

August 1998

# 100353

# Low Power 8-Bit Register

#### **General Description**

The 100353 contains eight D-type edge triggered, master/slave flip-flops with individual inputs  $(D_n)$ , true outputs  $(Q_n)$ , a clock input (CP), and a common clock enable pin (CEN). Data enters the master when CP is LOW and transfers to the slave when CP goes HIGH. When the  $\overline{\text{CEN}}$  input goes HIGH it overrides all other inputs, disables the clock, and the Q outputs maintain the last state.

The 100353 output drivers are designed to drive  $50\Omega$  termination to –2.0V. All inputs have 50 k $\Omega$  pull-down resistors.

#### **Features**

- Low power operation
- 2000V ESD protection
- Voltage compensated operating range = -4.2V to -5.7V
- Available to MIL-STD-883

#### **Logic Symbol**



| Pin Names                      | Description                      |
|--------------------------------|----------------------------------|
| D <sub>0</sub> -D <sub>7</sub> | Data Inputs                      |
| CEN                            | Clock Enable Input               |
| СР                             | Clock Input (Active Rising Edge) |
| Q <sub>0</sub> -Q <sub>7</sub> | Data Outputs                     |
| NC                             | No Connect                       |

# **Connection Diagrams**

24-Pin DIP



#### 24-Pin Quad Cerpak



# **Logic Diagram**



### **Truth Table**

|                | Inputs |    |                |  |  |  |
|----------------|--------|----|----------------|--|--|--|
| D <sub>n</sub> | CEN    | CP | Q <sub>n</sub> |  |  |  |
| L              | L      | ~  | L              |  |  |  |
| Н              | L      | ~  | н              |  |  |  |
| X              | X      | L  | NC             |  |  |  |
| X              | X      | Н  | NC             |  |  |  |
| X              | Н      | X  | NC             |  |  |  |

H = HIGH Voltage Level L = LOW Voltage Level X = Don't Care

NC = No Change

= LOW to HIGH Transition

#### **Absolute Maximum Ratings** (Note 1)

If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/ Distributors for availability and specifications.

Above which the useful life may be impared

Storage Temperature ( $T_{STG}$ )  $-65^{\circ}C$  to +150 $^{\circ}C$ 

Maximum Junction Temperature (T<sub>J</sub>)

Ceramic +175°C FF Pin Potential to Ground Pin -7.0V to +0.5V

V<sub>EE</sub> Pin Potential to Ground Pin Input Voltage (DC)

Output Current (DC Output HIGH)

ESD (Note 2)

≥2000V

# Recommended Operating Conditions

Case Temperature (T<sub>C</sub>)

Military

-55°C to +125°C

Supply Voltage  $(V_{EE})$ 

-5.7V to -4.2V

**Note 1:** Absolute maximum ratings are those values beyond which the device may be damaged or have its useful life impaired. Functional operation under these conditions is not implied.

Note 2: ESD testing conforms to MIL-STD-883, Method 3015.

