

# JM38510/11401/11402/11403/ 11404/11405/11406

JAN JFET-INPUT OPERATIONAL AMPLIFIERS

# Precision Monolithics Inc

# **GENERAL DESCRIPTION**

This data sheet covers the electrical requirements for a monolithic, low-power, internally-compensated JFET-input operational amplifier as specified in MIL-M-38510/114 for device types 01 to 06. Devices supplied to this data sheet are manufactured and tested at PMI's MIL-M-38510 certified facility and are listed in QPL-38510.

Complete device requirements will be found in MIL-M-38510 and MIL-M-38510/114 for Class B and Class S processed devices.

# **GENERIC CROSS-REFERENCE INFORMATION**

This cross-reference information is presented for the convience of the user. The generic-industry types listed may not have iden-

tical operational performance characteristics across the military temperature range or reliability factors equivalent to the MIL-M-38510 device.

| Military Device Type | Generic-Industry Type |
|----------------------|-----------------------|
| 01                   | LF-155                |
| 04                   | LF-155A               |
| 02                   | LF-156                |
| 05                   | LF-156A               |
| 03                   | LF-157                |
| 06                   | LF-157A               |

# SIMPLIFIED SCHEMATIC



# **ABSOLUTE MAXIMUM RATINGS**

| Supply Voltage Range ±22V                        |
|--------------------------------------------------|
| Input Voltage Range (Note 1) ±20V                |
| Differential Input Voltage Range ±40V            |
| Lead Temperature (Soldering, 60 sec) 300°C       |
| Junction Temperature                             |
| Storage Temperature Range65°C to +150°C          |
| Output Short-Circuit Duration Unlimited (Note 2) |
|                                                  |

NOTES:

- Short circuit may be to ground to either supply. Rating applies to + 125°C
  case temperature or +75°C ambient temperature.
- 3. For short-term test (in the specific burn-in and life test configuration when required and up to 168 hours maximum),  $T_j = 275^{\circ} C$ .

# **RECOMMENDED OPERATING CONDITIONS**

**ELECTRICAL CHARACTERISTICS** at  $V_{CC}$  from  $\pm 5V$  to  $\pm 20V$ ; source resistance = .50 ohm; ambient temperature range =  $-55^{\circ}$ C to  $+125^{\circ}$ C and figure 1, unless otherwise noted.

