August 1998

100313

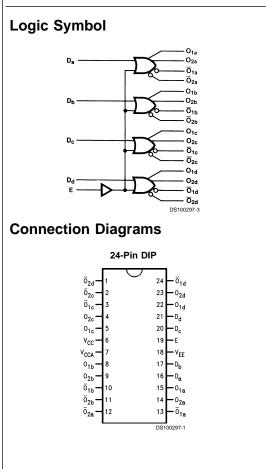
National Semiconductor

100313 Low Power Quad Driver

General Description

. .

+


The 100313 is a monolithic quad driver with two OR and two NOR outputs and common enable. The common input is buffered to minimize input loading. If the D inputs are not used the Enable can be used to drive sixteen 50 Ω lines. All inputs have 50 k Ω pull-down resistors and all outputs are buffered.

Features

+

- 50% power reduction of the 100113
- 2000V ESD protection
- Pin/function compatible with 100113 and 100112
- Voltage compensated operating range = -4.2V to -5.7V
- Standard Microcircuit Drawing

(SMD) 5962-9673201

Pin Names	Description
D _a -D _d	Data Inputs
E	Enable Input
O _{na} -O _{nd}	Data Outputs
$\overline{O}_{na} - \overline{O}_{nd}$	Complementary Data Outputs

24-Pin Flatpak $D_d D_c E V_{EE} D_b D_a$

23 22 21 20

10

0_{2c} 0_{1c} V_{CC} V_{CCA} 0_{1b} 0_{2b} DS100297-2

0_{1 ь}

www.national.com

01.4

0_{2d}

0_{1 d}

 $\bar{\mathrm{O}}_{2d}$

0₂₀

ō,

DS100297

© 1998 National Semiconductor Corporation

1

Absolute Maximum Ratings (Note 1)

If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/ Distributors for availability and specifications.

Storage Temperature (T _{STG})	–65°C to +150°C
Maximum Junction Temperature (T _J)	
Ceramic	+175°C
V _{EE} Pin Potential to Ground Pin	-7.0V to +0.5V
Input Voltage (DC)	V _{EE} to +0.5V
Output Current (DC Output HIGH)	–50 mA
ESD (Note 2)	≥2000V

Military Version DC Electrical Characteristics

Recommended Operating Conditions

$V_{EE} =$	$V_{EE} = -4.2V$ to -5.7V, $V_{CC} = V_{CCA} = GND$, $T_{C} = -55^{\circ}C$ to +125°C										
Symbol	Parameter	Min	Max	Units	Тc	Cond	itions	Notes			
V _{OH}	Output HIGH Voltage	-1025	-870	mV	0°C to +125°C						
		-1085	-870	mV	–55°C	V _{IN} =V _{IH (Max)}	Loading with	(Notes 3, 4,			
V _{OL}	Output LOW Voltage	-1830	-1620	mV	0°C to +125°C	or V _{IL(Min)}	50Ω to -2.0V	5)			
		-1830	-1555	mV	–55°C						
V _{OHC}	Output HIGH Voltage	-1035		mV	0°C to +125°C						
		-1085		mV	–55°C	V _{IN} =V _{IH (Min)}	Loading with	(Notes 3, 4,			
V _{OLC}	Output LOW Voltage		-1610	mV	0°C to +125°C	or V _{IL (Max)}	50Ω to $-2.0V$	5)			
			-1555	mV	–55°C						
VIH	Input HIGH Voltage	-1165	-870	mV	–55°C to +125°C	Guaranteed HIGH Signal for All Inputs		(Notes 3, 4,			
								5, 6)			
VIL	Input LOW Voltage	-1830	-1475	mV	–55°C to +125°C	Guaranteed LOW Signal		(Notes 3, 4,			
						for All Inputs		5, 6)			
I _{IL}	Input LOW Current	0.50		μΑ	–55°C to +125°C	V _{EE} = -4.2V		(Notes 3, 4,			
						V _{IN} = V _{IL (Min)}		5)			
I _{IH}	Input HIGH Current										
	Data		350	μA	0°C to +125°C						
	Enable		240			$V_{EE} = -5.7V$		(Notes 3, 4,			
	Data		500	μΑ	–55°C	V _{IN} = V _{IH (Max)}		5)			
	Enable		340								
I _{EE}	Power Supply Current	-65	-20	mA	–55°C to +125°C	Inputs Open		(Notes 3, 4, 5)			

+

Note 3: F100K 300 Series cold temperature testing is performed by temperature soaking (to guarantee junction temperature equals -55°C), then testing immediately without allowing for the junction temperature to stabilize due to heat dissipation after power-up. This provides "cold start" specs which can be considered a worst case condition at cold temperatures.

Note 4: Screen tested 100% on each device at -55°C, +25°C, and +125°C, Subgroups 1, 2, 3, 7, and 8.

Note 5: Sample tested (Method 5005, Table I) on each manufactured lot at -55°C, +25°C, and +125°C, Subgroups A1, 2, 3, 7, and 8.

