Note 5)	tskD2	SEL = low		17	55	ps
Maximum Clock Frequency	fCLK(MAX)	V _{OH} -V _{OL} ≥500mV, SEL = low	3.0			GHz
Maximum Data Frequency	fIN(MAX)	V _{OH} -V _{OL} ≥ 400mV, SEL = high	2			GHz
Added Random Jitter (Note 6)	1	SEL = low, $f_{CLK} = 3.0GHz$, $f_{IN} = 1.5GHz$		0.65	1.0	ps(RMS)
Added halldolli Sitter (Note 6)	t _{RJ}	SEL = high, f _{IN} = 2GHz		0.53	1.0	ps _(RMS)
Added Deterministic Jitter	.	SEL = low, f_{CLK} = 3.0GHz, IN_ = 3.0Gbps, 2^{23} - 1 PRBS pattern		28	45	
(Note 6)	tDJ	SEL = high, IN_ = 3.0Gbps 2 ²³ - 1 PRBS pattern		23	45	ps(P-P)
IN-to-CLK Setup Time	ts	Figure 4	80			ps
CLK-to-IN Hold Time	tH	Figure 4	80			ps
Output Rise Time	t _R	Figure 3		90	120	ps

AC ELECTRICAL CHARACTERISTICS (continued)


 $(V_{EE}=-2.0V\ to\ -3.6V,\ V_{CC}=2.375V\ to\ 3.6V,\ GND=0,\ outputs\ terminated\ with\ 50\Omega\ \pm1\%\ to\ V_{CC}-2.0V.\ For\ SEL=high,\ CLK=high\ or\ low,\ f_{IN}=2.0GHz.\ For\ SEL=low,\ F_{IN}=1.5GHz,\ CLK=3.0GHz,\ input\ transition\ time=125ps\ (20\%\ to\ 80\%),\ V_{IHD}=V_{EE}+1.4V\ to\ 0,\ V_{ILD}=V_{EE}\ to\ -0.2V,\ V_{IHD}-V_{ILD}=0.2V\ to\ the\ smaller\ of\ 3.0V\ or\ IV_{EE}I.\ Typical\ values\ are\ at\ V_{EE}=-3.3V,\ V_{CC}=3.3V,\ GND=0,\ T_{A}=+25^{\circ}C,\ V_{IHD}=-0.9V,\ V_{ILD}=-1.7V,\ unless\ otherwise\ noted.)$

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
Output Fall Time	tF	Figure 3		90	120	ps
Propagation Delay Temperature Coefficient	$\Delta t_{PD}/\Delta T$			0.2	1	ps/°C

- Note 1: Measurements are made with the device in thermal equilibrium.
- Note 2: Current into a pin is defined as positive. Current out of a pin is defined as negative.
- **Note 3:** DC parameters are production tested at +25°C. DC limits are guaranteed by design and characterization over the full operating temperature range.
- Note 4: Guaranteed by design and characterization. Limits are set to ±6 sigma.
- Note 5: Measured between outputs of the same part at the signal crossing points for a same-edge transition.
- Note 6: Device jitter added to the input signal.

Typical Operating Characteristics

 $(V_{EE}=-3.3V,~V_{CC}=3.3V,~GND=0,~MAX9420/MAX9422~outputs~terminated~with~50\Omega~\pm1\%~to~V_{CC}-2.0V,~SEL=high,~f_{CLK}=3.0GHz,~f_{IN}=1.5GHz,~input~transition~time=125ps~(20\%~to~80\%),~V_{IHD}=-0.9V,~V_{ILD}=-1.7V,~T_{A}=+25^{\circ}C,~unless~otherwise~noted.)$

