Dual-Flash-Pin Electronics/Supervoltage Switch Matrix

The MAX9960 dual-flash-pin electronics/supervoltage switch matrix replaces most of the relays and switches commonly needed to connect system resources to each of two pins in a flash memory or SOC ATE system (Figure 1). The device provides seven switches per channel to select up to four independent sources: the pin electronics (PE), two parametric measurement units (PMUs) or other Kelvin analog resources, and a flash memory programming supervoltage ($\mathrm{FV} \mathrm{HH}_{-}$). The force-and-sense PMU switches are independently controlled, enabling their use to connect two non-Kelvin resources in place of each PMU or Kelvin resource. Each MAX9960 contains two complete seven-switch channels with fully independent controls.
The MAX9960 features signal path switches with wide 600 MHz bandwidth, low 3Ω series resistance, and low $8 p F$ shunt capacitance over a voltage range compatible with common pin electronics ICs. An on-chip volt-age-doubling buffer with selectable $1 x$ or $2 x$ gain generates the flash supervoltage, allowing a 6.5V DAC reference input to generate up to a maximum of 13 V for flash-memory programming levels.
When switching from the $\mathrm{FV}_{\mathrm{H}}^{\mathbf{-}}$ to PE _ or from PE _ to $\mathrm{FV}_{\mathrm{HH}}^{\mathbf{\prime}}$, the device-under-test (DUT_) voltage behaves monotonically. Switching transitions between the PE_ and FVHH_ inputs are typically less than 350ns.
The MAX9960 operates over a commercial $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ temperature range, and is available in the 48-pin thin QFN package ($7 \mathrm{~mm} \times 7 \mathrm{~mm} \times 0.8 \mathrm{~mm}$) with an exposed pad on the bottom for heat removal.

Applications

Flash Memory Automatic Test Equipment SOC Automatic Test Equipment

Features

- Dual Supervoltage Switch Arrays
- $3 \Omega, 8 \mathrm{pF}, 600 \mathrm{MHz}$ Bandwidth Pin Electronics Paths
- 13V Flash Programming Paths
- On-Chip 1x and 2x Selectable Gains
- 2 Kelvin PMU Paths
- Fast Switching: 350ns (typ)
- Monotonic Slew Rate When Switching Between PE_ and FVHH_

Ordering Information

PART	TEMP RANGE	PIN-PACKAGE*	PKG CODE
MAX9960BCTM	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	48 Thin QFN-EP** $(7 \mathrm{~mm} \times 7 \mathrm{~mm} \times 0.8 \mathrm{~mm})$	T4877-6

*See full package information at the end of this data sheet.
${ }^{* *} E P=$ Exposed pad.

Pin Configuration

MAX9960

Part Number Table

$$
\begin{aligned}
& \text { Notes: } \\
& \text { 1. See the MAX9960 QuickView Data Sheet for further information on this product family or download the } \\
& \text { MAX9960 full data sheet (PDF, 632kB). } \\
& \text { 2. Other options and links for purchasing parts are listed at: http://www.maxim-ic.com/sales. } \\
& \text { 3. Didn't Find What You Need? Ask our applications engineers. Expert assistance in finding parts, usually within } \\
& \text { one business day. } \\
& \text { 4. Part number suffixes: T or T\&R = tape and reel; + = RoHS/lead-free; \# = RoHS/lead-exempt. More: See full } \\
& \text { data sheet or Part Naming Conventions. } \\
& \text { 5. * Some packages have variations, listed on the drawing. "PkgCode/Variation" tells which variation the } \\
& \text { product uses. }
\end{aligned}
$$

Part Number	Free Sample	Buy Direct	Package: TYPE PINS SIZE DRAWING CODE/VAR	Temp	RoHS/Lead-Free? Materials Analysis
MAX9960BCTM-TD				0 C to +70C	RoHS/Lead-Free: No
MAX9960BCTM + D				0 C to +70C	RoHS/Lead-Free: Yes
MAX9960BCTM + TD				0 C to +70C	RoHS/Lead-Free: Yes
MAX9960BCTM-D			THIN QFN; 48 pin; $7 \times 7 \times 0.8 \mathrm{~mm}$ Dwg: 21-0144F (PDF) Use pkgcode/variation: T4877-6*	OC to +70C	RoHS/Lead-Free: No Materials Analysis

Didn't Find What You Need?

Dual-Flash-Pin Electronics/Supervoltage Switch Matrix

ABSOLUTE MAXIMUM RATINGS

V+ to GND
VDD to GND .. 0.3 V to +16.5 V
\qquad ..-0.3V to +26 V
$V_{S S}$ to GND. \qquad -6.5 V to +0.3 V
VL to GND -0.3 V to +6 V
V+ to VSS
Digital Inputs \qquad (GND - 0.3V) to ($\mathrm{V}_{\mathrm{L}}+0.3 \mathrm{~V}$)
FVHHIN_

.......

