National Semiconductor is now part of

Texas Instruments.

Search <u>http://www.ti.com/</u> for the latest technical

information and details on our current products and services.

March 2006

F156JAN JFET Input Operational Amplifiers

LF156JAN JFET Input Operational Amplifiers General Description Applic

This is the first monolithic JFET input operational amplifier to incorporate well matched, high voltage JFETs on the same chip with standard bipolar transistors (BI-FETTM Technology). This amplifier features low input bias and offset currents/low offset voltage and offset voltage drift, coupled with offset adjust which does not degrade drift or common-mode rejection. The device is also designed for high slew rate, wide bandwidth, extremely fast settling time, low voltage and current noise and a low 1/*f* noise corner.

Features

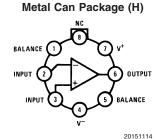
Advantages

- Replace expensive hybrid and module FET op amps
- Rugged JFETs allow blow-out free handling compared with MOSFET input devices
- Excellent for low noise applications using either high or low source impedance—very low 1/f corner
- Offset adjust does not degrade drift or common-mode rejection as in most monolithic amplifiers
- New output stage allows use of large capacitive loads (5,000 pF) without stability problems
- Internal compensation and large differential input voltage capability

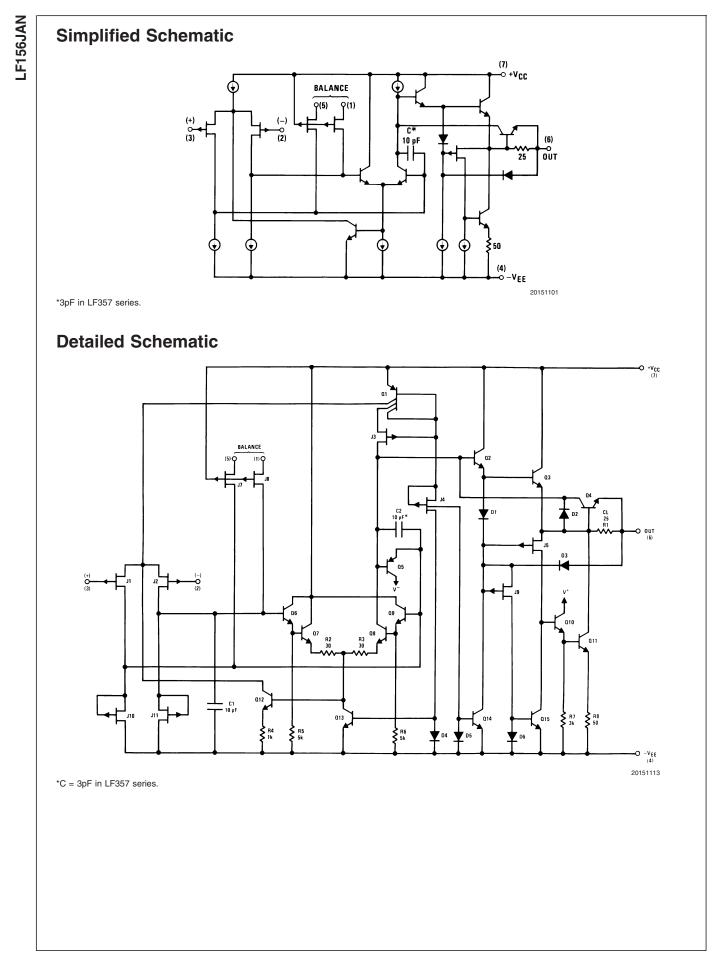
Applications

- Precision high speed integrators
- Fast D/A and A/D converters
- High impedance buffers
- Wideband, low noise, low drift amplifiers
- Logarithmic amplifiers
- Photocell amplifiers
- Sample and Hold circuits

Common Features


Low input bias current:	30pA
Low Input Offset Current:	ЗрА
High input impedance:	10 ¹² Ω
Low input noise current:	0.01 pA/√Hz
High common-mode rejection ratio:	100 dB
Large dc voltage gain:	106 dB
Uncommon Features	
 Extremely fast settling 	
time to 0.01%	1.5µs
Fast slew rate	12V/µs
Wide gain bandwidth	5MHz

• Low input noise voltage $12 \text{ nV}/\sqrt{\text{Hz}}$


Ordering Information

NS PART NUMBER	SMD PART NUMBER	NS PACKAGE NUMBER	PACKAGE DISCRIPTION
JL156BGA	JM38510/11402	H08C	8LD Metal Can
JL156SGA	JM38510/11402	H08C	8LD Metal Can

Connection Diagrams

Top View See NS Package Number H08C

www.national.com

Absolute Maximum Ratings (Note 1)