#### **Military Version**

#### **DC Electrical Characteristics**

 $V_{EE}$  = -4.2V to -5.7V,  $V_{CC}$  =  $V_{CCA}$  = GND,  $T_{C}$  = -55°C to +125°C

| Symbol           | Parameter            | Min   | Max   | Units | T <sub>C</sub> | Condi                             | tions                 | Notes             |
|------------------|----------------------|-------|-------|-------|----------------|-----------------------------------|-----------------------|-------------------|
| V <sub>OH</sub>  | Output HIGH Voltage  | -1025 | -870  | mV    | 0°C to         |                                   |                       |                   |
|                  |                      |       |       |       | +125°C         |                                   |                       |                   |
|                  |                      | -1085 | -870  | mV    | −55°C          | $V_{IN} = V_{IH} (Max)$           | Loading with          | (Notes 3, 4, 5)   |
| V <sub>OL</sub>  | Output LOW Voltage   | -1830 | -1620 | mV    | 0°C to         | or V <sub>IL</sub> (Min)          | $50\Omega$ to $-2.0V$ |                   |
|                  |                      |       |       |       | +125°C         |                                   |                       |                   |
|                  |                      | -1830 | -1555 | mV    | −55°C          |                                   |                       |                   |
| V <sub>OHC</sub> | Output HIGH Voltage  | -1035 |       | mV    | 0°C to         |                                   |                       |                   |
|                  |                      |       |       |       | +125°C         |                                   |                       |                   |
|                  |                      | -1085 |       | mV    | −55°C          | $V_{IN} = V_{IH}$ (Min)           | Loading with          | (Notes 3, 4, 5)   |
| V <sub>OLC</sub> | Output LOW Voltage   |       | -1610 | mV    | 0°C to         | or V <sub>IL</sub> (Max)          | $50\Omega$ to $-2.0V$ |                   |
|                  |                      |       |       |       | +125°C         |                                   |                       |                   |
|                  |                      |       | -1555 | mV    | −55°C          |                                   |                       |                   |
| V <sub>IH</sub>  | Input HIGH Voltage   | -1165 | -870  | mV    | −55°C to       | Guaranteed HIGH Si                | ignal for all Inputs  | (Notes 3, 4, 5, 6 |
|                  |                      |       |       |       | +125°C         |                                   |                       |                   |
| V <sub>IL</sub>  | Input LOW Voltage    | -1830 | -1475 | mV    | −55°C to       | Guaranteed LOW Sig                | gnal for all Inputs   | (Notes 3, 4, 5, 6 |
|                  |                      |       |       |       | +125°C         |                                   |                       |                   |
| I <sub>IL</sub>  | Input LOW Current    | 0.50  |       | μΑ    | −55°C to       | V <sub>EE</sub> = -4.2V           |                       | (Notes 3, 4, 5)   |
|                  |                      |       |       |       | +125°C         | $V_{IN} = V_{IL} (Min)$           |                       |                   |
| I <sub>IH</sub>  | Input HIGH Current   |       | 240   | μΑ    | 0°C to         | V <sub>EE</sub> = -5.7V           |                       | (Notes 3, 4, 5)   |
|                  |                      |       |       |       | +125°C         | $V_{IN} = V_{IH} (Max)$           |                       |                   |
|                  |                      |       | 340   | μA    | −55°C          |                                   |                       |                   |
| EE               | Power Supply Current |       |       |       | −55°C to       | Inputs Open                       |                       |                   |
|                  |                      | -132  | -42   | mA    | +125°C         | $V_{FF} = -4.2V \text{ to } -5.7$ | V                     | (Notes 3, 4, 5)   |

 $V_{EE}$  to + 0.5V

-50 mA

#### **AC Electrical Characteristics**

 $\rm V_{EE}$  = -4.2V to -5.7V,  $\rm V_{CC}$  =  $\rm V_{CCA}$  = GND

| Symbol           | Parameter        | T <sub>C</sub> = | -55°C | T <sub>C</sub> = | +25°C | T <sub>C</sub> = 4 | -125°C | Units | Conditions   | Notes     |
|------------------|------------------|------------------|-------|------------------|-------|--------------------|--------|-------|--------------|-----------|
|                  |                  | Min              | Max   | Min              | Max   | Min                | Max    |       |              |           |
| f <sub>max</sub> | Toggle Frequency | 400              |       | 400              |       | 400                |        | MHz   | Figures 1, 2 | (Note 10) |

Note 3: F100K 300 Series cold temperature testing is performed by temperature soaking (to guarantee junction temperature equals -55°C), then testing immediately without allowing for the junction temperature to stabilize due to heat dissipation after power-up. This provides "cold start" specs which can be considered a worst case condition at cold temperatures.

Note 4: Screen tested 100% on each device at -55°C, +25°C, and +125°C, Subgroups 1, 2, 3, 7, and 8.

Note 5: Sample tested (Method 5005, Table I) on each manufactured lot at -55°C, +25°C, and +125°C, Subgroups A1, 2, 3, 7, and 8.

Note 6: Guaranteed by applying specified input condition and testing  $V_{OH}/V_{OL}$ .

