DGG PACKAGE

(TOP VIEW)

SCES010E - JULY 1995 - REVISED FEBRUARY 1999

- **Member of the Texas Instruments** Widebus+™ Family
- **EPIC** ™ (Enhanced-Performance Implanted **CMOS) Submicron Process**
- **UBT** ™ (Universal Bus Transceiver) **Combines D-Type Latches and D-Type** Flip-Flops for Operation in Transparent, Latched, or Clocked Mode
- Simultaneously Generates and Checks **Parity**
- **Option to Select Generate Parity and Check** or Feed-Through Data/Parity in A-to-B or **B-to-A Directions**
- **ESD Protection Exceeds 2000 V Per** MIL-STD-883, Method 3015; Exceeds 200 V Using Machine Model (C = 200 pF, R = 0)
- Latch-Up Performance Exceeds 250 mA Per **JESD 17**
- **Bus Hold on Data Inputs Eliminates the Need for External Pullup/Pulldown** Resistors
- Packaged in Thin Shrink Small-Outline **Package**

description

This 18-bit (dual-octal) noninverting registered transceiver is designed for 1.65-V to 3.6-V V_{CC} operation.

The SN74ALVCH16901 is a dual 9-bit to dual 9-bit parity transceiver with registers. The device can operate as a feed-through transceiver or it can generate/check parity from the two 8-bit data buses in either direction.

1CLKENAB 64 1 1 CLKENBA LEAB 12 63 LEBA CLKAB [] 3 62 CLKBA 1ERRA ∏4 61 1 1 ERRB 1APAR 15 60 **1** 1BPAR GND 6 59 | GND 1A1 **[**] 7 58 1 1B1 1A2 **∏** 8 57 1B2 56 1B3 1A3 🛮 9 V_{CC} 4 10 55 V_{CC} 1A4 **[**] 11 54 🛮 1B4 1A5 🛮 12 53 1B5 1A6 **∏** 13 52**∏** 1B6 GND [] 14 51 GND 1A7 **∏** 15 50**∏** 1B7 49 🛮 1B8 1A8 **1**16 2A1 🛮 17 48 2B1 47**∏** 2B2 2A2 1 18 GND [] 19 46 T GND 2A3 🛮 20 45 2B3 2A4 🛮 21 44**∏** 2B4 43 2B5 2A5 🛮 22 42 V_{CC} V_{CC} **□** 23 2A6 🛮 24 41 2B6 2A7 🛮 25 40**∏** 2B7 2A8 🛮 26 39 T 2B8 GND ∏27 38 **∏** GND 2APAR **[]** 28 37 1 2BPAR 2ERRA [] 29 36 2ERRB 35 OEBA ОЕАВ П 30 SEL | 31 34 ODD/EVEN 2CLKENAB 32 33 2CLKENBA

The SN74ALVCH16901 features independent clock (CLKAB or CLKBA), latch-enable (LEAB or LEBA), and dual 9-bit clock-enable (CLKENAB or CLKENBA) inputs. It also provides parity-enable (SEL) and parity-select (ODD/EVEN) inputs and separate error-signal (ERRA or ERRB) outputs for checking parity. The direction of data flow is controlled by \overline{OEAB} and \overline{OEBA} . When \overline{SEL} is low, the parity functions are enabled. When \overline{SEL} is high, the parity functions are disabled and the device acts as an 18-bit registered transceiver.

To ensure the high-impedance state during power up or power down, $\overline{\sf OE}$ should be tied to $\sf V_{CC}$ through a pullup resistor; the minimum value of the resistor is determined by the current-sinking capability of the driver.

Active bus-hold circuitry is provided to hold unused or floating data inputs at a valid logic level.

The SN74ALVCH16901 is characterized for operation from –40°C to 85°C.

