- Member of the Texas Instruments Widebus ${ }^{\text {TM }}$ Family
- EPIC ${ }^{\text {TM }}$ (Enhanced-Performance Implanted CMOS) Submicron Process
- ESD Protection Exceeds 2000 V Per MIL-STD-883, Method 3015; Exceeds 200 V Using Machine Model ($C=200 \mathrm{pF}, \mathrm{R}=0$)
- Latch-Up Performance Exceeds 250 mA Per JESD 17
- Bus Hold on Data Inputs Eliminates the Need for External Pullup/Pulldown Resistors
- Package Options Include Plastic 300-mil Shrink Small-Outline (DL) and Thin Shrink Small-Outline (DGG) Packages

description

This 20-bit bus-interface flip-flop is designed for $1.65-\mathrm{V}$ to $3.6-\mathrm{V} \mathrm{V}_{\mathrm{CC}}$ operation.
The SN74ALVCH16821 can be used as two 10-bit flip-flops or one 20 -bit flip-flop. The 20 flip-flops are edge-triggered D-type flip-flops. On the positive transition of the clock (CLK) input, the device provides true data at the Q outputs.
A buffered output-enable ($\overline{\mathrm{OE}}$) input can be used to place the ten outputs in either a normal logic state (high or low logic levels) or the high-impedance state. In the high-impedance state, the outputs neither load nor drive the bus lines significantly. The high-impedance state and increased drive provide the capability to drive bus lines without need for interface or pullup components.
$\overline{\mathrm{OE}}$ does not affect the internal operation of the flip-flops. Old data can be retained or new data can be entered while the outputs are in the high-impedance state.
To ensure the high-impedance state during power up or power down, $\overline{\mathrm{OE}}$ should be tied to V_{CC} through a pullup resistor; the minimum value of the resistor is determined by the current-sinking capability of the driver.
Active bus-hold circuitry is provided to hold unused or floating data inputs at a valid logic level.
The SN74ALVCH16821 is characterized for operation from $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$.

SN74ALVCH16821

3.3-V 20-BIT BUS-INTERFACE FLIP-FLOP

WITH 3-STATE OUTPUTS
SCES037C - JULY 1995 - REVISED FEBRUARY 1999
FUNCTION TABLE
(each 10-bit flip-flop)

INPUTS			OUTPUT
$\overline{\mathbf{O E}}$	CLK	\mathbf{D}	\mathbf{Q}
L	\uparrow	H	H
L	\uparrow	L	L
L	H or L	X	Q_{0}
H	X	X	Z

logic symbol \dagger

\dagger This symbol is in accordance with ANSI/IEEE Std 91-1984 and IEC Publication 617-12.

logic diagram (positive logic)

To Nine Other Channels

absolute maximum ratings over operating free-air temperature range (unless otherwise noted) \dagger

$$
\begin{aligned}
& \text { Supply voltage range, } \mathrm{V}_{\mathrm{CC}} \ldots . . \ldots . . . \text {. }-0.5 \mathrm{~V} \text { to } 4.6 \mathrm{~V} \\
& \text { Input voltage range, } \mathrm{V}_{\mathrm{I}} \text { (see Note 1) . } 0.5 \mathrm{~V} \text {. to } 4.6 \mathrm{~V} \\
& \text { Output voltage range, } \mathrm{V}_{\mathrm{O}} \text { (see Notes } 1 \text { and 2) . }-0.5 \mathrm{~V} \text { to } \mathrm{V}_{\mathrm{CC}}+0.5 \mathrm{~V} \\
& \text { Input clamp current, } \mathrm{I}_{\mathrm{IK}}\left(\mathrm{~V}_{\mathrm{I}}<0\right) \text {. }-50 \mathrm{~mA} \\
& \text { Output clamp current, } \mathrm{I}_{\mathrm{OK}}\left(\mathrm{~V}_{\mathrm{O}}<0\right) \ldots \text {. } 50 \mathrm{~mA} \\
& \text { Continuous output current, } \mathrm{I}_{\mathrm{O}} \text {. } \pm 50 \mathrm{~mA} \\
& \text { Continuous current through each } \mathrm{V}_{\mathrm{CC}} \text { or GND . } \pm 100 \mathrm{~mA} \\
& \text { Package thermal impedance, } \theta_{J A} \text { (see Note 3): DGG package . 81 } 8{ }^{\circ} \mathrm{C} / \mathrm{W} \\
& \text { DL package . } 74^{\circ} \mathrm{C} / \mathrm{W} \\
& \text { Storage temperature range, } T_{\text {stg }} \\
& -65^{\circ} \mathrm{C} \text { to } 150^{\circ} \mathrm{C} \\
& \dagger \text { Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and } \\
& \text { functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not } \\
& \text { implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability. } \\
& \text { NOTES: 1. The input negative-voltage and output voltage ratings may be exceeded if the input and output current ratings are observed. } \\
& \text { 2. This value is limited to } 4.6 \mathrm{~V} \text { maximum. } \\
& \text { 3. The package thermal impedance is calculated in accordance with JESD } 51 .
\end{aligned}
$$

