General Description

Features

The MAX6406-MAX6411 is a family of ultra-low power circuits used for monitoring battery, power-supply, and regulated system voltages. Each detector contains a precision bandgap reference comparator and is trimmed to specified trip threshold voltages. These devices provide excellent circuit reliability and low cost by eliminating external components and adjustments when monitoring system voltages from 2.5V to 5.0V. A manual reset input is also included.

The MAX6406–MAX6411 assert a signal whenever the VCC supply voltage falls below a preset threshold. These devices are differentiated by their output logic configurations and preset threshold voltages. The MAX6406/MAX6409 (push-pull) and the MAX6408/ MAX6411 (open-drain) have an active-low output (OUT is logic low when V_{CC} is below V_{TH}). The MAX6407/ MAX6410 have an active-high push-pull output (OUT is logic high when V_{CC} is below V_{TH}). All parts are guaranteed to be in the correct output logic state for V_{CC} down to 1V. The detector is designed to ignore fast transients on VCC. The MAX6406/MAX6407/ MAX6408 have voltage thresholds between 2.20V and 3.08V in approximately 100mV increments. The MAX6409/MAX6410/MAX6411 have voltage thresholds between 3.30V and 4.63V in approximately 100mV increments.

Ultra-low supply current of 500nA (MAX6406/MAX6407/ MAX6408) makes these parts ideal for use in portable equipment. These devices are available in 4-bump chip-scale packages (UCSP[™]).

Applications

Portable/Battery-Powered Equipment **Cell Phones PDAs** MP3 Players Pagers

PART	NOMINAL V _{TH} (V)	OUT/OUT Output Type
MAX6406	2.20 to 3.08	Push-Pull, Active-Low
MAX6407	2.20 to 3.08	Push-Pull, Active-High
MAX6408	2.20 to 3.08	Open-Drain, Active-Low
MAX6409	3.30 to 4.63	Push-Pull, Active-Low
MAX6410	3.30 to 4.63	Push-Pull, Active-High
MAX6411	3.30 to 4.63	Open-Drain, Active-Low

Selector Guide

- Tiny 4-Bump (2 × 2) Chip-Scale Package, (Package) Pending Full Qualification—Expected Completion Date 6/30/01. See UCSP Reliability Section for More Details.)
- 70% Smaller Than SC70 Packages
- Ultra-Low 500nA Supply Current (MAX6406/MAX6407/MAX6408)
- Factory-Trimmed Reset Thresholds from 2.20V to 4.63V in Approximately 100mV Increments
- ♦ ±2.5% Threshold Accuracy (-40°C to +85°C)
- Manual Reset Input
- Guaranteed OUT Valid to VCC = 1.0V
- Three Reset Output Logic Options: Active-Low Push-Pull, Active-High Push-Pull, and Active-Low **Open-Drain**
- Immune to Short V_{CC} Transients
- No External Components

PART TEMP. RANGE **PIN-PACKAGE** MAX6406BS UCSP-4 -T -40°C to +85°C UCSP-4 MAX6407BS -T -40°C to +85°C MAX6408BS -T -40°C to +85°C UCSP-4 MAX6409BS__-T -40°C to +85°C UCSP-4 -40°C to +85°C MAX6410BS__-T UCSP-4 -40°C to +85°C UCSP-4 MAX6411BS__-T

Ordering Information

The MAX6406–MAX6411 are available in factory-set V_{CC} detector thresholds from 2.20V to 4.63V, in approximately 0.1V increments. Choose the desired threshold suffix from Table 1 and insert it in the blank space following "S". There are 21 standard versions with a required order increment of 2500 pieces. Sample stock is generally held on the standard versions only (Table1). Required order increment is 10,000 pieces for nonstandard versions (Table 2). Contact factory for availability. All devices available in tape-and-reel only.

UCSP reliability is integrally linked to the user's assembly methods, circuit board material, and environment. Refer to the UCSP Reliability Notice in the UCSP Reliability section of this data sheet for more information.

Pin Configuration appears at end of data sheet.

UCSP is a trademark of Maxim Integrated Products, Inc.

Maxim Integrated Products 1

For pricing, delivery, and ordering information, please contact Maxim/Dallas Direct! at 1-888-629-4642, or visit Maxim's website at www.maxim-ic.com.

ABSOLUTE MAXIMUM RATINGS

All voltages measured to GND unless otherwise noted.

in tonagee measured to on the amove ou	
VCC	0.3V to +6V
OUT/OUT	0.3V to (V _{CC} + 0.3V)
OUT (open-drain)	
<u>MR</u>	0.3V to (V _{CC} + 0.3V)
Input/Output Current into Any Pin	20mÁ

Continuous Power Dissipation ($T_A = +70^{\circ}C$)

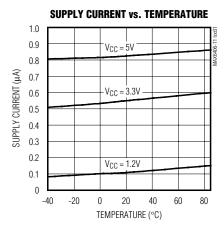
+70°C)303mW
40°Ć to +85°C
+150°C
65°C to +160°C
+235°C

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

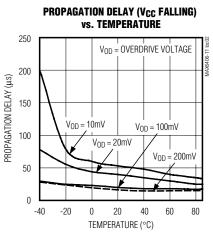
ELECTRICAL CHARACTERISTICS

 $(V_{CC} = 1.0V \text{ to } 5.5V, T_A = -40^{\circ}C \text{ to } +85^{\circ}C, \text{ unless otherwise noted. Typical values are at } V_{CC} = 3V \text{ and } T_A = +25^{\circ}C.)$ (Note1)