ISTRUMENTS

Function Tables

FUNCTION†

	I	NPUTS			OUTPUT
CLKENAB	OEAB	LEAB	CLKAB	Α	В
Х	Н	Х	Х	Χ	Z
Х	L	Н	Χ	L	L
Х	L	Н	Χ	Н	Н
Н	L	L	Χ	Χ	в ₀ ‡
L	L	L	\uparrow	L	L
L	L	L	\uparrow	Н	Н
L	L	L	L	Χ	в ₀ ‡
L	L	L	Н	Χ	В ₀ §

 $^{^\}dagger$ A-to-B data flow is shown: B-to-A flow is similar, but uses $\overline{\text{OEBA}},$ LEBA, and $\overline{\text{CLKENBA}}.$

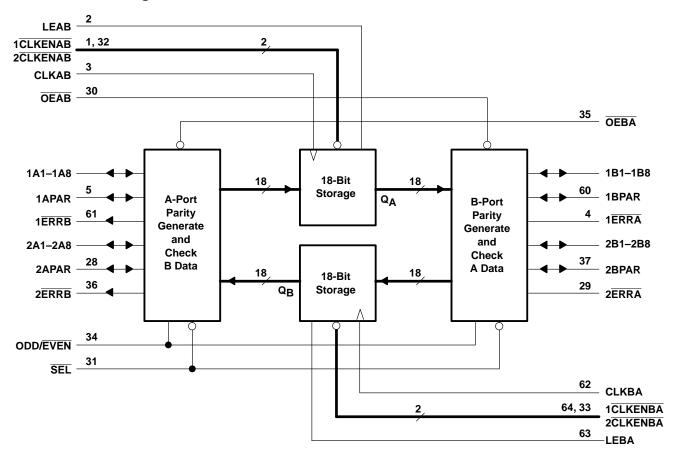
PARITY ENABLE

	INPUTS		ODERATION OF	FUNCTION					
SEL	OEBA	OEAB	OPERATION OR FUNCTION						
L	Н	L	Parity is checked on port A a	nd is generated on port B.					
L	L	Н	Parity is checked on port B and is generated on port A.						
L	Н	Н	Parity is checked on port B and port A.						
L	L	L	Parity is generated on port A ar	nd B if device is in FF mode.					
Н	L	L		Q _A data to B, Q _B data to A					
Н	L	Н	Parity functions are disabled; device acts as a standard	Q _B data to A					
Н	Н	L	18-bit registered transceiver.	Q _A data to B					
Н	Н	Н	-	Isolation					

[‡] Output level before the indicated steady-state input conditions were established

[§] Output level before the indicated steady-state input conditions were established, provided that CLKAB was low before LEAB went low

Function Tables (Continued)


PARITY

INPUTS							OUTI	PUTS			
SEL	ОЕВА	OEAB	ODD/EVEN	Σ OF INPUTS A1–A8 = H	Σ OF INPUTS B1-B8 = H	APAR	BPAR	APAR	ERRA	BPAR	ERRB
L	Н	L	L	0, 2, 4, 6, 8	N/A	L	N/A	N/A	Н	L	Z
L	Н	L	L	1, 3, 5, 7	N/A	L	N/A	N/A	L	Н	Z
L	Н	L	L	0, 2, 4, 6, 8	N/A	Н	N/A	N/A	L	L	Z
L	Н	L	L	1, 3, 5, 7	N/A	Н	N/A	N/A	Н	Н	Z
L	L	Н	L	N/A	0, 2, 4, 6, 8	N/A	L	L	Z	N/A	Н
L	L	Н	L	N/A	1, 3, 5, 7	N/A	L	Н	Z	N/A	L
L	L	Н	L	N/A	0, 2, 4, 6, 8	N/A	Н	L	Z	N/A	L
L	L	Н	L	N/A	1, 3, 5, 7	N/A	Н	Н	Z	N/A	Н
L	Н	L	Н	0, 2, 4, 6, 8	N/A	L	N/A	N/A	L	Н	Z
L	Н	L	Н	1, 3, 5, 7	N/A	L	N/A	N/A	Н	L	Z
L	Н	L	Н	0, 2, 4, 6, 8	N/A	Н	N/A	N/A	Н	Н	Z
L	Н	L	Н	1, 3, 5, 7	N/A	Н	N/A	N/A	L	L	Z
L	L	Н	Н	N/A	0, 2, 4, 6, 8	N/A	L	Н	Z	N/A	L
L	L	Н	Н	N/A	1, 3, 5, 7	N/A	L	L	Z	N/A	Н
L	L	Н	Н	N/A	0, 2, 4, 6, 8	N/A	Н	Н	Z	N/A	Н
L	L	Н	Н	N/A	1, 3, 5, 7	N/A	Н	L	Z	N/A	L
L	Н	Н	L	0, 2, 4, 6, 8	0, 2, 4, 6, 8	L	L	Z	Н	Z	Н
L	Н	Н	L	1, 3, 5, 7	1, 3, 5, 7	L	L	Z	L	Z	L
L	Н	Н	L	0, 2, 4, 6, 8	0, 2, 4, 6, 8	Н	Н	Z	L	Z	L
L	Н	Н	L	1, 3, 5, 7	1, 3, 5, 7	Н	Н	Z	Н	Z	Н
L	Н	Н	Н	0, 2, 4, 6, 8	0, 2, 4, 6, 8	L	L	Z	L	Z	L
L	Н	Н	Н	1, 3, 5, 7	1, 3, 5, 7	L	L	z	Н	Z	Н
L	Н	Н	Н	0, 2, 4, 6, 8	0, 2, 4, 6, 8	Н	Н	z	Н	Z	Н
L	Н	Н	Н	1, 3, 5, 7	1, 3, 5, 7	Н	Н	z	L	Z	L
L	L	L	L	N/A	N/A	N/A	N/A	PE†	Z	PE†	Z
L	L	L	Н	N/A	N/A	N/A	N/A	РО‡	Z	PO‡	Z