3.3-V 20-BIT BUS-INTERFACE FLIP-FLOP

WITH 3-STATE OUTPUTS
SCES037C - JULY 1995 - REVISED FEBRUARY 1999

recommended operating conditions (see Note 4)

			MIN	MAX	UNIT
V_{CC}	Supply voltage		1.65	3.6	V
V_{IH}	High-level input voltage	$\mathrm{V}_{\mathrm{CC}}=1.65 \mathrm{~V}$ to 1.95 V	$0.65 \times \mathrm{V}_{\mathrm{CC}}$		V
		$\mathrm{V}_{\mathrm{CC}}=2.3 \mathrm{~V}$ to 2.7 V	1.7		
		$\mathrm{V}_{\mathrm{CC}}=2.7 \mathrm{~V}$ to 3.6 V	2		
V_{IL}	Low-level input voltage	$\mathrm{V}_{\mathrm{CC}}=1.65 \mathrm{~V}$ to 1.95 V		$0.35 \times \mathrm{V}_{\mathrm{CC}}$	V
		$\mathrm{V}_{\mathrm{CC}}=2.3 \mathrm{~V}$ to 2.7 V		0.7	
		$\mathrm{V}_{\mathrm{CC}}=2.7 \mathrm{~V}$ to 3.6 V		0.8	
V_{1}	Input voltage		0	V_{CC}	V
V_{O}	Output voltage		0	V_{CC}	V
IOH	High-level output current	$\mathrm{V}_{\mathrm{CC}}=1.65 \mathrm{~V}$		-4	mA
		$\mathrm{V}_{\mathrm{CC}}=2.3 \mathrm{~V}$		-12	
		$\mathrm{V}_{\mathrm{CC}}=2.7 \mathrm{~V}$		-12	
		$\mathrm{V}_{\mathrm{CC}}=3 \mathrm{~V}$		-24	
${ }^{\text {IOL}}$	Low-level output current	$\mathrm{V}_{\mathrm{CC}}=1.65 \mathrm{~V}$		4	mA
		$\mathrm{V}_{\mathrm{CC}}=2.3 \mathrm{~V}$		12	
		$\mathrm{V}_{\mathrm{CC}}=2.7 \mathrm{~V}$		12	
		$\mathrm{V}_{\mathrm{CC}}=3 \mathrm{~V}$		24	
$\Delta t / \Delta \mathrm{v}$	Input transition rise or fall rate			10	ns/V
T_{A}	Operating free-air temperature		-40	85	${ }^{\circ} \mathrm{C}$

NOTE 4: All unused control inputs of the device must be held at V_{CC} or GND to ensure proper device operation. Refer to the TI application report, Implications of Slow or Floating CMOS Inputs, literature number SCBA004.
electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

\dagger All typical values are at $\mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
\ddagger This is the bus-hold maximum dynamic current. It is the minimum overdrive current required to switch the input from one state to another.
timing requirements over recommended operating free-air temperature range (unless otherwise noted) (see Figures 1 through 3)

		$\mathrm{V}_{\mathrm{CC}}=1.8 \mathrm{~V}$	$\begin{gathered} \mathrm{V}_{\mathrm{CC}}=2.5 \mathrm{~V} \\ \pm 0.2 \mathrm{~V} \end{gathered}$		$\mathrm{V}_{\mathrm{CC}}=2.7 \mathrm{~V}$		$\begin{gathered} \mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V} \\ \pm 0.3 \mathrm{~V} \end{gathered}$		UNIT
		MIN MAX	MIN	MAX	MIN	MAX	MIN	MAX	
$\mathrm{f}_{\text {clock }}$	Clock frequency	§		150		150		150	MHz
t_{w}	Pulse duration, CLK high or low	§	3.3		3.3		3.3		ns
$\mathrm{t}_{\text {su }}$	Setup time, data before CLK \uparrow	§	4.4		3.9		3.4		ns
th_{h}	Hold time, data after CLK \uparrow	§	0		0		0		ns

§ This information was not available at the time of publication.