\qquad . (the higher of -4 V and
All Other Pins
$\left(\mathrm{V}_{S S}-0.3 \mathrm{~V}\right)$) to (the lower of +10 V and $\left(\mathrm{V}_{\mathrm{DD}}+0.3 \mathrm{~V}\right)$)
hs $\left.\mathrm{V}_{S S}-0.3 \mathrm{~V}\right)$ to $\left(\mathrm{V}_{\mathrm{DD}}+0.3 \mathrm{~V}\right)$
Continuous Current, PE \qquad
Continuous Current, PMUS \qquad $\pm 120 \mathrm{~mA}$
Continuous Current, PMUFA_ + PMUFB_ +
(FVHH_Path)

Peak Current (100ns), PE_ .. $\pm 300 \mathrm{~mA}$
Peak Current (100ns), PMUS__.. $\pm 20 \mathrm{~mA}$
Peak Current (100ns), PMUFA_ + PMUFB_ + (FVHH_Path)
$\pm 70 \mathrm{~mA}$
Package Continuous Power Dissipation ($\mathrm{T}_{\mathrm{A}}=+70^{\circ} \mathrm{C}$) 48-Pin QFN-EP, on Single-Layer Board (derate $27.8 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $+70^{\circ} \mathrm{C}$). 2222 mW 48-Pin QFN-EP, on Multilayer Board (derate $40.0 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $+70^{\circ} \mathrm{C}$). 3200 mW
Operating Temperature Range

$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Junction Temperature
$+150^{\circ} \mathrm{C}$ Storage Temperature Range $65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Lead Temperature (soldering 10s).
$+300^{\circ} \mathrm{C}$

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

ELECTRICAL CHARACTERISTICS

$\left(\mathrm{V}+=+24 \mathrm{~V}, \mathrm{~V}_{\mathrm{DD}}=+15 \mathrm{~V}, \mathrm{~V}_{S S}=-5 \mathrm{~V}, \mathrm{VL}=+3.3 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}\right.$, unless otherwise noted. Specifications at $\mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ and $\mathrm{T}_{\mathrm{A}}=+70^{\circ} \mathrm{C}$ are guaranteed by design and characterization. Typical values are at $T_{A}=+25^{\circ} \mathrm{C}$, unless otherwise noted.) (Figure 1)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
DC CHARACTERISTICS						
PE_PATH						
On-Resistance	Ron	$\begin{aligned} & \mathrm{V}_{\text {DUT }}^{-} \\ & =+2.5 \mathrm{~V}, \mathrm{ISW}=-40 \mathrm{~mA} \text { to }+40 \mathrm{~mA}, \\ & \mathrm{~T}_{\mathrm{A}}=0^{\circ} \mathrm{C} \text { to }+30^{\circ} \mathrm{C}(\text { Note } 1) \end{aligned}$	2.5	3.0	3.5	Ω
			2.5		4.2	
On-Resistance Flatness	RFLAt(ON)	$V_{\text {DUT_ }}=0$ to +5V (Note 1)	-0.6		+0.6	Ω
Ch1 to Ch2 Resistance Match	RMATCH	$\mathrm{V}_{\text {DUT_ }}=+2.5 \mathrm{~V}, \mathrm{ISW}=-40 \mathrm{~mA}$ to +40 mA	-0.5		+0.5	Ω
Signal Voltage Range	VPE		-3.5		+8.0	V
Operating DC Current Range	ISW		-40		+40	mA
FV HH_{-}PATH						
On-Resistance	Ron	$\begin{aligned} & \mathrm{FV}_{\mathrm{HH}_{-}}=-1.5 \mathrm{~V} \text { to }\left(\mathrm{V}_{\mathrm{DD}}-1.5 \mathrm{~V}\right), \\ & \mathrm{IHH}_{-}=-10 \mathrm{~mA} \text { to }+10 \mathrm{~mA}(\text { Notes } 1,2) \end{aligned}$	32		100	Ω
Operating Voltage Range	$\mathrm{FV}_{\mathrm{HH}}$		-1.5		$\begin{gathered} V_{D D}- \\ 1.5 \end{gathered}$	V
Operating DC Current Range	ISW		-10		+10	mA
FORCE PATHS						
On-Resistance	Ron	$\begin{aligned} & \text { VPMUF }_{--}=-4.25 \mathrm{~V} \text { to }+14.5 \mathrm{~V}, \\ & \text { IPMUF }_{--}=-25 \mathrm{~mA} \text { to }+25 \mathrm{~mA}(\text { Note } 1) \end{aligned}$			70	Ω
Operating Voltage Range	VPMUF		-4.25		+14.5	V
Operating DC Current Range	ISW		-25		+25	mA
SENSE PATHS						
On-Resistance	Ron	$\begin{aligned} & \text { VPMUS_- }=-4.25 \mathrm{~V} \text { to }+14.5 \mathrm{~V}, \\ & \text { IPMUS_- }=-1 \mathrm{~mA} \text { to }+1 \mathrm{~mA}(\text { Note } 1) \end{aligned}$			1250	Ω

Dual-Flash-Pin Electronics/Supervoltage Switch Matrix

ELECTRICAL CHARACTERISTICS (continued)