_	
Supply Voltage	±22V
Differential Input Voltage	±40V
Input Voltage Range (Note 3)	±20V
Output Short Circuit Duration (Note 4)	Continuous
T _{JMAX}	175°C
Power Dissipation at $T_A = 25^{\circ}C$ (Note 2)	
Still Air	560 mW
500 LF/Min Air Flow	1200 mW
Thermal Resistance	
θ_{JA}	
Still Air	160°C/W
400 LF/Min Air Flow	65°C/W
θ _{JC}	23°C/W
Storage Temperature Range	$-65^{\circ}C \le T_A \le +150^{\circ}C$
Lead Temperature (Soldering 10 sec.)	300°C
ESD tolerance (Note 5)	1200V

Recommended Operating Conditions

Supply voltage range Ambient temperature range

Quality Conformance Inspection

MIL-STD-883, Method 5005 - Group A

Subgroup	Description	Temp (C)		
1	Static tests at	+25		
2	Static tests at	+125		
3	Static tests at	-55		
4	Dynamic tests at	+25		
5	Dynamic tests at	+125		
6	Dynamic tests at	-55		
7	Functional tests at	+25		
8A	Functional tests at	+125		
8B	Functional tests at	-55		
9	Switching tests at	+25		
10	Switching tests at	+125		
11	Switching tests at	-55		
12	Settling time at	+25		

LF156JAN

 ± 5 to ± 20 V_{DC} -55°C $\leq T_A \leq +125°C$

LF156 Electrical Characteristics

DC Parameters

The following conditions apply, unless otherwise specified.

DC: $V_{CC} = \pm 20V$, $V_{CM} = 0V$

Symbol	Parameter	Conditions	Notes	Min	Мах	Unit	Sub- groups
					7.0	mA	1
сс	Supply Current	$+V_{CC} = 15V, -V_{CC} = -15V$			6.0	mA	2
					11	mA	3
V _{IO}	Input Offset Voltage	$+V_{CC} = 5V, -V_{CC} = -35V,$		-5.0	5.0	mV	1
		V _{CM} = 15V		-7.0	7.0	mV	2, 3
		$+V_{\rm CC} = 35V, -V_{\rm CC} = -5V,$		-5.0	5.0	mV	1
		V _{CM} = -15V		-7.0	7.0	mV	2, 3
				-5.0	5.0	mV	1
				-7.0	7.0	mV	2, 3
		$+V_{CC} = 5V, -V_{CC} = -5V$		-5.0	5.0	mV	1
				-7.0	7.0	mV	2, 3
±l _{ıB}	Input Bias Current	$+V_{CC} = 5V, -V_{CC} = -35V,$		-0.1	3.5	nA	1
		V _{CM} = 15V		-10	60	nA	2
		$+V_{\rm CC} = 35V, -V_{\rm CC} = -5V,$		-0.1	0.1	nA	1
		V _{CM} = -15V		-10	50	nA	2
				-0.1	0.1	nA	1
				-10	50	nA	2
		$+V_{CC} = 5V, -V_{CC} = -25V,$		-0.1	0.3	nA	1
		V _{CM} = 10V		-10	50	nA	2
1 ₁₀	Input Offset Current			-0.02	0.02	nA	1
	Dower Cumply Dejection Datio			-20	+20	nA	2
+PSRR	Power Supply Rejection Ratio	$+V_{CC} = 10V, -V_{CC} = -20V$		85		dB	1, 2, 3
-PSRR	Power Supply Rejection Ratio	$+V_{CC} = 20V, -V_{CC} = -10V$		85		dB	1, 2, 3
CMR	Input Voltage Common Mode Rejection	V _{CM} = -15V to 15V		85		dB	1, 2, 3
V _{IO Adj} (+)	Adjustment for Input Offset Voltage			8.0		mV	1, 2, 3
V _{IO Adj} (-)	Adjustment for Input Offset Voltage				-8.0	mV	1, 2, 3
+l _{os}	Output Short Circuit Current	$+V_{CC} = 15V, -V_{CC} = -15V,$		-50		mA	1, 2, 3
	(For Positive Output)	t ≤ 25mS					., _, _
-I _{OS}	Output Short Circuit Current (For Negative Output)	$\label{eq:VCC} \begin{split} + V_{CC} &= 15V, \ \text{-}V_{CC} = \text{-}15V, \\ t \leq 25mS \end{split}$			50	mA	1, 2, 3
$\Delta V_{IO}/\Delta T$	Temperature Coefficient of	$25^{\circ}C \le T_A \le +125^{\circ}C$	(Note 7)	-30	30	μV/°C	2
	Input Offset Voltage	$-55^{\circ}C \leq T_A \leq 25^{\circ}C$	(Note 7)	-30	30	μV/°C	3
-A _{VS}	Open Loop Voltage Gain (Single Ended)	$V_{O} = -15V, R_{L} = 2K\Omega$	(Note 6) (Note 6)	50 25		V/mV V/mV	4 5, 6
+A _{vs}	Open Loop Voltage Gain	$V_{\Omega} = +15V, R_{L} = 2K\Omega$	(Note 6)	50		V/mV	4
	(Single Ended)		(Note 6)	25		V/mV	5, 6
A _{VS}	Open Loop Voltage Gain (Single Ended)	$V_{CC} = \pm 5V, V_O = \pm 2V,$ $R_L = 2K\Omega$	(Note 6)	10		V/mV	4, 5, 6
-V _{OP}	Output Voltage Swing	$V_{CM} = 20V, R_L = 10K\Omega$			-16	V	4, 5, 6
		$V_{CM} = 20V, R_L = 2K\Omega$			-15	V	4, 5, 6
+V _{OP}	Output Voltage Swing	$V_{CM} = -20V, R_L = 10K\Omega$		16		V	4, 5, 6
0.		$V_{CM} = -20V, R_L = 2K\Omega$		15		V	4, 5, 6