### **AC Electrical Characteristics** (Continued)

 $V_{EE}$  = -4.2V to -5.7V,  $V_{CC}$  =  $V_{CCA}$  = GND

| Symbol              | Parameter                | T <sub>C</sub> = | T <sub>C</sub> = -55°C |      | T <sub>C</sub> = +25°C |      | T <sub>C</sub> = +125°C |    | Conditions   | Notes        |
|---------------------|--------------------------|------------------|------------------------|------|------------------------|------|-------------------------|----|--------------|--------------|
|                     |                          | Min              | Max                    | Min  | Max                    | Min  | Max                     |    |              |              |
| t <sub>PLH</sub>    | Propagation Delay        | 0.70             | 3.30                   | 0.80 | 3.10                   | 0.80 | 3.50                    | ns |              | (Notes 7, 8, |
| t <sub>PHL</sub>    | CP to Output             |                  |                        |      |                        |      |                         |    | Figures 1, 2 | 9, 11)       |
| t <sub>TLH</sub>    | Transition Time          | 0.40             | 2.20                   | 0.40 | 2.20                   | 0.40 | 2.20                    | ns |              | (Note 10)    |
| t <sub>THL</sub>    | 20% to 80%, 80% to 20%   |                  |                        |      |                        |      |                         |    |              |              |
| t <sub>s</sub>      | Setup Time               |                  |                        |      |                        |      |                         |    |              |              |
|                     | D <sub>n</sub>           | 0.30             |                        | 0.30 |                        | 0.30 |                         |    |              |              |
|                     | CEN (Disable Time)       | 0.60             |                        | 0.60 |                        | 0.60 |                         | ns | Figures 1, 3 | (Note 10)    |
|                     | CEN (Release Time)       | 1.40             |                        | 1.40 |                        | 1.40 |                         |    |              |              |
| t <sub>h</sub>      | Hold Time D <sub>n</sub> | 1.50             |                        | 1.50 |                        | 1.50 |                         | ns | Figures 1, 4 | (Note 10)    |
| t <sub>pw</sub> (H) | Pulse Width HIGH CP      | 2.00             | ·                      | 2.00 |                        | 2.00 |                         | ns | Figures 1, 2 | (Note 10)    |

Note 7: F100K 300 Series cold temperature testing is performed by temperature soaking (to guarantee junction temperature equals –55°C), then testing immediately after power-up. This provides "cold start" specs which can be considered a worst case condition at cold temperatures.

Note 8: Screen tested 100% on each device at +25°C temperature only, Subgroup A9.

Note 9: Sample tested (Method 5005, Table I) on each manufactured lot at +25°C, Subgroup A9, and at +125°C and -55°C, temperatures, Subgroups A10 and A11.

Note 10: Not tested at +25°C, +125°C, and -55°C temperature (design characterization data).

Note 11: The propagation delay specified is for single output switching. Delays may vary up to 300 ps with multiple outputs switching.

### **Test Circuitry**



#### Notes:

 $V_{CC}$ ,  $V_{CCA}$  = +2V,  $V_{EE}$  = -2.5V

L1 and L2 = equal length  $50\Omega$  impedance lines $R_T$  =  $50\Omega$  terminator internal to scopeDecoupling 0.1  $\mu$ F from GND to  $V_{CC}$  and  $V_{EE}$  All unused outputs are loaded with  $50\Omega$  to  $GNDC_L$  = Fixture and stray capacitance  $\leq 3$  pF

FIGURE 1. AC, Toggle Frequency Test Circuit

# **Switching Waveforms**



FIGURE 2. Propagation Delay (Clock) and Transition Times



FIGURE 3. Setup and Pulse Width Times



Note 12:  $t_s$  is the minimum time before the transition of the clock that information must be present at the data input. Note 13:  $t_h$  is the minimum time after the transition of the clock that information must remain unchanged at the data input.

FIGURE 4. Data Setup and Hold Time







24 Lead Quad Cerpak (F) NS Package Number W24B

W24B (REV D)

#### LIFE SUPPORT POLICY

NATIONAL'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DE-VICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF NATIONAL SEMI-CONDUCTOR CORPORATION. As used herein:

- 1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
- 2. A critical component in any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.