PARAMETER	SYMBOL	CONDITIONS		MIN	ТҮР	MAX	UNITS
		$T_A = 0^{\circ}C \text{ to } +70^{\circ}C$		1.0		5.5	
Supply Voltage Range	Vcc	$T_{A} = -40^{\circ}C \text{ to } +85^{\circ}C$)	1.2		5.5	V
Supply Current	ICC	$\label{eq:max6406/MAX6407/MAX6408} $$ V_{CC} = 3.0V$ for $V_{TH} \le 2.93V$, $$ V_{CC} = 3.2V$ for $V_{TH} > 2.93V$, no load $$ V_{CC} = 5.5V$, no load $$ T_{CC} = 5.5V$, no load $$ T_{CC} = 5.5V$, no load $$ T_{CC} = 5.5V$, $$ T_{CC} = 5.5V$			0.5	1.0	μA
					1.0	1.75	
		T 1 1 4	$T_A = +25^{\circ}C$	V _{TH} - 1.5%	VTH V	/ _{TH} + 1.5%	
Detector Threshold	VTH	Table 1	$T_A = -40^{\circ}C \text{ to } +85^{\circ}C$	V _{TH} - 2.5%	VTH V	/ _{TH} + 2.5%	V
Valtaga Threehold Livetarasia		MAX6406/MAX6407	/MAX6408		6.3		
Voltage Threshold Hysteresis		MAX6409/MAX6410	/MAX6411		9.5		mV
Detector Threshold Tempco	$\Delta V_{TH}/^{\circ}C$				40		ppm/°C
	VIL	V _{TH} > 4.0V				0.8	
MR Input	VIH	V H > 4.0V		2.0			V
	VIL	$V_{TH} \leq 4.0V$			().2 x V _{CC}	
	VIH			0.7 x V _{CC})		
MR Minimum Input Pulse Width	t _{MD}			1			μs
MR Glitch Rejection					100		ns
MR to OUT/OUT Delay					200		ns
MR Pullup Resistance				25	50	75	kΩ
Propagation Delay		$V_{CC} = (V_{TH} + 100m)$	V) to (V _{TH} - 100mV)		20		
Fropagation Delay		$V_{CC} = (V_{TH} - 100 \text{mV}) \text{ to } (V_{TH} + 100 \text{mV})$			42		μs
Startup Time		$V_{CC} = 0$ to V_{TH} (min))		88		μs
DUT Output Voltage Low MAX6406/MAX6408/MAX6409/	V _{OL}	I_{SINK} = 1.6mA, V _{CC}	\geq 2.1V, \overline{OUT} asserted			0.3	V
MAX6411)	VOL	$I_{SINK} = 100\mu A$, $V_{CC} \ge 1.2V$, \overline{OUT} asserted				0.4	v
		$\frac{\text{I}_{\text{SOURCE}}}{\text{OUT}}$ not asserted	CC = 3.2V, MAX6406,	0.8 × V _{CC})		
OUT Output Voltage High (MAX6406/MAX6409)	V _{OH}	ISOURCE = 800μ A, V _{CC} = 4.5V, V _{TH} ≤ 4.38V, OUT not asserted		0.8 x V _{CC})		V
		$I_{SOURCE} = 800\mu A, V_{TH} \ge 4.5V, \overline{OUT}$ not		0.8 x V _{CC})		


ELECTRICAL CHARACTERISTICS (continued)

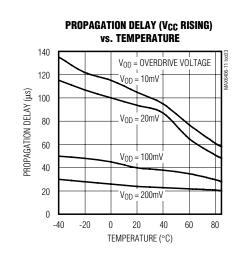
 $(V_{CC} = 1.0V \text{ to } 5.5V, T_A = -40^{\circ}C \text{ to } +85^{\circ}C, \text{ unless otherwise noted. Typical values are at } V_{CC} = 3V \text{ and } T_A = +25^{\circ}C.)$ (Note1)

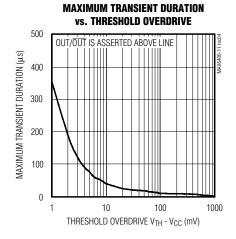

PARAMETER	SYMBOL	CONDITIONS	MIN	ТҮР	МАХ	UNITS
	Maria	$I_{SOURCE} = 500\mu A, V_{CC} \ge 2.1V, OUT$ asserted	0.8 × V _{CC}			
OUT Output Voltage (MAX6407/MAX6410)	Vон	$I_{SOURCE} = 50\mu A$, $V_{CC} \ge 1.2V$, OUT asserted	0.8 × V _{CC}		1	
	Vol	I_{SINK} = 1.2mA, $V_{CC} \ge$ 3.2V, OUT not asserted, MAX6407 only			0.3	V
		I_{SINK} = 3.2mA, $V_{CC} \ge 4.5V$, OUT not asserted, $V_{TH} \le 4.38V$			0.4	
		$I_{SINK} = 3.2$ mA, $V_{CC} = V_{TH}$ (max), $V_{TH} \ge 4.5$ V, OUT not asserted			0.4	
Open-Drain OUT Output Leakage Current (Note 2)		OUT not asserted			0.1	μA

Note 1: Production testing done at +25°C only. Overtemperature limits are guaranteed by design and not production tested. **Note 2:** Guaranteed by design.