Pin Description

PIN	NAME	FUNCTION
1, 8	VEE	Negative Supply Voltage. Bypass V _{EE} to GND with 0.1µF and 0.01µF ceramic capacitors. Place the capacitors as close to the device as possible with the smaller value capacitor closest to the device.
2	SEL	Noninverting Differential Select Input. Setting SEL = high and SEL = low (differential high) enables all four channels to operate asynchronously. Setting SEL = low and SEL = high (differential low) enables all four channels to operate in synchronous mode.
3	SEL	Inverting Differential Select Input
4	CLK	Inverting Differential Clock Input. A rising edge on CLK (and falling on $\overline{\text{CLK}}$) transfers data from the inputs to the outputs when SEL = differential low.
5	CLK	Noninverting Differential Clock Input
6	EN	Noninverting Differential Output Enable Input. Setting EN = high and $\overline{\text{EN}}$ = low (differential high) enables the outputs. Setting EN = low and $\overline{\text{EN}}$ = high (differential low) drives the output low.
7	ĒN	Inverting Differential Output Enable Input
9	IN3	Noninverting Differential Input 3
10	ĪN3	Inverting Differential Input 3
11, 17, 24, 30	Vcc	Positive Supply Voltage. Bypass V _{CC} to GND with 0.1µF and 0.01µF ceramic capacitors. Place the capacitors as close to the device as possible with the smaller value capacitor closest to the device.
12	OUT3	Inverting Differential Output 3
13	OUT3	Noninverting Differential Output 3
14, 20, 21, 27	GND	Ground
15	IN2	Noninverting Differential Input 2
16	ĪN2	Inverting Differential Input 2
18	OUT2	Inverting Differential Output 2
19	OUT2	Noninverting Differential Output 2
22	OUT1	Noninverting Differential Output 1
23	OUT1	Inverting Differential Output 1
25	ĪN1	Inverting Differential Input 1
26	IN1	Noninverting Differential Input 1
28	OUT0	Noninverting Differential Output 0
29	OUT0	Inverting Differential Output 0
31	ĪNO	Inverting Differential Input 0
32	IN0	Noninverting Differential Input 0
_	EP	Exposed Paddle (MAX942_EGJ only). Connected to V _{EE} internally. See package dimensions.

Detailed Description

The MAX9420–MAX9423 are extremely fast, low-skew quad LVECL-to-LVPECL translators designed for high-speed signal and clock driver applications. The devices feature ultra-low propagation delay of 336ps and channel-to-channel skew of 17ps.

The four channels can be operated synchronously with an external clock, or in asynchronous mode, determined by the state of the SEL input. An enable input provides the ability to force all the outputs to a differential low state.

These devices operate with a negative supply voltage of -2.0V to -3.6V, compatible with LVECL input signals. The positive supply range is 2.375V to 3.6V for differential LVPECL output signals.

A variety of input and output terminations are offered for maximum design flexibility. The MAX9420 has open inputs and open-emitter outputs. The MAX9421 has open inputs and 50Ω series outputs. The MAX9422 has 100Ω differential input impedance and open-emitter outputs. The MAX9423 has 100Ω differential input impedance and 50Ω series outputs.

Supply Voltages

For interfacing to differential LVECL input levels, the VEE range is -2.0V to -3.6V with GND = 0. The VCC range is from 2.375V to 3.6V, compatible with LVPECL logic. Output levels are referenced to VCC.

Data Inputs

The MAX9420/MAX9421 have open inputs and require external termination. The MAX9422/MAX9423 have integrated 100 Ω differential input termination resistors from IN_ to $\overline{\text{IN}}$ _, reducing external component count.

Outputs

The MAX9421/MAX9423 have internal 50Ω series output termination resistors and 8mA internal pulldown current sources. Using integrated resistors reduces external component count.

The MAX9420/MAX9422 have open-emitter outputs. An external termination is required. See the *Output Termination* section.

Enable

Setting EN = high and $\overline{\text{EN}}$ = low enables the device. Setting EN = low and $\overline{\text{EN}}$ = high forces the outputs to a differential low. All changes on CLK, SEL, and IN_ are ignored.

Asynchronous Operation

Setting SEL = high and \overline{SEL} = low enables the four channels to operate independently as LVECL-to-LVPECL translators. The CLK signal is ignored in this mode. In asynchronous mode, the CLK signal should be set to either logic low or high state to minimize noise coupling.

Synchronous Operation

Setting SEL = low and SEL = high enables all four channels to operate in synchronized mode. In this mode, buffered inputs are clocked into flip-flops simultaneously on the rising edge of the differential clock input (CLK and CLK).

Differential Signal Input Limit

The maximum signal magnitude of all the differential inputs is 3.0V.