$\left(\mathrm{V}+=+24 \mathrm{~V}, \mathrm{~V}_{\mathrm{DD}}=+15 \mathrm{~V}, \mathrm{~V}_{S S}=-5 \mathrm{~V}, \mathrm{~V} L=+3.3 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}\right.$, unless otherwise noted. Specifications at $\mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ and $\mathrm{T}_{\mathrm{A}}=+70^{\circ} \mathrm{C}$ are guaranteed by design and characterization. Typical values are at $T_{A}=+25^{\circ} \mathrm{C}$, unless otherwise noted.) (Figure 1)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
Operating Voltage Range	VPMUS		-4.25		+14.5	V
Operating DC Current Range	Isw		-1		+1	mA
FV ${ }_{\text {HH_ }}$ BUFFERS						
DC Output Current	IODC	$\mathrm{FV} \mathrm{V}_{\mathrm{HH}}=-1.5 \mathrm{~V}$ to ($\mathrm{V}_{\mathrm{DD}}-1.5 \mathrm{~V}$)	10			mA
Current Limit	ILIM	DUT_ sourcing current	+15		+25	mA
		DUT_ sinking current	-25		-15	
Operating Voltage Range	FVHH	FV $_{\text {HHREF }}^{-}$= 0 (Note 2)	-1.5		$\begin{gathered} \hline \mathrm{V}_{\mathrm{DD}}- \\ 1.5 \mathrm{~V} \end{gathered}$	V
Linearity Error	Ler_FV ${ }_{\text {HH }}$	FV HHREF_ $_{-}$0; no load; relative to 2-point line between $\mathrm{V}_{\text {DUT_ }}=0$ and +13 V ; measured at $\mathrm{V}_{\text {DUT_ }}=+3.25 \mathrm{~V},+6.5 \mathrm{~V}$, and $+9.75 \mathrm{~V}$	-2		+2	mV
Gain	$\mathrm{GFV}_{\mathrm{HH}}$	FV ${ }_{\text {HHREF }}^{-}=0$, no load, VDUT_ = 0 to +13 V (Note 3)	1.98	2.00	2.02	V/V
Output Offset	VOS_FVHH	FV $\mathrm{H}_{\text {HREF }}=0, \mathrm{~V}_{\text {DUT- }}=+12 \mathrm{~V}$, no load	-50		+50	mV
Output Offset Temperature Coefficient	TC_Vos	$\begin{aligned} & \text { VDUT_ }=0 \text { to }+13 \mathrm{~V}, \mathrm{FV}_{\mathrm{HH}} \mathrm{REF}_{-}=0, \\ & \mathrm{~T}_{\text {CASE }}=+30^{\circ} \mathrm{C} \text { to }+50^{\circ} \mathrm{C} \end{aligned}$		± 0.2		$\mathrm{mV} /{ }^{\circ} \mathrm{C}$
Input Bias Current	$\mathrm{IFV}_{\mathrm{HH}}$	$\begin{aligned} & \mathrm{FV}_{\mathrm{HH}} \mathrm{~N}_{-}=-1.5 \mathrm{~V} \text { to }+7.5 \mathrm{~V}, \\ & \mathrm{FV}_{\mathrm{HH}} \mathrm{REF}_{-}=\text {open } \end{aligned}$	-25		+25	$\mu \mathrm{A}$
Gain Resistor Ground	FV ${ }_{\text {HHREF }}$	(Note 4)	-1.5		+0.5	V
Gain Resistor Current	IvhHREF	Measured with $\mathrm{FV}_{H H} \mathrm{IN}_{-}=+5 \mathrm{~V}$, $\text { FV }{ }_{\text {HH }} R E F_{-}=0$		0.4		mA
LEAKAGE (Notes 5, 6)						
DUT_ Leakage, Disabled	ILEAK_OFF	Switches S1, S2, S6, S7 open; $V_{\text {DUT_ }}=-4.25 \mathrm{~V} \text { to }+14.5 \mathrm{~V}$	-1		+1	nA
PE_ Leakage	ILEAK_PE	S1 closed; S2, S6, S7 open; $\text { VDUT_ }=-3.5 \mathrm{~V} \text { to }+8 \mathrm{~V}$	-1		+1	nA
PMUA_ Path Leakage, Enabled	$\begin{gathered} \text { ILEAK_PMU } \\ \text { A_ON } \\ \hline \end{gathered}$	S2, S4, S6 closed; S1, S3, S5, S7 open; $\text { VDUT_ }=-4.25 \mathrm{~V} \text { to }+14.5 \mathrm{~V}$	-1		+1	nA
PMUB_Path Leakage, Enabled	ILEAK_PMU B_ON	S2, S5, S7 closed; S1, S3, S4, S6 open; $V_{\text {DUT_ }}=-4.25 \mathrm{~V}$ to +14.5 V	-1		+1	nA
PMUA_ Path Leakage, Disabled	$\begin{aligned} & \text { ILEAK_PMU } \\ & \text { A_OFF } \end{aligned}$	S4, S6 open; VPMUFA_ $=-4.25 \mathrm{~V}$ to +14.5 V ; measured at PMUFA_ with PMUSA_ externally connected to PMUFA_	-1		+1	nA
PMUB_ Path Leakage, Disabled	$\begin{array}{\|c} \hline \text { LLEAK_PMU } \\ \text { B_OFF } \end{array}$	S5, S7 open; VPMUFB_ $=-4.25 \mathrm{~V}$ to +14.5 V ; measured at PMUFB_ with PMUSB_ externally connected to PMUFB_	-1		+1	nA
Input High Voltage	V_{IH}		+2.3			V
Input Low Voltage	VIL				+0.4	V