 $(T_A = +25^{\circ}C, unless otherwise noted.)$

Typical Operating Characteristics




erating Charact

Typical Operating Characteristics (continued)

 $(T_A = +25^{\circ}C, unless otherwise noted.)$

MAX6406-MAX6411

Pin Description

PIN				
MAX6406/MAX6408 MAX6409/MAX6411	MAX6407/MAX6410	NAME	FUNCTION	
A1	A1	GND	Ground	
B1	_	OUT	Active-Low Output. $\overline{\text{OUT}}$ remains low while V _{CC} is below the threshold. $\overline{\text{OUT}}$ is open-drain on the MAX6408/MAX6411 and push-pull on the MAX6406/MAX6409.	
_	B1	OUT	Active-High Output. OUT remains high while V_{CC} is below the threshold.	
B2	B2	MR	Active-Low Manual Reset. Internal 50k Ω pullup to V _{CC} . Pull low to assert the output. OUT remains asserted as long as $\overline{\text{MR}}$ is low. Leave unconnected or connect to V _{CC} if unused.	
A2	A2	V _{CC}	Supply Voltage and Input for the Voltage Detector.	

		Threshold Voltage, V _{TH} (V)					
PART	SUFFIX		T _A = +25°C		T _A = -40°0	C to +85°C	
		MIN	ТҮР	MAX	MIN	МАХ	
	22*	2.167	2.200	2.233	2.145	2.250	
	23*	2.285	2.320	2.355	2.262	2.375	
	24	2.364	2.400	2.436	2.340	2.460	
	25	2.462	2.500	2.537	2.437	2.562	
MAX6406BS	26*	2.591	2.630	2.669	2.564	2.692	
MAX6407BS MAX6408BS	27	2.660	2.700	2.741	2.633	2.768	
W/ //0+0000	28	2.758	2.800	2.842	2.730	2.870	
	29*	2.886	2.930	2.974	2.857	3.000	
	30	2.955	3.000	3.045	2.925	3.075	
	31*	3.034	3.080	3.126	3.003	3.150	
	33	3.250	3.300	3.350	3.217	3.383	
	34	3.349	3.400	3.451	3.315	3.485	
	35	3.447	3.500	3.552	3.412	3.587	
	36	3.546	3.600	3.654	3.510	3.690	
	37	3.644	3.700	3.755	3.607	3.792	
	38	3.743	3.800	3.857	3.705	3.895	
MAX6409BS MAX6410BS	39	3.841	3.900	3.958	3.802	3.997	
MAX6410BS MAX6411BS	40	3.940	4.000	4.060	3.900	4.100	
	41	4.038	4.100	4.161	3.997	4.202	
	42	4.137	4.200	4.263	4.095	4.305	
	43	4.235	4.300	4.364	4.192	4.407	
	44*	4.314	4.380	4.446	4.270	4.489	
	45	4.432	4.500	4.567	4.387	4.612	
	46*	4.560	4.630	4.699	4.514	4.746	

Table 1. Factory-Trimmed Thresholds

Factory-trimmed voltage thresholds are available in approximately 100mV increments with a 1.5% room temperature variance. **Note:** Parts marked with an asterisk (*) are standard versions.

TOP MARK	PART	TOP MARK	PART	TOP MARK
AEF	MAX6407BS31-T	AEP	MAX6408BS31-T	AEZ
AEE	MAX6407BS30-T	AEO	MAX6408BS30-T	AEY
AED	MAX6407BS29-T	AEN	MAX6408BS29-T	AEX
AEC	MAX6407BS28-T	AEM	MAX6408BS28-T	AEW
AEB	MAX6407BS27-T	AEL	MAX6408BS27-T	AEV
AEA	MAX6407BS26-T	AEK	MAX6408BS26-T	AEU
ADZ	MAX6407BS25-T	AEJ	MAX6408BS25-T	AET
ADY	MAX6407BS24-T	AEI	MAX6408BS24-T	AES
ADX	MAX6407BS23-T	AEH	MAX6408BS23-T	AER
ADW	MAX6407BS22-T	AEG	MAX6408BS22-T	AEQ
	AEF AED AED AEC AEB AEA ADZ ADY ADX	AEF MAX6407BS31-T AEE MAX6407BS30-T AED MAX6407BS29-T AEC MAX6407BS28-T AEB MAX6407BS27-T AEA MAX6407BS26-T AEA MAX6407BS25-T ADZ MAX6407BS24-T ADY MAX6407BS23-T	AEFMAX6407BS31-TAEPAEEMAX6407BS30-TAEOAEDMAX6407BS29-TAENAECMAX6407BS28-TAEMAEBMAX6407BS27-TAELAEAMAX6407BS26-TAEKADZMAX6407BS25-TAEJADYMAX6407BS24-TAEIADXMAX6407BS23-TAEH	AEFMAX6407BS31-TAEPMAX6408BS31-TAEEMAX6407BS30-TAEOMAX6408BS30-TAEDMAX6407BS29-TAENMAX6408BS29-TAECMAX6407BS28-TAEMMAX6408BS28-TAEBMAX6407BS27-TAELMAX6408BS27-TAEAMAX6407BS26-TAEKMAX6408BS26-TADZMAX6407BS25-TAEJMAX6408BS25-TADYMAX6407BS24-TAEIMAX6408BS24-TADXMAX6407BS23-TAEHMAX6408BS23-T