LF156 Electrical Characteristics (Continued)

AC Parameters

The following conditions apply, unless otherwise specified.

AC: $V_{CC} = \pm 15V$, $V_{CM} = 0V$

							Sub-
Symbol	Parameter	Conditions	Notes	Min	Max	Unit	groups
-SR	Slew Rate Fall	$V_1 = 5V$ to -5V, $A_{y} = 1$		7.5		V/µS	7
-30	Siew hale Fail	$v_1 = 5v_10 - 5v, A_V = 1$		5		V/µS	8A, 8B
+SR	Slew Rate Rise	$V_I = -5V$ to 5V, $A_V = 1$		7.5		V/µS	7
				5		V/µS	8A, 8B
TR _{TR}	Transient Response Rise Time	$R_L = 2K\Omega, C_L = 100pF,$			100	nS	7, 8A, 8B
		$V_1 = 50 mV, A_V = 1$			100	115	7, OA, OD
TR _{os}	Transient Response Overshoot	$R_L = 2K\Omega, C_L = 100pF,$			40	%	7, 8A, 8B
		$V_1 = 50 mV, A_V = 1$			40	/0	7, 0A, 0D
NI _{BB}	Noise Broad Band	BW = 5KHz, $V_{CC} = \pm 20V$			10	μV_{RMS}	7
NI _{PC}	Noise Popcorn	BW = 5KHz, $V_{CC} = \pm 20V$			40	μV _{PK}	7
tS (+)	Settling Time	A _V = -1			1500	nS	12
tS (-)	Settling Time	A _V = -1			1500	nS	12

Drift Values

The following conditions apply, unless otherwise specified.

AC: $V_{CC} = \pm 20V$, $V_{CM} = 0V$

Delta calculations performed on JAN S devices at group B, subgroup 5 only

Symbol	Parameter	Conditions	Notes	Min	Max	Unit	Sub- groups
V _{IO}	Input Offset Voltage			-1.0	1.0	mV	1
±I _{IB}	Input Bias Current			-0.05	0.05	nA	1

Note 1: Absolute Maximum Ratings indicate limits beyond which damage to the device may occur. Operating Ratings indicate condition for which the device is functional, but do not guarantee specific performance limits. For guaranteed specifications and test conditions, see the Electrical Characteristics. The guaranteed specifications apply only for the test conditions listed. Some performance characteristics may degrade when the device is not operated under the listed test conditions.

Note 2: The maximum power dissipation must be derated at elevated temperatures and is dictated by T_{Jmax} (maximum junction temperature), θ_{JA} (package junction to ambient thermal resistance), and T_A (ambient temperature). The maximum allowable power dissipation at any temperature is $P_D=(T_{Jmax}-T_A)/\theta_{JA}$ or the number given in the Absolute Maximum Ratings, whichever is lower.

Note 3: The absolute maximum negative input voltage is equal to the negative power supply voltage.

Note 4: Short circuit may be to ground or either supply. Rating applies to +125°C case temperature or +75°C ambient temperature.

Note 5: Human body model, 100pF discharged through $1.5K\Omega$.

Note 6: Datalog Reading in K = V/mV.

Note 7: Calculated parameter.

Typical DC Performance Characteristics Input Bias Current Input Bias Current 100k 100k 10k 10k INPUT BIAS CURRENT (pA) INPUT BIAS CURRENT (pA) 1k 1k ±20 Vs ±15 V_S 100 100 ±10 V_S ±5 Vs 10 10 1 1 LF155 0.1 0.1 -55 -25 5 35 65 95 125 -55 -25 CASE TEMPERATURE (°C) 20151137 **Input Bias Current** 80 40 V_S = ±15V R' = 2k T_A = 25°C 70 PEAK TO PEAK OUTPUT SWING (V) T_A = 25°C RL = 50k INPUT BIAS CURRENT (pA) 60 30 50 LF156/7 FREE AIF 20 40 LF156/7 WITH HEAT SI 30 LF 155 FREE AIR 20 10 10 LF155 WITH HEAT SINK 0 -10 -5 0 10 0 5 COMMON-MODE VOLTAGE (V) 20151139 **Supply Current** 4 7 6 SUPPLY CURRENT (mA) SUPPLY CURRENT (mA) 3 $T_{C} = -55^{\circ}C$ 5 $T_{C} = 25^{\circ}C$ 4 2 T_C = 125°C 3 L[']F155 2 1 0 0 10 25 5 15 20 SUPPLY VOLTAGE (±V) 20151141

