Low Power, High Output Current, Dual-Port ADSL/ADSL2+ Line Driver

FEATURES

2 differential DSL channels comprised of current feedback, high output current amplifiers
Integrated feedback and gain resistors
Integrated biasing network
Ideal for use as ADSL/ADSL2+ dual-channel Central Office (CO) line drivers
Low power consumption
Dual-supply operation from $\pm 6 \mathrm{~V}$ to $\pm 12 \mathrm{~V}$
Single-supply operation from 12 V to 24 V
10.8 mA quiescent supply current in full power mode
1.4 mA quiescent supply current in shutdown mode

Less than $\mathbf{7 0 0} \mathbf{~ m W}$ internal power dissipation while driving
20.4 dBm line power, 1:1 transformer

High output voltage and current drive
43.4 V p-p differential output voltage

Low distortion

- $\mathbf{6 6}$ dBc typical MTPR @ 20.4 dBm, 26 kHz to 2.2 MHz

High speed: $170 \mathrm{~V} / \mu \mathrm{s}$ differential slew rate

APPLICATIONS

ADSL/ADSL2+ CO line drivers

GENERAL DESCRIPTION

The AD8396 is comprised of four high output current, low power consumption operational amplifiers. It is particularly well suited for the CO driver interface in digital subscriber line systems, such as ADSL and ADSL2+. The driver can deliver 20.4 dBm to a line while compensating for losses due to hybrid insertion and back-termination resistors.

The low power consumption, high output current, high output voltage swing, and robust thermal packaging enable the AD8396 to be used as the CO line driver in ADSL and other xDSL systems.
The AD8396 is available in a $4 \mathrm{~mm} \times 4 \mathrm{~mm}$ 16-lead LFCSP.

Rev. C
Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.

AD8396

TABLE OF CONTENTS

Features 1
Applications
General Description 1
Pin Configuration 1
Revision History 2
Specifications 3
Absolute Maximum Ratings 4
Thermal Resistance 4
Maximum Power Dissipation 4
ESD Caution 4
Pin Configuration and Function Descriptions. 5
REVISION HISTORY
8/09—Revision C: Initial Version
Typical Performance Characteristics. 6
Theory of Operation 8
Applications Information 9
Supplies, Grounding, and Layout 9
Power Management 9
Typical ADSL/ADSL2+ Application 9
Multitone Power Ratio (MTPR). 9
Lightning and AC Power Fault. 10
Outline Dimensions 11
Ordering Guide 11

SPECIFICATIONS

$\left(\mathrm{V}_{\mathrm{CC}}-\mathrm{V}_{\mathrm{EE}}\right)=24 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=100 \Omega, \mathrm{G}_{\mathrm{DIFF}}=13$ (fixed), $\mathrm{PD}=(0), \mathrm{T}=25^{\circ} \mathrm{C}$, typical DSL application circuit, unless otherwise noted.
Table 1.