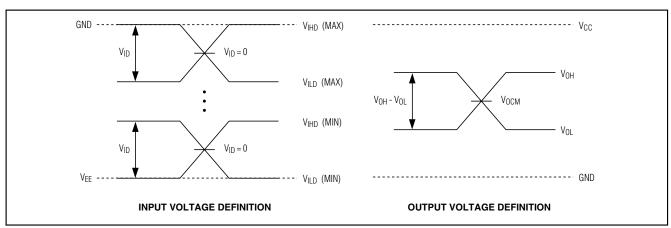


Figure 1. Input and Output Voltage Definitions

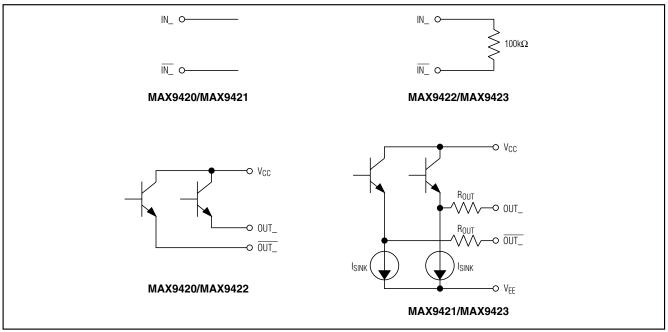


Figure 2. Input and Output Configurations

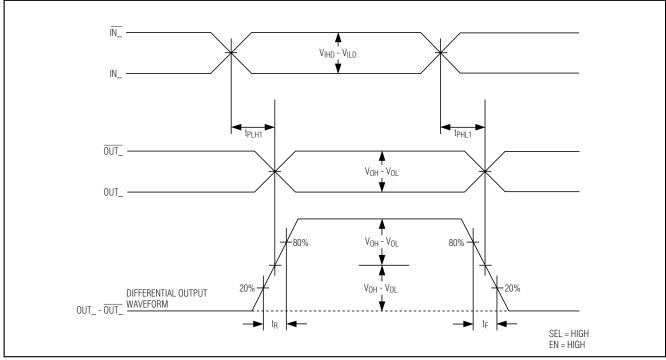


Figure 3. IN-to-OUT Propagation Delay Timing Diagram

Figure 4. CLK-to-OUT Propagation Delay Timing Diagram

Applications Information

Input Bias

Unused inputs should be biased or driven as shown in Figure 5. This avoids noise coupling that might cause toggling at the unused outputs.

Output Termination

Terminate open-emitter outputs ($\bar{M}AX9420/MAX9422$) through 50Ω to V_{CC} - 2V or use an equivalent Thevenin termination. Terminate outputs using identical termination on each for the lowest output-to-output skew. When a single-ended signal is taken from a differential output, terminate both outputs. For example, if OUT_ is used as a single-ended output, terminate both OUT_ and \overline{OUT} _.

Ensure that the output currents do not exceed the current limits as specified in the *Absolute Maximum Ratings* table. Under all operating conditions, the device's total thermal limits should be observed.

Power-Supply Bypassing

Adequate power-supply bypassing is necessary to maximize the performance and noise immunity. Bypass VCC to GND and VEE to GND with high-frequency surface-mount ceramic 0.1µF and 0.01µF capacitors in parallel as close to the device as possible, with the 0.01µF capacitor closest to the device pins. Use multi-

ple parallel vias for ground-plane connection to minimize inductance.

Circuit Board Traces

Input and output trace characteristics affect the performance of the MAX9420–MAX9423. Connect each of the inputs and outputs to a 50Ω characteristic impedance trace. Avoid discontinuities in differential impedance and maximize common-mode noise immunity by maintaining the distance between differential traces and avoid sharp corners. Minimize the number of vias to prevent impedance discontinuities. Reduce the reflections by maintaining 50Ω characteristic impedance through connectors and across cables. Minimize skew by matching the electrical length of the traces.