3.3-V 20-BIT BUS-INTERFACE FLIP-FLOP

WITH 3-STATE OUTPUTS

SCES037C - JULY 1995 - REVISED FEBRUARY 1999
switching characteristics over recommended operating free-air temperature range (unless otherwise noted) (see Figures 1 through 3)

PARAMETER	FROM (INPUT)	TO (OUTPUT)	$\mathrm{V}_{\mathrm{CC}}=1.8 \mathrm{~V}$	$\begin{gathered} \mathrm{V}_{\mathrm{CC}}=2.5 \mathrm{~V} \\ \pm 0.2 \mathrm{~V} \end{gathered}$		$\mathrm{V}_{\mathrm{CC}}=2.7 \mathrm{~V}$		$\begin{gathered} \mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V} \\ \pm 0.3 \mathrm{~V} \end{gathered}$		UNIT
			MIN TYP	MIN	MAX	MIN	MAX	MIN	MAX	
$f_{\text {max }}$			\dagger	150		150		150		MHz
$t_{\text {pd }}$	CLK	Q	\dagger	1	5.8		5.3	1	4.5	ns
ten	$\overline{\mathrm{OE}}$	Q	\dagger	1	6.6		6.2	1	5.1	ns
$\mathrm{t}_{\text {dis }}$	$\overline{\mathrm{OE}}$	Q	\dagger	1	5.7		5	1	4.6	ns

\dagger This information was not available at the time of publication.
operating characteristics, $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

PARAMETER			TEST CONDITIONS		$\mathrm{V}_{\text {CC }}=1.8 \mathrm{~V}$	$\mathrm{V}_{\text {CC }}=2.5 \mathrm{~V}$	$\mathrm{V}_{\text {CC }}=3.3 \mathrm{~V}$	UNIT		
			TYP	TYP	TYP					
C_{pd}	Power dissipation capacitance	Outputs enabled			$C_{L}=50 \mathrm{pF}, \quad \mathrm{f}=10 \mathrm{MHz}$		\dagger	36	40	pF
		Outputs disabled	\dagger	22			24			

[^0]
PARAMETER MEASUREMENT INFORMATION $\mathrm{V}_{\mathrm{CC}}=1.8 \mathrm{~V}$

TEST	$\mathbf{S 1}$
$\mathrm{t}_{\text {pd }}$	Open
$\mathrm{tPLZ}^{\prime} / \mathrm{tPZL}$	$2 \times \mathrm{V}_{\mathbf{C C}}$
$\mathrm{t}_{\mathrm{PHZ}} / \mathrm{t}_{\mathrm{PZH}}$	GND

LOAD CIRCUIT

VOLTAGE WAVEFORMS
SETUP AND HOLD TIMES

> VOLTAGE WAVEFORMS
> PROPAGATION DELAY TIMES

VOLTAGE WAVEFORMS
PULSE DURATION

> VOLTAGE WAVEFORMS
> ENABLE AND DISABLE TIMES

NOTES: A. C_{L} includes probe and jig capacitance.
B. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control.

Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control.
C. All input pulses are supplied by generators having the following characteristics: $\mathrm{PRR} \leq 10 \mathrm{MHz}, \mathrm{Z}_{\mathrm{O}}=50 \Omega, \mathrm{t}_{\mathrm{r}} \leq 2 \mathrm{~ns}, \mathrm{t}_{\mathrm{f}} \leq 2 \mathrm{~ns}$.
D. The outputs are measured one at a time with one transition per measurement.
E. $t_{P L Z}$ and $t_{P H Z}$ are the same as $t_{\text {dis }}$.
F. tPZL and tPZH are the same as ten.
G. $t_{P L H}$ and $t_{P H L}$ are the same as $t_{p d}$.