Dual-Flash-Pin Electronics/Supervoltage Switch Matrix

ELECTRICAL CHARACTERISTICS (continued)
$\left(\mathrm{V}+=+24 \mathrm{~V}, \mathrm{~V}_{\mathrm{DD}}=+15 \mathrm{~V}, \mathrm{~V}_{S S}=-5 \mathrm{~V}, \mathrm{VL}=+3.3 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}\right.$, unless otherwise noted. Specifications at $\mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ and $\mathrm{T}_{\mathrm{A}}=+70^{\circ} \mathrm{C}$ are guaranteed by design and characterization. Typical values are at $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, unless otherwise noted.) (Figure 1)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
Input Voltage Range	VIN		-0.2		VL	V
Input Current	$\mathrm{IIH}_{\text {, }}^{\text {IIL }}$	$\mathrm{V}_{\mathrm{IN}}=-0.2 \mathrm{~V}$ to V_{L}	-10		+10	$\mu \mathrm{A}$
POWER SUPPLIES						
Positive Supply	VDD		14.5	15	16.0	V
Negative Supply	VSS		-6.00	-5	-4.25	V
High Voltage Supply	V+	(Note 1)	23	24	25	V
Logic Supply	VL		3.0	3.3	3.6	V
Quiescent Positive Supply Current	$\Sigma(1 \mathrm{dD}, \mathrm{l}+$)	$\begin{aligned} & \mathrm{V}+=+24 \mathrm{~V}, \mathrm{~V}_{\mathrm{DD}}=+15 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{SS}}=-5 \mathrm{~V}, \mathrm{~V}_{\mathrm{L}}=+3.3 \mathrm{~V}, \\ & \mathrm{FV}_{\mathrm{HH}} \mathrm{~N}_{-}=+6.5 \mathrm{~V}, \mathrm{FV} \text { HHREF } \\ & \text { all digital inputs }=0, \\ & \text { all } \end{aligned}$			10	mA
Quiescent Negative Supply Current	Iss	$\begin{aligned} & \hline \mathrm{V}_{+}=+24 \mathrm{~V}, \mathrm{~V}_{\mathrm{DD}}=+15 \mathrm{~V}, \\ & \mathrm{~V}_{S S}=-5 \mathrm{~V}, \mathrm{~V}_{\mathrm{L}}=+3.3 \mathrm{~V}, \\ & \mathrm{FV} \mathrm{VHHIN}_{\mathrm{H}}=+6.5 \mathrm{~V}, \mathrm{FV} \mathrm{~V}_{\mathrm{HH}} R E F_{-}=0, \\ & \text { all digital inputs }=+2.3 \mathrm{~V}, \text { no loads } \\ & \hline \end{aligned}$			8.5	mA
Quiescent Logic Supply Current	IVL	$\begin{aligned} & \mathrm{V}+=+24 \mathrm{~V}, \mathrm{~V}_{\mathrm{DD}}=+15 \mathrm{~V}, \\ & \mathrm{~V}_{S S}=-5 \mathrm{~V}, \mathrm{~V}_{\mathrm{L}}=+3.3 \mathrm{~V}, \\ & \mathrm{FV}_{H H} \mathrm{~N}_{-}=+6.5 \mathrm{~V}, \mathrm{FV}_{\mathrm{HH}} \mathrm{REF}_{-}=0, \\ & \text { all digital inputs }=+2.3 \mathrm{~V}, \text { no loads } \end{aligned}$			2	mA
Quiescent Power Dissipation	PdQ	$\begin{aligned} & \hline \mathrm{V}_{+}=+24 \mathrm{~V}, \mathrm{~V}_{\mathrm{DD}}=+15 \mathrm{~V}, \\ & \mathrm{~V}_{S S}=-5 \mathrm{~V}, \mathrm{~V}_{\mathrm{L}}=+3.3 \mathrm{~V}, \\ & \mathrm{FV} \mathrm{~V}_{\mathrm{H}} \mathrm{~N}_{-}=+6.5 \mathrm{~V}, \mathrm{FV} \mathrm{~V}_{\mathrm{HH}} R E F_{-}=0, \\ & \text { all digital inputs }=+2.3 \mathrm{~V}, \text { no loads } \\ & \hline \end{aligned}$			200	mW
AC CHARACTERISTICS						
SWITCHING TIMES BETWEEN PE_ AND FV HH_ $^{\text {P PATHS (Note 7) (Figure 3) }}$						
Switch PE_ to FV HH_{\sim}	tON_FVHH	+5 V to +7 V transition		275	425	ns
		0 to +13 V transition		350	500	
FV HH_{2} Settling Time	ts_FVHH	Settling to within larger of 1% step voltage or 50 mV of final value		500		ns
Switch FV HH_{-}to PE_{-}	ton_PE			300	425	ns
PE_Settling Time	ts_PE	Settling to within larger of 1% step voltage or 50 mV of final value		500		ns
$\text { PE_ то FV }{ }_{\mathrm{HH}}^{-}$ Overshoot/Undershoot				± 100		mV
PE_ to $\mathrm{FV}_{\mathrm{HH}}$ _ Preshoot				± 150		mV
Minimum Switching Slew Rate	SRMIN	Over 20\% to 80\% region		± 10		V/ $/$ s
SWITCHING TIMES, SAME PATH (Note 8) (Figure 2)						
PE_Switch On-Time	ton_1	$V_{\text {PE }}=+5 \mathrm{~V}$ from 47Ω source		150		ns
FV $\mathrm{HH}_{\text {_ }}$ Switch On-Time	ton_2,3	$\mathrm{FV}_{\mathrm{HH}} \mathrm{N}_{-}=+2.5 \mathrm{~V}, \mathrm{FV}_{\mathrm{HH}} \mathrm{REF}_{-}=0$		350		ns

