MSKSEMI 美森科

ESD

TVS

TSS

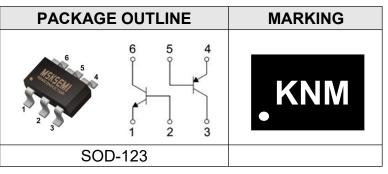
MOV

GDT

PLED

MMDT5451

Product specification



FEATURES

- Epitaxial Planar Die Construction
- Ideal for low Power Amplification and Switching
- One 5551(NPN), one 5401(PNP)

Reference News

MAXIMUM RATINGS (Ta=25°C unless otherwise noted)

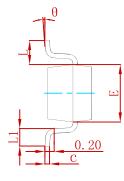
Symbol	Parameter	Value	Units
Vсво	collector- Base Voltage	180	V
VCEO	collector-Emitter Voltage	160	V
VEBO	Emitter-Base Voltage	6	V
lc	collector current -continuous	0.2	А
Pc	collector Power Dissipation	0.2	W
R •JA	Thermal Resistance, Junction to Ambient	625	τ/w
T _J ,T _{stg}	operation Junction and storage Temperature Range		т

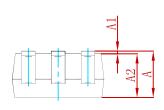
ELECTRICAL CHARACTERISTICS NPN 5551 (Ta=25°C unless otherwise specified)

Parameter	Symbol	Test conditions	Min	Тур	Мах	Unit
Collector-base breakdown Voltage	V _{(BR)cBO}	Ic=100µA,IE=0	180			V
Collector-emitter breakdown Voltage	V _{(BR)cEO}	$I_c=1 \text{ mA}, I_B=0$	160			V
Emitter-base breakdown Voltage	V _{(BR)EBO}	l _E =10μA, l _c =0	6			V
Collector cut-off current	I _{cBO}	V _{cB} =120V, I _E =0			0.05	μA
Emitter cut-off current	І _{ЕВО}	V _{EB} =4V, I _c =0			0.05	μA
	h _{FE1}	V _{cE} =5V, I _c =1mA	80			
DC current gain	h _{FE2}	V _{cE} =5V, I _c =10mA	100		300	
	h _{FE3}	V _{cE} =5V, I _c =50mA	30			
	V _{cE(sat)}	I₀=10mA, I _B =1mA			0.15	V
Collector-emitter saturation Voltage		I₀=50mA, I _B =5mA			0.2	V
	V _{BE(sat)}	I₀=10mA, I _B =1mA			1	V
Base-emitter saturation Voltage		I₀=50mA, I _B =5mA			1	V
Output Capacitance	Cobo	$V_{cB} = 10V, f = 1.0MHz, I_E = 0$			6.0	pF
Current Gain-Bandwidth Product	fT	V_{cE} = 10V, I _c = 10mA, f = 100MHz	100		300	MHz
Noise Figure	NF	V_{cE} = 5.0V, I _c = 200µA, R _S = 1.0K Ω, f = 1.0KHz			8.0	dB

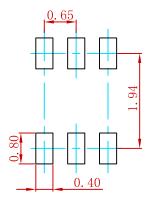
MAXIMuM RATINGS PNP 5401 (Ta=25 °C unless otherwise noted)

Symbol	Parameter	Value	units
V _{сво}	collector- Base Voltage	-160	V
VCEO	collector-Emitter Voltage	-150	V
V _{EBO}	Emitter-Base Voltage	-5	V
lc	collector current -continuous	-0.2	А
Pc	collector power DissiPation	0.2	W
R øja	Thermal Resistance, Junction to Ambient	625	τ/w
TJ,Tstg	operation Junction and storage Temperature Range	-55~+150	т


ELECTRICAL CHARACTERISTICS PNP 5401 (Ta=25^T unless otherwise specified)