Table 2. Device Marking Codes

PART	TOP MARK	PART	TOP MARK	PART	TOP MARK
MAX6409BS46-T	AFN	MAX6410BS46-T	AAX	MAX6411BS46-T	ABL
MAX6409BS45-T	AFM	MAX6410BS45-T	AAW	MAX6411BS45-T	ABK
MAX6409BS44-T	AFL	MAX6410BS44-T	AAV	MAX6411BS44-T	ABJ
MAX6409BS43-T	AFK	MAX6410BS43-T	AAU	MAX6411BS43-T	ABI
MAX6409BS42-T	AFJ	MAX6410BS42-T	AAT	MAX6411BS42-T	ABH
MAX6409BS41-T	AFI	MAX6410BS41-T	AAS	MAX6411BS41-T	ABG
MAX6409BS40-T	AFH	MAX6410BS40-T	AAR	MAX6411BS40-T	ABF
MAX6409BS39-T	AFG	MAX6410BS39-T	AAQ	MAX6411BS39-T	ABE
MAX6409BS38-T	AFF	MAX6410BS38-T	AAP	MAX6411BS38-T	ABD
MAX6409BS37-T	AFE	MAX6410BS37-T	AAO	MAX6411BS37-T	ABC
MAX6409BS36-T	AFD	MAX6410BS36-T	AAN	MAX6411BS36-T	ABB
MAX6409BS35-T	AFC	MAX6410BS35-T	AAM	MAX6411BS35-T	ABA
MAX6409BS34-T	AFB	MAX6410BS34-T	AAL	MAX6411BS34-T	AAZ
MAX6409BS33-T	AFA	MAX6410BS33-T	AAK	MAX6411BS33-T	AAY

Detailed Description

Manual Reset Input

Many µP-based products require manual reset capability, allowing the operator, a test technician, or external logic circuit to initiate a reset. A logic low on MR asserts OUT/OUT. OUT/OUT remains asserted while MR is low. This input has an internal 50k Ω pullup resistor, so it can be left open if it is not used. MR can be driven with TTL or CMOS logic levels, or with open-drain/collector outputs. Connect a normally open momentary switch from \overline{MR} to GND to create a manual reset function. If \overline{MR} is driven from long cables or if the device is used in a noisy environment, connect a 0.1µF capacitor from MR to ground to provide additional noise immunity.

Applications Information

Interfacing to Different Logic Voltage Components

The MAX6408/MAX6411 have an active-low, opendrain output. This output structure will sink current when OUT is asserted. Connect a pullup resistor from OUT to any supply voltage up to 5.5V (Figure 1). Select a resistor value large enough to allow a valid logic low (see Electrical Characteristics), and small enough to register a logic high while supplying all input currents and leakage paths connected to the OUT line.

MAX6406-MAX641

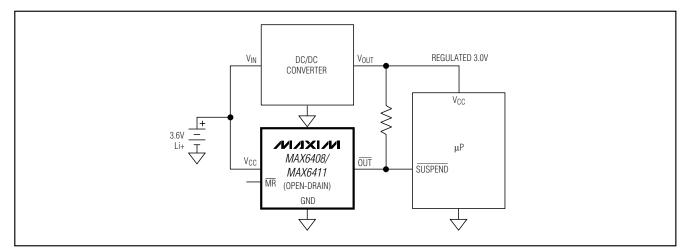


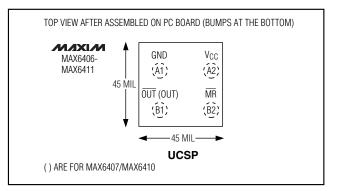
Figure 1. Interfacing to Different Logic Voltage Components

Negative-Going Vcc Transients

These devices are relatively immune to short-duration, negative-going VCC transients (glitches).

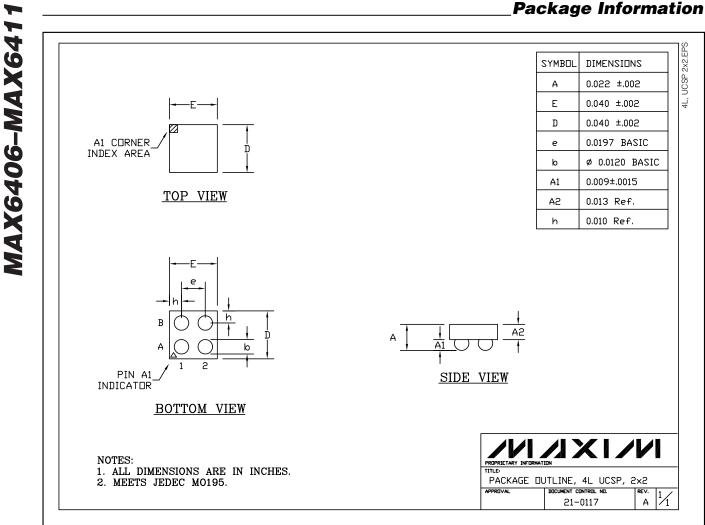
The *Typical Operating Characteristics* show the Maximum Transient Duration vs. Threshold Overdrive graph, for which output pulses are not generated. The graph shows the maximum pulse width that a negative-going VCC transient may typically have before the devices issue output signals. As the amplitude of the transient increases, the maximum allowable pulse width decreases.

UCSP Reliability


The chip-scale package (UCSP) represents a unique packaging form factor that may not perform equally to a packaged product through traditional mechanical reliability tests. CSP reliability is integrally linked to the user's assembly methods, circuit board material, and usage environment. The user should closely review these areas when considering use of a CSP package. Performance through Operating Life Test and Moisture Resistance remains uncompromised as it is primarily determined by the wafer-fabrication process.