|                                |                         |                                                                                      | 01 LI    | MITS | 04 LIMITS |      |       |  |
|--------------------------------|-------------------------|--------------------------------------------------------------------------------------|----------|------|-----------|------|-------|--|
| PARAMETER                      | SYMBOL                  | CONDITIONS                                                                           | MIN      | MAX  | MIN       | MAX  | UNITS |  |
|                                |                         | $\pm V_{CC} = \pm 5V, V_{CM} = 0V$                                                   | _        |      |           | _    |       |  |
|                                |                         | T <sub>4</sub> = 25°C                                                                | -5       | 5    | -2        | 2    |       |  |
| Input Offset                   | V <sub>IO</sub>         | $\pm V_{CC} = \pm 20V$                                                               |          |      |           |      | m۷    |  |
| Voltage                        | *10                     | $V_{CM} = \pm 15V, 0V$                                                               |          |      |           |      | 1117  |  |
|                                |                         | -55° C ≤ T <sub>A</sub> ≤ + 125° C                                                   | -7       | 7    | -2.5      | 2.5  |       |  |
|                                |                         | · — · · · · · · · · · · · · · · · · · ·                                              |          |      |           |      |       |  |
| Input Offset Voltage           | $\Delta V_{IO}$         | $\pm V_{CC} = \pm 20V$                                                               | -30      | 30   | -10       | 10   | ν/° C |  |
| Temperature Sensitivity        | ΔΤ                      | V <sub>CM</sub> = 0V                                                                 |          |      |           |      |       |  |
|                                |                         | $\pm V_{CC} = \pm 20V, V_{CM} = 0V,$                                                 |          |      |           |      |       |  |
| nput Offset Current            | I <sub>IO</sub>         | $T_i = 25^{\circ}C$                                                                  | -20      | 20   | -20       | 20   | pΑ    |  |
|                                |                         | T <sub>j</sub> = 125°C                                                               | -20      | 20   | -20       | 20   | n.A   |  |
|                                |                         | $\pm V_{CC} = \pm 20V, V_{CM} = +15V$                                                |          |      |           |      |       |  |
|                                |                         | T <sub>i</sub> = 25°C                                                                | - 100    | 3500 | -100      | 3500 | pA    |  |
|                                |                         | t ≤ 25ms T <sub>i</sub> = 125°C                                                      | -10      | 60   | -10       | 60   | n.A   |  |
|                                | +1 <sub>IB</sub>        | $\pm V_{CC} = \pm 15V, V_{CM} = +10V$                                                | 10       | 00   | 10        | 00   | II.A  |  |
| Innut Bion Current             | TIB                     |                                                                                      | -100     | 300  | -100      | 200  | - 4   |  |
| Input Bias Current             |                         | T <sub>j</sub> = 25°C                                                                |          |      |           | 300  | p.A   |  |
| (Note 1)                       | -1 <sub>IB</sub>        | t ≤ 25ms T <sub>j</sub> = 125°C                                                      | -10      | 50   | -10       | 50   | n.A   |  |
| (Note 2)                       |                         | $\pm V_{CC} = \pm 20V, -15V \le V_{CM} \le 0V$                                       |          |      |           |      |       |  |
| (Note 3)                       |                         | T <sub>j</sub> = 25°C                                                                | -100     | 100  | - 100     | 100  | pΑ    |  |
|                                |                         | t ≤ 25ms T <sub>j</sub> = 125°C                                                      | -10      | 50   | -10       | 50   | n.A   |  |
| Power Supply                   | +PSRR                   | $+V_{CC} = 10V, -V_{CC} = -20V$                                                      | 85       |      | 85        | _    |       |  |
| Rejection Ratio                | -PSRR                   | $+V_{CC} = 20V, -V_{CC} = -10V$                                                      | 65       |      | 60        | _    | dB    |  |
| Input Voltage Common-Mode      |                         | ±V <sub>CC</sub> = ±20V                                                              |          |      |           |      |       |  |
| Rejection (Note 4)             | CMR                     | $V_{IN} = \pm 15V$                                                                   | 85       |      | 85        | _    | dB    |  |
| Adjustment for                 | V <sub>IO</sub> ADJ (+) | ±V <sub>CC</sub> = ±20V                                                              | +8       |      | +8        |      |       |  |
| Input Offset Voltage           | VIO ADJ (-)             | ±V <sub>CC</sub> = ±20V                                                              | _        | -8   |           | -8   | mV    |  |
| <u> </u>                       | 10                      |                                                                                      |          |      |           |      |       |  |
| Output Short-Circuit Current   |                         | ±V <sub>CC</sub> = ±15V                                                              |          |      |           |      |       |  |
| (for Positive Output) (Note 5) | I <sub>OS:+:</sub>      | t ≤ 25ms                                                                             | -50      |      | -50       | _    | mA    |  |
|                                |                         | (Short Circuit to Ground)                                                            |          |      |           |      |       |  |
| Output Short-Circuit Current   |                         | $\pm V_{CC} = \pm 15V$                                                               |          |      |           |      |       |  |
| (for Negative Output)          | I <sub>OSI-+</sub>      | t ≤ 25ms                                                                             |          | 50   | -         | 50   | mA    |  |
| (Note 5)                       |                         | (Short Circuit to Ground)                                                            |          |      |           |      |       |  |
|                                |                         | T <sub>A</sub> = ~55°C                                                               |          | 11   | _         | 11   |       |  |
| Supply Current                 | I <sub>CC</sub>         | ±V <sub>CC</sub> = ±15V, T <sub>A</sub> = +25°C                                      |          | 4    | _         | 4    | mA    |  |
|                                | 00                      | T <sub>A</sub> = +125°C                                                              | _        | 4    |           | 4    | ,,,,, |  |
| Dutput Voltage Swing           |                         | $\pm V_{CC} = \pm 20V$ , $R_L = 10k\Omega$                                           | ± 16     |      | ± 16      |      |       |  |
| (Maximum)                      | V <sub>OP</sub>         | $\pm V_{CC} = \pm 20V$ , $R_L = 2k\Omega$                                            | ±15      |      | ± 15      | _    | ٧     |  |
|                                |                         |                                                                                      |          |      |           |      |       |  |
| Open-Loop Voltage Gain         | A.,                     | $\pm V_{CC} = \pm 20V, V_{OUT} = \pm 15V$<br>$R_{L} = 2k\Omega, T_{A} = 25^{\circ}C$ | 50       |      | 50        |      |       |  |
| (Single Ended) (Note 6)        | A <sub>VS·+</sub>       |                                                                                      | 50<br>25 |      |           |      | V/mV  |  |
|                                | Avs                     | -55°C ≤ T <sub>A</sub> ≤ +125°C                                                      | 23       |      | 25        |      |       |  |
| )pen-Loop Voltage Gain         |                         | $\pm V_{CC} = \pm 5V$                                                                |          |      |           |      |       |  |
| (Single Ended) (Note 6)        | Avs                     | $R_L = 2k\Omega$                                                                     | 10       |      | 10        | _    | V/mV  |  |
| complete Ended / Intole of     |                         | $V_{OUT} = \pm 2V$                                                                   |          |      |           |      |       |  |

The absolute maximum negative input voltage is equal to the negative power supply voltage.