Parameter	Min	Typ	Max	Unit	Test Conditions/Comments
DYNAMIC PERFORMANCE -3 dB Small-Signal Bandwidth -3 dB Large-Signal Bandwidth Slew Rate Differential Gain	12.8	$\begin{aligned} & 8 \\ & 8 \\ & 170 \\ & 13 \end{aligned}$	13.2	MHz MHz $\mathrm{V} / \mu \mathrm{s}$ V/V	$\begin{aligned} & \text { Vout }=0.1 \mathrm{~V} \text { p-p, differential } \\ & \text { Vout }^{=2 \mathrm{~V} p-\mathrm{p} \text {, differential }} \\ & \mathrm{V}_{\text {out }}=4 \mathrm{~V} \text { p-p, differential } \end{aligned}$
NOISE/DISTORTION PERFORMANCE Second Harmonic Distortion Third Harmonic Distortion Multitone Input Power Ratio (MTPR) Differential Output Noise		$\begin{aligned} & -90 \\ & -62 \\ & -66 \\ & 140 \end{aligned}$		dBc dBc dBc $\mathrm{nV} / \sqrt{ } \mathrm{Hz}$	$\mathrm{f}_{\mathrm{C}}=2 \mathrm{MHz}$, V Out $=2 \mathrm{Vp}$-p, differential $\mathrm{f}_{\mathrm{C}}=2 \mathrm{MHz}$, $\mathrm{V}_{\text {OUT }}=2 \mathrm{~V}$ p-p, differential 26 kHz to 2.2 MHz , Zune $=100 \Omega$, differential load $\mathrm{f}=10 \mathrm{kHz}$
INPUT CHARACTERISTICS RTO Offset Voltage RTO Offset Voltage @ PD = (1) Input Bias Current Input Resistance Input Capacitance	$\begin{aligned} & -15 \\ & -15 \\ & -30 \\ & -5 \end{aligned}$	$\begin{aligned} & -0.7 \\ & +0.3 \\ & +0.1 \\ & -1.5 \\ & 8 \\ & 1 \end{aligned}$	$\begin{aligned} & +15 \\ & +15 \\ & +30 \\ & +5 \end{aligned}$	mV mV mV $\mu \mathrm{A}$ k Ω pF	Single-ended Differential Differential Differential Differential
OUTPUT CHARACTERISTICS Differential Output Voltage Swing Single-Ended Output Voltage Swing Output Leakage Current	$\begin{array}{\|l\|} \hline 42.6 \\ 21.3 \\ -100 \\ \hline \end{array}$	43.4 21.7	$\begin{aligned} & 22 \\ & +100 \end{aligned}$	Vp-p V p-p $\mu \mathrm{A}$	$\begin{aligned} & \Delta \mathrm{V}_{\text {out, }}, \mathrm{R}_{\mathrm{L}}=100 \Omega \\ & \Delta \mathrm{~V}_{\text {out, }} \mathrm{R}_{\mathrm{L}}=50 \Omega \\ & \mathrm{PD}=(1) \end{aligned}$
POWER SUPPLY Operating Range, Dual Supply Operating Range, Single Supply Total Quiescent Current $\begin{aligned} & \mathrm{PD}=(0) \\ & \mathrm{PD}=(1) \text { Shutdown State } \end{aligned}$ Common-Mode Voltage PD = (0) Threshold PD = (1) Threshold PD = (0) Input Current PD = (1) Input Current +Power Supply Rejection Ratio -Power Supply Rejection Ratio	$\begin{aligned} & \pm 6 \\ & 12 \\ & 9.0 \\ & 0 \\ & -10 \\ & 1.6 \\ & -100 \\ & -100 \end{aligned}$	$\begin{aligned} & 10.8 \\ & 1.4 \\ & +0.2 \\ & \\ & -47 \\ & +1 \\ & -80 \\ & -80 \\ & \hline \end{aligned}$	± 12 24 13.0 3.0 $+10$ 0.8 $\begin{aligned} & +100 \\ & +100 \\ & -60 \\ & -60 \end{aligned}$	V V mA mA mV V V $\mu \mathrm{A}$ $\mu \mathrm{A}$ dB dB	$\begin{aligned} & V_{C M} \\ & (0)=0 \mathrm{~V} \\ & (1)=5 \mathrm{~V} \\ & (0)=0 \mathrm{~V} \\ & (1)=5 \mathrm{~V} \end{aligned}$ $\Delta \mathrm{V}_{\mathrm{OS}, \mathrm{DM}(\mathrm{RTI})} / \Delta \mathrm{V}_{\mathrm{cc}}, \Delta \mathrm{V}_{\mathrm{cc}}= \pm 1 \mathrm{~V}$, differential $\Delta \mathrm{V}_{\mathrm{OS}, \mathrm{DM}(\mathrm{RT})} / \Delta \mathrm{V}_{\mathrm{EE}}, \Delta \mathrm{V}_{\mathrm{EE}}= \pm 1 \mathrm{~V}$, differential

ABSOLUTE MAXIMUM RATINGS

Table 2.

Parameter	Rating
Supply Voltage, $\mathrm{V}_{\mathrm{CC}}-\mathrm{V}_{\mathrm{EE}}$	26.4 V
Power Dissipation	See Figure 3
Storage Temperature Range	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Operating Temperature Range	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Lead Temperature (Soldering, 10 sec)	$300^{\circ} \mathrm{C}$
Junction Temperature	$150^{\circ} \mathrm{C}$

Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only; functional operation of the device at these or any other conditions above those indicated in the operational section of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

THERMAL RESISTANCE

$\theta_{\text {JA }}$ is specified in still air with exposed pad soldered to 4-layer JEDEC test board. $\theta_{\text {JC }}$ is specified at the exposed pad.

Table 3.

Package Type	$\boldsymbol{\theta}_{\mathrm{JA}}$	$\boldsymbol{\theta}_{\text {Jc }}$	Unit
16-Lead LFCSP	56	9.1	${ }^{\circ} \mathrm{C} / \mathrm{W}$

MAXIMUM POWER DISSIPATION

The maximum safe power dissipation for the AD8396 is limited by its junction temperature on the die.

The maximum safe junction temperature of plastic encapsulated devices, as determined by the glass transition temperature of the plastic, is $150^{\circ} \mathrm{C}$. Exceeding this limit can temporarily cause a shift in the parametric performance due to a change in the stresses exerted on the die by the package. Exceeding this limit for an extended period can result in device failure.

Figure 3 shows the maximum power dissipation in the package vs. the ambient temperature for the 16 -lead LFCSP on a JEDEC standard 4-layer board. $\theta_{\text {IA }}$ values are approximations.