±20 V_S

±15 Vs ±10 Vs

±5 Vs

5

Voltage Swing

LF156

125

20151138

65 95

35

CASE TEMPERATURE (°C)

10

SUPPLY VOLTAGE (±V)

Supply Current

5

5

10

SUPPLY VOLTAGE (±V)

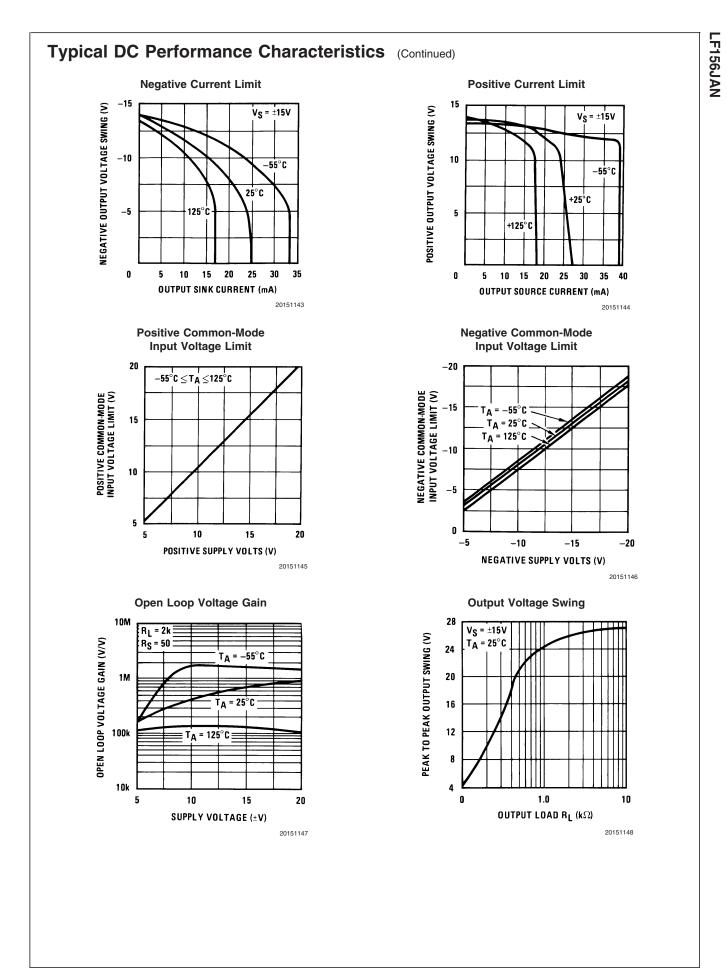
15

15

20

20151140

-55°C TC


T_C = 25°C

T_C = 125°C

LF156

25

20151142

Typical AC Performance Characteristics Gain Bandwidth **Normalized Slew Rate** 1.8 8 UNITY GAIN BANDWIDTH (MHz) 1.6 **LF157 CURVES IDENTICAL BUT MULTIPLIED BY 4** 1.4 LF156 7 1.2 LF156 1.0 LF155 6 0.8 0.6 5 ±10V ±20V ±15V 0.4 4 0.2 0 25 45 65 85 105 125 -55 -35 -15 5 -55-35-15 5 TEMPERATURE (°C) TEMPERATURE (°C) 20151150 **Output Impedance Output Impedance** 1000 100 = 25°C TΑ T_A = 25°C ٧s = ±15V ±15V OUTPUT IMPEDANCE (D) **OUTPUT IMPEDANCE** (Ω) 1118 1111 10 100 = 100 10 0.1 1 = 10 ٩., LF155 1111 0.01 0.1 10k 1k 1k 10k 100k 1M 10M FREQUENCY (Hz) 20151152 LF156 Small Signal Pulse Response, $\bar{A}_v = +1$ OUTPUT VOLTAGE SWING (50 mV/DIV) OUTPUT VOLTAGE SWING (5V/DIV) TIME (0.5 µs/DIV) 20151106

