

AC Electrical Characteristics (Continued)

$\mathrm{V}_{\mathrm{EE}}=-4.2 \mathrm{~V}$ to $-5.7 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}$

Symbol	Parameter	$\mathrm{T}_{\mathrm{C}}=-55^{\circ} \mathrm{C}$		$\mathrm{T}_{\mathrm{C}}=+25^{\circ} \mathrm{C}$		$\mathrm{T}_{\mathrm{C}}=+125^{\circ} \mathrm{C}$		Units	Conditions	Notes
		Min	Max	Min	Max	Min	Max			
$\begin{aligned} & \hline \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \end{aligned}$	Propagation Delay CP to Output	0.70	3.30	0.80	3.10	0.80	3.50	ns	Figures 1, 2	$\begin{gathered} \hline \text { Notes 7, 8, } \\ 9,11) \end{gathered}$
$\begin{aligned} & \hline \mathrm{t}_{\mathrm{TLH}} \\ & \mathrm{t}_{\mathrm{THL}} \\ & \hline \end{aligned}$	Transition Time 20% to $80 \%, 80 \%$ to 20%	0.40	2.20	0.40	2.20	0.40	2.20	ns		(Note 10)
$\mathrm{t}_{\text {s }}$	Setup Time D_{n} $\overline{\mathrm{CEN}}$ (Disable Time) $\overline{\mathrm{CEN}}$ (Release Time)	$\begin{aligned} & 0.30 \\ & 0.60 \\ & 1.40 \end{aligned}$		$\begin{aligned} & 0.30 \\ & 0.60 \\ & 1.40 \\ & \hline \end{aligned}$		$\begin{aligned} & 0.30 \\ & 0.60 \\ & 1.40 \end{aligned}$		ns	Figures 1, 3	(Note 10)
t_{h}	Hold Time D_{n}	1.50		1.50		1.50		ns	Figures 1, 4	(Note 10)
$\mathrm{t}_{\mathrm{pw}}(\mathrm{H})$	Pulse Width HIGH CP	2.00		2.00		2.00		ns	Figures 1, 2	(Note 10)

Note 7: F100K 300 Series cold temperature testing is performed by temperature soaking (to guarantee junction temperature equals $-55^{\circ} \mathrm{C}$), then testing immediately after power-up. This provides "cold start" specs which can be considered a worst case condition at cold temperatures.

Note 8: Screen tested 100% on each device at $+25^{\circ} \mathrm{C}$ temperature only, Subgroup A9.
Note 9: Sample tested (Method 5005, Table I) on each manufactured lot at $+25^{\circ} \mathrm{C}$, Subgroup A9, and at $+125^{\circ} \mathrm{C}$ and $-55^{\circ} \mathrm{C}$, temperatures, Subgroups A10 and A11.
Note 10: Not tested at $+25^{\circ} \mathrm{C},+125^{\circ} \mathrm{C}$, and $-55^{\circ} \mathrm{C}$ temperature (design characterization data).
Note 11: The propagation delay specified is for single output switching. Delays may vary up to 300 ps with multiple outputs switching.

Test Circuitry

Notes:
$\mathrm{V}_{\mathrm{CC}}, \mathrm{V}_{\mathrm{CCA}}=+2 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=-2.5 \mathrm{~V}$
L 1 and $\mathrm{L} 2=$ equal length 50Ω impedance lines $\mathrm{R}_{\mathrm{T}}=50 \Omega$ terminator internal to scopeDecoupling $0.1 \mu \mathrm{~F}$ from GND to V_{CC} and V_{EE} All unused outputs are loaded with 50Ω to GNDC $_{\mathrm{L}}=$ Fixture and stray capacitance $\leq 3 \mathrm{pF}$

FIGURE 1. AC, Toggle Frequency Test Circuit

Switching Waveforms

FIGURE 2. Propagation Delay (Clock) and Transition Times

FIGURE 3. Setup and Pulse Width Times

Note 12: t_{s} is the minimum time before the transition of the clock that information must be present at the data input. Note 13: t_{h} is the minimum time after the transition of the clock that information must remain unchanged at the data input. FIGURE 4. Data Setup and Hold Time
\square

Physical Dimensions inches (millimeters) unless otherwise noted

24-Lead Ceramic Dual-In-Line Package (0.400" Wide) (D) NS Package Number J24E

W24B (REV D
24 Lead Quad Cerpak (F) NS Package Number W24B

LIFE SUPPORT POLICY

NATIONAL'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF NATIONAL SEMICONDUCTOR CORPORATION. As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user
2. A critical component in any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