[†] Parity output is set to the level so that the specific bus side is set to even parity.

[‡] Parity output is set to the level so that the specific bus side is set to odd parity.

functional block diagram

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)

Supply voltage range, V _{CC}	
Input voltage range, V _I : Except I/O ports (see Note 1)	
I/O ports (see Notes 1 and 2	
Output voltage range, V _O (see Notes 1 and 2)	0.5 V to V _{CC} + 0.5 V
Input clamp current, $I_{ K }(V_{ } < 0)$	
Output clamp current, I _{OK} (V _O < 0)	–50 mA
Continuous output current, IO	±50 mA
Continuous current through each V _{CC} or GND	±100 mA
Package thermal impedance, θ _{JA} (see Note 3)	73°C/W
Storage temperature range, T _{stg}	–65°C to 150°C

[†] Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

- NOTES: 1. The input negative-voltage and output voltage ratings may be exceeded if the input and output current ratings are observed..
 - 2. This value is limited to 4.6 V maximum.
 - 3. The package thermal impedance is calculated in accordance with JESD 51.

SN74ALVCH16901 18-BIT UNIVERSAL BUS TRANSCEIVER WITH PARITY GENERATORS/CHECKERS

SCES010E - JULY 1995 - REVISED FEBRUARY 1999

recommended operating conditions (see Note 4)

			MIN	MAX	UNIT	
Vcc	Supply voltage		1.65	3.6	V	
		$V_{CC} = 1.65 \text{ V to } 1.95 \text{ V}$	0.65 × V _{CC}			
٧ıH	High-level input voltage	$V_{CC} = 2.3 \text{ V to } 2.7 \text{ V}$	1.7		V	
		$V_{CC} = 2.7 \text{ V to } 3.6 \text{ V}$	2			
		$V_{CC} = 1.65 \text{ V to } 1.95 \text{ V}$		$0.35 \times V_{CC}$		
٧ _{IL}	Low-level input voltage	$V_{CC} = 2.3 \text{ V to } 2.7 \text{ V}$		0.7	V	
		$V_{CC} = 2.7 \text{ V to } 3.6 \text{ V}$		0.8		
٧ı	Input voltage		0	VCC	V	
٧o	Output voltage		0	Vcc	V	
		V _{CC} = 1.65 V		-4		
	DH High-level output current	V _{CC} = 2.3 V		-12	A	
ЮН		V _{CC} = 2.7 V		-12	mA	
		V _{CC} = 3 V		-24		
		V _{CC} = 1.65 V		4		
la.	Low lovel output ourrent	V _{CC} = 2.3 V		12	m 1	
IOL	Low-level output current	V _{CC} = 2.7 V		12	mA	
		V _{CC} = 3 V		24		
Δt/Δν	Input transition rise or fall rate			10	ns/V	
TA	Operating free-air temperature		-40	85	°C	

NOTE 4: All unused control inputs of the device must be held at V_{CC} or GND to ensure proper device operation. Refer to the TI application report, Implications of Slow or Floating CMOS Inputs, literature number SCBA004.