5

V_S = ±15V

65 85 105 125

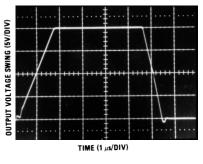
= 10 Av ++++

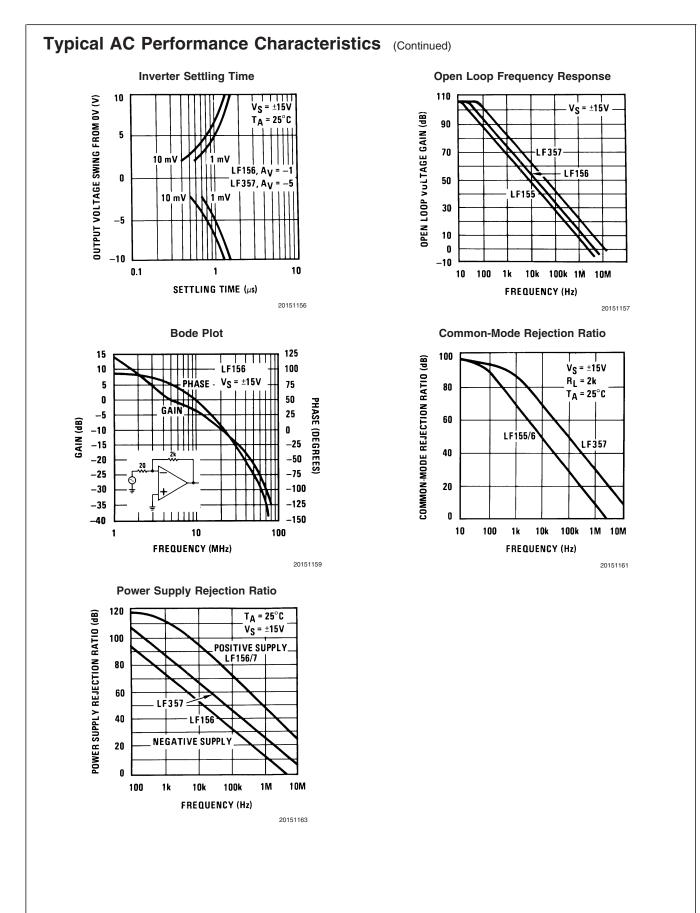
1M

20151151

20151153

10M

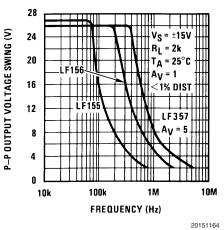

LF156 Large Signal Puls Response, $A_v = +1$


100k

FREQUENCY (Hz)

25 45

A_V = 100



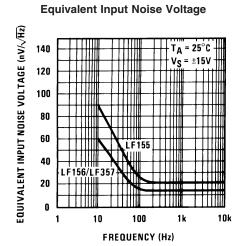
LF156JAN

LF156JAN

Typical AC Performance Characteristics (Continued)

Equivalent Input Noise Voltage (Expanded Scale)

> T_A = 25°C V_S = ±15V


LF155

100k

20151166

LF156/LF357

1k FREQUENCY (Hz)

EQUIVALENT INPUT NOISE VOLTAGE (nV/ \sqrt{Hz})

100

80

60

40

20

0

Application Hints

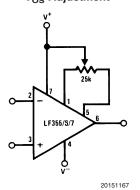
These are op amps with JFET input devices. These JFETs have large reverse breakdown voltages from gate to source and drain eliminating the need for clamps across the inputs. Therefore large differential input voltages can easily be accommodated without a large increase in input current. The maximum differential input voltage is independent of the supply voltages. However, neither of the input voltages should be allowed to exceed the negative supply as this will cause large currents to flow which can result in a destroyed unit.

Exceeding the negative common-mode limit on either input will force the output to a high state, potentially causing a reversal of phase to the output. Exceeding the negative common-mode limit on both inputs will force the amplifier output to a high state. In neither case does a latch occur since raising the input back within the common-mode range again puts the input stage and thus the amplifier in a normal operating mode.

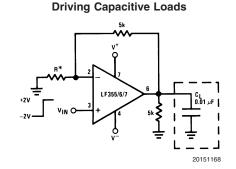
Exceeding the positive common-mode limit on a single input will not change the phase of the output however, if both inputs exceed the limit, the output of the amplifier will be forced to a high state.

These amplifiers will operate with the common-mode input voltage equal to the positive supply. In fact, the common-mode voltage can exceed the positive supply by approximately 100 mV independent of supply voltage and over the full operating temperature range. The positive supply can therefore be used as a reference on an input as, for example, in a supply current monitor and/or limiter.

Precautions should be taken to ensure that the power supply for the integrated circuit never becomes reversed in polarity or that the unit is not inadvertently installed backwards in a socket as an unlimited current surge through the resulting forward diode within the IC could cause fusing of the internal conductors and result in a destroyed unit.


All of the bias currents in these amplifiers are set by FET current sources. The drain currents for the amplifiers are therefore essentially independent of supply voltage.

As with most amplifiers, care should be taken with lead dress, component placement and supply decoupling in order to ensure stability. For example, resistors from the output to an input should be placed with the body close to the input to minimize "pickup" and maximize the frequency of the feedback pole by minimizing the capacitance from the input to ground.

