National Semiconductor is now part of Texas Instruments.

Search http://www.ti.com/ for the latest technical information and details on our current products and services.

LM4040 **Precision Micropower Shunt Voltage Reference**

General Description

Ideal for space critical applications, the LM4040 precision voltage reference is available in the sub-miniature (3 mm x 1.3 mm) SOT-23 surface-mount package. The LM4040's advanced design eliminates the need for an external stabilizing capacitor while ensuring stability with any capacitive load, thus making the LM4040 easy to use. Further reducing design effort is the availability of several fixed reverse breakdown voltages: 2.500V, 4.096V, 5.000V, 8.192V, and 10.000V. The minimum operating current increases from 60 μA for the LM4040-2.5 to 100 μA for the LM4040-10.0. All versions have a maximum operating current of 15 mA.

The LM4040 utilizes fuse and zener-zap reverse breakdown voltage trim during wafer sort to ensure that the prime parts have an accuracy of better than ±0.1% (A grade) at 25°C. Bandgap reference temperature drift curvature correction and low dynamic impedance ensure stable reverse breakdown voltage accuracy over a wide range of operating temperatures and currents.

Also available is the LM4041 with two reverse breakdown voltage versions: adjustable and 1.2V. Please see the LM4041 data sheet.

Features

- Small packages: SOT-23, TO-92, and SO-8
- No output capacitor required

- Tolerates capacitive loads
- Fixed reverse breakdown voltages of 2.500V, 4.096V, 5.000V. 8.192V. and 10.000V
- Contact National Semiconductor Analog Marketing for parts with extended temperature range

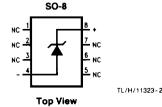
Kev Specifications (LM4040-2.5)

- Output voltage tolerance (A grade, 25°C) ±0.1% (max)
- Low output noise (10 Hz to 10 kHz) 35 μV_{rms} (typ)
- Wide operating current range
 - 60 uA to 15 mA
- Industrial temperature range
- -40°C to +85°C
- Low temperature coefficient
- 100 ppm/°C (max)
- Contact National Semiconductor Analog Marketing for parts with lower temperature coefficient

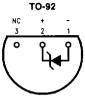
Applications

- Portable, Battery-Powered Equipment
- Data Acquisition Systems
- Instrumentation
- Process Control
- Energy Management
- Product Testing
- Automotive
- Precision Audio Components

Connection Diagrams



TL/H/11323-1


*This pin must be left floating or connected to pin 3.

Top View

See NS Package Number M03B (JEDEC Registration TO-236AB)

See NS Package Number M08A

Bottom View

See NS Package Number Z03A

Reverse Breakdown Voltage Tolerance at 25°C		Package					
and Average Reverse Breakdown Voltage Temperature Coefficient	M3 (SOT-23)	Z (TO-92)	M (SO-8)				
±0.1%, 100 ppm/°C max (A grade)	LM4040AIM3-2.5,	LM4040AIZ-2.5,	LM4040AIM-2.5,				
	LM4040AIM3-4.1,	LM4040AIZ-4.1,	LM4040AIM-4.1,				
	LM4040AIM3-5.0,	LM4040AIZ-5.0,	LM4040AIM-5.0,				
	LM4040AIM3-8.2,	LM4040AIZ-8.2,	LM4040AIM-8.2,				
	LM4040AIM3-10.0	LM4040AIZ-10.0	LM4040AIM-10.0				
	See NS Package Number M03B	See NS Package Number Z03A	See NS Package Number M08A				
±0.2%, 100 ppm/°C max (B grade)	LM4040BIM3-2.5,	LM4040BIZ-2.5,	LM4040BIM-2.5,				
	LM4040BIM3-4.1,	LM4040BIZ-4.1,	LM4040BIM-4.1,				
	LM4040BIM3-5.0,	LM4040B1Z-5.0,	LM4040BIM-5.0,				
	LM4040BIM3-8.2,	LM4040BIZ-8.2,	LM4040BIM-8.2,				
	LM4040BIM3-10.0	LM4040BIZ-10.0	LM4040BIM-10.0				
	See NS Package Number M03B	See NS Package Number Z03A	See NS Package Number M08A				
±0.5%, 100 ppm/°C max (C grade)	LM4040ClM3-2.5.	LM4040CIZ-2.5,	LM4040CIM-2.5.				
2 0.0 10, 100 pp 0ax (0 g. 200)	LM4040CIM3-4.1,	LM4040CIZ-4.1.	LM4040CIM-4.1.				
	LM4040CIM3-5.0,	LM4040CIZ-5.0,	LM4040CIM-5.0,				
	LM4040CIM3-8.2	LM4040CIZ-8.2,	LM4040CIM-8.2,				
	LM4040CIM3-10.0	LM4040CIZ-10.0	LM4040CIM-10.0				
	See NS Package Number M03B	See NS Package Number Z03A	See NS Package				
+1.09/ 150 mm/2C may (D grade)	LM4040DIM3-2.5,	LM4040DIZ-2.5,	LM4040DIM-2.5,				
±1.0%, 150 ppm/°C max (D grade)	LM4040DIM3-2.5,	LM4040DIZ-2.5,	LM4040DIM-2.5, LM4040DIM-4.1,				
	LM4040DIM3-4.1, LM4040DIM3-5.0.	LM4040DIZ-5.0,	LM4040DIM-4.1, LM4040DIM-5.0.				
	LM4040DIM3-8.2.	LM4040DIZ-8.2,	LM4040DIM-8.2.				
	LM4040DIM3-10.0	LM4040DIZ-10.0,	LM4040DIM-10.0				
	See NS Package Number M03B	See NS Package Number Z03A	See NS Package Number M08A				
±2.0%, 150 ppm/°C max (E grade)	LM4040EIM3-2.5	LM4040EIZ-2.5					
	See NS Package	See NS Package					
	Number M03B	Number Z03A					

