SLLS083B - NOVEMBER 1970 - REVISED MAY 1995

- Meets or Exceeds the Requirements of ANSI Standard EIA/TIA-232-E and ITU Recommendation V.28
- Input Resistance . . . 3 kΩ to 7 kΩ Over Full EIA/TIA-232-E Voltage Range
- Input Threshold Adjustable to Meet Fail-Safe Requirements Without Using External Components
- Built-In Hysteresis for Increased Noise
 Immunity
- Inverting Output Compatible With TTL
- Output With Active Pullup for Symmetrical Switching Speeds
- Standard Supply Voltages . . . 5 V or 12 V

description

The SN75154 is a monolithic low-power Schottky line receiver designed to satisfy the requirements of the standard interface between data terminal equipment and data communication equipment as defined by ANSI Standard EIA/TIA-232-E. Other applications are for relatively short, single-line, point-to-point data transmission and for level translators. Operation is normally from a single 5-V supply; however, a built-in option allows operation from a 12-V supply without the use of additional components. The output is compatible with most TTL circuits when either supply voltage is used.

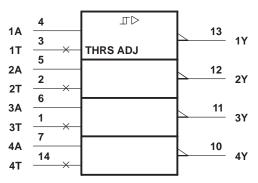
In normal operation, the threshold-control terminals are connected to the V_{CC1} terminal, even if power is being supplied via the alternate V_{CC2} terminal. This provides a wide hysteresis loop, which is the difference between the positive-going and negative-going threshold voltages. See typical characteristics. In this mode of operation, if the input voltage goes to zero, the output voltage will remain at the low or high level as determined by the previous input.

For fail-safe operation, the threshold-control terminals are open. This reduces the hysteresis loop by causing the negative-going threshold voltage to be above zero. The positive-going threshold voltage remains above zero as it is unaffected by the disposition of the threshold terminals. In the fail-safe mode, if the input voltage goes to zero or an open-circuit condition, the output will go to the high level regardless of the previous input condition.

The SN75154 is characterized for operation from 0°C to 70°C.

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

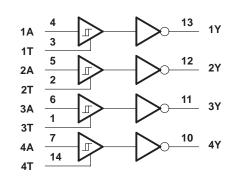
PRODUCTION DATA information is current as of publication date. Products conform to specifications per the terms of Texas Instruments standard warranty. Production processing does not necessarily include testing of all parameters.

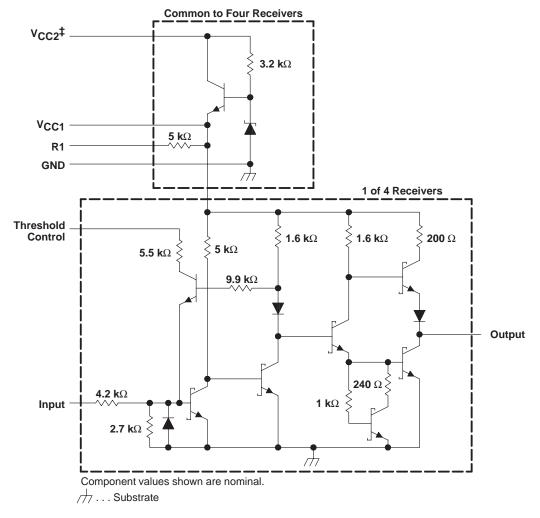

D OR N PACKAGE (TOP VIEW)									
3T [• 1	16	V _{CC2}						
2T [2	15] 4T						
1T [3	14							
1A [4	13] 1Y						
2A [5	12] 2Y						
3A [4A [6	11] 3Y						
GND	7	10] 4 1						
	8	9] R1 [†]						

[†] For function of R1, see schematic

Copyright © 1995, Texas Instruments Incorporated

SLLS083B - NOVEMBER 1970 - REVISED MAY 1995


logic symbol[†]



[†] This symbol is in accordance with ANSI/IEEE Std 91-1984 and IEC Publication 617-12.

schematic

logic diagram (positive logic)

[‡] When V_{CC1} is used, V_{CC2} may be left open or shorted to V_{CC1}. When V_{CC2} is used, V_{CC1} must be left open or connected to the threshold control pins.

SLLS083B - NOVEMBER 1970 - REVISED MAY 1995

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)[†]

Normal supply voltage, V _{CC1} (see Note 1)	
Alternate supply voltage, V _{CC2}	14 V
Input voltage, V _I	±25 V
Continuous total power dissipation	See Dissipation Rating Table
Operating free-air temperature range, T _A	
Storage temperature range, T _{stg}	–65°C to 150°C
Lead temperature 1,6 mm (1/16 inch) from case for 10 seconds	

† Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

NOTE 1: Voltage values are with respect to network GND terminal.