Figure 3. Maximum Power Dissipation vs. Ambient Temperature for a 4-Layer Board

The power dissipated in the package $\left(\mathrm{P}_{\mathrm{D}}\right)$ is the sum of the quiescent power dissipation and the power dissipated in the package due to the load drive for all outputs. The quiescent power is the voltage between the supply pins $\left(\mathrm{V}_{\mathrm{s}}\right)$ times the quiescent current $\left(\mathrm{I}_{\mathrm{S}}\right)$. Assuming that the load R_{L} is referenced to midsupply, the total drive power is $\mathrm{V}_{\mathrm{s}} / 2 \times \mathrm{I}$ out, part of which is dissipated in the package and part in the load $\left(\mathrm{V}_{\text {out }} \times \mathrm{I}_{\text {out }}\right)$.

RMS output voltages should be considered. If R_{L} is referenced to V_{EE}, as in single-supply operation, the total power is $\mathrm{V}_{\mathrm{S}} \times$ Iout.
In single supply with R_{L} to V_{EE}, worst case is $\mathrm{V}_{\text {out }}=\mathrm{V}_{\mathrm{S}} / 2$.
Airflow increases heat dissipation, effectively reducing θ_{JA}. In addition, more copper in direct contact with the package leads from PCB traces, through-holes, ground, and power planes reduces $\theta_{J A}$.

ESD CAUTION

PIN CONFIGURATION AND FUNCTION DESCRIPTIONS

NOTE
THE EXPOSED PAD IS NOT CONNECTED INTERNALLY FOR INCREASED RELIABILITY OF THE SOLDER JOINTS AND MAXIMUM THERMAL CAPABILITY IT IS RECOMMENDED THAT THE PAD BE SOLDERED TO THE GROUND PLANE.

Figure 4. Pin Configuration

Table 4. Pin Function Descriptions

Pin No.	Mnemonic	Description
1	INPA	Port A Input P
2	INNA	Port A Input N
3,11	DGND	Ground
4	INPB	Port B Input P
5	INNB	Port B Input N
6	VCOM-B	Port B Bias
7	PD_B	Port B Shutdown
8	VEE	Negative Power Supply
9	VONB	Port B Output N
10	VOPB	Port B Output P
12	VONA	Port A Output N
13	VOPA	Port A Output P
14	VCC	Positive Power Supply
15	PD_A	Port A Shutdown
16	VCOM-A	Port A Bias
Exposed Pad		No Connection

AD8396

TYPICAL PERFORMANCE CHARACTERISTICS

Figure 5. Differential Gain vs. Frequency, $R_{L}=100 \Omega$

Figure 6. DC Differential Output Swing vs. Load

Figure 7. Internal Power Consumption vs. Output Power, Typical ADSL/ADSL2+ Application Circuit, 100Ω Resistive Load Only

Figure 8. Crosstalk vs. Frequency, Typical ADSL/ADSL2+ Application Circuit, $V_{\text {OUT }}=2 \mathrm{~V} p-p, R_{L}=100 \Omega$

Figure 9. Power-Down/Power-Up Transition

Figure 10. Differential Output Noise vs. Frequency, Typical ADSL/ADSL2+ Application Circuit

Figure 11. Output Overdrive Recovery, Typical ADSL/ADSL2+ Application Circuit, $V_{\text {OUT }}=3.3 V_{\text {RMS }}, C F=5.47, R_{L}=100 \Omega$

Figure 12. Feedthrough vs. Frequency, Typical ADSL/ADSL2+Application Circuit,
$V_{\text {OUT }}=2 \mathrm{~V} p-p, R_{L}=100 \Omega$

AD8396

THEORY OF OPERATION

The AD8396 is a current feedback amplifier with high output current capability. With a current feedback amplifier, the current into the inverting input is the feedback signal, and the open-loop behavior is that of a transimpedance, $\mathrm{dV}_{\mathrm{o}} / \mathrm{dI}_{\text {IN }}$ or T_{z}.

The open-loop transimpedance is analogous to the open-loop voltage gain of a voltage feedback amplifier. Figure 13 shows a simplified model of a current feedback amplifier. Because R_{IN} is proportional to $1 / g_{m}$, the equivalent voltage gain is $T_{z} \times g_{m}$, where g_{m} is the transconductance of the input stage. Basic analysis of the follower with the gain circuit yields

$$
\frac{V_{O}}{V_{I N}}=G \times \frac{T_{Z}(\mathrm{~S})}{T_{Z}(\mathrm{~S})+\left(G \times R_{I N}\right)+R_{\mathrm{F}}}
$$

where:
$G=1+R_{F} / R_{G}$
$R_{I N}=1 / g_{m} \approx 50 \Omega$

Because $\mathrm{G} \times \mathrm{R}_{\mathrm{IN}} \ll \mathrm{R}_{\mathrm{F}}$ for low gains, a current feedback amplifier has relatively constant bandwidth vs. gain. The 3 dB point is set when $\left|\mathrm{T}_{\mathrm{Z}}\right|=\mathrm{R}_{\mathrm{F}}$.
In a nonideal amplifier, there are additional poles that contribute excess phase, and there is a value for R_{F} below which the amplifier is unstable. Tolerance for peaking and desired flatness determines the optimum R_{F} in each application.