Figure 1. Load Circuit and Voltage Waveforms

$$
\mathrm{V}_{\mathrm{CC}}=2.5 \mathrm{~V} \pm 0.2 \mathrm{~V}
$$

TEST	S1
$\mathrm{t}_{\text {pd }}$	Open
$\mathrm{t}_{\text {PLZ }} / \mathrm{tPZL}$	$2 \times \mathrm{V}_{\text {CC }}$
$\mathrm{t}_{\text {PHZ }} / \mathrm{t}_{\text {PZH }}$	GND

LOAD CIRCUIT

> VOLTAGE WAVEFORMS PROPAGATION DELAY TIMES

VOLTAGE WAVEFORMS PULSE DURATION

VOLTAGE WAVEFORMS
ENABLE AND DISABLE TIMES

NOTES: A. C_{L} includes probe and jig capacitance.
B. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control.
C. All input pulses are supplied by generators having the following characteristics: $\mathrm{PRR} \leq 10 \mathrm{MHz}, \mathrm{Z}_{\mathrm{O}}=50 \Omega, \mathrm{t}_{\mathrm{r}} \leq 2 \mathrm{~ns}, \mathrm{t}_{\mathrm{f}} \leq 2 \mathrm{~ns}$.
D. The outputs are measured one at a time with one transition per measurement.
E. tPLZ and tPHZ^{2} are the same as $\mathrm{t}_{\text {dis }}$.
F. tpZL and tpZH are the same as ten.
G. tPLH and tPHL are the same as t_{pd}.

Figure 2. Load Circuit and Voltage Waveforms

3.3-V 20-BIT BUS-INTERFACE FLIP-FLOP
 WITH 3-STATE OUTPUTS
 SCES037C - JULY 1995 - REVISED FEBRUARY 1999

PARAMETER MEASUREMENT INFORMATION
 $\mathrm{V}_{\mathrm{CC}}=2.7 \mathrm{~V}$ AND 3.3 $\mathrm{V} \pm 0.3 \mathrm{~V}$

TEST	S1
$\mathbf{t}_{\text {pd }}$	Open
tPLZ $^{\prime}$ PRZL	6 V
tPHZ $^{\text {PPZH }}$	GND

VOLTAGE WAVEFORMS PROPAGATION DELAY TIMES

> VOLTAGE WAVEFORMS
> ENABLE AND DISABLE TIMES

NOTES: A. C_{L} includes probe and jig capacitance.
B. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control.
C. All input pulses are supplied by generators having the following characteristics: $\mathrm{PRR} \leq 10 \mathrm{MHz}, \mathrm{Z}_{\mathrm{O}}=50 \Omega, \mathrm{t}_{\mathrm{r}} \leq 2.5 \mathrm{~ns}, \mathrm{t}_{\mathrm{f}} \leq 2.5 \mathrm{~ns}$.
D. The outputs are measured one at a time with one transition per measurement.
E. $t_{P L Z}$ and $t_{P H Z}$ are the same as $t_{\text {dis }}$.
F. $t_{P Z L}$ and $t_{P Z H}$ are the same as $t_{e n}$.
G. tPLH and tPHL are the same as t_{pd}.

Figure 3. Load Circuit and Voltage Waveforms

PIM	$\mathbf{2 8}$	$\mathbf{4 8}$	$\mathbf{5 6}$
A MAX	0.380 $(9,65)$	0.630 $(16,00)$	0.730 $(18,54)$
A MIN	0.370 $(9,40)$	0.620 $(15,75)$	0.720 $(18,29)$

NOTES: A. All linear dimensions are in inches (millimeters).
B. This drawing is subject to change without notice.
C. Body dimensions do not include mold flash or protrusion not to exceed $0.006(0,15)$.
D. Falls within JEDEC MO-118

48 PINS SHOWN

NOTES: A. All linear dimensions are in millimeters.
B. This drawing is subject to change without notice.
C. Body dimensions do not include mold protrusion not to exceed 0,15.
D. Falls within JEDEC MO-153

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to Tl's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for such altered documentation.

Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Mailing Address:
Texas Instruments
Post Office Box 655303
Dallas, Texas 75265

[^0]: \dagger This information was not available at the time of publication.