Dissil Anon NATING TABLE										
PACKAGE	T _A ≤ 25°C POWER RATING	DERATING FACTOR ABOVE T _A = 25°C	T _A = 70°C POWER RATING							
D	950 mW	7.6 mW/°C	608 mW							
N	1150 mW	9.2 mW/°C	736 mW							
NS	625 mW	5.0 mW/°C	400 mW							

DISSIPATION RATING TABLE

recommended operating conditions

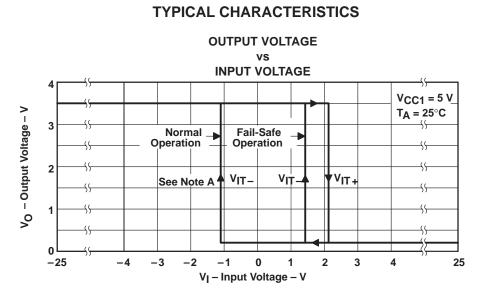
	MIN	NOM	MAX	UNIT
Normal supply voltage, V _{CC1}	4.5	5	5.5	V
Alternate supply voltage, V _{CC2}	10.8	12	13.2	V
High-level input voltage, VIH (see Note 2)	3		15	V
Low-level input voltage, VIL (see Note 2)	-15		-3	V
High-level output current, I _{OH}			-400	μΑ
Low-level output current, IOL			16	mA
Operating free-air temperature, T _A	0		70	°C

NOTE 2: The algebraic convention, where the less positive (more negative) limit is designated as minimum, is used in this data sheet for logic and threshold levels only, e.g., when 0 V is the maximum, the minimum limit is a more negative voltage.

SLLS083B - NOVEMBER 1970 - REVISED MAY 1995

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

	PARAMETER		TEST FIGURE	TEST COND	DITIONS	MIN	түр†	МАХ	UNIT
\/	Positive-going input	Normal operation	1			0.8	2.2	3	V
VIT+	threshold voltage	Fail-safe operation				0.8	2.2	3	v
\/. _	Negative-going input Normal operation		1			-3	-1.1	0	V
VIT-	threshold voltage	Fail-safe operation				0.8	0.8 1.4 3		v
\ <i>\</i> .	Hysteresis voltage Normal		1			0.8	3.3	6	V
V_{hys} ($V_{IT+} - V_{IT-}$)		Fail-safe operation				0	0.8	2.2	v
VOH	High-level output voltage		1	I _{OH} = -400 μA		2.4	3.5		V
VOL	Low-level output voltage		1	I _{OL} = 16 mA			0.29	0.4	V
				$\Delta V_{I} = -25 \text{ V to } -14 \text{ V}$		3	5	7	
				$\Delta V_I = -14 \text{ V to } -3 \text{ V}$		3	5	7	
ri	Input resistance		2	$\Delta V_{I} = -3 V \text{ to } 3 V$		3	6	8	kΩ
				$\Delta V_{I} = 3 V \text{ to } 14 V$		3	5	7	1122
				ΔV_{I} = 14 V to 25 V	/	3	5	7	
V _{I(open)}	/I(open) Open-circuit input voltage			$I_I = 0$		0	0.2	2	V
los	Short-circuit output current [‡]		4	V _{CC1} = 5.5 V,	$V_{I} = -5 V$	-10	-20	-40	mA
ICC1	Supply current from V _{CC1}		5	V _{CC1} = 5.5 V,	T _A = 25°C		20	35	mA
ICC2	Supply current from V _{CC2}			V _{CC2} = 13.2 V,	T _A = 25°C		23	40	mA


[†] All typical values are at $V_{CC1} = 5 \text{ V}$, $T_A = 25^{\circ}\text{C}$. [‡] Not more than one output should be shorted at a time.

switching characteristics, V_{CC1} = 5 V, T_A = 25°C, N = 10

	PARAMETER	TEST FIGURE	TEST CO	NDITIONS	MIN	TYP	МАХ	UNIT
^t PLH	Propagation delay time, low- to high-level output					11		ns
^t PHL	Propagation delay time, high- to low-level output	6	$C_{1} = 50 \text{ pc}$	R ₁ = 390 Ω		8		ns
t _{TLH}	Transition time, low- to high-level output	0	C _L = 50 pF,	KL = 390 32		7		ns
^t THL	Transition time, high- to low-level output					2.2		ns

SLLS083B - NOVEMBER 1970 - REVISED MAY 1995

NOTE A: For normal operation, the threshold controls are connected to V_{CC1}. For fail-safe operation, the threshold controls are open.