Dual-Flash-Pin Electronics/Supervoltage Switch Matrix

ELECTRICAL CHARACTERISTICS (continued)

$\left(\mathrm{V}+=+24 \mathrm{~V}, \mathrm{~V}_{\mathrm{DD}}=+15 \mathrm{~V}, \mathrm{~V}_{S S}=-5 \mathrm{~V}, \mathrm{~V} L=+3.3 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}\right.$, unless otherwise noted. Specifications at $\mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ and $\mathrm{T}_{\mathrm{A}}=+70^{\circ} \mathrm{C}$ are guaranteed by design and characterization. Typical values are at $T_{A}=+25^{\circ} \mathrm{C}$, unless otherwise noted.) (Figure 1)

PARAMETER	SYMBOL	CONDITIONS	MIN TYP	MAX	UNITS
PMUF_ _ Switch On-Time	$\begin{array}{r} \text { tON_2,4 } \\ \text { toN_2,5 } \\ \hline \end{array}$	VPMUF $_{\text {- }}=+5 \mathrm{~V}$	150		ns
PMUS_ _ Switch On-Time	$\begin{aligned} & \text { ton_6 } \\ & \text { ton_7 } \end{aligned}$	VPMUS_ _ = +5V	300		ns
Switch Off-Times	toff		700		ns
CAPACITANCE AND BANDWIDTH (Note 5)					
Capacitance, All Paths Disconnected	Cdut_Off	All switches disconnected, for frequencies greater than 2 MHz (Note 9)	20		pF
Capacitance, PE_Path Connected (Note 9)	CDUT_PE	Switch S1 closed, all others open, for frequencies greater than 2 MHz	8		pF
		Switch S1 closed, all others open, for frequencies less than 1 kHz	50		
Unit-to-Unit Variation, PE_ Path Connected	Δ CDUT_PE	Switch S1 closed, all others open, for frequencies greater than 2 MHz (Note 9)	± 2		pF
Capacitance, PMUFA_ and PMUSA_ Path Connected	CDUt_pmuA	S2, S4, and S6 closed; all others open (Note 9)	35		pF
Capacitance, PMUFB_ and PMUSB_Path Connected	Cdut_pmub	S2, S5, and S7 closed; all others open (Note 9)	35		pF
Capacitance, PMUFA_ Path Disconnected	CPmuFA_OFF	S4 open, measured at PMUFA_ (Note 9)	10		pF
Capacitance, PMUFB_ Path Disconnected	CPmufb_OFF	S5 open, measured at PMUFB_ (Note 9)	10		pF
Capacitance, PMUSA_Path Connected	CPMUSA_ON	S6 closed, all others open, measured at PMUSA_ (Note 9)	10		pF
Capacitance, PMUSB_ Path Connected	CPMusb_ON	S7 closed, all others open, measured at PMUSB_ (Note 9)	10		pF
Capacitance, PMUSA_ Path Disconnected	CPMUSA_OFF	S6 open, measured at PMUSA_ (Note 9)	5		pF
Capacitance, PMUSB_Path Disconnected	CPMUSB_OFF	S7 open, measured at PMUSB_ (Note 9)	5		pF
PE_Signal Bandwidth	$f_{3 D B}$	Only PE_ path enabled (Note 10)	600		MHz
FV ${ }_{\text {HH_ }}$ BUFFER					
Slew Rate	SRFV ${ }_{\text {HH }}$	FV ${ }_{H H R E F}^{-}=0$, (gain = 2), FV HHIN_ $^{\prime}$ stepped from 0 to +5 V and +5 V to 0	± 5		V/us
Settling	ts	CDUT_ = 200pF to within 0.1% of step voltage, after $\mathrm{FV}_{\mathrm{HH}} \mathrm{IN}$ _ changes	25		$\mu \mathrm{s}$
		CDUT_ $=4000 \mathrm{pF}$ to within 0.1% of step voltage, after FVHHIN_ changes (Note 11)	50		

Dual-Flash-Pin Electronics/Supervoltage Switch Matrix

ELECTRICAL CHARACTERISTICS (continued)