Mechanical stress performance is a greater consideration for a CSP package. CSPs are attached through direct solder contact to the user's PC board, foregoing the inherent stress relief of a packaged product lead frame. Solder joint contact integrity must be considered. Information on Maxim's qualification plan, test data, and usage recommendations are detailed in the UCSP application note, which can be found on Maxim's website at www.maxim-ic.com.

Chip Information


MAX6406-MAX6411

TRANSISTOR COUNT: 512 PROCESS: BICMOS

Pin Configuration

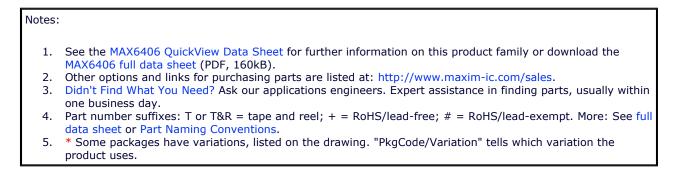
7

Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.

Printed USA

8

Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600


© 2001 Maxim Integrated Products

MAXIM is a registered trademark of Maxim Integrated Products.

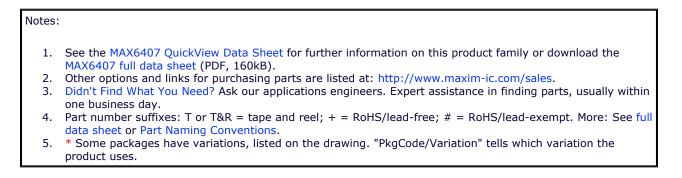
MAX6406

Part Number Table

Part Number	Free Sample	Buy Direct	Package: TYPE PINS SIZE DRAWING CODE/VAR *	Тетр	RoHS/Lead-Free? Materials Analysis
MAX6406BS34+T		Buy		0°C to +70°C	RoHS/Lead-Free: Yes
MAX6406BS30+	Sample	Buy		0°C to +70°C	RoHS/Lead-Free: Yes
MAX6406BS34+	Sample	Buy		0°C to +70°C	RoHS/Lead-Free: Yes
MAX6406BS33+T		Buy		0°C to +70°C	RoHS/Lead-Free: Yes
MAX6406BS33+	Sample	Buy		0°C to +70°C	RoHS/Lead-Free: Yes
MAX6406BS30	Sample	Buy		0°C to +70°C	RoHS/Lead-Free: No

MAX6406BS29+	Sample Buy	UCSP;4 pin; Dwg: 21-0117G (PDF)	0°C to +70°C	RoHS/Lead-Free: Yes
		Use pkgcode/variation: B4+3*		Materials Analysis
MAX6406BS23+	Sample Buy	UCSP;4 pin; Dwg: 21-0117G (PDF)	0°C to +70°C	RoHS/Lead-Free: Yes
		Use pkgcode/variation: B4+3*		Materials Analysis
MAX6406BS26+	Sample Buy	UCSP;4 pin; Dwg: 21-0117G (PDF)	0°C to +70°C	RoHS/Lead-Free: Yes
		Use pkgcode/variation: B4+3*		Materials Analysis
MAX6406BS22	Sample Buy	UCSP;4 pin; Dwg: 21-0117G (PDF) Use pkgcode/variation: B4-3*	0°C to +70°C	RoHS/Lead-Free: No Materials Analysis
MAX6406BS31	Sample Buy	UCSP;4 pin; Dwg: 21-0117G (PDF) Use pkgcode/variation: B4-3*	0°C to +70°C	RoHS/Lead-Free: No Materials Analysis
MAX6406BS23	Sample Buy	UCSP;4 pin; Dwg: 21-0117G (PDF) Use pkgcode/variation: B4-3*	0°C to +70°C	RoHS/Lead-Free: No Materials Analysis
MAX6406BS24	Sample Buy		0°C to +70°C	RoHS/Lead-Free: No
MAX6406BS25	Sample Buy		0°C to +70°C	RoHS/Lead-Free: No
MAX6406BS26	Sample Buy	UCSP;4 pin; Dwg: 21-0117G (PDF) Use pkgcode/variation: B4-3*	0°C to +70°C	RoHS/Lead-Free: No Materials Analysis
MAX6406BS27	Sample Buy		0°C to +70°C	RoHS/Lead-Free: No
MAX6406BS28	Sample Buy	UCSP;4 pin; Dwg: 21-0117G (PDF) Use pkgcode/variation: B4-3*	0°C to +70°C	RoHS/Lead-Free: No Materials Analysis
MAX6406BS29	Sample Buy	UCSP;4 pin; Dwg: 21-0117G (PDF) Use pkgcode/variation: B4-3*	0°C to +70°C	RoHS/Lead-Free: No Materials Analysis
MAX6406BS31+	Sample Buy	UCSP;4 pin; Dwg: 21-0117G (PDF)	0°C to +70°C	RoHS/Lead-Free: Yes
		Use pkgcode/variation: B4+3*		Materials Analysis
MAX6406BS28-T	Buy		0°C to +70°C	RoHS/Lead-Free: No
MAX6406BS31+T		UCSP;4 pin;	0°C to +70°C	RoHS/Lead-Free: Yes