Figure 13. Simplified Block Diagram

APPLICATIONS INFORMATION

SUPPLIES, GROUNDING, AND LAYOUT

The AD8396 can be powered from either single or dual supplies, with the total supply voltage ranging from 12 V to 24 V . For optimum performance, use well-regulated low ripple supplies.
As with all high speed amplifiers, pay close attention to supply decoupling, grounding, and overall board layout. Provide low frequency supply decoupling with $10 \mu \mathrm{~F}$ tantalum capacitors from each supply to ground. In addition, decouple all supply pins with $0.1 \mu \mathrm{~F}$ quality ceramic chip capacitors placed as close as possible to the driver. Use an internal low impedance ground plane to provide a common ground point for all driver and decoupling capacitor ground requirements. Whenever possible, use separate ground planes for analog and digital circuitry.
Follow high speed layout techniques to minimize parasitic capacitance.
Keep input and output traces as short as possible and as far apart from each other as practical to minimize crosstalk. Keep all differential signal traces as symmetrical as possible.

POWER MANAGEMENT

A digitally programmable logic pin switches each port of the AD8396 between active bias and shutdown states. The PD $_$A pin controls Port A and the PD_B pin controls Port B. These pins can be controlled directly with either 3.3 V or 5 V CMOS logic with the DGND pins as a reference. If left unconnected, the PD pins float high, placing the amplifier in the shutdown state. See the Specifications section for the quiescent current for each of the available bias states.

TYPICAL ADSL/ADSL2+ APPLICATION

In a typical ADSL/ADSL2+ application, a differential line driver takes the signal from the analog front end (AFE) and drives it onto the twisted pair telephone line. Referring to the typical circuit representation in Figure 14, the differential input appears at $\mathrm{V}_{\text {IN }+}$ and $\mathrm{V}_{\text {IN }-}$ from the AFE, while the differential output is transformer coupled to the telephone line at TIP and RING. The common-mode operating point, generally midway between the supplies, is set internally and is available at VCOM.

Figure 14. Typical ADSL/ADSL2+ Application Circuit

MULTITONE POWER RATIO (MTPR)

The DMT signal used in ADSL/ADSL2+ systems carries data in discrete tones or bins, which appear in the frequency domain in evenly spaced 4.3125 kHz intervals. In applications using this type of waveform, MTPR is a commonly used measure of linearity. Generally, designers are concerned with two types of MTPR: in-band and out-of-band. In-band MTPR is defined as the measured difference from the peak of one tone that is loaded with data to the peak of an adjacent tone that is intentionally left empty. Out-of-band MTPR is more loosely defined as the spurious emissions that occur in the receive band located between 25.875 kHz and the first downstream tone at 138 kHz . Figure 15 and Figure 16 show the AD8396 in-band MTPR for a 5.5 crest factor waveform for empty bins in the ADSL and extended ADSL2+ bandwidths.

Figure 15. In-Band MTPR at 646.875 kHz

Figure 16. In-Band MTPR at 1.9665 MHz

AD8396

LIGHTNING AND AC POWER FAULT
When the AD8396 is an ADSL/ADSL2+ line driver, it is transformer coupled to the twisted pair telephone line. In this environment, the AD8396 is subject to large line transients, resulting from events, such as lightning strikes or downed power lines. Additional circuitry is required to protect the AD8396 from damage due to these events.

OUTLINE DIMENSIONS

COMPLIANT TO JEDEC STANDARDS MO-220-WGGC.
¢.
产
Figure 17. 16-Lead Lead Frame Chip Scale Package [LFCSP_WQ]
$4 \mathrm{~mm} \times 4 \mathrm{~mm}$, Very Very Thin Quad
(CP-16-26)
Dimensions shown in millimeters

ORDERING GUIDE

Model	Temperature Range	Package Description	Package Option
AD8396ACPZ-R2 ${ }^{1}$	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	16-Lead Lead Frame Chip Scale Package (LFCSP_WQ)	CP-16-26
AD8396ACPZ-RL ${ }^{1}$	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	16-Lead Lead Frame Chip Scale Package (LFCSP_WQ)	CP-16-26
AD8396ACPZ-R7 ${ }^{1}$	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	16-Lead Lead Frame Chip Scale Package (LFCSP_WQ)	CP-16-26

[^0]AD8396
NOTES

\square

[^0]: ${ }^{1} Z=$ RoHS Compliant Part.