**ELECTRICAL CHARACTERISTICS** at  $V_{CC}$  from  $\pm 5V$  to  $\pm 20V$ ; source resistance = 50 ohm; ambient temperature range =  $-55^{\circ}$ C to  $+125^{\circ}$ C and figure 1, unless otherwise noted. (Continued)

| PARAMETER                           |                       |                                                                                                                                                        | 01 LIMITS    |              | 04 L     | MITS         |                   |
|-------------------------------------|-----------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|--------------|----------|--------------|-------------------|
|                                     | SYMBOL                | CONDITIONS                                                                                                                                             | MIN          | MAX          | MIN      | MAX          | UNITS             |
| Transient Response<br>Rise Time     | TR <sub>(tr)</sub>    | $\pm$ V <sub>CC</sub> = $\pm$ 15V, R <sub>L</sub> = 2k $\Omega$ , A <sub>V</sub> = 1<br>C <sub>L</sub> = 100pF, See Figure 2<br>V <sub>IN</sub> = 50mV | _            | 150          | _        | 150          | ns                |
| Transient Response<br>Overshoot     | TR <sub>(os)</sub>    | $\pm$ V <sub>CC</sub> = $\pm$ 15V, R <sub>L</sub> = 2k $\Omega$ , A <sub>V</sub> = 1<br>C <sub>L</sub> = 100pF, See Figure 2<br>V <sub>IN</sub> = 50mV | <del>-</del> | 40           | _        | 40           | %                 |
| Slew Rate                           | SR(+)<br>and<br>SR(-) | $V_{IN} = \pm 5V, \pm V_{CC} = \pm 15V$ $A_V = 1, See Figure 2$ $T_A = 25^{\circ}C$ $T_A = -55^{\circ}C, +125^{\circ}C$                                | 2            | <del>-</del> | 3<br>1.5 | <del>-</del> | V/μs              |
| Settling Time                       | ts(+)<br>and<br>ts(-) | $\pm V_{CC} = \pm 15V (0.1\% \text{ error})$<br>$T_A = 25^{\circ}\text{C}, A_V = -1$<br>See Figure 3                                                   | _            | 4000         | _        | 4000         | ns                |
| Noise (Referred to Input) Broadband | N <sub>I</sub> (BB)   | $\pm V_{CC} = \pm 20V$ , $T_A = 25^{\circ}C$<br>Bandwidth = 5kHz                                                                                       | _            | 10           | _        | 10           | μV <sub>rms</sub> |
| Noise (Referred to Input) Popcorn   | N <sub>I</sub> (PC)   | $\pm V_{CC} = \pm 20V$ , $T_A = 25^{\circ}C$<br>Bandwidth = 5kHz                                                                                       |              | 40           | _        | 40           | μV <sub>pk</sub>  |

#### NOTES:

- 1. Bias currents are actually junction leakage currents which double (approximately) for each 10°C increase in junction temperature T<sub>i</sub>. Measurement of bias current is specified at T<sub>i</sub> rather than T<sub>A</sub>, since normal warm-up thermal transients will affect the bias currents. The measurements for bias currents must be made within 25ms or 5 loop time constants after power is first applied to the device for test. Measurement at T<sub>A</sub> = -55° C is not necessary since expected values are too small for typical test systems.
- Bias current is sensitive to power supply voltage, common-mode voltage and temperature as shown by the following typical curves:



#### **CASE OUTLINE**

Per MIL-M-38510, Appendix C, Case Outline A-1 (8 Lead Can), Package Type Designator "G"; and Appendix C, Case Outline D-4 (8 Lead Dual-in-Line) Package Type Designator "P".

# **POWER AND THERMAL CHARACTERISTICS**

| Package               | Case outline | *************************************** |         |          |
|-----------------------|--------------|-----------------------------------------|---------|----------|
|                       |              | power dissipation                       | θJ—C    | θJA      |
| 8 Lead Can<br>√TO-99+ | G            | 330mW at T <sub>A</sub> = 125°C         | 40° C/W | 150° C/W |
| 8 Lead Hermetic DIF   | Р            | 417mW at T <sub>A</sub> = 125°C         | 50°C/W  | 120°C/W  |



- 3. Negative  $I_{\mbox{\scriptsize IB}}$  minimum limits reflect the characteristics of device with bis current compensation.
- CMR is calculated from V<sub>IO</sub> measurements at V<sub>CM</sub> = +15V and ~15V.
- Continuous limits shall be considerably lower. Protection for shorts either supply exists providing that T<sub>i</sub>(max) ≤ 175°C.
- Because of thermal feedback effects from output to input, open-loop ga is not guaranteed to be linear or positive over the operating range. The requirements, if needed, should be specified by the user in addition procurement documents.

### PIN CONNECTIONS



**ELECTRICAL CHARACTERISTICS** at  $V_{CC}$  from  $\pm 5V$  to  $\pm 20V$ ; source resistance = 50 ohm; ambient temperature range =  $-55^{\circ}$ C to  $+125^{\circ}$ C and figure 1, unless otherwise noted.