SOT-23 Package Marking Information
Only three fields of marking are possible on the SOT-23's small surface. This table gives the meaning of the three fields.

Part Marking	Field Definition
R2A R4A R5A R8A R0A R2B R4B R5B R8B R0B	First Field: R = Reference Second Field: 2 = 2.5500 Voltage Option 4 = 4.096V Voltage Option 5 = 5.000V Voltage Option 8 = 8.192V Voltage Option 0 = 10.000V Voltage Option Third Field: A - E = Initial Reverse Breakdown Voltage or Reference Voltage Tolerance A = ±0.1%, B = ±0.2%, C = +0.5%, D = ±1.0%, E = ±2.0%
R2C R4C R5C R8C R0C	
R2D R4D R5D R8D R0D	
R2E	

Absolute Maximum Ratings (Note 1)

If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and specifications.

Reverse Current Forward Current 10 mA Power Dissipation (T_A = 25°C) (Note 2) M Package 540 mW M3 Package 306 mW Z Package 550 mW -65°C to +150°C Storage Temperature

Lead Temperature M and M3 Packages

+215°C Vapor phase (60 seconds) Infrared (15 seconds) + 220°C Z Package

Soldering (10 seconds)

+260°C

ESD Susceptibility

Human Body Model (Note 3) Machine Model (Note 3)

2 kV 200V

See AN-450 "Surface Mounting Methods and Their Effect on Product Reliability" for other methods of soldering surface mount devices.

Operating Ratings (Notes 1 & 2)

Temperature Range

 $(T_{min} \le T_A \le T_{max})$

 $-40^{\circ}\text{C} \le \text{T}_{\text{A}} \le +85^{\circ}\text{C}$

Reverse Current

LM4040-2.5 LM4040-4.1 LM4040-5.0 LM4040-8.2 LM4040-10.0 60 μA to 15 mA 68 μA to 15 mA $74 \mu A$ to 15 mA 91 µA to 15 mA

100 μA to 15 mA

LM4040-2.5

Electrical Characteristics

Boldface limits apply for $T_A = T_J = T_{MiN}$ to T_{MAX} ; all other limits $T_A = T_J = 25^{\circ}$ C. The grades A and B designate initial Reverse Breakdown Voltage tolerances of $\pm 0.1\%$ and $\pm 0.2\%$, respectively.

Symbol	Parameter	Conditions	Typical (Note 4)	LM4040AIM3 LM4040AIM3 LM4040AIZ Limits (Note 5)	LM4040BIM LM4040BIM3 LM4040BIZ Limits (Note 5)	Units (Limit)
VR	Reverse Breakdown Voltage	I _R = 100 μA	2.500			V
	Reverse Breakdown Voltage Tolerance (Note 6)	I _R = 100 μA		±2.5 ±19	± 5.0 ± 2 1	mV (max) mV (max)
I _{FIMIN}	Minimum Operating Current		45	60 65	60 65	μΑ μΑ (max) μΑ (max)
ΔV _A /ΔΤ	Average Reverse Breakdown Voltage Temperature Coefficient	$I_R = 10 \text{ mA}$ $I_R = 1 \text{ mA}$ $I_R = 100 \mu \text{A}$	± 20 ± 15 ± 15	± 100	± 100	ppm/°C ppm/°C (max) ppm/°C
$\Delta V_R / \Delta I_R$	Reverse Breakdown Voltage Change with Operating Current Change	I _{RMIN} ≤ I _R ≤ 1 mA	0.3	0.8 1.0	0.8 1.0	mV mV (max) mV (max)
		1 mA ≤ I _R ≤ 15 mA	2.5	6.0 8.0	6.0 8.0	mV mV (max) mV (max)
Z _R	Reverse Dynamic Impedance	$I_R = 1 \text{ mA, f} = 120 \text{ Hz,}$ $I_{AC} = 0.1 I_R$	0.3	0.8	0.8	Ω Ω (max)
eN	Wideband Noise	I _R = 100 μA 10 Hz ≤ f ≤ 10 kHz	35			μV _{rms}
ΔV _R	Reverse Breakdown Voltage Long Term Stability	t = 1000 hrs T = 25°C ±0.1°C I _R = 100 μA	120			ppm

LM4040-2.5 (Continued)

Electrical Characteristics (Continued)

Boldface limits apply for $T_A = T_J = T_{MIN}$ to T_{MAX} ; all other limits $T_A = T_J = 25^{\circ}$ C. The grades C, D and E designate initial Reverse Breakdown Voltage tolerances of $\pm 0.5\%$, $\pm 1.0\%$ and $\pm 2.0\%$, respectively.