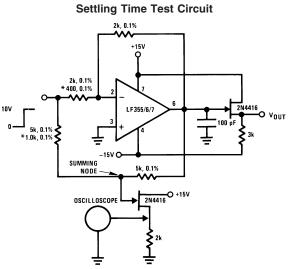

A feedback pole is created when the feedback around any amplifier is resistive. The parallel resistance and capacitance from the input of the device (usually the inverting input) to AC ground set the frequency of the pole. In many instances the frequency of this pole is much greater than the expected 3dB frequency of the closed loop gain and consequently there is negligible effect on stability margin. However, if the feedback pole is less than approximately six times the expected 3 dB frequency a lead capacitor should be placed from the output to the input of the op amp. The value of the added capacitor should be such that the RC time constant of this capacitor and the resistance it parallels is greater than or equal to the original feedback pole time constant.

Typical Circuit Connections

V_{os} Adjustment

- V_{OS} is adjusted with a 25k potentiometer
- The potentiometer wiper is connected to V⁺
- For potentiometers with temperature coefficient of 100 ppm/°C or less the additional drift with adjust is $\approx 0.5 \mu V/$ °C/mV of adjustment
- Typical overall drift: 5µV/°C ±(0.5µV/°C/mV of adj.)

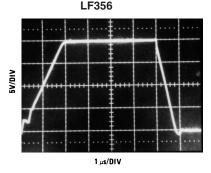
* LF156 R = 5k

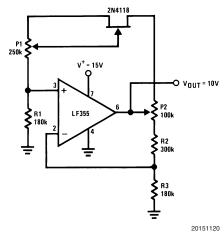

Due to a unique output stage design, these amplifiers have the ability to drive large capacitive loads and still maintain stability. $C_{L(MAX)}\simeq 0.01 \mu F.$

 $Overshoot \leq 20\%$

Settling time $(t_s) \simeq 5\mu s$

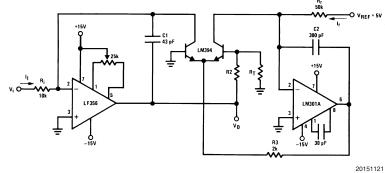
LF156JAN


Typical Applications


20151116

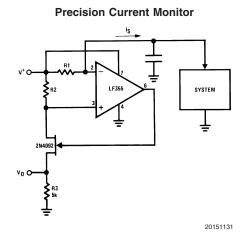
- Settling time is tested with the LF156 connected as unity gain inverter.
- FET used to isolate the probe capacitance
- Output = 10V step

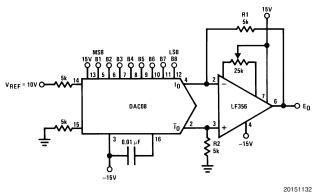
Large Signal Inverter Output, V_{OUT} (from Settling Time Circuit) LF356



Low Drift Adjustable Voltage Reference

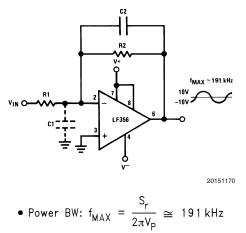
- $\Delta V_{OUT}/\Delta T = \pm 0.002\%^{\circ}C$ •
- All resistors and potentiometers should be wire-wound
- P1: drift adjust
- P2: V_{OUT} adjust •


Fast Logarithmic Converter

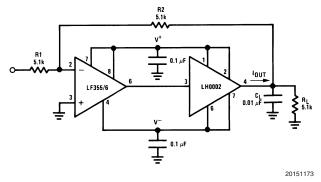

- Dynamic range: $100\mu A \le I_i \le 1mA$ (5 decades), $|V_O| = 1V/decade$ ٠
- Transient response: $3\mu s$ for $\Delta I_i = 1$ decade •
- C1, C2, R2, R3: added dynamic compensation •
- V_{OS} adjust the LF156 to minimize quiescent error
- R_T: Tel Labs type Q81 + 0.3%/°C •

$$|V_{\text{OUT}}| = \left[1 + \frac{\text{R2}}{\text{R}_{\text{T}}}\right] \frac{\text{kT}}{\text{q}} \text{ in } V_{\text{i}} \left[\frac{\text{R}_{\text{r}}}{\text{V}_{\text{REF Ri}}}\right] = \log V_{\text{i}} \frac{1}{\text{R}_{\text{i}}\text{I}_{\text{r}}} \text{ R2} = 15.7\text{k}, \text{ R}_{\text{T}} = 1\text{k}, 0.3\%/\text{°C} \text{ (for temperature compensation)}$$

- $V_{O} = 5 \text{ R1/R2} (V/mA \text{ of } I_{S})$
- R1, R2, R3: 0.1% resistors