SN74ALVCH16901 18-BIT UNIVERSAL BUS TRANSCEIVER WITH PARITY GENERATORS/CHECKERS

SCES010E - JULY 1995 - REVISED FEBRUARY 1999

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

PA	RAMETER	TEST C	ONDITIONS	vcc	MIN	TYP [†]	MAX	UNIT
		I _{OH} = -100 μA		1.65 V to 3.6 V	V _{CC} -0.	.2		
		I _{OH} = -4 mA		1.65 V	1.2			
		I _{OH} = -6 mA		2.3 V	2			
Vон				2.3 V	1.7			V
		I _{OH} = -12 mA		2.7 V	2.2			
				3 V	2.4			
		I _{OH} = -24 mA		3 V	2			
		I _{OL} = 100 μA		1.65 V to 3.6 V			0.2	
		I _{OL} = 4 mA		1.65 V			0.45	
V		I _{OL} = 6 mA		2.3 V			0.4	V
VOL		1010		2.3 V			0.7	V
		I _{OL} = 12 mA		2.7 V			0.4	
		I _{OL} = 24 mA		3 V			0.55	
lį		$V_I = V_{CC}$ or GND		3.6 V			±5	μΑ
		V _I = 0.58 V	1.65 V	25				
		V _I = 1.07 V		1.65 V	-25			
		V _I = 0.7 V		2.3 V	45			
I _{I(hold)}		V _I = 1.7 V		2.3 V	-45			μΑ
		V _I = 0.8 V		3 V	75			
		V _I = 2 V		3 V	-75			
		$V_I = 0 \text{ to } 3.6 \text{ V}^{\ddagger}$		3.6 V			±500	
loz§		$V_O = V_{CC}$ or GND		3.6 V			±10	μΑ
Icc		$V_I = V_{CC}$ or GND,	I _O = 0	3.6 V			40	μΑ
Δlcc		One input at V _{CC} – 0.6 V,	Other inputs at V _{CC} or GND	3 V to 3.6 V			750	μΑ
Ci	Control inputs	$V_I = V_{CC}$ or GND		3.3 V		3		pF
C _{io}	A or B ports	$V_O = V_{CC}$ or GND		3.3 V		7.5		pF
Co	ERR ports	$V_O = V_{CC}$ or GND		3.3 V		6		pF

[†] All typical values are at V_{CC} = 3.3 V, T_A = 25°C. ‡ This is the bus-hold maximum dynamic current. It is the minimum overdrive current required to switch the input from one state to another.

[§] For I/O ports, the parameter IOZ includes the input leakage current.

SN74ALVCH16901 18-BIT UNIVERSAL BUS TRANSCEIVER WITH PARITY GENERATORS/CHECKERS

SCES010E - JULY 1995 - REVISED FEBRUARY 1999

timing requirements over recommended operating free-air temperature range (unless otherwise noted) (see Figures 1 through 3)

			V _{CC} =	1.8 V	VCC =		V _{CC} =	2.7 V	V _{CC} =		UNIT
			MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX	
fclock	Clock frequenc	у		†		125		125		125	MHz
	Pulse	CLK↑	†		3		3		3		ns
t _W	duration	LE high	†		3		3		3		110
		A, APAR or B, BPAR before CLK↑	†		1.9		2		1.7		
t _{su}	Setup time	CLKEN before CLK↑	†		2.1		2.1		1.7		ns
		A, APAR or B, BPAR before LE↓	†		1.4		1.3		1.2		
	Hold time	A, APAR or B, BPAR after CLK↑	†		0.4		0.4		0.5		
t _h		CLKEN after CLK↑	†		0.5		0.5		0.7		ns
		A, APAR or B, BPAR after LE↓	†		0.9		1.1		0.9		

[†] This information was not available at the time of publication.