| PARAMETER                      |                         |                                                                 |            | MITS     | 05 LIMITS |                |            |
|--------------------------------|-------------------------|-----------------------------------------------------------------|------------|----------|-----------|----------------|------------|
|                                | SYMBOL                  | CONDITIONS                                                      | MIN        | MAX      | MIN       | MAX            | UNITS      |
|                                |                         | $\pm V_{CC} = \pm 5V$ , $V_{CM} = 0V$                           | -5         | 5        | -2        | 2              |            |
| nput Offset                    |                         | T <sub>A</sub> = 25°C                                           |            |          |           | -              |            |
| Voltage                        | V <sub>IO</sub>         | $\pm V_{CC} = \pm 20V$                                          |            |          |           |                | m۷         |
| Voltage                        |                         | V <sub>CM</sub> = ±15V, 0V                                      | -7         | 7        | -2.5      | 2.5            |            |
|                                |                         | -55° C ≤ T <sub>A</sub> ≤ + 125° C                              | ·          | <u> </u> |           |                |            |
| nput Offset Voltage            | $\Delta V_{IO}$         | $\pm V_{CC} = \pm 20V$                                          | -30        | 30       | -10       | 10             | V/00       |
| Temperature Sensitivity        | $\Delta T$              | V <sub>CM</sub> = 0V                                            | -30        | 30       | - 10      | 10             | μV/°C      |
|                                |                         | $\pm V_{CC} = \pm 20V, V_{CM} = 0V,$                            |            |          |           |                |            |
| Input Offset Current           | I <sub>IO</sub>         | T <sub>i</sub> = 25°C                                           | <b>-20</b> | 20       | -20       | 20             | p.A        |
|                                | 10                      | T <sub>i</sub> = 125°C                                          | -20        | 20       | -20       | 20             | n.A        |
|                                |                         | $\pm V_{CC} = \pm 20V, V_{CM} = +15V$                           |            |          |           |                |            |
|                                |                         | T <sub>i</sub> = 25°C                                           | -100       | 3500     | -100      | 3500           | рА         |
|                                |                         | t ≤ 25ms T <sub>i</sub> = 125°C                                 | ~10        | 60       | -10       | 60             | n.A        |
|                                | +1 <sub>1B</sub>        | $\pm V_{CC} = \pm 15V, V_{CM} = +10V$                           |            | **       |           | •              |            |
| nput Bias Current              | · · ·IB                 | T <sub>i</sub> = 25°C                                           | - 100      | 300      | -100      | 300            | p.A        |
|                                | 1                       | t ≤ 25ms T <sub>1</sub> = 125°C                                 | -10        | 50       | -10       |                |            |
| (Note 1)                       | IB                      | ,                                                               | -10        | 50       | - 10      | 50             | n#         |
| (Note 2)                       |                         | $\pm V_{CC} = \pm 20V, -15V \le V_{CM} \le 0V$                  | ***        | 400      |           | 464            |            |
| (Note 3)                       |                         | $T_j = 25^{\circ} C$                                            | -100       | 100      | ~100      | 100            | pA         |
|                                |                         | t ≤ 25ms T <sub>j</sub> = 125°C                                 | -10        | 50       | -10       | 50             | nA         |
| Power Supply                   | + PSRR                  | $+V_{CC} = 10V, -V_{CC} = -20V$                                 | 85         |          | 85        | _              | dB         |
| Rejection Ratio                | -PSRR                   | $+V_{CC} = 20V, -V_{CC} = -10V$                                 |            |          |           |                |            |
| nput Voltage Common-Mode       | CMR                     | $\pm V_{CC} = \pm 20V$                                          | 85         |          | 85        |                | dB         |
| Rejection (Note 4)             | CIVIN                   | V <sub>IN</sub> = ± 15V                                         | 65         |          | - 65      | _              | OE.        |
| Adjustment for                 | V <sub>IO</sub> ADJ (+) | ±V <sub>CC</sub> = ±20V                                         | +8         |          | +8        | _              |            |
| Input Offset Voltage           | V <sub>IO</sub> ADJ (-: | $\pm V_{CC} = \pm 20V$                                          | _          | -8       | _         | -8             | m۷         |
| <del></del>                    |                         | ±V <sub>CC</sub> = ±15V                                         |            |          |           |                |            |
| Dutput Short-Circuit Current   | 1                       | t ≤ 25ms                                                        | -50        |          | -50       |                |            |
| (for Positive Output) (Note 5) | OS(+)                   | (Short Circuit to Ground)                                       | -30        |          | -30       |                | m <i>A</i> |
|                                |                         |                                                                 |            |          |           |                |            |
| Output Short-Circuit Current   |                         | ±V <sub>CC</sub> = ±15V                                         |            | 50       |           |                | _          |
| (for Negative Output)          | 1 <sub>081-1</sub>      | t ≤ 25ms                                                        | _          | 50       | _         | 50             | m.A        |
| (Note 5)                       |                         | (Short Circuit to Ground)                                       |            |          |           |                |            |
|                                |                         | T <sub>A</sub> = -55°C                                          | _          | 11       | _         | 11             |            |
| Supply Current                 | 1cc                     | $\pm V_{CC} = \pm 15V$ , $T_A = +25$ °C                         | _          | 7        | _         | 7              | m.A        |
|                                |                         | T <sub>A</sub> = +125°C                                         | _          | 7        | _         | 7              |            |
| Output Voltage Swing           |                         | $\pm V_{CC} = \pm 20V$ , $R_L = 10k\Omega$                      | ±16        |          | ± 16      |                |            |
| (Maximum)                      | V <sub>OP</sub>         | $\pm V_{CC} = \pm 20V$ , $R_L = 2k\Omega$                       | ±15        |          | ± 15      | _              | ٧          |
|                                |                         | $\pm V_{CC} = \pm 20V$ , $V_{OUT} = \pm 15V$                    |            |          |           |                |            |
| Open-Loop Voltage Gain         | A <sub>VS++)</sub>      | $R_1 = 2k\Omega$ , $T_A = 25^{\circ}C$                          | 50         |          | 50        | _              |            |
| (Single Ended) (Note 6)        |                         | $-55^{\circ}\text{C} \le T_{A} \le + 125^{\circ}\text{C}$       | 25         |          | 25        | _              | V/mV       |
|                                | A                       | ·                                                               | 20         |          | 20        | · <del>-</del> |            |
| Open-Loop Voltage Gain         |                         | ±V <sub>CC</sub> = ±5V                                          | 40         |          |           |                |            |
| (Single Ended) (Note 6)        | A <sub>vs</sub>         | $R_L = 2k\Omega$                                                | 10         |          | 10        | _              | V/mV       |
|                                |                         | V <sub>OUT</sub> = ±2V                                          |            |          |           |                |            |
| Transient Bosners              |                         | $\pm V_{CC} = \pm 15V$ , $H_L = 2k\Omega$ , $A_V = 1$           |            |          |           |                |            |
| Transient Response             | TR <sub>(tr)</sub>      | C <sub>L</sub> = 100pF, See Figure 2                            | _          | 100      | _         | 100            | n          |
| Rise Time                      |                         | V <sub>IN</sub> = 50mV                                          |            |          |           |                |            |
|                                |                         | $\pm V_{CC} = \pm 15V$ , $R_L = 2k\Omega$ , $A_V = 1$           |            |          |           |                |            |
| Transient Response             | TR <sub>(OS)</sub>      | C <sub>L</sub> = 100pF, See Figure 2                            | _          | 40       | _         | 40             | 9          |
| Overshoot                      | (03)                    | V <sub>IN</sub> = 50mV                                          |            |          |           |                |            |
|                                |                         | $V_{IN} = \pm 5V, \pm V_{CC} = \pm 15V$                         |            |          |           |                |            |
|                                | SR(+)                   | A <sub>V</sub> = 1, See Figure 2                                |            |          |           |                |            |
| Siew Rate                      | and                     |                                                                 | 7.5        |          | 10        |                | V/μ:       |
|                                | SR(-)                   | $T_A = 25^{\circ} C$<br>$T_A = -55^{\circ} C_1 + 125^{\circ} C$ | 7.5<br>5   |          | 10<br>7   |                |            |
|                                |                         |                                                                 | J          |          |           |                |            |
|                                | ts(+)                   | $\pm V_{CC} = \pm 15V (0.1\% \text{ error})$                    |            | 40       |           | 405-           |            |
| Settling Time                  | and                     | $T_A = 25^{\circ} C, A_V = -1$                                  | _          | 4000     | _         | 4000           | n          |
|                                | ts(=)                   | See Figure 3                                                    |            |          |           |                |            |