Symbol	Parameter	Conditions	Typical (Note 4)	L MADADCIZ	LM4040DIM LM4040DIM3 LM4040DIZ Limits (Note 5)	LM4040EiM3 LM4040EiZ Limits (Note 5)	Units (Limit)
VR	Reverse Breakdown Voltage	I _R = 100 μA	2.500	. —			V
	Reverse Breakdown Voltage Tolerance (Note 6)	I _R = 100 μA		±12 ±29	±25 ±49	±50 ±74	mV (max) mV (max)
I _{RMIN}	Minimum Operating Current		45	60 65	65 70	65 70	μΑ μΑ (max) μΑ (max)
ΔV _R /ΔΤ	Average Reverse Breakdown Voltage Temperature Coefficient	$I_R = 10 \text{ mA}$ $I_R = 1 \text{ mA}$ $I_R = 100 \mu \text{A}$	±20 ±15 ±15	± 100	± 150	± 150	ppm/°C ppm/°C (max ppm/°C
Δ۷Α/ΔΙΑ	Reverse Breakdown Voltage Change with Operating Current Change	I _{RMIN} ≤ I _R ≤ 1 mA	0.4	0.8 1.0	1.0 1.2	1.0 1.2	mV mV (max) mV (max)
		1 mA ≤ I _R ≤ 15 mA	2.5	6.0 8.0	8.0 10.0	8.0 10.0	mV mV (max) mV (max)
Z _R	Reverse Dynamic Impedance	I _A = 1 mA, f = 120 Hz I _{AC} = 0.1 I _R	0.3	0.9	1.1	1.1	Ω Ω(max)
e _N	Wideband Noise	I _R = 100 μA 10 Hz ≤ f ≤ 10 kHz	35				μV _{rms}
ΔVR	Reverse Breakdown Voltage Long Term Stability	t = 1000 hrs T = 25°C ±0.1°C I _R = 100 μA	120				ppm

LM4040-4.1

Electrical Characteristics Boldface limits apply for T_A = T_J = T_{MIN} to T_{MAX}; all other limits T_A = T_J = 25°C. The grades A and B designate initial Reverse Breakdown Voltage tolerances of \pm 0.1\% and \pm 0.2\%, respectively.

Symbol	Parameter	Conditions	Typical (Note 4)	LM4040AIM LM4040AIM3 LM4040AIZ Limits (Note 5)	LM4040BIM LM4040BIM3 LM4040BIZ Limits (Note 5)	Units (Limit)
VA	Reverse Breakdown Voltage	i _R = 100 μA	4.096			٧
	Reverse Breakdown Voltage Tolerance (Note 6)	I _R = 100 μA		±4.1 ±31	±8.2 ±35	mV (max) mV (max)
IRMIN	Minimum Operating Current		50	68 73	68 73	μΑ μΑ (max) μΑ (max)
ΔV _R /ΔT	Average Reverse Breakdown Voltage Temperature Coefficient	I _R = 10 mA I _R = 1 mA I _R = 100 μA	±30 ±20 ±20	± 100	± 100	ppm/°C ppm/°C (max) ppm/°C
ΔV _R /ΔI _R	Reverse Breakdown Voltage Change with Operating Current Change	I _{RMIN} ≤ I _R ≤ 1 mA	0.5	0.9 1.2	0.9 1.2	mV mV (max) mV (max)
		1 mA ≤ I _R ≤ 15 mA	3.0	7.0 10.0	7.0 10.0	mV mV (max) mV (max)
Z _R	Reverse Dynamic Impedance	$I_R = 1 \text{ mA, f} = 120 \text{ Hz,}$ $I_{AC} = 0.1 I_R$	0.5	1.0	1.0	Ω Ω (max)
e _N ;	Wideband Noise	$I_{R} = 100 \mu\text{A}$ 10 Hz \leq f \leq 10 kHz	80			μV _{rms}
ΔV _R	Reverse Breakdown Voltage Long Term Stability	t = 1000 hrs T = 25°C ±0.1°C I _R = 100 μA	120			ppm

LM4040-4.1 (Continued)

Electrical Characteristics (Continued) **Boldface limits apply for T_A = T_J = T_{MIN} to T_{MAX}; all other limits T_A = T_J = 25^{\circ}C. The grades C and D designate initial Reverse Breakdown Voltage tolerances of \pm 0.5\% and \pm 1.0\%, respectively.**