$\left(\mathrm{V}+=+24 \mathrm{~V}, \mathrm{~V}_{\mathrm{DD}}=+15 \mathrm{~V}, \mathrm{~V}_{S S}=-5 \mathrm{~V}, \mathrm{~V}_{\mathrm{L}}=+3.3 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}\right.$, unless otherwise noted. Specifications at $\mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ and $\mathrm{T}_{\mathrm{A}}=+70^{\circ} \mathrm{C}$ are guaranteed by design and characterization. Typical values are at $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, unless otherwise noted.) (Figure 1)
Note 1: $\quad \mathrm{V}+$ should be at least 8 V above V_{DD} to guarantee specified path resistance values.
Note 2: When the $\mathrm{FV}_{\mathrm{HH}_{-}}$buffer is configured for a gain of +1 ($\mathrm{FV} \mathrm{H}_{\mathrm{H}} R E F_{\text {_ }}$ open), the output voltage range is limited to -1.5 V to +7.5 V .
Note 3: $\quad \mathrm{FV}_{\mathrm{H}} \mathrm{H}_{\mathbf{\prime}}$ buffer gain is typically +1 , when $\mathrm{FV}_{\mathrm{HH}} \mathrm{REF}_{-}$is open.
Note 4: \quad FV $V_{H} R E F_{-}$is tested by repeating the $F_{H} H_{H}$ path resistance tests over the variation of $F V_{H H} R E F_{\text {_ }}$. For each value of FV Hн REF $_{-}$, $\mathrm{FV}_{\boldsymbol{H}} \mathrm{N}_{-}$is adjusted to $\mathrm{FV}_{\boldsymbol{H}} \mathrm{N}_{-}=\left(\mathrm{FV}_{\boldsymbol{H}} \mathrm{H}_{-}+\mathrm{FV}_{\boldsymbol{H}} \mathrm{REF}_{-}\right) / 2$.
Note 5: All measurements taken at DUT_, except where noted.
Note 6: These specifications are guaranteed by design and characterization. In addition, these specifications will be production tested with min/max test limits of $\pm 10 \mathrm{nA}$.
Note 7: Voltage source driving PE_ has 47Ω source resistance. $\mathrm{PE}_{-}=0$ to $+5.0 \mathrm{~V}, \mathrm{FV}_{\mathrm{H}} \mathrm{H}_{-}=+7$ to +13 V . Measured from 50% point of input logic to 90% of analog swing.
Note 8: All unused switches open, unless otherwise noted. Measured from 50% point of input logic to 90% of analog swing.
Note 9: Unless otherwise noted, measured at DUT_. No external connections to any of the switched analog pins-PE_, DUT_, PMUFA_, PMUFB_, PMUSA_, or PMUSB_-except as needed to make measurement.
Note 10: ZDUT_ = 50 ; equivalent bandwidth calculated from measured DUT_ rise and fall time with PE_ stimulated by a 3V step with 1ns 10% to 90% rise/fall time.
Note 11: The maximum load for $\mathrm{FV}_{\mathrm{HH}}$ buffer is 4000pF.

Typical Operating Characteristics
$\left(\mathrm{V}+=+24 \mathrm{~V}, \mathrm{~V}_{\mathrm{DD}}=+15 \mathrm{~V}, \mathrm{~V}_{\mathrm{SS}}=-5 \mathrm{~V}, \mathrm{~V}_{\mathrm{L}}=+3.3 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}\right.$, unless otherwise noted. $)$

Dual-Flash-Pin Electronics/Supervoltage Switch Matrix

Typical Operating Characteristics (continued)
$\left(\mathrm{V}+=+24 \mathrm{~V}, \mathrm{~V}_{\mathrm{DD}}=+15 \mathrm{~V}, \mathrm{~V} S=-5 \mathrm{~V}, \mathrm{~V}_{\mathrm{L}}=+3.3 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}\right.$, unless otherwise noted. $)$