**ELECTRICAL CHARACTERISTICS** at  $V_{CC}$  from  $\pm 5V$  to  $\pm 20V$ ; source resistance = 50 ohm; ambient temperature range =  $-55^{\circ}$ C to  $+125^{\circ}$ C and figure 1, unless otherwise noted. (Continued)

| PARAMETER                              |                     |                                                                  | 02 LIMITS |     | 05 LIMITS |     |                   |  |
|----------------------------------------|---------------------|------------------------------------------------------------------|-----------|-----|-----------|-----|-------------------|--|
|                                        | SYMBOL C            | CONDITIONS                                                       | MIN       | MAX | MIN       | MAX | UNITS             |  |
| Noise (Referred to Input)<br>Broadband | N <sub>j</sub> (BB) | $\pm V_{CC} = \pm 20V$ , $T_A = 25^{\circ}C$<br>Bandwidth = 5kHz |           | 10  | _***      | 10  | μV <sub>rms</sub> |  |
| Noise (Referred to Input) Popcorn      | N <sub>I</sub> (PC) | $\pm V_{CC} = \pm 20V$ , $T_A = 25^{\circ}C$<br>Bandwidth = 5kHz | -         | 40  | -         | 40  | $\mu V_{pk}$      |  |

# NOTES:

- 1. Bias currents are actually junction leakage currents which double approximately; for each 10°C increase in junction temperature T<sub>j</sub>. Measurement of bias current is specified at T<sub>j</sub> rather than T<sub>A</sub>, since normal warm-up thermal transients will affect the bias currents. The measurements for bias currents must be made within 25ms or 5 loop time constants after power is first applied to the device for test. Measurement at T<sub>A</sub> = -55° C is not necessary since expected values are too small for typical test systems.
- Bias current is sensitive to power supply voltage, common-mode voltage and temperature as shown by the following typical curves:





- Negative I<sub>IB</sub> minimum limits reflect the characteristics of device with bias current compensation.
- 4. CMR is calculated from  $V_{IO}$  measurements at  $V_{CM}$  = +15V and -15V.
- Continuous limits shall be considerably lower. Protection for shorts to either supply exists providing that T<sub>i</sub> (max) ≤ 175° C.
- Because of thermal feedback effects from output to input, open-loop gair is not guaranteed to be linear or positive over the operating range. These requirements, if needed, should be specified by the user in additional procurement documents.