Figure 1

SLLS083B - NOVEMBER 1970 - REVISED MAY 1995

PARAMETER MEASUREMENT INFORMATION

dc test circuits[†]

	TEST TABLE										
TEST	MEASURE	Α	Т	Y	V _{CC1}	V _{CC2}					
Open circuit input (feil acto)	VOH	Open	Open	ЮН	4.5 V	Open					
Open-circuit input (fail safe)	VOH	Open	Open	ЮН	Open	10.8 V					
	VOH	0.8 V	Open	ЮН	5.5 V	Open					
V _{IT +} min, V _{IT –} min (fail safe)	VOH	0.8 V	Open	ЮН	Open	13.2 V					
	VOH	Note A	VCC1	ЮН	5.5 V and T	Open					
V _{IT +} min (normal)	Voh	Note A	VCC1	ЮН	Т	13.2 V					
	VOH	-3 V	V _{CC1}	ЮН	5.5 V and T	Open					
V _{IL} max, V _{IT +} min (normal)	VOH	-3 V	V _{CC1}	ЮН	Т	13.2 V					
	VOL	3 V	Open	IOL	4.5 V	Open					
VIH min, VIT+ max, VIT_ max (fail safe)	VOL	3 V	Open	IOL	Open	10.8 V					
	VOL	3 V	VCC1	IOL	4.5 V and T	Open					
VIH min, VIT + max (normal)	VOL	3 V	VCC1	IOL	Т	10.8 V					
	VOL	Note B	VCC1	IOL	5.5 V and T	Open					
V _{IT} _max (normal)	VOL	Note B	V _{CC1}	IOL	Т	13.2 V					

NOTES: A. Momentarily apply -5 V, then 0.8 V.

B. Momentarily apply 5 V, then GND.

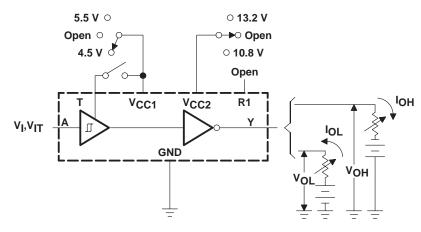
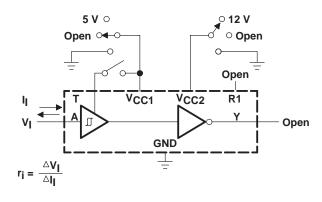
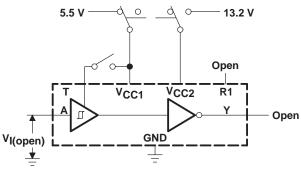


Figure 2. V_{IH} , V_{IL} , V_{IT+} , V_{IT-} , V_{OH} , V_{OL}


[†] Arrows indicate actual direction of current flow. Current into a terminal is a positive value.

SLLS083B - NOVEMBER 1970 - REVISED MAY 1995


PARAMETER MEASUREMENT INFORMATION

dc test circuits[†] (continued)

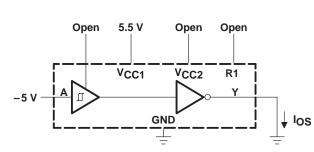
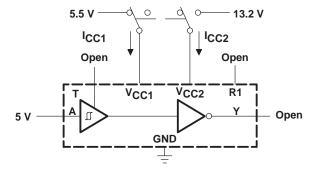

TEST TABLE											
T V _{CC1} V _{CC2}											
Open	5 V	Open									
Open	GND	Open									
Open	Open	Open									
VCC1	T and 5 V	Open									
GND	GND	Open									
Open	Open	12 V									
Open	Open	GND									
VCC1	Т	12 V									
VCC1	Т	GND									
VCC1	Т	Open									

Figure 3. Input Resistance


TEST TABLE									
т	V _{CC1}	V _{CC2}							
Open	5.5 V	Open							
VCC1	5.5 V	Open							
Open	Open	13.2 V							
VCC1	Т	13.2 V							

Each output is tested separately.