$t=500 \mathrm{~ns} / \mathrm{div}$

PE_TO FV ${ }_{\text {HH }}$ TRANSITIONS

FV $_{\text {HH }}$ BUFFER OUTPUT OFFSET vs. TEMPERATURE

Dual-Flash-Pin Electronics/Supervoltage Switch Matrix

Pin Description

PIN	NAME	FUNCTION
1	$\overline{\text { PE/FV }}$ HHSEL1	PE1 or $\mathrm{FV}_{\mathrm{HH}} 1$ Select. Selects either PE1 or $\mathrm{FV} \mathrm{HH}_{1}$ to be connected to DUT1. Force low to select PE1, force high to select $\mathrm{FV}_{\mathrm{HH}} 1$.
2, 11	GND	Ground
3, 10	VL	Logic Power Supply. Nominally 3.3V.
4, 9	V+	Analog Positive Gate-Drive Power Supply. Nominally 24V.
$\begin{gathered} 5,8,20, \\ 24,27,34, \\ 37,41 \end{gathered}$	VSS	Analog Negative Power Supply. Nominally -5V.
6, 22, 39	N.C.	No Connection. Make no connection to this pin.
7, 30, 31	VDD	Analog Positive Power Supply. Nominally 15V.
12	$\overline{\mathrm{PE} / \mathrm{FV}} \mathrm{HHSEL} 2$	PE2 or $\mathrm{FV}_{\mathrm{HH}}$ 2 Select. Selects either PE2 or $\mathrm{FV}_{\mathrm{HH}} 2$ to be connected to DUT2. Force low to select PE2, force high to select $\mathrm{FV}_{\mathrm{HH}} 2$.
13	$\overline{\mathrm{PE}} / \mathrm{FV} \mathrm{V}_{\mathrm{HHEN}}$ 2	PE2 and $\mathrm{FV}_{\mathrm{HH}} 2$ Enable. Enables PE2 and $\mathrm{FV}_{\mathrm{HH}} 2$ to be connected to DUT2, as determined by
14	PMUFAEN2	PMUFA2 Enable. Controls the connection of PMUFA2 to DUT2. Force low to connect PMUFA2 to DUT2, force high to disconnect PMUFA2 from DUT2.
15	PMUSAEN2	PMUSA2 Enable. Controls the connection of PMUSA2 to DUT2. Force low to connect PMUSA2 to DUT2, force high to disconnect PMUSA2 from DUT2.
16	PMUFBEN2	PMUFB2 Enable. Controls the connection of PMUFB2 to DUT2. Force low to connect PMUFB2 to DUT2, force high to disconnect PMUFB2 from DUT2.
17	PMUSBEN2	PMUSB2 Enable. Controls the connection of PMUSB2 to DUT2. Force low to connect PMUSB2 to DUT2, force high to disconnect PMUSB2 from DUT2.
18	PMUSA2	Sense A Analog Output for Channel 2. Kelvin feedback output for the channel 2 force A path.
19	PMUSB2	Sense B Analog Output for Channel 2. Kelvin feedback output for the channel 2 force B path.
21	DUT2	Analog I/O for Channel 2. Connects to the DUT.
23	PE2	Analog I/O for Channel 2. Connects to the pin electronics I/O.
25	PMUFA2	Analog Input Force A for Channel 2. Connects to an external DC resource such as a PMU.
26	PMUFB2	Analog Input Force B for Channel 2. Connects to an external DC resource such as a PMU.
28	FV $\mathrm{HH}^{\text {l }}$ N2	Analog Supervoltage Input for Channel 2. The voltage applied to $\mathrm{FV}_{\mathrm{HH}} \mathrm{IN} 2$ is amplified as determined by FVHHREF2 (see the Functional Block Diagram).
29	FVHHREF2	Analog Gain-Setting Input for Channel 2. Sets the gain of the $\mathrm{FV}_{\mathrm{HH}} 2$ buffer.
32	FVHHREF1	Analog Gain-Setting Input for Channel 1. Sets the gain of the $\mathrm{FV}_{\mathrm{HH}} 1$ buffer.
33	FV $\mathrm{HH}^{\text {l }}$ N1	Analog Supervoltage Input for Channel 1. The voltage applied to FVHHIN1 is amplified as determined by FVHHREF1 (see the Functional Block Diagram).
35	PMUFB1	Analog Input Force B for Channel 1. Connects to an external DC resource such as a PMU.
36	PMUFA1	Analog Input Force A for Channel 1. Connects to an external DC resource such as a PMU.
38	PE1	Analog I/O for Channel 1. Connects to the pin electronics I/O.
40	DUT1	Analog I/O for Channel 1. Connects to the DUT.
42	PMUSB1	Sense B Analog Output for Channel 1. Kelvin feedback output for the channel 1 force B path.
43	PMUSA1	Sense A Analog Output for Channel 1. Kelvin feedback output for the channel 1 force A path.

Dual-Flash-Pin Electronics/Supervoltage Switch Matrix

Pin Description (continued)

PIN	NAME	FUNCTION
44	$\overline{\text { PMUSBEN1 }}$	PMUSB1 Enable. Controls the connection of PMUSB1 to DUT1. Force low to connect PMUSB1 to DUT1, force high to disconnect PMUSB1 from DUT1.
45	$\overline{\text { PMUFBEN1 }}$	PMUFB1 Enable. Controls the connection of PMUFB1 to DUT1. Force low to connect PMUFB1 to DUT1, force high to disconnect PMUFB1 from DUT1.
46	$\overline{\text { PMUSAEN1 }}$	PMUSA1 Enable. Controls the connection of PMUSA1 to DUT1. Force low to connect PMUSA1 to DUT1, force high to disconnect PMUSA1 from DUT1.
47	$\overline{\text { PMUFAEN1 }}$	PMUFA1 Enable. Controls the connection of PMUFA1 to DUT1. Force low to connect PMUFA1 to DUT1, force high to disconnect PMUFA1 from DUT1.
48	$\overline{\text { PE/FV }} \overline{\text { HHEN1 }} \overline{\text { EN }}$	PE1 and FVHH1 Enable. Enables PE1 and FVHH1 to be connected to DUT1, as determined by $\overline{\text { PE/FVHHSEL1. Force low to enable signal path, force high to disable the signal path. }}$
-	EP	Exposed Pad for Heat Removal. Internally biased to VSs. Connect to VSS or leave floating.

Figure 1. Functional Block Diagram

Detailed Description

The MAX9960 is a dual analog switch matrix featuring two Kelvin PMU paths, a PE path, and a flash programming supervoltage circuit that allows testing of flash memory using standard PE devices. It makes possible, without the use of relays, a fully functional pin with both AC and DC capabilities.
The signal path switches feature 600 MHz bandwidth, 3Ω series resistance, and 8 pF shunt capacitance over a voltage range compatible with common pin-electronics ICs. The voltage-doubling buffer, with selectable 1 x or $2 x$ gain, generates the 13 V flash memory programming level from a 6.5 V input. Configure the switches using digital inputs PMUFAEN_, PMUSAEN_, PMUFBEN_, $\overline{P M U S B E N}, \overline{\text { PE/FV/HHEN_ }}$, and $\overline{\text { PE/FV }}$ HHSEL_ as indicated in Tables 1 and 2.
The switching speed between PE_{-}and $\mathrm{FV}_{\mathrm{HH}_{-}}$paths is less than 350ns typical (Figure 3), and during switching, DUT_ behaves monotonically.