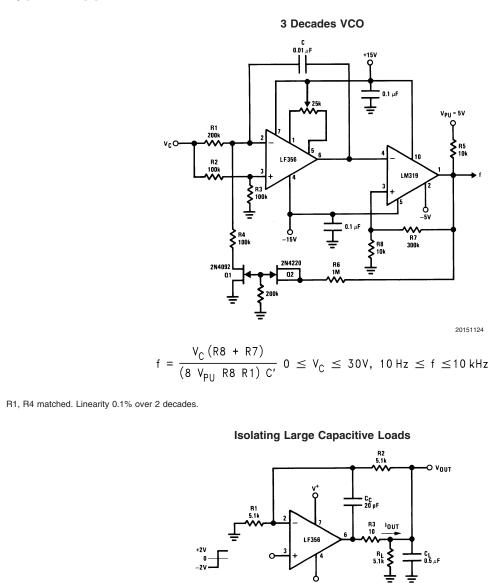

8-Bit D/A Converter with Symmetrical Offset Binary Operation

- R1, R2 should be matched within ±0.05%
- Full-scale response time: 3µs


Eo	B1	B2	B 3	B 4	B 5	B6	B7	B 8	Comments
+9.920	1	1	1	1	1	1	1	1	Positive Full-Scale
+0.040	1	0	0	0	0	0	0	0	(+) Zero-Scale
-0.040	0	1	1	1	1	1	1	1	(-) Zero-Scale
-9.920	0	0	0	0	0	0	0	0	Negative Full-Scale

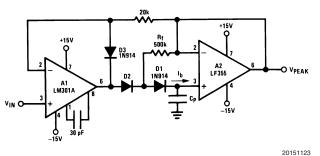
Wide BW Low Noise, Low Drift Amplifier

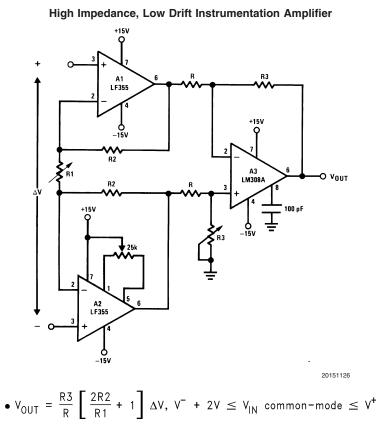
• Parasitic input capacitance C1 ≃ 3pF interacts with feedback elements and creates undesirable high frequency pole. To compensate add C2 such that: R2 C2 ≃ R1 C1.


Boosting the LF156 with a Current Amplifier

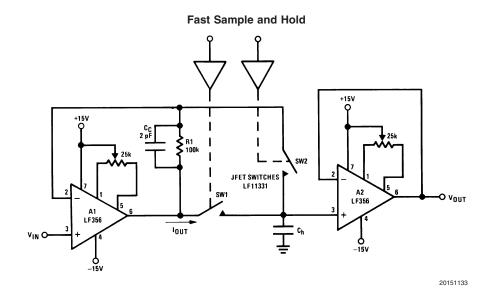
• $I_{OUT(MAX)} \simeq 150 \text{mA}$ (will drive $R_L \ge 100 \Omega$)

•
$$\frac{\Delta V_{OUT}}{\Delta T} = \frac{0.15}{10^{-2}} V/\mu s$$
 (with C_L shown)

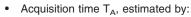

• No additional phase shift added by the current amplifier


- Overshoot 6%
- t_s 10µs
- When driving large C_L , the V_{OUT} slew rate determined by C_L and $I_{OUT(MAX)}$:

$$\frac{\Delta V_{\text{OUT}}}{\Delta T} = \frac{I_{\text{OUT}}}{C_L} \cong \frac{0.02}{0.5} \text{ V/}\mu\text{s} = 0.04 \text{ V/}\mu\text{s} \text{ (with } C_L \text{ shown)}$$

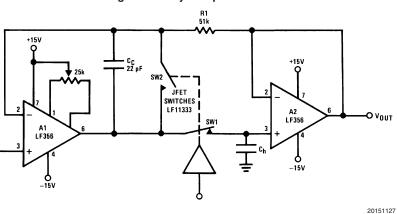


- By adding D1 and R_{f} , V_{D1} =0 during hold mode. Leakage of D2 provided by feedback path through R_{f} .
- Leakage of circuit is essentially I_b plus capacitor leakage of Cp.
- Diode D3 clamps V_{OUT} (A1) to $V_{\text{IN}}-V_{\text{D3}}$ to improve speed and to limit reverse bias of D2.
- Maximum input frequency should be << $1\!\!/_{\!2}\pi R_f C_{D2}$ where C_{D2} is the shunt capacitance of D2.