Note 6: Guaranteed by applying specified input condition and testing $V_{\mbox{OH}}/V_{\mbox{OL}}.$

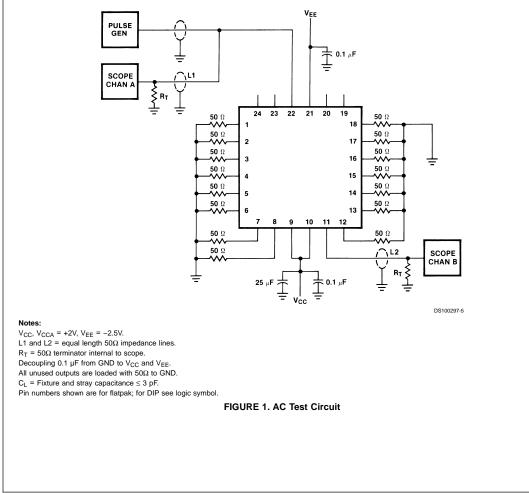
www.national.com

2

Military Version AC Electrical Characteristics

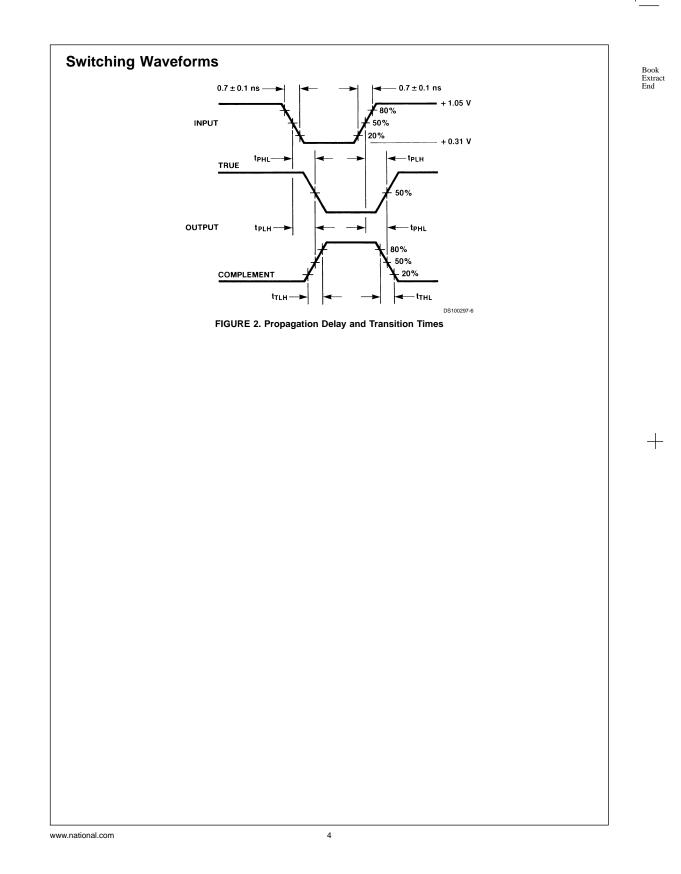
Symbol	Parameter	T _c =	–55°C	T _C = +25°C		T _c = +125°C		Units	Conditions	Notes
		Min	Max	Min	Max	Min	Max]		
t _{PLH}	Propagation Delay	0.30	2.00	0.30	1.80	0.30	2.30	ns		(Notes 7,
t _{PHL}	Data to Output									8, 10, 11)
t _{PLH}	Propagation Delay	0.50	2.40	0.60	2.30	0.60	2.70	ns	Figures 1, 2	
t _{PHL}	Enable to Output									
t _{TLH}	Transition Time	0.30	2.00	0.30	1.90	0.30	2.00	ns		(Note 10)
t_{THL}	20% to 80%, 80% to 20%									

Note 7: F100K 300 Series cold temperature testing is performed by temperature soaking (to guarantee junction temperature equals -55°C), then testing immediately after power-up. This provides "cold start" specs which can be considered a worst case condition at cold temperatures.


Note 8: Screen tested 100% on each device at +25°C, Subgroup A9.