Symbol	Parameter	Conditions	Typical (Note 4)	LM4040CIM LM4040CIM3 LM4040CIZ Limits (Note 5)	LM4040DIM LM4040DIM3 LM4040DIZ Limits (Note 5)	Units (Limit)
VR	Reverse Breakdown Voltage	I _R = 100 μA	4.096			٧
	Reverse Breakdown Voltage Tolerance (Note 6)	I _R = 100 μA		± 20 ± 47	±41 ±81	mV (max) mV (max)
IRMIN	Minimum Operating Current		50	68 73	73 78	μΑ μΑ (max) μΑ (max)
ΔV _R /ΔΤ	Average Reverse Breakdown Voltage Temperature Coefficient	I _R = 10 mA I _R = 1 mA I _R = 100 μA	±30 ±20 ±20	± 100	± 150	ppm/°C ppm/°C (max) ppm/°C
$\Delta V_{R}/\Delta I_{R}$	Reverse Breakdown Voltage Change with Operating Current Change	I _{RMIN} ≤ I _R ≤ 1 mA	0.5	0.9 1.2	1.2 1.5	mV mV (max) mV (max)
		1 mA ≤ I _A ≤ 15 mA	3.0	7.0 10.0	9.0 13.0	mV mV (max) mV (max)
Z _R	Reverse Dynamic Impedance	I _R = 1 mA, f = 120 Hz, I _{AC} = 0.1 I _R	0.5	1.0	1.3	Ω Ω (max)
θN	Wideband Noise	I _R = 100 μA 10 Hz ≤ f ≤ 10 kHz	80			μV _{rms}
ΔVR	Reverse Breakdown Voltage Long Term Stability	t = 1000 hrs $T = 25^{\circ}\text{C} \pm 0.1^{\circ}\text{C}$ $ _{\text{R}} = 100 \mu\text{A}$	120			ppm

LM4040-5.0

Electrical Characteristics Boldface limits apply for T_A = T_J = T_{MIN} to T_{MAX}; all other limits T_A = T_J = 25^{\circ}\text{C}. The grades A and B designate initial Reverse Breakdown Voltage tolerances of \pm 0.1\% and \pm 0.2\%, respectively.

Symbol	Parameter	Conditions	Typical (Note 4)	LM4040AIM LM4040AIM3 LM4040AIZ Limits (Note 5)	LM4040BIM LM4040BIM3 LM4040BIZ Limits (Note 5)	Units (Limit)
VR	Reverse Breakdown Voltage	I _R = 100 μA	5.000			٧
	Reverse Breakdown Voltage Tolerance (Note 6)	Ι _Α = 100 μΑ		± 5.0 ± 38	±10 ± 43	mV (max) mV (max)
IRMIN	Minimum Operating Current		54	74 80	74 80	μΑ μΑ (max) μΑ (max)
ΔV _R /ΔT	Average Reverse Breakdown Voltage Temperature Coefficient	I _R = 10 mA I _R = 1 mA I _R = 100 μA	±30 ±20 ±20	± 100	± 100	ppm/°C ppm/°C (max) ppm/°C
ΔV _R /ΔI _R	Reverse Breakdown Voltage Change with Operating Current Change	I _{RMIN} ≤ I _R ≤ 1 mA	0.5	1.0 1.4	1.0 1.4	mV mV (max) mV (max)
		1 mA ≤ I _R ≤ 15 mA	3.5	8.0 12.0	8.0 12.0	mV mV (max) mV (max)
Z _R	Reverse Dynamic Impedance	$I_R = 1 \text{ mA}, f = 120 \text{ Hz},$ $I_{AC} = 0.1 I_R$	0.5	1.1	1.1	Ω Ω (max)
eN	Wideband Noise	$I_{R} = 100 \mu\text{A}$ 10 Hz \leq f \leq 10 kHz	80			μV _{rms}
ΔV _R	Reverse Breakdown Voltage Long Term Stability	t = 1000 hrs T = 25°C ±0.1°C I _R = 100 μA	120			ppm

LM4040-5.0 (Continued)

Electrical Characteristics (Continued) **Boldface limits apply for T_A = T_J = T_{MIN} to T_{MAX}; all other limits T_A = T_J = 25^{\circ}C. The grades C and D designate initial Reverse Breakdown Voltage tolerances of \pm 0.5\% and \pm 1.0\%, respectively.**