Figure 5. Output Short-Circuit Current

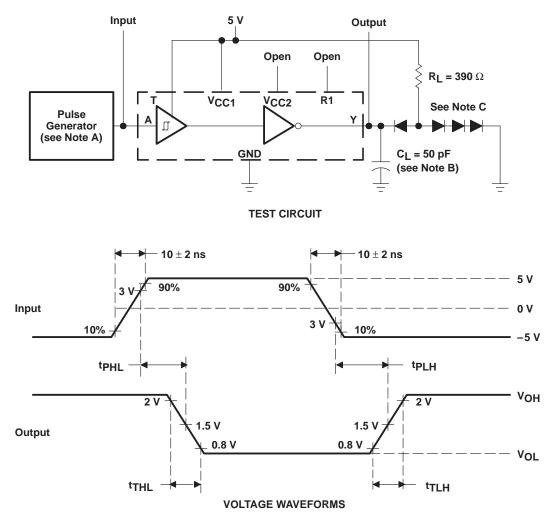

All four line receivers are tested simultaneously.

Figure 6. Supply Current

[†] Arrows indicate actual direction of current flow. Current into a terminal is a positive value.

SLLS083B - NOVEMBER 1970 - REVISED MAY 1995

PARAMETER MEASUREMENT INFORMATION

- NOTES: A. The pulse generator has the following characteristics: $Z_O = 50 \Omega$, $t_W \le 200$ ns, duty cycle $\le 20\%$.
 - B. CL includes probe and jig capacitance.
 - C. All diodes are 1N3064.

Figure 6. Test Circuit and Voltage Waveforms

PACKAGING INFORMATION

Orderable Device		Package Type	Package Drawing	Pins	-		Lead finish/ Ball material	MSL Peak Temp	Op Temp (°C)	Device Marking	Samples
	(1)		Drawing		Qty	(2)		(3)		(4/5)	
SN75154D	LIFEBUY	SOIC	D	16	40	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	0 to 70	SN75154	
SN75154DR	LIFEBUY	SOIC	D	16	2500	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	0 to 70	SN75154	
SN75154N	LIFEBUY	PDIP	N	16	25	RoHS & Green	NIPDAU	N / A for Pkg Type	0 to 70	SN75154N	
SN75154NSR	LIFEBUY	SO	NS	16	2000	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	0 to 70	SN75154	

⁽¹⁾ The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

⁽²⁾ RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may reference these types of products as "Pb-Free".

RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.

Green: TI defines "Green" to mean the content of Chlorine (CI) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based flame retardants must also meet the <=1000ppm threshold requirement.

⁽³⁾ MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

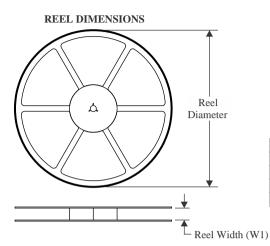
⁽⁴⁾ There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.

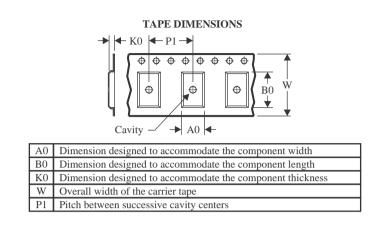
(⁵⁾ Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.

⁽⁶⁾ Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two lines if the finish value exceeds the maximum column width.

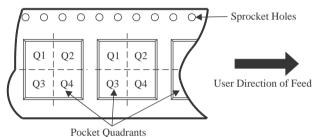
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

www.ti.com


In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

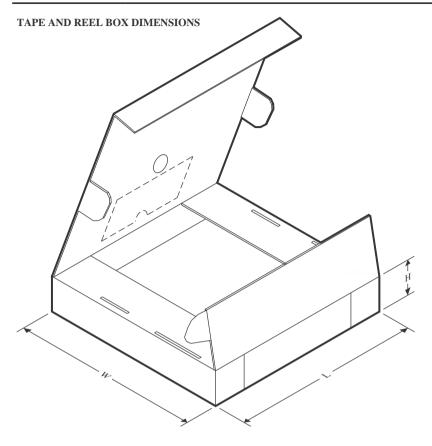


Texas


STRUMENTS

TAPE AND REEL INFORMATION

QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE

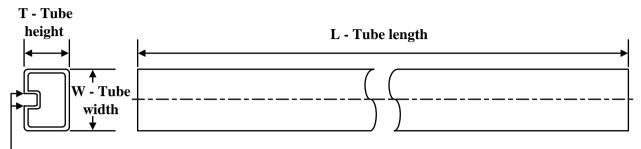

*Al	dimensions are nominal												
	Device	•	Package Drawing		SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
	SN75154DR	SOIC	D	16	2500	330.0	16.4	6.5	10.3	2.1	8.0	16.0	Q1
	SN75154NSR	SO	NS	16	2000	330.0	16.4	8.2	10.5	2.5	12.0	16.0	Q1

www.ti.com

PACKAGE MATERIALS INFORMATION

9-Aug-2022

*All dimensions are nominal


Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
SN75154DR	SOIC	D	16	2500	340.5	336.1	32.0
SN75154NSR	SO	NS	16	2000	356.0	356.0	35.0