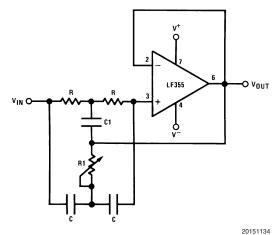


• System V_{OS} adjusted via A2 V_{OS} adjust

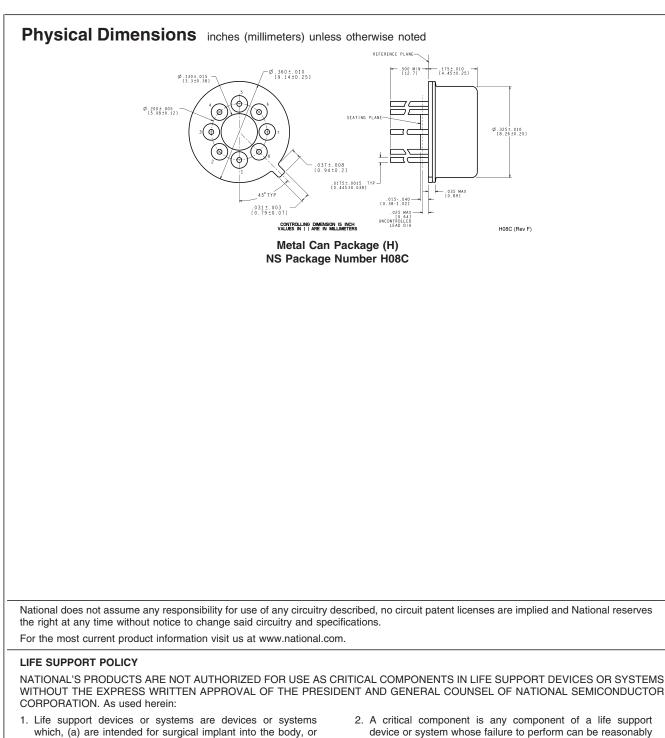
• Trim R3 to boost up CMRR to 120 dB. Instrumentation amplifier resistor array recommended for best accuracy and lowest drift


• Both amplifiers (A1, A2) have feedback loops individually closed with stable responses (overshoot negligible)

$$\begin{split} T_{A} &\cong \left[\frac{2R_{ON}, V_{IN}, C_{h}}{S_{r}}\right]^{1/2 \text{ provided that:}} \\ V_{IN} &< 2\pi S_{r} R_{ON} C_{h} \text{ and } T_{A} > \frac{V_{IN} C_{h}}{I_{OUT(MAX)}}, R_{ON} \text{ is of SW1} \\ \text{If inequality not satisfied: } T_{A} &\cong \frac{V_{IN} C_{h}}{20 \text{ mA}} \end{split}$$


- LF156 develops full S_r output capability for $V_{IN} \geq 1V$
- Addition of SW2 improves accuracy by putting the voltage drop across SW1 inside the feedback loop
- Overall accuracy of system determined by the accuracy of both amplifiers, A1 and A2

High Accuracy Sample and Hold


- By closing the loop through A2, the V_{OUT} accuracy will be determined uniquely by A1. No V_{OS} adjust required for A2.
- T_A can be estimated by same considerations as previously but, because of the added propagation delay in the feedback loop (A2) the overshoot is not negligible.
- Overall system slower than fast sample and hold
- R1, C_C: additional compensation
- Use LF156 for
 - Fast settling time
 - Low V_{OS}

High Q Notch Filter

- 2R1 = R = 10MΩ
- 2C = C1 = 300pF
- Capacitors should be matched to obtain high Q
- $f_{NOTCH} = 120$ Hz, notch = -55 dB, Q > 100
- Use LF155 for
 - Low I_B
 - Low supply current

levision	History			
Date Released	Revision	Section	Originator	Changes
03/10/06	A	New Released, Corporate format.	R. Malone	New Release, Corporate format 1 MDS data sheet converted into a Corp. data sheet format. Following MDS data sheet will be Archived MJLF156-X, Rev. 0A0.

LF156JAN JFET Input Operational Amplifiers

WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT AND GENERAL COUNSEL OF NATIONAL SEMICONDUCTOR

- (b) support or sustain life, and whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
- 2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

BANNED SUBSTANCE COMPLIANCE

National Semiconductor manufactures products and uses packing materials that meet the provisions of the Customer Products Stewardship Specification (CSP-9-111C2) and the Banned Substances and Materials of Interest Specification (CSP-9-111S2) and contain no "Banned Substances" as defined in CSP-9-111S2.

Leadfree products are RoHS compliant.

National Semiconductor Americas Customer Support Center Email: new.feedback@nsc.com Tel: 1-800-272-9959

National Semiconductor Europe Customer Support Center Fax: +49 (0) 180-530 85 86 Email: europe.support@nsc.com Deutsch Tel: +49 (0) 69 9508 6208 English Tel: +44 (0) 870 24 0 2171 Français Tel: +33 (0) 1 41 91 8790

National Semiconductor Asia Pacific Customer Support Center Email: ap.support@nsc.com National Semiconductor Japan Customer Support Center Fax: 81-3-5639-7507 Email: jpn.feedback@nsc.com Tel: 81-3-5639-7560

www.national.com