Symbol	Parameter	Conditions	Typical (Note 4)	LM4040CIM LM4040CIM3 LM4040CIZ Limits (Note 5)	LM4040DIM LM4040DIM3 LM4040DIZ Limits (Note 5)	Units (Limit)
VR	Reverse Breakdown Voltage	I _R = 100 μA	5.000		-	V
	Reverse Breakdown Voltage Tolerance (Note 6)	I _R = 100 μA		±25 ± 58	±50 ±99	mV (max) mV (max)
RMIN	Minimum Operating Current		54	74 80	79 85	μΑ μΑ (max) μΑ (max)
ΔV _R /ΔT	Average Reverse Breakdown Voltage Temperature Coefficient	$I_R = 10 \text{ mA}$ $I_R = 1 \text{ mA}$ $I_R = 100 \mu \text{A}$	±30 ±20 ±20	± 100	± 150	ppm/°C ppm/°C (max) ppm/°C
ΔV _R /ΔI _R	Reverse Breakdown Voltage Change with Operating Current Change	I _{RMIN} ≤ I _R ≤ 1 mA	0.5	1.0 1.3	1.3 1.8	mV mV (max) mV (max)
		1 mA ≤ I _A ≤ 15 mA	3.5	8.0 12.0	10.0 15.0	mV mV (max) mV (max)
Z _R	Reverse Dynamic Impedance	$I_R = 1 \text{ mA, } f = 120 \text{ Hz,}$ $I_{AC} = 0.1 I_R$	0.5	1.1	1.5	Ω Ω (max)
θN	Wideband Noise	$I_R = 100 \mu A$ $10 \text{ Hz} \le f \le 10 \text{ kHz}$	80			μV _{rms}
ΔV _{FI}	Reverse Breakdown Voltage Long Term Stability	t = 1000 hrs T = 25°C ±0.1°C I _R = 100 μA	120			ppm

LM4040-8.2

Electrical Characteristics Boldface limits apply for T_A = T_J = T_{MIN} to T_{MAX}; all other limits T_A = T_J = 25^{\circ}C. The grades A and B designate initial Reverse Breakdown Voltage tolerances of \pm 0.1\% and \pm 0.2\%, respectively.

Symbol	Parameter	Conditions	Typical (Note 4)	LM4040AIM LM4040AIM3 LM4040AIZ Limits (Note 5)	LM4040BIM LM4040BIM3 LM4040BIZ Limits (Note 5)	Units (Limit)
VR	Reverse Breakdown Voltage	I _R = 150 μA	8.192			٧
	Reverse Breakdown Voltage Tolerance (Note 6)	I _R = 150 μA		±8.2 ±61	±16 ±70	mV (max) mV (max)
IRMIN	Minimum Operating Current		67	91 95	91 95	μΑ μΑ (max) μΑ (max)
ΔV _R /ΔT	Average Reverse Breakdown Voltage Temperature Coefficient	I _R = 10 mA I _R = 1 mA I _R = 150 μA	± 40 ± 20 ± 20	± 100	± 100	ppm/°C ppm/°C (max) ppm/°C
ΔV _R /ΔI _R	Reverse Breakdown Voltage Change with Operating Current Change	I _{RMIN} ≤ I _R ≤ 1 mA	0.6	1.3 2.5	1.3 2.5	mV mV (max) mV (max)
		1 mA ≤ I _R ≤ 15 mA	7.0	10.0 18.0	10.0 18.0	mV mV (max) mV (max)
Z _R	Reverse Dynamic Impedance	$I_R = 1 \text{ mA, } f = 120 \text{ Hz,}$ $I_{AC} = 0.1 I_R$	0.6	1.5	1.5	Ω Ω (max)
θN	Wideband Noise	i _R = 150 μA 10 Hz ≤ f ≤ 10 kHz	130			μV _{rms}
ΔVR	Reverse Breakdown Voltage Long Term Stability	t = 1000 hrs T = 25°C ±0.1°C I _R = 150 μA	120			ppm

LM4040-8.2 (Continued)

Electrical Characteristics (Continued) **Boldface limits apply for T_A = T_J = T_{MIN} to T_{MAX}; all other limits T_A = T_J = 25^{\circ}\text{C}. The grades C and D designate initial Reverse Breakdown Voltage tolerances of \pm 0.5\% and \pm 1.0\%, respectively.**

Symbol	Parameter	Conditions	Typical (Note 4)	LM4040CIM LM4040CIM3 LM4040CIZ Limits (Note 5)	LM4040DIM LM4040DIM3 LM4040DIZ Limits (Note 5)	Units (Limit)
VR	Reverse Breakdown Voltage	I _R = 150 μA	8.192			V
	Reverse Breakdown Voltage Tolerance (Note 6)	I _R = 150 μA		±41 ±94	± 82 ± 162	mV (max) mV (max)
IRMIN	Minimum Operating Current		67	91 95	96 100	μΑ μΑ (max) μΑ (max)
ΔV _R /ΔΤ	Average Reverse Breakdown Voltage Temperature Coefficient	I _R = 10 mA I _R = 1 mA I _R = 150 μA	± 40 ± 20 ± 20	± 100	± 150	ppm/°C ppm/°C (max) ppm/°C
$\Delta V_{R}/\Delta I_{R}$	Reverse Breakdown Voltage Change with Operating Current Change	I _{RMIN} ≤ I _R ≤ 1 mA	0.6	1.3 2.5	1.7 3.0	mV mV (max) mV (max)
		1 mA ≤ I _R ≤ 15 mA	7.0	10.0 18.0	15.0 24.0	mV mV (max) mV (max)
Z _R	Reverse Dynamic Impedance	$I_R = 1 \text{ mA, f} = 120 \text{ Hz,}$ $I_{AC} = 0.1 I_R$	0.6	1.5	1.9	Ω Ω (max)
θN	Wideband Noise	$I_{R} = 150 \mu\text{A}$ 10 Hz $\leq f \leq$ 10 kHz	130			μV _{rms}
ΔV _R	Reverse Breakdown Voltage Long Term Stability	t = 1000 hrs T = 25°C ±0.1°C I _R = 150 μA	120			ppm