Chip Information

TRANSISTOR COUNT: 927

PROCESS: Bipolar

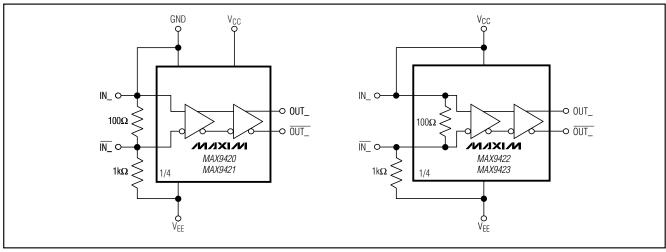
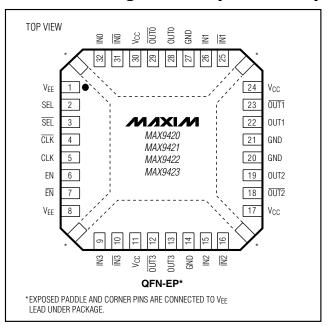
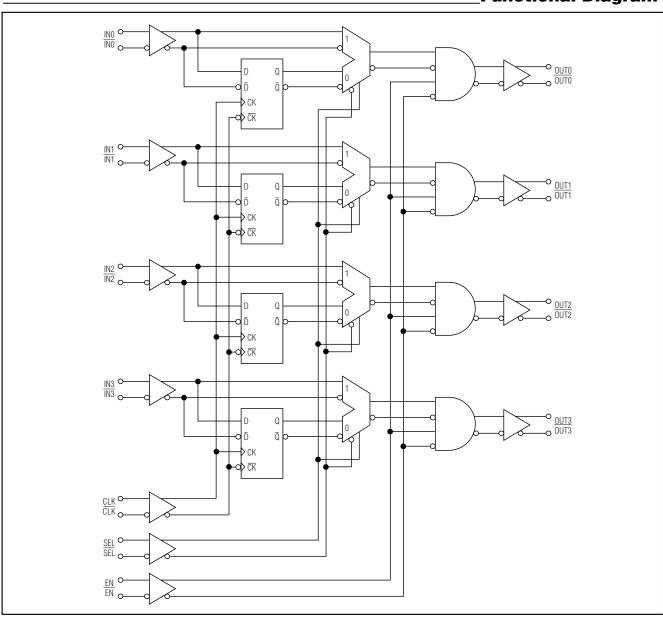
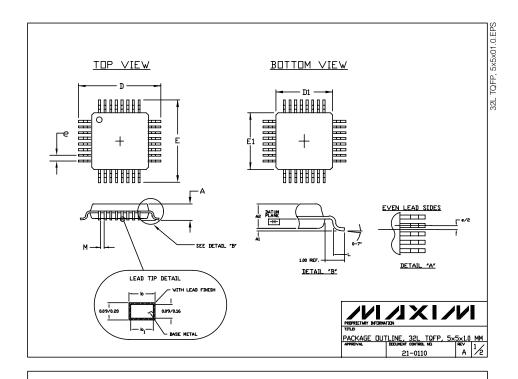




Figure 5. Input Bias Circuits for Unused Inputs


Pin Configurations (continued)

_Functional Diagram

Package Information

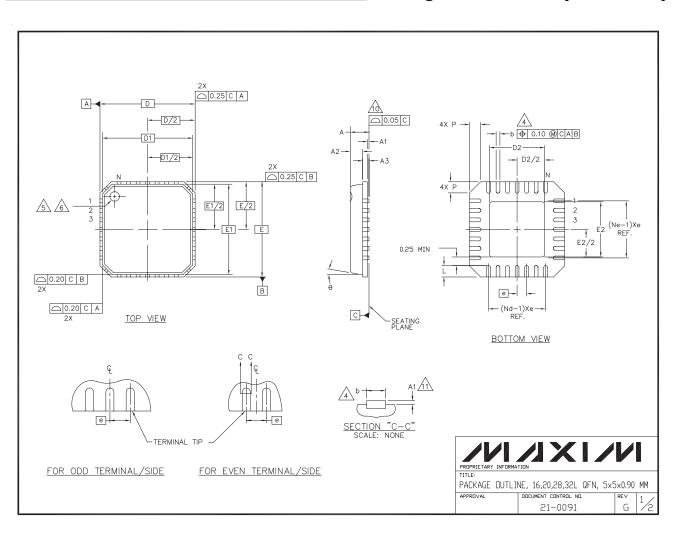
- NOTES!

 1. ALL DIMENSIONING AND TOLERANCING CONFORM TO ANSI Y14.5-1982.

 2. DATUM PLANE EHED IS LOCATED AT MOLD PARTING LINE AND COINCIDENT WITH LEAD, WHERE LEAD EXITS PLASTIC BODY AT BOTTOM OF PARTING LINE.