# ORDERING INFORMATION

| JAN SLASH SHEET  | PMI DEVICE      |
|------------------|-----------------|
| JM38510/11401BGC | PM155J1/38510   |
| JM38510/11401BGA | PM155J5/38510   |
| JM38510/11401BPB | PM155Z2/38510   |
| JM38510/11401BPA | PM155Z5/38510   |
| JM38510/11404BGC | PM155AJ1/38510  |
| JM38510/11404BGA | PM155AJ5/38510  |
| JM38510/11404BPB | PM155AZ2/38510  |
| JM38510/11404BPA | PM155AZ5/38510  |
| JM38510/11402BGC | PM156J1/38510   |
| JM38510/11402BGA | PM156J5/38510   |
| JM38510/11402BPB | PM156Z2/38510   |
| JM38510/11402BPA | PM156Z5/38510   |
| JM38510/11401SGA | PM155SJ5/38510  |
| JM38510/11402SGA | PM156SJ5/38510* |
| JM38510/11404SGA | PM155SAJ5/38510 |
| JM38510/11405SGA | PM156SAJ5/38510 |

<sup>\*</sup> Undergoing Part 1 qualification as of 1/90

| JAN SLASH SHEET  | PMI DEVICE     |
|------------------|----------------|
| JM38510/11405BGC | PM156AJ1/38510 |
| JM38510/11405BGA | PM156AJ5/38510 |
| JM38510/11405BPB | PM156AZ2/38510 |
| JM38510/11405BPA | PM156AZ5/38510 |
| JM38510/11403BGC | PM157J1/38510  |
| JM38510/11403BGA | PM157J5/38510  |
| JM38510/11403BPB | PM157Z2/38510  |
| JM38510/11403BPA | PM157Z5/38510  |
| JM38510/11406BGC | PM157AJ1/38510 |
| JM38510/11406BGA | PM157AJ5/38510 |
| JM38510/11406BPB | PM157AZ2/38510 |
| JM38510/11406BPA | PM157AZ5/38510 |



**ELECTRICAL CHARACTERISTICS** at  $V_{CC}$  from  $\pm 5V$  to  $\pm 20V$ ; source resistance = 50 ohm; ambient temperature range =  $-55^{\circ}$ C to  $+125^{\circ}$ C and figure 1, unless otherwise noted.