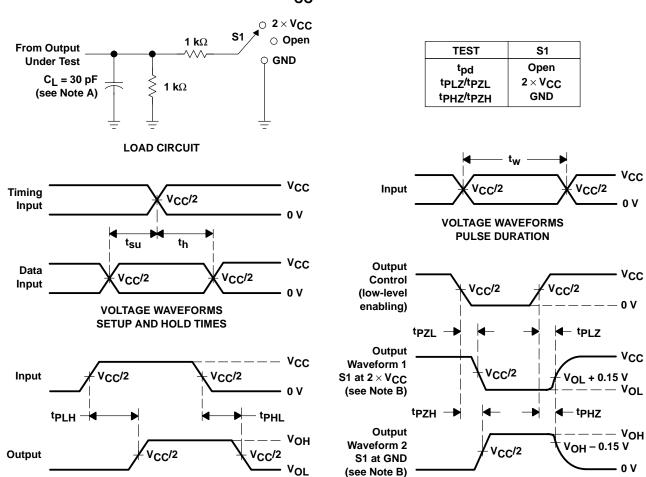
switching characteristics over recommended operating free-air temperature range (unless otherwise noted) (see Figures 1 through 3)

PARAMETER	FROM (INPUT)	TO (OUTPUT)	V _{CC} =	1.8 V	V _{CC} =	2.5 V 2 V	V _{CC} =	2.7 V	V _{CC} =		UNIT
	(INFOT)	(001701)	MIN	TYP	MIN	MAX	MIN	MAX	MIN	MAX	
fmax			†		125		125		125		MHz
	A or B	B or A		†	1	5.2		4.8	1	4.4	
	AUIB	BPAR or APAR		†	2	8.9		7.6	2	6.7	
	APAR or BPAR	BPAR or APAR		†	1	5.7		5.2	1	4.7	
	AI AIX OI DI AIX	ERRA or ERRB		†	2	9.7		8.7	2	7.5	
	ODD/EVEN	ERRA or ERRB		†	1.5	8.7		7.9	1.5	6.8	
	ODD/EVEN	BPAR or APAR		†	1.5	8.3		7.6	1.5	6.5	
	SEL	BPAR or APAR		†	1	6.1		5.9	1	5.1	
		A or B		†	1	6.4		5.8	1	5.1	
t _{pd}	CLKAB or CLKBA	BPAR or APAR parity feedthrough		†	1.5	7.1		6.3	1.5	5.6	ns
		BPAR or APAR parity generated		†	2.5	10.2		8.7	2	7.7	
		ERRA or ERRB		†	2.5	10.5		8.9	2	7.9	
	1540 1504	A or B		†	1	6		5.5	1	4.8	
		BPAR or APAR parity feedthrough		†	1.5	6.7		6	1.5	5.3	
	LEAB or LEBA	BPAR or APAR parity generated		†	2.5	9.8		8.3	2	7.4	
		ERRA or ERRB		†	2.5	9.9		8.5	2	7.5	
t _{en}	OEAB or OEBA	B, BPAR or A, APAR		†	1.4	6.3		6.1	1	5.3	ns
t _{dis}	OEAB or OEBA	B, BPAR or A, APAR		†	1.3	6.1		5.2	1.5	4.9	ns
t _{en}	OEAB or OEBA	ERRA or ERRB		†	1.4	6.2		5.5	1	4.9	ns
t _{dis}	OEAB or OEBA	ERRA or ERRB		†	1.3	7.3		6.5	1	5.7	ns
t _{en}	SEL	ERRA or ERRB		†	1.4	6.7		6.5	1	5.5	ns
t _{dis}	SEL	ERRA or ERRB		†	1.3	6.4		5.4	1.5	4.9	ns

[†] This information was not available at the time of publication.

operating characteristics, $T_A = 25^{\circ}C$

PARAMETER			TEST CONDITIONS	V _{CC} = 1.8 V	V _{CC} = 2.5 V	V _{CC} = 3.3 V	UNIT
	FARAWIETER		TEST CONDITIONS	TYP TYP TYP		TYP TYP TYP	
<u> </u>	Power dissipation	Outputs enabled	C ₁ = 50 pF. f = 10 MHz	†	22	27	pF
Cpd	capacitance	Outputs disabled	$C_L = 50 \text{ pF}, f = 10 \text{ MHz}$	†	5	8	þг


[†] This information was not available at the time of publication.