 3. DIMENSIONS DI AND BE DO NOT INCLUDE MOLD PROTRUSION. ALLOWABLE MOLD PROTRUSION IS 0.254 MM ON DI AND ELDIMENSIONS.

 4. THE TOP DE PACKAGE IS SMALLER THAN THE BOTTOM OF PACKAGE BY OLS MILLIMETERS.


 5. DIMENSION & DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE DAMBAR PROTRUSION SHALL BE 0.08 MM TOTAL IN EXCESS OF THE CONTINUE OF THE DAMBAR PROTRUSION SHALL BE 0.08 MM TOTAL IN EXCESS OF THE CONTINUE CONFORMS TO JEDEC PUBLICATION 95, REGISTRATION MG-136.

 8. LEADS SHALL BE COPLANAR WITHIN .004 INCH.

		JEDEC VARIATIONS					
Γ	DIMENSIONS						
	A	A					
Γ	5×5×1						
Γ	MIN.	MAX.					
A	N.	1.20					
A1 [0.05	0.15					
Az [0.95	1.05					
D [7.00	BSC.					
D1 [5.00	BSC.					
E [7.00	BSC.					
E1 [5.00	BSC.					
ㄴ [0.45	0.75					
м [0.15	me.					
N [12					
٠ [0.50	B2C.					
ь	0.17	0.27					
bl	0.17	0.23					

Package Information (continued)

Package Information (continued)

NOTES:

- 1. DIE THICKNESS ALLOWABLE IS 0.305mm MAXIMUM (.012 INCHES MAXIMUM)
- 2. DIMENSIONING & TOLERANCES CONFORM TO ASME Y14.5M. 1994.

/3\ N IS THE NUMBER OF TERMINALS.

Nd IS THE NUMBER OF TERMINALS IN X-DIRECTION &
Ne IS THE NUMBER OF TERMINALS IN Y-DIRECTION.

DIMENSION 6 APPLIES TO PLATED TERMINAL AND IS MEASURED BETWEEN 0.20 AND 0.25mm FROM TERMINAL TIP.

THE PIN #1 IDENTIFIER MUST BE EXISTED ON THE TOP SURFACE OF THE PACKAGE BY USING INDENTATION MARK OR INK/ LASER MARKED.

6. EXACT SHAPE AND SIZE OF THIS FEATURE IS OPTIONAL.

- 7. ALL DIMENSIONS ARE IN MILLIMETERS.
- 8. PACKAGE WARPAGE MAX 0.05mm.

APPLIED FOR EXPOSED PAD AND TERMINALS. EXCLUDE EMBEDDED PART OF EXPOSED PAD FROM MEASURING.

- 10. MEETS JEDEC MO220.
- 11. THIS PACKAGE OUTLINE APPLIES TO ANVIL SINGULATION (STEPPED SIDES) AND TO SAW SINGULATION (STRAIGHT SIDES) QFN STYLES.

S M B O L	COMMON									
M B	DII	No.								
°L	MIN.	NOM.	MAX.	Ϋ́E						
Α	0.80	0.90	1.00							
A1	0.00	0.01	0.05							
A2	0.00	0.65	1.00							
А3		0.20 REF.								
D		5.00 BSC								
D1		4.75 BSC								
E E1		5.00 BSC								
E1		4.75 BSC								
θ	ô	-	12*							
Р	0		0.60							
D2	1.25	-	3.25							
E2	1.25	1.25 - 3.25								

S	DITCH	VARIAT	ION B		S	PITCH	VARIA1	TION R		S	PITCH	VARIAT			S _Y	PITCH	VARIAT	וטאו ד	
M B	FITCH	VAINA		N _O	M B	FIICH	VAINA		N _O	M B	FIICII	VAINIA	ION C	No	M L	FIICH		ION D	N _O
ို	MIN.	NOM.	MAX.	T _E	ી	MIN.	NOM.	MAX.	T _E	<u>입</u>	MIN.	NOM.	MAX.	T _E	ી	MIN.	NOM.	MAX.	ŤΕ
e		0.80 BSC			e		0.65 BSC			e		0.50 BSC			e		0.50 BSC		
N		16		3	N		20		3	N		28		3	N		32		3
No		4		3	Nd		5		3	Nd		7		3	Nd		8		3
Ne	:	4		3	Ne		5		3	Ne		7		3	Ne		8		3
T	0.35	0.55	0.75		L	0.35	0.55	0.75		L	0.35	0.55	0.75		L	0.30	0.40	0.50	
Ь	0.28	0.33	0.40	4	Ъ	0.23	0.28	0.35	4	Ъ	0.18	0.23	0.30	4	ь	0.18	0.23	0.30	4

Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.