

Unit Loading/Fan Out

Pin Names	Description	$54 F / 74 F$	
		U.L. HIGH/LOW	Input $\mathbf{I}_{\mathbf{I H}} / \mathbf{I}_{\mathbf{I L}}$ Output $\mathbf{I O H}_{\mathbf{O L}}$
	Data Inputs	$1.0 / 1.0$	$20 \mu \mathrm{~A} /-0.6 \mathrm{~mA}$
LE	Latch Enable Input (Active HIGH)	$1.0 / 1.0$	$20 \mu \mathrm{~A} /-0.6 \mathrm{~mA}$
OE	TRI-STATE Output Enable Input	$1.0 / 1.0$	$20 \mu \mathrm{~A} /-0.6 \mathrm{~mA}$
$\mathrm{O}_{0}-\mathrm{O}_{7}$	(Active LOW)	TRI-STATE Latch Outputs	$150 / 40(33.3)$

Functional Description

The 'F573 contains eight D-type latches with 3-state output buffers. When the Latch Enable (LE) input is HIGH, data on the D_{n} inputs enters the latches. In this condition the latches are transparent, i.e., a latch output will change state each time its D input changes. When LE is LOW the latches store the information that was present on the D inputs a setup time preceding the HIGH-to-LOW transition of LE. The 3state buffers are controlled by the Output Enable ($\overline{\mathrm{OE}})$ input. When $\overline{O E}$ is LOW, the buffers are in the bi-state mode. When $\overline{O E}$ is HIGH the buffers are in the high impedance mode but this does not interfer with entering new data into the latches.

Function Table

Inputs			Outputs
$\overline{\mathbf{O E}}$	LE	D	O
L	H	H	H
L	H	L	L
L	L	X	O_{0}
H	X	X	Z

H = HIGH Voltage Level
L = LOW Voltage Level
$X=$ Immaterial
$\mathrm{O}_{0}=$ Value stored from previous clock cycle

Logic Diagram

TL/F/9566-5
Please note that this diagram is provided only for the understanding of logic operations and should not be used to estimate propagation delays.

Absolute Maximum Ratings (Note 1)	
If Military/Aerospace specified please contact the National Office/Distributors for availability	d devices are required, Semiconductor Sales lity and specifications.
Storage Temperature	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Ambient Temperature under Bias	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Junction Temperature under Bias Plastic	$\begin{aligned} & -55^{\circ} \mathrm{C} \text { to }+175^{\circ} \mathrm{C} \\ & -55^{\circ} \mathrm{C} \text { to }+150^{\circ} \mathrm{C} \end{aligned}$
V_{CC} Pin Potential to Ground Pin	-0.5 V to +7.0 V
Input Voltage (Note 2)	-0.5 V to +7.0 V
Input Current (Note 2)	-30 mA to +5.0 mA
Voltage Applied to Output in HIGH State (with $\mathrm{V}_{\mathrm{CC}}=0 \mathrm{~V}$) Standard Output TRI-STATE Output	$\begin{array}{r} -0.5 \mathrm{~V} \text { to } \mathrm{V}_{\mathrm{CC}} \\ -0.5 \mathrm{~V} \text { to }+5.5 \mathrm{~V} \end{array}$
Current Applied to Output in LOW State (Max)	twice the rated $\mathrm{IOL}_{\text {(}} \mathrm{mA}$)
ESD Last Passing Voltage (Min)	4000 V
Note 1: Absolute maximum ratings are values beyond which the device may be damaged or have its useful life impaired. Functional operation under these conditions is not implied.	
Note 2: Either voltage limit or current lim	sufficient to protect inputs.

Absolute Maximum Ratings (Note 1)
If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales
$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Ambient Temperature under Bias Plastic
V_{CC} Pin Potential to
Input Voltage (Note 2)
Input Current (Note 2)
Voltage Applied to Output in
TRI-STATE Output

$$
-0.5 \mathrm{~V} \text { to }+5.5 \mathrm{~V}
$$

Current Applied to Output in LOW State (Max)

$$
4000 \mathrm{~V}
$$

Note 1: Absolute maximum ratings are values beyond which the device may these conditions is not implied.
Note 2: Either voltage limit or current limit is sufficient to protect inputs.

Recommended Operating

 ConditionsFree Air Ambient Temperature

Military	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Commercial	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Supply Voltage	
Military	+4.5 V to +5.5 V
Commercial	+4.5 V to +5.5 V