	Buy	Dwg: 21-0117G (PDF) Use pkgcode/variation: B4+3*		Materials Analysis
MAX6406BS24-T	Buy	UCSP;4 pin; Dwg: 21-0117G (PDF) Use pkgcode/variation: B4-3*	0°C to +70°C	RoHS/Lead-Free: No Materials Analysis
MAX6406BS25-T	Buy	UCSP;4 pin; Dwg: 21-0117G (PDF) Use pkgcode/variation: B4-3*	0°C to +70°C	RoHS/Lead-Free: No Materials Analysis
MAX6406BS26-T	Buy	UCSP;4 pin; Dwg: 21-0117G (PDF) Use pkgcode/variation: B4-3*	0°C to +70°C	RoHS/Lead-Free: No Materials Analysis
MAX6406BS27-T	Buy		0°C to +70°C	RoHS/Lead-Free: No
MAX6406BS29-T	Buy	UCSP;4 pin; Dwg: 21-0117G (PDF) Use pkgcode/variation: B4-3*	0°C to +70°C	RoHS/Lead-Free: No Materials Analysis
MAX6406BS30-T	Buy		0°C to +70°C	RoHS/Lead-Free: No
MAX6406BS31-T	Buy	UCSP;4 pin; Dwg: 21-0117G (PDF) Use pkgcode/variation: B4-3*	0°C to +70°C	RoHS/Lead-Free: No Materials Analysis
MAX6406BS22-T	Buy	UCSP;4 pin; Dwg: 21-0117G (PDF) Use pkgcode/variation: B4-3*	0°C to +70°C	RoHS/Lead-Free: No Materials Analysis
MAX6406BS22+T	Buy	UCSP;4 pin; Dwg: 21-0117G (PDF) Use pkgcode/variation: B4+3*	0°C to +70°C	RoHS/Lead-Free: Yes Materials Analysis
MAX6406BS23+T	Buy	UCSP;4 pin; Dwg: 21-0117G (PDF) Use pkgcode/variation: B4+3*	0°C to +70°C	RoHS/Lead-Free: Yes Materials Analysis
MAX6406BS26+T	Buy	UCSP;4 pin; Dwg: 21-0117G (PDF) Use pkgcode/variation: B4+3*	0°C to +70°C	RoHS/Lead-Free: Yes Materials Analysis
MAX6406BS29+T	Buy	UCSP;4 pin; Dwg: 21-0117G (PDF) Use pkgcode/variation: B4+3*	0°C to +70°C	RoHS/Lead-Free: Yes Materials Analysis
MAX6406BS23-T	Buy	UCSP;4 pin; Dwg: 21-0117G (PDF) Use pkgcode/variation: B4-3*	0°C to +70°C	RoHS/Lead-Free: No Materials Analysis


CONTACT US: SEND US AN EMAIL

Copyright © 2007 by Maxim Integrated Products, Dallas Semiconductor • Legal Notices • Privacy Policy

MAX6407

Part Number Table

Part Number	Free Sample	Buy Direct	Package: TYPE PINS SIZE DRAWING CODE/VAR *	Тетр	RoHS/Lead-Free? Materials Analysis
MAX6407BS34+	Sample	Buy		0°C to +70°C	RoHS/Lead-Free: Yes
MAX6407BS33+T		Buy		0°C to +70°C	RoHS/Lead-Free: Yes
MAX6407BS33+	Sample	Buy		0°C to +70°C	RoHS/Lead-Free: Yes
MAX6407BS34+T		Buy		0°C to +70°C	RoHS/Lead-Free: Yes
MAX6407BS33	Sample	Buy		0°C to +70°C	RoHS/Lead-Free: No
MAX6407BS34	Sample	Buy		0°C to +70°C	RoHS/Lead-Free: No

MAX6407BS26+	Sample Buy	UCSP;4 pin; Dwg: 21-0117G (PDF) Use pkgcode/variation: B4+3*	0°C to +70°C	RoHS/Lead-Free: Yes Materials Analysis
MAX6407BS29+	Sample Buy	UCSP;4 pin; Dwg: 21-0117G (PDF) Use pkgcode/variation: B4+3*	0°C to +70°C	RoHS/Lead-Free: Yes Materials Analysis
MAX6407BS22	Sample Buy	UCSP;4 pin; Dwg: 21-0117G (PDF) Use pkgcode/variation: B4-3*	0°C to +70°C	RoHS/Lead-Free: No Materials Analysis
MAX6407BS31	Sample Buy	UCSP;4 pin; Dwg: 21-0117G (PDF) Use pkgcode/variation: B4-3*	0°C to +70°C	RoHS/Lead-Free: No Materials Analysis
MAX6407BS23	Sample Buy	UCSP;4 pin; Dwg: 21-0117G (PDF) Use pkgcode/variation: B4-3*	0°C to +70°C	RoHS/Lead-Free: No Materials Analysis
MAX6407BS24	Sample Buy		0°C to +70°C	RoHS/Lead-Free: No
MAX6407BS25	Sample Buy		0°C to +70°C	RoHS/Lead-Free: No
MAX6407BS26	Sample Buy	UCSP;4 pin; Dwg: 21-0117G (PDF) Use pkgcode/variation: B4-3*	0°C to +70°C	RoHS/Lead-Free: No Materials Analysis
MAX6407BS27	Sample Buy		0°C to +70°C	RoHS/Lead-Free: No
MAX6407BS28	Sample Buy		0°C to +70°C	RoHS/Lead-Free: No
MAX6407BS29	Sample Buy	UCSP;4 pin; Dwg: 21-0117G (PDF) Use pkgcode/variation: B4-3*	0°C to +70°C	RoHS/Lead-Free: No Materials Analysis
MAX6407BS30	Sample Buy		0°C to +70°C	RoHS/Lead-Free: No
MAX6407BS31+	Sample Buy	UCSP;4 pin; Dwg: 21-0117G (PDF)	0°C to +70°C	RoHS/Lead-Free: Yes
MAX6407BS28-T	Buy	Use pkgcode/variation: B4+3*	0°C to +70°C	Materials Analysis RoHS/Lead-Free: No
MAX6407BS31+T		UCSP;4 pin;	0°C to +70°C	RoHS/Lead-Free: Yes