**National Semiconductor** Corporation Americas

Fax: 1-800-737-7018 Email: support@nsc.com

www.national.com

**National Semiconductor** Europe

Fax: +49 (0) 1 80-530 85 86 Fax: +49 (0) 1 80-530 85 86
Email: europe support@nsc.com
Deutsch Tel: +49 (0) 1 80-530 85 85
English Tel: +49 (0) 1 80-532 78 32
Français Tel: +49 (0) 1 80-532 93 58
Italiano Tel: +49 (0) 1 80-534 16 80 National Semiconductor Asia Pacific Customer Response Group Fax: 65-2504466

Email: sea.support@nsc.com

National Semiconductor Japan Ltd. Tel: 81-3-5620-6175 Fax: 81-3-5620-6179

| <b>x</b>          |           | Design     | Purchasing           | Quality | Company                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Jobs |
|-------------------|-----------|------------|----------------------|---------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|
| Products > Milita | ry/Aerosp | ace > Log  | ic > <u>ECL</u> > 10 | 0353    | The second of th |      |
|                   | 1         | Properties |                      |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |

# 100353 Low Power 8-Bit Latch

### **Contents**

- General Description
- Features
- Datasheet
- Package Availability, Models, Samples & Pricing
- Application Notes

# **General Description**

The 100353 contains eight D-type edge triggered, master/slave flip-flops with individual inputs  $(D_n)$ , true outputs  $(Q_n)$ , a clock input (CP), and a common clock enable pin (CEN#). Data enters the master when CP is LOW and transfers to the slave when CP goes HIGH. When the CEN# input goes HIGH it overrides all other inputs, disables the clock, and the Q outputs maintain the last state.

The 100353 output drivers are designed to drive 50 Ohm termination to -2.0V. All inputs have 50 k Ohm pull-down resistors.

## **Features**

- Low power operation
- 2000V ESD protection
- Voltage compensated operating range = -4.2V to -5.7V
- Available to MIL-STD-883

# **Datasheet**

| Title                                   | Size<br>(in<br>Kbytes) | Date         | View<br>Online        | × Download | Receive via<br>Email |
|-----------------------------------------|------------------------|--------------|-----------------------|------------|----------------------|
| 100353 Low Power 8-Bit Register         | 165<br>Kbytes          | 4-Sep-<br>98 | View<br><u>Online</u> | Download   | Receive via<br>Email |
| 100353 Mil-Aero Datasheet<br>MN100353-X | 105<br>Kbytes          |              | View<br>Online        | Download   | Receive via<br>Email |

Please use Adobe Acrobat to view PDF file(s). If you have trouble printing, see Printing Problems.

# Package Availability, Models, Samples & Pricing

|                  | Packa   | Package   |                    | Mod   | els  | Samples             | Budgeta  | ry Pricing | Std              |          |
|------------------|---------|-----------|--------------------|-------|------|---------------------|----------|------------|------------------|----------|
| Part Number      | Туре    | #<br>pins | Status             | SPICE | IBIS | & Electronic Orders | Quantity | \$US each  | Pack<br>Size     |          |
| 100353DMQB       | Cerdip  | 24        | Full<br>production | N/A   | N/A  | ·<br>×              | 50+      | \$33.0000  | tube<br>of<br>15 | []<br>10 |
| 100353FMQB       | Cerquad | 24        | Full<br>production | N/A   | N/A  | •                   | 50+      | \$36.0000  | tube<br>of<br>14 | [lc      |
| 100353FM-<br>MLS | Cerquad | 24        | Full<br>production | N/A   | N/A  |                     | 50+      | \$260.0000 | tube<br>of<br>14 | [lc      |

# **Application Notes**

| Title | Size<br>(in<br>Kbytes) | Date         | View<br>Online | Download | Receive via<br>Email |
|-------|------------------------|--------------|----------------|----------|----------------------|
|       |                        | 4-Nov-<br>95 | View<br>Online | Download | Receive via<br>Email |

Please use <u>Adobe Acrobat</u> to view PDF file(s). If you have trouble printing, see <u>Printing Problems</u>.

[Information as of 4-May-2000]

| ************************************** | The second secon |          |         |             |
|----------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|---------|-------------|
| Quick Search                           | Parametric                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | System   | Product | Homo        |
|                                        | Search                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Diagrams | Tree    | <u>Home</u> |

About Languages . About the Site . About "Cookies"
National is QS 9000 Certified . Privacy/Security
Copyright © National Semiconductor Corporation
Account Feedback