TEXAS INSTRUMENTS

www.ti.com

9-Aug-2022

TUBE

- B - Alignment groove width

*All dimensions are nominal

Device	Package Name	Package Type	Pins	SPQ	L (mm)	W (mm)	T (µm)	B (mm)
SN75154D	D	SOIC	16	40	507	8	3940	4.32
SN75154N	N	PDIP	16	25	506	13.97	11230	4.32

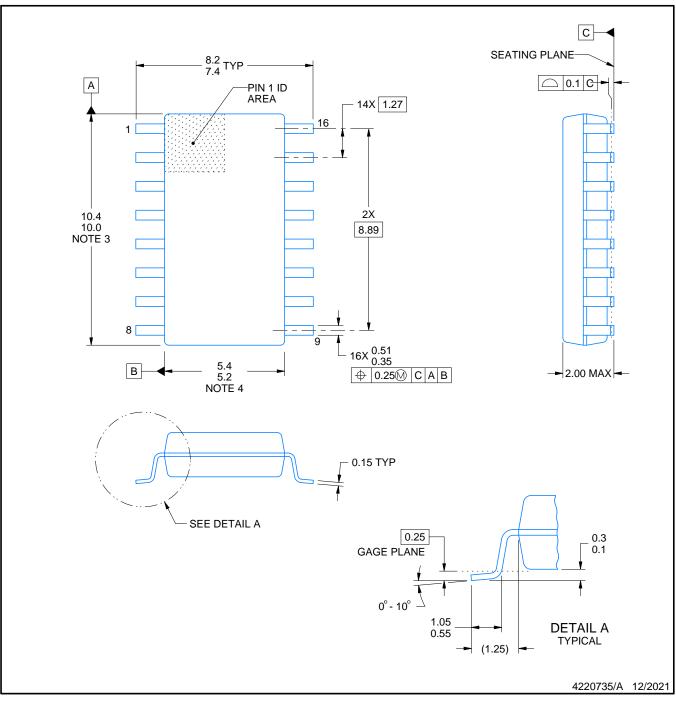
N (R-PDIP-T**)

PLASTIC DUAL-IN-LINE PACKAGE

16 PINS SHOWN

NOTES:

- A. All linear dimensions are in inches (millimeters).B. This drawing is subject to change without notice.
- Falls within JEDEC MS-001, except 18 and 20 pin minimum body length (Dim A).
- \triangle The 20 pin end lead shoulder width is a vendor option, either half or full width.


NS0016A

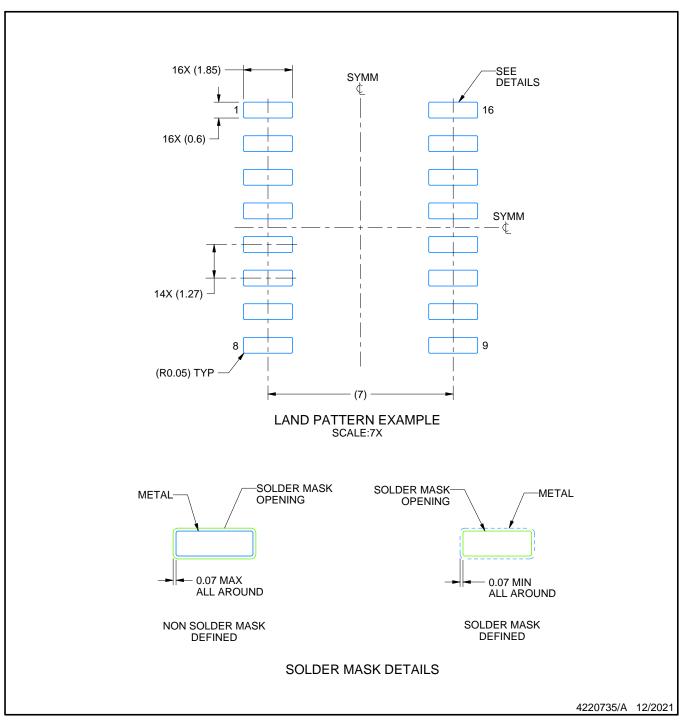
PACKAGE OUTLINE

SOP - 2.00 mm max height

SOP

NOTES:

- 1. All linear dimensions are in millimeters. Dimensions in parenthesis are for reference only. Dimensioning and tolerancing
- Per ASME Y14.5M.
 This drawing is subject to change without notice.
 This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed 0.15 mm, per side.
- 4. This dimension does not include interlead flash. Interlead flash shall not exceed 0.25 mm, per side.