|                                                   |                         |                                                              | 03 LI | 03 LIMITS   |       | 06 LIMITS |       |
|---------------------------------------------------|-------------------------|--------------------------------------------------------------|-------|-------------|-------|-----------|-------|
| PARAMETER                                         | SYMBOL                  | CONDITIONS                                                   | MIN   | MAX         | MIN   | MAX       | UNITS |
|                                                   |                         | $\pm V_{CC} = \pm 5V$ , $V_{CM} = 0V$                        |       |             |       | _         | _     |
|                                                   |                         | T <sub>A</sub> = 25°C                                        | -5    | 5           | -2    | 2         |       |
| Input Offset                                      | VIO                     | ±V <sub>CC</sub> = ±20V                                      |       |             |       |           | mV    |
| Voltage                                           | *10                     | V <sub>CM</sub> = ±15V, 0V                                   |       |             |       |           | IIIV  |
|                                                   |                         | $-55^{\circ}$ C $\leq T_{A} \leq +125^{\circ}$ C             | -7    | 7           | -2.5  | 2.5       |       |
| Input Offset Voltage                              | Δ۷ <sub>ΙΟ</sub>        | ±V <sub>CC</sub> = ±20V                                      |       | <del></del> |       | ,         |       |
| Temperature Sensitivity                           | ΔT                      | V <sub>CM</sub> = 0V                                         | -30   | 30          | ~10   | 10        | μV/°C |
| * *                                               |                         | $\pm V_{CC} = \pm 20V, V_{CM} = 0V,$                         |       |             | _     |           |       |
| Input Offset Current                              | i <sub>IO</sub>         | T <sub>i</sub> = 25°C                                        | -20   | 20          | ~20   | 20        | pA    |
| mpat onset outlon                                 | 10                      | T <sub>i</sub> = 125°C                                       | -20   | 20          | ~20   | 20        | nA    |
|                                                   |                         |                                                              |       |             |       |           | ,,,,  |
|                                                   |                         | $\pm V_{CC} = \pm 20V, V_{CM} = +15V$<br>$T_1 = 25^{\circ}C$ | - 100 | 3500        | - 100 | 2500      |       |
|                                                   |                         |                                                              |       |             | -100  | 3500      | pA.   |
|                                                   |                         | t ≤ 25ms T <sub>j</sub> = 125°C                              | -10   | 60          | ~10   | 60        | nA    |
| I 4 B' 6                                          | +1 <sub>IB</sub>        | $\pm V_{CC} = \pm 15V, V_{CM} = +10V$                        |       | 45-         |       |           |       |
| Input Bias Current                                |                         | T <sub>j</sub> = 25°C                                        | -100  | 300         | ~100  | 300       | pΑ    |
| (Note 1)                                          | -11B                    | t ≤ 25ms T <sub>j</sub> = 125°C                              | -10   | 50          | ~10   | 50        | nA    |
| (Note 2)                                          |                         | $\pm V_{CC} = \pm 20V, -15V \le V_{CM} \le 0V$               |       |             |       |           |       |
| (Note 3)                                          |                         | T <sub>j</sub> = 25°C                                        | -100  | 100         | -100  | 100       | рA    |
|                                                   |                         | t ≤ 25ms T <sub>j</sub> = 125°C                              | -10   | 50          | ~10   | 50        | nA    |
| Power Supply                                      | +PSRR                   | +V <sub>CC</sub> = 10V, -V <sub>CC</sub> = -20V              | 25    |             |       |           |       |
| Rejection Ratio                                   | -PSRR                   | $+V_{CC} = 20V, -V_{CC} = -10V$                              | 85    |             | 85    | _         | dB    |
| Input Voltage Common-Mode                         |                         | ±V <sub>CC</sub> = ±20V                                      |       |             |       |           |       |
| Rejection (Note 4)                                | CMR                     | $V_{IN} = \pm 15V$                                           | 85    |             | 85    | _         | dB    |
| Adjustment for                                    | V <sub>IO</sub> ADJ(+)  | ±V <sub>CC</sub> = ±20V                                      | +8    |             | +8    |           |       |
| Input Offset Voltage                              | V <sub>IO</sub> ADJ (=) | $\pm V_{CC} = \pm 20V$                                       | _     | -8          | _     | -8        | m۷    |
|                                                   |                         | ±V <sub>CC</sub> = ±15V                                      |       |             |       |           |       |
| Output Short-Circuit Current                      | tos(+)                  | t ≤ 25ms                                                     | -50   | _           | ~50   | _         | mA    |
| (for Positive Output) (Note 5)                    | .02(+)                  | (Short Circuit to Ground)                                    |       |             | 00    |           | III A |
| Output Short-Circuit Current                      |                         | ±V <sub>CC</sub> = ±15V                                      |       |             |       |           |       |
| (for Negative Output)                             | 1                       | t ≤ 25ms                                                     | _     | 50          |       | 50        | ^     |
| (Note 5)                                          | 1 <sub>OS(-)</sub>      | (Short Circuit to Ground)                                    | _     | 30          | _     | 50        | mA    |
| (NOTE 3)                                          |                         |                                                              |       |             |       |           |       |
|                                                   |                         | T <sub>A</sub> = ~55°C                                       |       | 11          |       | 11        |       |
| Supply Current                                    | Icc                     | $\pm V_{CC} = \pm 15V, T_A = +25^{\circ}C$                   | _     | 7           | _     | 7         | mA    |
|                                                   |                         | T <sub>A</sub> = +125°C                                      | ₹     | 7           |       | 7         |       |
| Output Voltage Swing                              | V                       | $\pm V_{CC} = \pm 20V$ , R <sub>L</sub> = 10k $\Omega$       | ± 16  |             | ±16   | _         | v     |
| (Maximum)                                         | V <sub>OP</sub>         | $\pm V_{CC} = \pm 20V$ , $R_L = 2k\Omega$                    | ±15   |             | ±15   | _         | V     |
| Ones I am Malana Cala                             |                         | ±V <sub>CC</sub> = ±20V, V <sub>OUT</sub> = ±15V             |       |             |       |           |       |
| Open-Loop Voltage Gain                            | A <sub>VS(+)</sub>      | $R_1 = 2k\Omega$ , $T_A = 25^{\circ}C$                       | 50    |             | 50    | _         |       |
| (Single Ended) (Note 6)                           | A <sub>VS(-)</sub>      | -55°C ≤ T <sub>A</sub> ≤ + 125°C                             | 25    | _           | 25    | _         | V/mV  |
|                                                   |                         |                                                              |       |             |       |           | _     |
|                                                   |                         | $+ V_{00} = +5V$                                             |       |             |       |           |       |
| Open-Loop Voltage Gain<br>(Single Ended) (Note 6) | Avs                     | $\pm V_{CC} = \pm 5V$ $R_1 = 2k\Omega$                       | 10    | _           | 10    |           | V/mV  |