National Semiconductor Corporation	National Semiconductor Europe	National Semiconductor Asia Pacific Customer	National Semiconductor Japan Ltd.
Americas	Fax: +49 (0) 1 80-530 8586	Response Group	Tel: 81-3-5620-6175
Tel: 1-800-272-9959	Email: europe.support@nsc.com	Tel: 65-2544466	Fax: 81-3-5620-6179
Fax: 1-800-737-7018	Deutsch Tel: +49 (0) 1 80-530 8585	Fax: 65-2504466	
Email: support@nsc.com	English Tel: +49 (0) 1 80-532 7832	Email: sea.support@nsc.com	
	Français Tel: +49 (0) 1 80-532 9358		
www.national.com	Italiano Tel: +49 (0) 1 80-534 1680		

National does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and National reserves the right at any time without notice to change said circuitry and specifications.

Products > Military/Aerospace > Logic > ECL > 100353

100353

Low Power 8-Bit Latch

Contents

- General Description
- Features
- Datasheet
- Package Availability, Models, Samples
\& Pricing
- Application Notes

General Description

The 100353 contains eight D-type edge triggered, master/slave flip-flops with individual inputs (D_{n}), true outputs (Q_{n}), a clock input (CP), and a common clock enable pin (CEN\#). Data enters the master when CP is LOW and transfers to the slave when CP goes HIGH. When the CEN\# input goes HIGH it overrides all other inputs, disables the clock, and the Q outputs maintain the last state.

The 100353 output drivers are designed to drive 50 Ohm termination to -2.0 V . All inputs have 50 k Ohm pull-down resistors.

Features

- Low power operation
- 2000 V ESD protection
- Voltage compensated operating range $=-4.2 \mathrm{~V}$ to -5.7 V
- Available to MIL-STD-883

Datasheet

Title	$\begin{gathered} \text { Size } \\ \text { (in } \\ \text { Kbytes) } \end{gathered}$	Date	区 View Online	Download	\square Receive via Email
100353 Low Power 8-Bit Register	$\begin{aligned} & 165 \\ & \text { Kbytes } \end{aligned}$	$\begin{aligned} & 4 \text { 4-Sep- } \\ & 98 \end{aligned}$	View Online	Download	Receive via Email
100353 Mil-Aero Datasheet MN100353-X	$\begin{aligned} & 105 \\ & \text { Kbytes } \\ & \hline \end{aligned}$		View Online	Download	Receive via Email

Please use Adobe Acrobat to view PDF file(s).
If you have trouble printing, see Printing Problems.

Package Availability, Models, Samples \& Pricing

Part Number	Package		Status	Models		Samples \& Electronic Orders	Budgetary Pricing		Std Pack Size		
	Type	$\left\lvert\, \begin{gathered} \# \\ \text { pins } \end{gathered}\right.$		SPICE	IBIS		Quantity	\$US each			
100353DMQB	Cerdip	24	Full production	N/A	N/A	\boxtimes	$50+$	\$33.0000	tube of 15	$[1$ 10	
100353FMQB	Cerquad	24	$\underset{\text { production }}{\text { Full }}$	N/A	N/A	.	$50+$	\$36.0000	$\left\lvert\, \begin{gathered} \text { tube } \\ \text { of } \\ 14 \end{gathered}\right.$	[lc	
$\\|_{100353 \text { FM- }}^{\text {MLS }}$	Cerquad	24	Full production	N/A	N/A	.	$50+$	\$260.0000	$\begin{array}{\|c\|} \hline \text { tube } \\ \text { of } \\ 14 \end{array}$	[k	

Application Notes

| Title | Size
 (in
 Kbytes) | Date | $\frac{x}{\text { View }}$
 Online | Download | Receive via
 Email |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| AN-353: MM58167B Real-Time
 Clock Design Guide | 263
 Kbytes | 4-Nov-
 95 | View
 Online | Download | Receive via
 Email |

Please use Adobe Acrobat to view PDF file(s).
If you have trouble printing, see Printing Problems.

| Quick Search | Parametric
 Search | System
 Diagrams | Product
 Tree |
| :---: | :---: | :---: | :---: | Home

About Languages. About the Site. About "Cookies"
National is QS 9000 Certified. Privacy/Security
Copyright © National Semiconductor Corporation
Account Feedback