FVHH Buffer Load Capacitance
The maximum load capacitance for the $\mathrm{FV}_{\mathrm{HH}}$ buffer is 4000pF. While this amount of load capacitance is not expected during normal operation, an application may call for the buffer to be connected to a highly capacitive PMU path occasionally for calibration purposes. No damage to the MAX9960 will result as a consequence of this condition.

Supervoltage FVHH Buffer Gain
The $\mathrm{FV}_{\text {HH }}$ buffer gain can be selected using FVhHREF_. If $\mathrm{FV}_{\text {HH }} \mathrm{REF}_{-}$is grounded, the gain of the buffer is +2. If $\mathrm{FV}_{\mathrm{HH}} \mathrm{REF}_{-}$is left floating, the buffer gain is +1 .

Dual-Flash-Pin Electronics/Supervoltage Switch Matrix

Table 1. Switch Control, All Possible Combinations

PMUFAEN	PMUFBEN	PMUSAEN	PMUSBEN_	$\overline{\text { PE/FV }}$ HHEN	$\overline{\mathrm{PE} / \mathrm{FV}} \mathrm{HHSSEL}$	DUT_
0	X	X	X	X	X	PMUFA_ path connected
X	0	X	X	X	X	PMUFB_ path connected
X	X	0	X	X	X	PMUSA_ path connected
X	X	X	0	X	X	PMUSB_ path connected
X	X	X	X	0	1	FV $\mathrm{HH}_{\text {- }}$ path connected
X	X	X	X	0	0	PE_ path connected
All other combinations						Every path is disconnected

Table 2. Switch Control, Use Cases

PMUFAEN_	PMUFBEN	PMUSAEN	PMUSBEN	$\overline{\mathrm{PE} / \mathrm{FV}} \mathrm{HHEN}$	$\overline{\mathrm{PE} / \mathrm{FV}} \mathrm{HHSEL}$	DUT_
1	1	1	1	0	0	PE_
1	1	1	1	0	1	FV HH_{-}
0	1	0	1	1	X	PMUFA_ + PMUSA_
1	0	1	0	1	X	PMUFB_+ PMUSB_
0	1	0	1	0	0	PE_ + PMUFA_ + PMUSA_
1	0	1	0	0	0	PE_ + PMUFB_ + PMUSB_
0	1	0	1	0	1	FV $\mathrm{HH}_{-}+$PMUFA_+ PMUSA_
1	0	1	0	0	1	FV $\mathrm{HH}_{-}+\mathrm{PMUFB}_{-}+\mathrm{PMUSB}_{-}$
0	0	0	0	0	0	PE_ + PMUFA_ + PMUSA_ + PMUFB_ + PMUSB_

Power-Supply Considerations

The MAX9960 requires four power-supply voltages, typically $\mathrm{V}+=+24 \mathrm{~V}$, $\mathrm{V}_{\mathrm{DD}}=+15 \mathrm{~V}$, $\mathrm{V}_{\mathrm{SS}}=-5 \mathrm{~V}$, and $\mathrm{V}_{\mathrm{L}}=$ +3.3 V . Use a $0.1 \mu \mathrm{~F}$ bypass capacitor close to each supply pin, and provide bulk bypassing where power enters the circuit board. The MAX9960 does not require any special power-up sequencing.

Chip Information
TRANSISTOR COUNT: 2020 PROCESS: BICMOS

Figure 2. Switching Time Test Circuit

Dual-Flash-Pin Electronics/Supervoltage Switch Matrix

Figure 3. $P E_{-}-F V_{H H_{-}}$and $F V_{H H_{-}}$- PE Transition and Settling Timing
Package Information
For the latest package outline information, go to www.maxim-ic.com/packages

Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.

MAX9960

Part Number Table

$$
\begin{aligned}
& \text { Notes: } \\
& \text { 1. See the MAX9960 QuickView Data Sheet for further information on this product family or download the } \\
& \text { MAX9960 full data sheet (PDF, 632kB). } \\
& \text { 2. Other options and links for purchasing parts are listed at: http://www.maxim-ic.com/sales. } \\
& \text { 3. Didn't Find What You Need? Ask our applications engineers. Expert assistance in finding parts, usually within } \\
& \text { one business day. } \\
& \text { 4. Part number suffixes: T or T\&R = tape and reel; + = RoHS/lead-free; \# = RoHS/lead-exempt. More: See full } \\
& \text { data sheet or Part Naming Conventions. } \\
& \text { 5. * Some packages have variations, listed on the drawing. "PkgCode/Variation" tells which variation the } \\
& \text { product uses. }
\end{aligned}
$$

Part Number	Free Sample	Buy Direct	Package: TYPE PINS SIZE DRAWING CODE/VAR	Temp	RoHS/Lead-Free? Materials Analysis
MAX9960BCTM-TD				0 C to +70C	RoHS/Lead-Free: No
MAX9960BCTM + D				0 C to +70C	RoHS/Lead-Free: Yes
MAX9960BCTM + TD				0 C to +70C	RoHS/Lead-Free: Yes
MAX9960BCTM-D			THIN QFN; 48 pin; $7 \times 7 \times 0.8 \mathrm{~mm}$ Dwg: 21-0144F (PDF) Use pkgcode/variation: T4877-6*	OC to +70C	RoHS/Lead-Free: No Materials Analysis

Didn't Find What You Need?