NS0016A

EXAMPLE BOARD LAYOUT

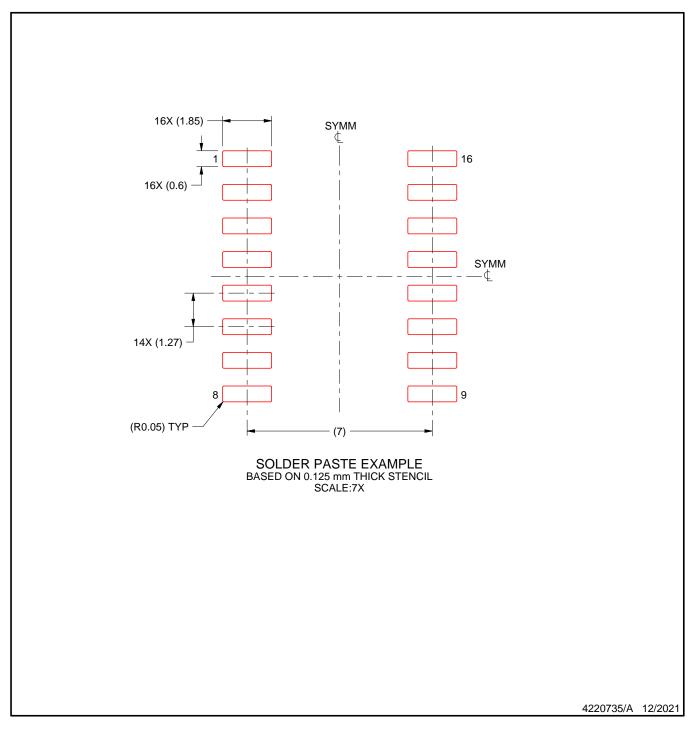
SOP - 2.00 mm max height

SOP

NOTES: (continued)

5. Publication IPC-7351 may have alternate designs.

6. Solder mask tolerances between and around signal pads can vary based on board fabrication site.



NS0016A

EXAMPLE STENCIL DESIGN

SOP - 2.00 mm max height

SOP

NOTES: (continued)

7. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.

8. Board assembly site may have different recommendations for stencil design.

D (R-PDSO-G16)

PLASTIC SMALL OUTLINE

NOTES: A. All linear dimensions are in inches (millimeters).

- B. This drawing is subject to change without notice.
- Body length does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed 0.006 (0,15) each side.
- Body width does not include interlead flash. Interlead flash shall not exceed 0.017 (0,43) each side.
- E. Reference JEDEC MS-012 variation AC.

MECHANICAL DATA

PLASTIC SMALL-OUTLINE PACKAGE

0,51 0,35 ⊕0,25⊛ 1,27 8 14 0,15 NOM 5,60 8,20 5,00 7,40 \bigcirc Gage Plane ₽ 0,25 7 1 1,05 0,55 0°-10° Δ 0,15 0,05 Seating Plane — 2,00 MAX 0,10PINS ** 14 16 20 24 DIM 10,50 10,50 12,90 15,30 A MAX A MIN 9,90 9,90 12,30 14,70 4040062/C 03/03

NOTES: A. All linear dimensions are in millimeters.

NS (R-PDSO-G**)

14-PINS SHOWN

- B. This drawing is subject to change without notice.
- C. Body dimensions do not include mold flash or protrusion, not to exceed 0,15.

IMPORTANT NOTICE AND DISCLAIMER

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATA SHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, regulatory or other requirements.

These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these resources.

TI's products are provided subject to TI's Terms of Sale or other applicable terms available either on ti.com or provided in conjunction with such TI products. TI's provision of these resources does not expand or otherwise alter TI's applicable warranties or warranty disclaimers for TI products.

TI objects to and rejects any additional or different terms you may have proposed.

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2023, Texas Instruments Incorporated