	Buy	Dwg: 21-0117G (PDF) Use pkgcode/variation: B4+3*		Materials Analysis
MAX6407BS24-T	Buy		0°C to +70°C	RoHS/Lead-Free: No
MAX6407BS25-T	Buy		0°C to +70°C	RoHS/Lead-Free: No
MAX6407BS26-T	Buy	UCSP;4 pin; Dwg: 21-0117G (PDF) Use pkgcode/variation: B4-3*	0°C to +70°C	RoHS/Lead-Free: No Materials Analysis
MAX6407BS27-T	Buy		0°C to +70°C	RoHS/Lead-Free: No
MAX6407BS29-T	Buy	UCSP;4 pin; Dwg: <mark>21-0117G</mark> (PDF) Use pkgcode/variation: B4-3*	0°C to +70°C	RoHS/Lead-Free: No Materials Analysis
MAX6407BS30-T	Buy		0°C to +70°C	RoHS/Lead-Free: No
MAX6407BS31-T	Buy	UCSP;4 pin; Dwg: <mark>21-0117G</mark> (PDF) Use pkgcode/variation: B4-3*	0°C to +70°C	RoHS/Lead-Free: No Materials Analysis
MAX6407BS22-T	Buy	UCSP;4 pin; Dwg: 21-0117G (PDF) Use pkgcode/variation: B4-3*	0°C to +70°C	RoHS/Lead-Free: No Materials Analysis
MAX6407BS22+T	Buy	UCSP;4 pin; Dwg: 21-0117G (PDF) Use pkgcode/variation: B4+3*	0°C to +70°C	RoHS/Lead-Free: Yes Materials Analysis
MAX6407BS23+T	Buy	UCSP;4 pin; Dwg: 21-0117G (PDF) Use pkgcode/variation: B4+3*	0°C to +70°C	RoHS/Lead-Free: Yes Materials Analysis
MAX6407BS26+T	Buy	UCSP;4 pin; Dwg: 21-0117G (PDF) Use pkgcode/variation: B4+3*	0°C to +70°C	RoHS/Lead-Free: Yes
MAX6407BS29+T	Buy	UCSP;4 pin; Dwg: 21-0117G (PDF) Use pkgcode/variation: B4+3*	0°C to +70°C	RoHS/Lead-Free: Yes
MAX6407BS23-T	Buy	UCSP;4 pin; Dwg: 21-0117G (PDF) Use pkgcode/variation: B4-3*	0°C to +70°C	Materials Analysis RoHS/Lead-Free: No Materials Analysis

Copyright © 2007 by Maxim Integrated Products, Dallas Semiconductor • Legal Notices • Privacy Policy

MAX6408

Part Number Table

Part Number	Free Sample	Buy Direct	Package: TYPE PI DRAWIN	NS SIZE NG CODE/VAR *	Тетр	RoHS/Lead-Free? Materials Analysis
MAX6408BS34+	Sample	Buy			0°C to +70°C	RoHS/Lead-Free: Yes
MAX6408BS33+T		Buy			0°C to +70°C	RoHS/Lead-Free: Yes
MAX6408BS33+	Sample	Buy			0°C to +70°C	RoHS/Lead-Free: Yes
MAX6408BS34+T		Buy			0°C to +70°C	RoHS/Lead-Free: Yes
MAX6408BS25+	Sample	Buy			0°C to +70°C	RoHS/Lead-Free: Yes
MAX6408BS34	Sample	Buy			0°C to +70°C	RoHS/Lead-Free: No

MAX6408BS33	Sample Buy		0°C to +70°C	RoHS/Lead-Free: No
MAX6408BS25	Sample Buy		0°C to +70°C	RoHS/Lead-Free: No
MAX6408BS33-T	Buy		0°C to +70°C	RoHS/Lead-Free: No
MAX6408BS34-T	Buy		0°C to +70°C	RoHS/Lead-Free: No
MAX6408BS27+	Sample Buy		0°C to +70°C	RoHS/Lead-Free: Yes
MAX6408BS25+T	Buy		0°C to +70°C	RoHS/Lead-Free: Yes
MAX6408BS27+T	Buy		0°C to +70°C	RoHS/Lead-Free: Yes
MAX6408BS28+	Sample Buy		0°C to +70°C	RoHS/Lead-Free: Yes
MAX6408BS24+	Sample Buy		0°C to +70°C	RoHS/Lead-Free: Yes
MAX6408BS24+T	Buy		0°C to +70°C	RoHS/Lead-Free: Yes
MAX6408BS30+	Sample Buy		0°C to +70°C	RoHS/Lead-Free: Yes
MAX6408BS30+T	Buy		0°C to +70°C	RoHS/Lead-Free: Yes
MAX6408BS28+T	Buy		0°C to +70°C	RoHS/Lead-Free: Yes
MAX6408BS29+	Sample Buy	UCSP;4 pin; Dwg: 21-0117G (PDF) Use pkgcode/variation: B4+3*	0°C to +70°C	RoHS/Lead-Free: Yes Materials Analysis