LM4040-10.0

Electrical Characteristics Boldface limits apply for T_A = T_J = T_{MIN} to T_{MAX}; all other limits T_A = T_J = 25°C. The grades A and B designate initial Reverse Breakdown Voltage tolerances of \pm 0.1\% and \pm 0.2\%, respectively.

Symbol	Parameter	Conditions	Typical (Note 4)	LM4040AIM LM4040AIM3 LM4040AIZ Limits (Note 5)	LM4040BIM LM4040BIM3 LM4040BIZ Limits (Note 5)	Units (Limit)
VR	Reverse Breakdown Voltage	I _R = 150 μA	10.00		,	٧
	Reverse Breakdown Voltage Tolerance (Note 6)	I _R = 150 μA		±10 ±75	±20 ±85	mV (max) mV (max)
IRMIN	Minimum Operating Current		75	100 103	100 103	μΑ μΑ (max) μΑ (max)
ΔV _A /ΔΤ	Average Reverse Breakdown Voltage Temperature Coefficient	$I_{R} = 10 \text{ mA}$ $I_{R} = 1 \text{ mA}$ $I_{R} = 150 \mu \text{A}$	± 40 ± 20 ± 20	± 100	± 100	ppm/°C ppm/°C (max) ppm/°C
ΔV _R /ΔI _R	Reverse Breakdown Voltage Change with Operating Current Change	I _{RMIN} ≤ I _R ≤ 1 mA	0.8	1.5 3.5	1.6 3.5	mV mV (max) mV (max)
		1 mA ≤ I _R ≤ 15 mA	8.0	12.0 23.0	12.0 23.0	mV mV (max) mV (max)
Z _R	Reverse Dynamic Impedance	$I_R = 1 \text{ mA}, f = 120 \text{ Hz},$ $I_{AC} = 0.1 I_R$	0.7	1.7	1.7	Ω Ω (max)
θN	Wideband Noise	I _R = 150 μA 10 Hz ≤ f ≤ 10 kHz	180			μV _{rms}
ΔV _R	Reverse Breakdown Voltage Long Term Stability	t = 1000 hrs T = 25°C ±0.1°C I _R = 150 μA	120			ppm

LM4040-10.0 (Continued)

Electrical Characteristics (Continued)

Boldface limits apply for $T_A = T_J = T_{MIN}$ to T_{MAX} ; all other limits $T_A = T_J = 25^{\circ}$ C. The grades C and D designate initial Reverse Breakdown Voltage tolerances of $\pm 0.5\%$ and $\pm 1.0\%$, respectively.

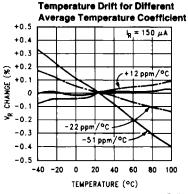
Symbol	Parameter	Conditions	Typical (Note 4)	LM4040CIM LM4040CIM3 LM4040CIZ Limits (Note 5)	LM4040DIM LM4040DIM3 LM4040DIZ Limits (Note 5)	Units (Limit)
V _R	Reverse Breakdown Voltage	I _A = 150 μA	10.00			V
	Reverse Breakdown Voltage Tolerance (Note 6)	I _R = 150 μA		±50 ±115	±100 ±198	mV (max) mV (max)
IRMIN	Minimum Operating Current		75	100 103	110 	μΑ μΑ (max) μΑ (max)
ΔV _R /ΔT	Average Reverse Breakdown Voltage Temperature Coefficient	I _R = 10 mA I _R = 1 mA I _R = 150 μA	± 40 ± 20 ± 20	± 100	± 150	ppm/°C ppm/°C (max) ppm/°C
ΔV _R /ΔI _R	Reverse Breakdown Voltage Change with Operating Current Change	I _{RMIN} ≤ I _R ≤ 1 mA	0.8	1.5 3.5	2.0 4.0	mV mV (max) mV (max)
		1 mA ≤ l _R ≤ 15 mA	8.0	12.0 23.0	18.0 29.0	mV mV (max) mV (max)
Z _R	Reverse Dynamic Impedance	$I_R = 1 \text{ mA}, f = 120 \text{ Hz},$ $I_{AC} = 0.1 I_R$	0.7	1.7	2.3	Ω Ω (max)
eN	Wideband Noise	I _R = 150 μA 10 Hz ≤ f ≤ 10 kHz	180			μV _{rms}
ΔVR	Reverse Breakdown Voltage Long Term Stability	t = 1000 hrs T = 25°C ±0.1°C I _R = 150 μA	120			ppm

Note 1: Absolute Maximum Ratings indicate limits beyond which damage to the device may occur. Operating Ratings indicate conditions for which the device is functional, but do not guarantee specific performance limits. For guaranteed specifications and test conditions, see the Electrical Characteristics. The guaranteed specifications apply only for the test conditions listed. Some performance characteristics may degrade when the device is not operated under the listed test conditions.