Parameter	Symbol	Test conditions	Min	Тур	Мах	unit
Collector-base breakdown Voltage	V _{(BR)cBO}	l _c =-100μA, l _E =0	-160			V
Collector-emitter breakdown Voltage	V _{(BR)cEO}	Ic=-1mA, IB=0	-150			V
Emitter-base breakdown Voltage	V _{(BR)EBO}	l _E =-10μA, l _c =0	-5			V
Collector cut-off current	I _{cBO}	V _{cB} =-120V,I _E =0			-50	nA
Emitter cut-off current	I _{EBO}	V _{EB} =-3V, I _c =0			-50	nA
	h _{FE1}	V_{cE} =-5V, I_c =-1mA	50			
DC current gain	h _{FE2}	V _{cE} =-5V, I _c =-10mA	100		300	
	h _{FE3}	V _{cE} =-5V, I _c =-50mA	50			
	V _{cE(sat)}	Ic=-10mA, IB=-1mA			-0.2	V
Collector-emitter saturation Voltage		I _c =-50mA, I _B =-5mA			-0.5	V
	V _{BE(sat)}	Ic=-10mA, I _B =-1mA			-1	V
Base-emitter saturation Voltage		Ic=-50mA, I _B =-5mA			-1	V
Output Capacitance	C _{obo}	V_{cB} =-10V, f = 1.0MHz, I _E = 0			6.0	PF
Current Gain-Bandwidth Product	f⊤	V _{cE} =-10V, I _c =-10mA, f = 100MHz			300	MHz
Noise Figure	NF	V_{cE} =-5.0V, I _c =-200µA, R _s = 10 Ω, f = 1.0KHz			8.0	dB

PACKAGEMECHANICALDATA



Symbol	Dimensions In Millimeters		Dimensions In Inches		
Symbol	Min	Max	Min	Max	
A	0.900	1.100	0.035	0.043	
A1	0.000	0.100	0.000	0.004	
A2	0.900	1.000	0.035	0.039	
b	0.150	0.350	0.006	0.014	
С	0.100	0.150	0.004	0.006	
D	2.000	2.200	0.079	0.087	
E	1.150	1.350	0.045	0.053	
E1	2.150	2.400	0.085	0.094	
е	0.650 TYP		0.026 TYP		
e1	1.200	1.400	0.047	0.055	
L	0.525 REF		0.021 REF		
L1	0.260	0.460	0.010	0.018	
θ	0°	8°	0°	8°	

Suggested Pad Layout

Note: 1.Controlling dimension:in millimeters. 2.General tolerance:±0.05mm.

3. The pad layout is for reference purposes only.

REEL SPECIFICATION

P/N	PKG	QTY
MMDT5451	SOT-363	3000

Attention

■ Any and all MSKSEMI Semiconductor products described or contained herein do not have specifications that can handle applications that require extremely high levels of reliability, such as life-support systems, aircraft's control systems, or other applications whose failure can be reasonably expected to result in serious physical and/or material damage. Consult with your MSKSEMI Semiconductor representative nearest you before using any MSKSEMI Semiconductor products described or contained herein in such applications.

MSKSEMI Semiconductor assumes no responsibility for equipment failures that result from using products at values that exceed, even momentarily, rated values (such as maximum ratings, operating condition ranges, or other parameters) listed in products specifications of any and all MSKSEMI Semiconductor products described or contained herein.

Specifications of any and all MSKSEMI Semiconductor products described or contained herein stipulate the performance, characteristics, and functions of the described products in the independent state, and are not guarantees of the performance, characteristics, and functions of the described products as mounted in the customer's products or equipment. To verify symptoms and states that cannot be evaluated in an independent device, the customer should always evaluate and test devices mounted in the customer's products or equipment.

MSKSEMI Semiconductor. strives to supply high-quality high-reliability products. However, any and all semiconductor products fail with someprobability. It is possible that these probabilistic failures could give rise to accidents or events that could endanger human lives, that could give rise to smoke or fire, or that could cause damage to other property. When designing equipment, adopt safety measures so that these kinds of accidents or events cannot occur. Such measures include but are not limited to protective circuits anderror prevention circuits for safedesign, redundant design, and structural design.

■ In the event that any or all MSKSEMI Semiconductor products (including technical data, services) described or contained herein are controlled under any of applicable local export control laws and regulations, such products must not be exported without obtaining the export license from theauthorities concerned in accordance with the above law.

■ No part of this publication may be reproduced or transmitted in any form or by any means, electronic or

mechanical, including photocopying and recording, or any information storage or retrieval system, or otherwise, without the prior written permission of MSKSEMI Semiconductor.

Information (including circuit diagrams and circuit parameters) herein is for example only ; it is not guaranteed for volume production. MSKSEMI Semiconductor believes information herein is accurate and reliable, but no guarantees are made or implied regarding its use or any infringements intellectual property rights or other rights of third parties.

Any and all information described or contained herein are subject to change without notice due to

product/technology improvement, etc. Whendesigning equipment, referto the "Delivery Specification" for the MSKSEMI Semiconductor productthat you intend to use.