MAX6408BS22+	Sample Buy	UCSP;4 pin; Dwg: 21-0117G (PDF)	0°C to +70°C	RoHS/Lead-Free: Yes
		Use pkgcode/variation: B4+3*		Materials Analysis
MAX6408BS23+	Sample Buy	UCSP;4 pin; Dwg: 21-0117G (PDF)	0°C to +70°C	RoHS/Lead-Free: Yes
		Use pkgcode/variation: B4+3*		Materials Analysis
MAX6408BS26+	Sample Buy	UCSP;4 pin; Dwg: 21-0117G (PDF)	0°C to +70°C	RoHS/Lead-Free: Yes
		Use pkgcode/variation: B4+3*		Materials Analysis
MAX6408BS22	Sample Buy	UCSP;4 pin; Dwg: 21-0117G (PDF) Use pkgcode/variation: B4-3*	0°C to +70°C	RoHS/Lead-Free: No Materials Analysis
MAX6408BS31	Sample Buy	UCSP;4 pin; Dwg: 21-0117G (PDF) Use pkgcode/variation: B4-3*	0°C to +70°C	RoHS/Lead-Free: No Materials Analysis
MAX6408BS23		UCSP;4 pin;	0°C to ±70°C	RoHS/Lead-Free: No
MAX0400D323	Sample Buy	Dwg: 21-0117G (PDF) Use pkgcode/variation: B4-3*	0 0 0 +70 0	Materials Analysis
MAX6408BS24	Sample Buy		0°C to +70°C	RoHS/Lead-Free: No
			0001 7000	
MAX6408BS26	Sample Buy	UCSP;4 pin; Dwg: 21-0117G (PDF)	0°C 10 +70°C	RoHS/Lead-Free: No Materials Analysis
		Use pkgcode/variation: B4-3*		,
MAX6408BS27	Sample Buy		0°C to +70°C	RoHS/Lead-Free: No
MAX6408BS28			0°C to ±70°C	RoHS/Lead-Free: No
MAX0400D320	Sample Buy		0 0 0 170 0	Kons/Leau Tree. No
MAX6408BS29	Sample Buy	UCSP;4 pin;	0°C to +70°C	RoHS/Lead-Free: No
		Dwg: 21-0117G (PDF) Use pkgcode/variation: B4-3*		Materials Analysis
MAX6408BS30	Sample Buy		0°C to +70°C	RoHS/Lead-Free: No
	Sample			
MAX6408BS31+	Sample Buy	UCSP;4 pin; Dwg: 21-0117G (PDF)	0°C to +70°C	RoHS/Lead-Free: Yes
		Use pkgcode/variation: B4+3*		Materials Analysis
MAX6408BS28-T	Buy		0°C to +70°C	RoHS/Lead-Free: No
MANGADODODI			000 ha 1 7000	
MAX6408BS31+T		UCSP;4 pin;	0° C to $+70^{\circ}$ C	RoHS/Lead-Free: Yes

	Buy	Dwg: 21-0117G (PDF) Use pkgcode/variation: B4+3*		Materials Analysis
MAX6408BS24-T	Buy		0°C to +70°C	RoHS/Lead-Free: No
MAX6408BS25-T	Buy		0°C to +70°C	RoHS/Lead-Free: No
MAX6408BS26-T	Buy	UCSP;4 pin; Dwg: 21-0117G (PDF) Use pkgcode/variation: B4-3*	0°C to +70°C	RoHS/Lead-Free: No Materials Analysis
MAX6408BS27-T	Buy		0°C to +70°C	RoHS/Lead-Free: No
MAX6408BS29-T	Buy	UCSP;4 pin; Dwg: <mark>21-0117G (</mark> PDF) Use pkgcode/variation: B4-3*	0°C to +70°C	RoHS/Lead-Free: No Materials Analysis
MAX6408BS30-T	Buy		0°C to +70°C	RoHS/Lead-Free: No
MAX6408BS31-T	Buy	UCSP;4 pin; Dwg: <mark>21-0117G</mark> (PDF) Use pkgcode/variation: B4-3*	0°C to +70°C	RoHS/Lead-Free: No Materials Analysis
MAX6408BS22-T	Buy	UCSP;4 pin; Dwg: 21-0117G (PDF) Use pkgcode/variation: B4-3*	0°C to +70°C	RoHS/Lead-Free: No Materials Analysis
MAX6408BS22+T	Buy	UCSP;4 pin; Dwg: 21-0117G (PDF) Use pkgcode/variation: B4+3*	0°C to +70°C	RoHS/Lead-Free: Yes Materials Analysis
MAX6408BS23+T	Buy	UCSP;4 pin; Dwg: 21-0117G (PDF) Use pkgcode/variation: B4+3*	0°C to +70°C	RoHS/Lead-Free: Yes Materials Analysis
MAX6408BS26+T	Buy	UCSP;4 pin; Dwg: 21-0117G (PDF) Use pkgcode/variation: B4+3*	0°C to +70°C	RoHS/Lead-Free: Yes
MAX6408BS29+T	Buy	UCSP;4 pin; Dwg: 21-0117G (PDF) Use pkgcode/variation: B4+3*	0°C to +70°C	RoHS/Lead-Free: Yes Materials Analysis
MAX6408BS23-T	Buy	UCSP;4 pin; Dwg: 21-0117G (PDF) Use pkgcode/variation: B4-3*	0°C to +70°C	RoHS/Lead-Free: No Materials Analysis

CONTACT US: SEND US AN EMAIL

Copyright © 2007 by Maxim Integrated Products, Dallas Semiconductor • Legal Notices • Privacy Policy