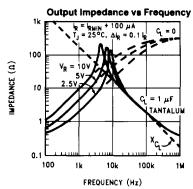
Note 2: The maximum power dissipation must be derated at elevated temperatures and is dictated by T_{Jmax} (maximum junction temperature), θ_{JA} (junction to ambient thermal resistance), and T_A (ambient temperature). The maximum allowable power dissipation at any temperature is $PD_{max} = (T_{Jmax} - T_A)/\theta_{JA}$ or the number given in the Absolute Maximum Ratings, whichever is lower. For the LM4040, $T_{Jmax} = 125$ °C, and the typical thermal resistance (θ_{JA}) , when board mounted, is 185°C/W for the M package, 326°C/W for the SOT-23 package, and 180°C/W with 0.4° lead length and 170°C/W with 0.125° lead length for the TO-92 package.

Note 3: The human body model is a 100 pF capacitor discharged through a 1.5 kft resistor into each pin. The machine model is a 200 pF capacitor discharged directly into each pin.

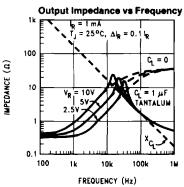
Note 4: Typicals are at T_J = 25°C and represent most likely parametric norm.

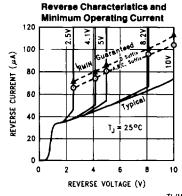

Note 5: Limits are 100% production tested at 25°C. Limits over temperature are guaranteed through correlation using Statistical Quality Control (SQC) methods. The limits are used to calculate National's AOQL.

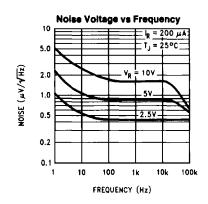
Note 6: The boldface (over-temperature) limit for Reverse Breakdown Voltage Tolerance is defined as the room temperature Reverse Breakdown Voltage Tolerance $\pm [(\Delta V_B/\Delta T)(65^{\circ}C)(V_B)]$. $\Delta V_B/\Delta T$ is the V_B temperature coefficient, 65°C is the temperature range from $-40^{\circ}C$ to the reference point of 25°C, and V_B is the reverse breakdown voltage. The total over-temperature tolerance for the different grades is shown below:

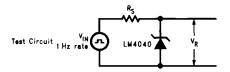

A-grade: $\pm 0.75\% = \pm 0.1\% \pm 100 \text{ ppm/°C} \times 65^{\circ}\text{C}$ B-grade: $\pm 0.85\% = \pm 0.2\% \pm 100 \text{ ppm/°C} \times 65^{\circ}\text{C}$ C-grade: $\pm 1.15\% = \pm 0.5\% \pm 100 \text{ ppm/°C} \times 65^{\circ}\text{C}$ D-grade: $\pm 1.98\% = \pm 1.0\% \pm 150 \text{ ppm/°C} \times 65^{\circ}\text{C}$ E-grade: $\pm 2.98\% = \pm 2.0\% \pm 150 \text{ ppm/°C} \times 65^{\circ}\text{C}$

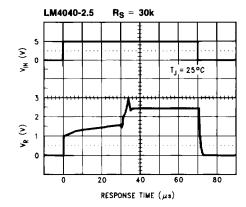
Therefore, as an example, the A-grade LM4040-2.5 has an over-temperature Reverse Breakdown Voltage tolerance of ±2.5V × 0.75% = ±19 mV.

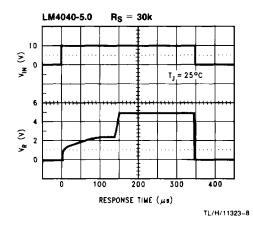

Typical Performance Characteristics

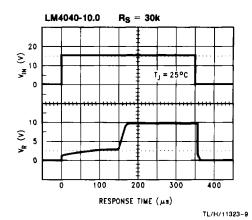

TL/H/11323-4

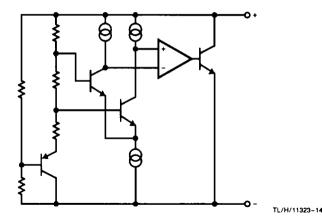

TL/H/11323-10


TL/H/11323-11


TL/H/11323-12




Start-Up Characteristics


TL/H/11323-5

Functional Block Diagram

Applications Information

The LM4040 is a precision micro-power curvature-corrected bandgap shunt voltage reference. For space critical applications, the LM4040 is available in the sub-miniature SOT-23 surface-mount package. The LM4040 has been designed for stable operation without the need of an external capacitor connected between the "+" pin and the "-" pin. If, however, a bypass capacitor is used, the LM4040 remains stable. Reducing design effort is the availability of several fixed reverse breakdown voltages: 2.500V, 4.096V, 5.000V, 8.192V, and 10.000V. The minimum operating current increases from 60 μA for the LM4040-2.5 to 100 μA for the LM4040-10.0. All versions have a maximum operating current of 15 mA.