**ELECTRICAL CHARACTERISTICS** at V<sub>CC</sub> from ±5V to ±20V; source resistance = 50 ohm; ambient temperature range = -55°C to +125°C and figure 1, unless otherwise noted. (Continued)

| _                                      |                       |                                                                                                                                                        | 03 LIMITS |     | 06 LIMITS |     |                   |  |
|----------------------------------------|-----------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|-----|-----------|-----|-------------------|--|
| PARAMETER                              | SYMBOL                | CONDITIONS                                                                                                                                             | MIN       | MAX | MIN       | MAX | UNITS             |  |
| Transient Response<br>Rise Time        | TR <sub>(tr)</sub>    | $\pm$ V <sub>CC</sub> = $\pm$ 15V, R <sub>L</sub> = 2k $\Omega$ , A <sub>V</sub> = 5<br>C <sub>L</sub> = 100pF, See Figure 2<br>V <sub>IN</sub> = 50mV |           | 450 | _         | 450 | ns                |  |
| Transient Response<br>Overshoot        | TR <sub>(os)</sub>    | $\pm$ V <sub>CC</sub> = $\pm$ 15V, R <sub>L</sub> = 2k $\Omega$ , A <sub>V</sub> = 5<br>C <sub>L</sub> = 100pF, See Figure 2<br>V <sub>IN</sub> = 50mV | _         | 25  | _         | 25  | %                 |  |
| Slew Rate                              | SR(+)<br>and<br>SR(-) | $V_{IN} = \pm 1V, \pm V_{CC} = \pm 15V$ $A_V = 5$ , See Figure 2 $T_A = 25^{\circ} C$ $T_A = -55^{\circ} C, +125^{\circ} C$                            | 30<br>20  | _   | 40<br>25  | _   | V/μs              |  |
| Settling Time                          | ts(+)<br>and<br>ts(-) | $\pm V_{CC} = \pm 15V (0.1\% error)$<br>$T_A = 25^{\circ}C$ , $A_V = -5$<br>See Figure 3                                                               | _         | 800 |           | 800 | ns                |  |
| Noise (Referred to Input)<br>Broadband | N <sub>I</sub> (BB)   | $\pm V_{CC} = \pm 20V$ , $T_A = 25^{\circ} C$<br>Bandwidth = 5kHz                                                                                      | _         | 10  | _         | 10  | μV <sub>rms</sub> |  |
| Noise (Referred to Input) Popcorn      | N <sub>I</sub> (PC)   | $\pm V_{CC} = \pm 20V$ , $T_A = 25^{\circ}C$<br>Bandwidth = 5kHz                                                                                       | -         | 40  | _         | 40  | μV <sub>pk</sub>  |  |

#### NOTES:

- 1. Bias currents are actually junction leakage currents which double approximately) for each 10°C increase in junction temperature T<sub>j</sub>. Measurement of bias current is specified at T<sub>j</sub> rather than T<sub>A</sub>, since normal warm-up thermal transients will affect the bias currents. The measurements for bias currents must be made within 25ms or 5 loop time constants after power is first applied to the device for test. Measurement at T<sub>A</sub> = -55°C is not necessary since expected values are too small for typical test systems.
- Bias current is sensitive to power supply voltage, common-mode voltage and temperature as shown by the following typical curves:





- 3. Negative  $I_{\rm IB}$  minimum limits reflect the characteristics of device with bia current compensation.
- 4. CMR is calculated from  $V_{IO}$  measurements at  $V_{CM} = +15V$  and -15V.
- Continuous limits shall be considerably lower. Protection for shorts t either supply exists providing that T<sub>j</sub>(max) ≤ 175° C.
- Because of thermal feedback effects from output to input, open-loop gai is not guaranteed to be linear or positive over the operating range. Thes requirements, if needed, should be specified by the user in additional procurement documents.



# NOTES:

PMI)

- All resistors are ±0.1% tolerance and all capacitors are ±10% tolerance, unless otherwise specified.
- Precautions shall be taken to prevent damage to the D.U.T. during insertion into socket and change of state of relays (i.e. disable voltage supplies, current fimit ±V<sub>CC</sub>, etc.).
- 3. Compensation capacitors should be added as required for test circuit stability. Two general methods for stability compensation exist. One method is with a capacitor for nulling amp feedback. The other method is with a capacitor in parallel with the 49.9kft closed-loop feedback resistor. Both methods should not be used simultaneously. Proper wiring procedures shall be followed to prevent unwanted coupling and oscillations, etc. Loop response and
- settling time shall be consistent with the test rate such that any value has settled for at least five loop time constants before the value is measured.
- 4. Adequate settling time should be allowed such that each parameter has settled to within 5% of its final value.
- 5. All relays are shown in the normal de-energized state.
- The nulling amplifier shall be a M38510/10101XXX. Saturation of the nulling amplifier is not allowed on tests where the E (Pin 5) value is measured.
- 7. The load resistors 2050  $\Omega$  and 11.1k  $\Omega$  yield effective load resistances of 2k  $\Omega$  and 10k  $\Omega$  respectively.
- Any oscillation greater than 300mV in amplitude (peak-to-peak) shall be cause for device failure.

Figure 1. Test Circuit for Static Tests





Figure 2. Test Circuit for Transient Response and Slew Rate.



Figure 3. Test Circuit for Settling Time

# **BURN-IN**

Devices supplied by PMI have been subjected to burn-in per Method 1015 of MIL-STD-883 using test condition C with circuit shown on Figure 4 or test condition F using circuit shown on Figure 5.



Figure 4. Test Circuit, Burn-In (Steady-State Power and Reverse Bias) and Operating Life Test



Figure 5. Accelerated Burn-In and Life Test Circuit