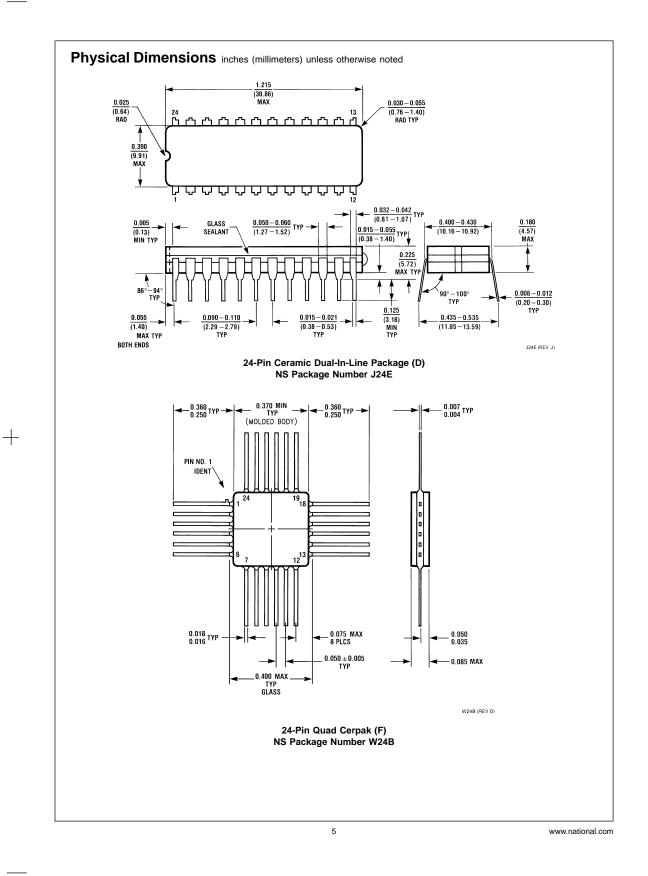
Note 9: Sample tested (Method 5005, Table I) on each manufactured lot at +25°C, Subgroup A9, and at +125°C and -55°C temperatures, Subgroups A10 and A11. Note 10: Not tested at +25°C, +125°C, and -55°C temperature (design characterization data).

Note 11: The propagation delay specified is for single output switching. Delays may vary up to 150 ps with multiple outputs switching.


Test Circuitry

+

3


www.national.com

+

PrintDate=1998/08/31 PrintTime=07:05:04 45028 ds100297 Rev. No. 1 cmserv **Proof**

+

+

+

LIFE SUPPORT POLICY

NATIONAL'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DE-VICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF NATIONAL SEMI-CONDUCTOR CORPORATION. As used herein:

_

- Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
- A critical component in any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

N	National Semiconductor Corporation
\mathbf{V}^{*}	Americas
	Tel: 1-800-272-9959
	Fax: 1-800-737-7018
	Email: support@nsc.com
www na	ational com

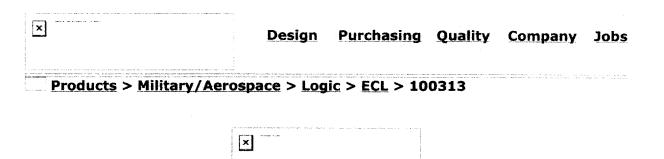
6

 National Semiconductor

 Europe

 Fax:
 +49 (0) 1 80-530 85 86

 Email:
 europe.support@nsc.com


 Deutsch Tel:
 +49 (0) 1 80-530 85 85

 English
 Tel:
 +49 (0) 1 80-532 78 32

 Français
 Tel:
 +49 (0) 1 80-532 93 58

 Italiano
 Tel:
 +49 (0) 1 80-532 43 68

National Semiconductor Asia Pacific Customer Response Group Tel: 65-2544466 Fax: 65-2504466 Email: sea.support@nsc.com National Semiconductor Japan Ltd. Tel: 81-3-5620-6175 Fax: 81-3-5620-6179

100313 Low Power Quad Driver

Contents

- General Description
- Features
- Datasheet
- Package Availability, Models, Samples & Pricing

General Description

The 100313 is a monolithic quad driver with two OR and two NOR outputs and common enable. The common input is buffered to minimize input loading. If the D inputs are not used the Enable can be used to drive sixteen 50 Ohm lines. All inputs have 50 k Ohm pull-down resistors and all outputs are buffered.

Features

- 50% power reduction of the 100113
- 2000V ESD protection
- Pin/function compatible with 100113 and 100112
- Voltage compensated operating range = -4.2V to -5.7V
- Standard Microcircuit Drawing (SMD) 5962-9673201

Datasheet

National P/N 100313 - Low Power Quad Driver

Title	Size (in Kbytes)	Date	Unline	∑ Download	Receive via Email	
100313 Low Power Quad Driver	119 Kbytes	4-Sep- 98	View Online	Download	Receive via Email	

Please use Adobe Acrobat to view PDF file(s).

If you have trouble printing, see Printing Problems.

Package Availability, Models, Samples & Pricing

Part Number	Package		Models		els	Samples	Budgeta	Std		
	Туре	# pins	Status	SPICE	IBIS	& Electronic Orders	Quantity	SUS each	Pack Size	
5962- 9673201QXA	Cerdip	24	Full production	N/A	N/A		50+	\$24.2000	tube of 15	[lc 100 9(
5962- 9673201QYA	Cerquad	24	Full production	N/A	N/A		50+	\$27.0000	tube of 14	[10; (F
100313FM- MLS	Cerquad	24	Full production	N/A	N/A		50+	\$260.0000	tube of 14	[10]

[Information as of 4-May-2000]

Quick Search

Parametric Search System Diagrams

<u>Home</u>

About Languages . About the Site . About "Cookies" National is QS 9000 Certified . Privacy/Security Copyright © National Semiconductor Corporation - Account . Feedback

Product

Tree