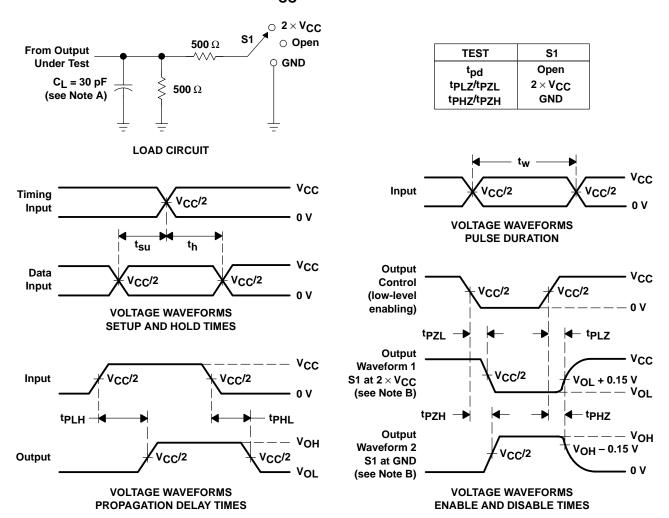
VOLTAGE WAVEFORMS

ENABLE AND DISABLE TIMES

SCES010E - JULY 1995 - REVISED FEBRUARY 1999

PARAMETER MEASUREMENT INFORMATION V_{CC} = 1.8 V

- NOTES: A. C_L includes probe and jig capacitance.
 - B. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control.
 - C. All input pulses are supplied by generators having the following characteristics: PRR \leq 10 MHz, $Z_Q = 50 \Omega$, $t_f \leq$ 2 ns. $t_f \leq$ 2 ns.
 - D. The outputs are measured one at a time with one transition per measurement.
 - E. tpLZ and tpHZ are the same as tdis.

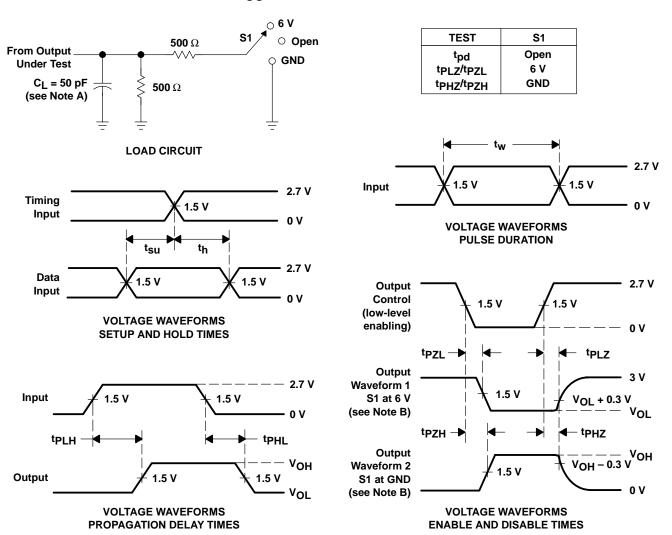

VOLTAGE WAVEFORMS

PROPAGATION DELAY TIMES

- F. tpzL and tpzH are the same as ten.
- G. tpLH and tpHL are the same as tpd.

Figure 1. Load Circuit and Voltage Waveforms

PARAMETER MEASUREMENT INFORMATION $V_{CC} = 2.5 V \pm 0.2 V$


NOTES: A. C_L includes probe and jig capacitance.

- B. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control.
- C. All input pulses are supplied by generators having the following characteristics: PRR \leq 10 MHz, $Z_O = 50 \ \Omega$, $t_f \leq$ 2 ns. $t_f \leq$ 2 ns.
- D. The outputs are measured one at a time with one transition per measurement.
- E. tpLz and tpHz are the same as tdis.
- F. tpzL and tpzH are the same as ten.
- G. tpl H and tpHI are the same as tpd.

Figure 2. Load Circuit and Voltage Waveforms

PARAMETER MEASUREMENT INFORMATION V_{CC} = 2.7 V AND 3.3 V \pm 0.3 V

- NOTES: A. C_L includes probe and jig capacitance.
 - B. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control.
 - C. All input pulses are supplied by generators having the following characteristics: PRR \leq 10 MHz, $Z_Q = 50 \Omega$, $t_f \leq 2.5 \text{ ns.}$
 - D. The outputs are measured one at a time with one transition per measurement.
 - E. tpLz and tpHz are the same as tdis.
 - F. tpzL and tpzH are the same as ten.
 - G. tpLH and tpHL are the same as tpd.

Figure 3. Load Circuit and Voltage Waveforms