LM4040s in the SOT-23 packages have a parasitic Schottky diode between pin 3 (-) and pin 1 (Die attach interface contact). Therefore, pin 1 of the SOT-23 package must be left floating or connected to pin 3.

The 4.096V version allows single +5V 12-bit ADCs or DACs to operate with an LSB equal to 1 mV. For 12-bit ADCs or DACs that operate on supplies of 10V or greater, the 8.192V version gives 2 mV per LSB.

In a conventional shunt regulator application (Figure 1), an external series resistor (R_S) is connected between the supply voltage and the LM4040. R_S determines the current that flows through the load (I_L) and the LM4040 (I_Q). Since load current and supply voltage may vary, R_S should be small

enough to supply at least the minimum acceptable I_Q to the LM4040 even when the supply voltage is at its minimum and the load current is at its maximum value. When the supply voltage is at its maximum and I_L is at its minimum, R_S should be large enough so that the current flowing through the LM4040 is less than 15 mA.

 R_S is determined by the supply voltage, (V_S), the load and operating current, (I_L and I_Q), and the LM4040's reverse breakdown voltage, V_B.

$$\mathsf{R}_S = \frac{\mathsf{V}_S - \mathsf{V}_R}{\mathsf{I}_L + \mathsf{I}_Q}$$

Typical Applications

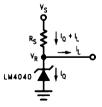


FIGURE 1. Shunt Regulator

Typical Applications (Continued)

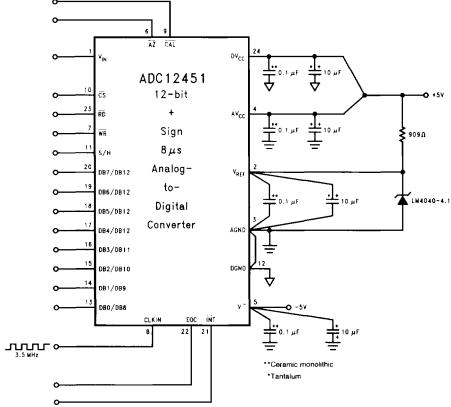


FIGURE 2. LM4040-4.1's Nominal 4.096 breakdown voltage gives ADC12451 1 mV/LSB

TL/H/11323-16

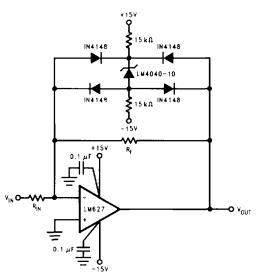


FIGURE 3. Bounded amplifier reduces saturation-induced delays and can prevent succeeding stage damage. Nominal clamping voltage is \pm 11.5V (LM4040's reverse breakdown voltage \pm 2 diode V_F).

TL/H/11323-19

Typical Applications (Continued)

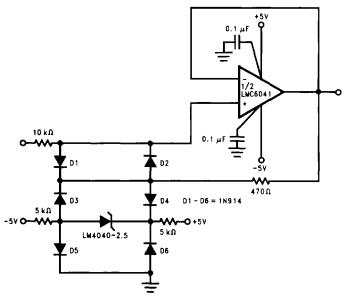


FIGURE 4. Protecting Op Amp input. The bounding voltage is \pm 4V with the LM4040-2.5 (LM4040's reverse breakdown voltage \pm 3 diode V_F).

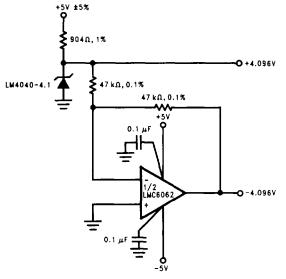


FIGURE 5. Precision ± 4.096V Reference

Typical Applications (Continued)

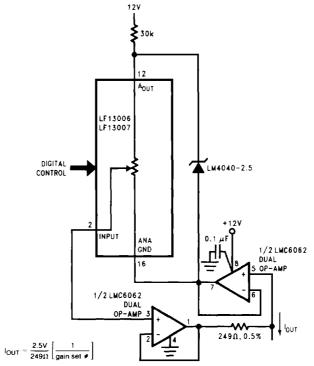
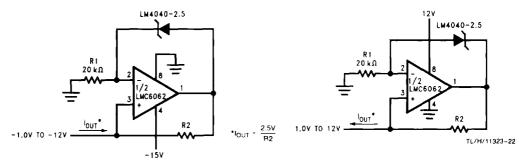



FIGURE 6. Programmable Current Source

 $_{TL/H/11323-21}$ FIGURE 7. Precision 1 μA to 1 mA Current Sources