DC Electrical Characteristics

Symbol	Parameter		54F/74F			Units	$\mathrm{V}_{\text {cc }}$	Conditions
			Min	Typ	Max			
$\mathrm{V}_{\text {IH }}$	Input HIGH Voltage		2.0			V		Recognized as a HIGH Signal
$\mathrm{V}_{\text {IL }}$	Input LOW Voltage				0.8	V		Recognized as a LOW Signal
$\mathrm{V}_{C D}$	Input Clamp Diode Voltage				-1.2	V	Min	$\mathrm{I}_{\mathrm{IN}}=-18 \mathrm{~mA}$
V_{OH}	Output HIGH Voltage	$54 \mathrm{~F} 10 \% \mathrm{~V}_{\mathrm{CC}}$ 54F 10\% VCC 74F 10\% VCC 74F 10\% VCC 74F 5\% VCC 74F 5\% VCC	$\begin{aligned} & 2.5 \\ & 2.4 \\ & 2.5 \\ & 2.4 \\ & 2.7 \\ & 2.7 \end{aligned}$			V	Min	$\begin{aligned} & \mathrm{I}_{\mathrm{OH}}=-1 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{OH}}=-3 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{OH}}=-1 \mathrm{~mA} \\ & \mathrm{IOH}_{\mathrm{OH}}=-3 \mathrm{~mA} \\ & \mathrm{IOH}_{\mathrm{OH}}=-1 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{OH}}=-3 \mathrm{~mA} \\ & \hline \end{aligned}$
V_{OL}	Output LOW Voltage	$\begin{aligned} & 54 \mathrm{~F} 10 \% \mathrm{~V}_{\mathrm{CC}} \\ & 74 \mathrm{~F} 10 \% \mathrm{~V}_{\mathrm{CC}} \end{aligned}$			$\begin{aligned} & 0.5 \\ & 0.5 \end{aligned}$	V	Min	$\begin{aligned} & \mathrm{IOL}_{\mathrm{OL}}=20 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{OL}}=24 \mathrm{~mA} \\ & \hline \end{aligned}$
I_{H}	Input HIGH Current	$\begin{aligned} & 54 \mathrm{~F} \\ & 74 \mathrm{~F} \end{aligned}$			$\begin{gathered} 20.0 \\ 5.0 \end{gathered}$	$\mu \mathrm{A}$	Max	$\mathrm{V}_{\mathrm{IN}}=2.7 \mathrm{~V}$
$\mathrm{I}_{\mathrm{BVI}}$	Input HIGH Current Breakdown Test	$\begin{aligned} & 54 \mathrm{~F} \\ & 74 \mathrm{~F} \end{aligned}$			$\begin{aligned} & \hline 100 \\ & 7.0 \end{aligned}$	$\mu \mathrm{A}$	Max	$\mathrm{V}_{\mathrm{IN}}=7.0 \mathrm{~V}$
$I_{\text {CEX }}$	Output HIGH Leakage Current	$\begin{aligned} & 54 \mathrm{~F} \\ & 74 \mathrm{~F} \end{aligned}$			$\begin{gathered} 250 \\ 50 \end{gathered}$	$\mu \mathrm{A}$	Max	$\mathrm{V}_{\text {OUT }}=\mathrm{V}_{\text {CC }}$
$\mathrm{V}_{\text {ID }}$	Input Leakage Test	74F	4.75			V	0.0	$\begin{aligned} & \mathrm{I} I \mathrm{D}=1.9 \mu \mathrm{~A} \\ & \text { All Other Pins Grounded } \end{aligned}$
IOD	Output Leakage Circuit Current	74F			3.75	$\mu \mathrm{A}$	0.0	$\begin{aligned} & \mathrm{V}_{\text {IOD }}=150 \mathrm{mV} \\ & \text { All Other Pins Grounded } \end{aligned}$
IIL	Input LOW Current				-0.6	mA	Max	$\mathrm{V}_{\text {IN }}=0.5 \mathrm{~V}$
IOZH	Output Leakage Cu				50	$\mu \mathrm{A}$	Max	$\mathrm{V}_{\text {OUT }}=2.7 \mathrm{~V}$
IOZL	Output Leakage Cu				-50	$\mu \mathrm{A}$	Max	$\mathrm{V}_{\text {OUT }}=0.5 \mathrm{~V}$
los	Output Short-Circuit	urrent	-60		-150	mA	Max	$\mathrm{V}_{\text {OUT }}=0 \mathrm{~V}$
Izz	Bus Drainage Test				500	$\mu \mathrm{A}$	0.0V	$\mathrm{V}_{\text {OUT }}=5.25 \mathrm{~V}$
$\mathrm{I}_{\text {CCL }}$	Power Supply Curre			35	55	mA	Max	$\mathrm{V}_{\mathrm{O}}=$ LOW
ICCZ	Power Supply Curre			35	55	mA	Max	$\mathrm{V}_{\mathrm{O}}=\mathrm{HIGH} \mathrm{Z}$

AC Electrical Characteristics

Symbol	Parameter	74F			54F		74F		Units
		$\begin{gathered} \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}}=+5.0 \mathrm{~V} \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \\ \hline \end{gathered}$			$\begin{gathered} \mathrm{T}_{\mathbf{A}}, \mathrm{V}_{\mathrm{CC}}=\mathrm{Mil} \\ \mathbf{C}_{\mathrm{L}}=50 \mathrm{pF} \end{gathered}$		$\begin{gathered} \mathrm{T}_{\mathrm{A}}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{Com} \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \end{gathered}$		
		Min	Typ	Max	Min	Max	Min	Max	
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \\ & \hline \end{aligned}$	Propagation Delay $\mathrm{D}_{\mathrm{n}} \text { to } \mathrm{O}_{\mathrm{n}}$	$\begin{aligned} & 3.0 \\ & 2.0 \\ & \hline \end{aligned}$	$\begin{aligned} & 5.3 \\ & 3.7 \\ & \hline \end{aligned}$	$\begin{aligned} & 7.0 \\ & 6.0 \\ & \hline \end{aligned}$	$\begin{array}{r} 3.0 \\ 2.0 \\ \hline \end{array}$	$\begin{aligned} & 9.0 \\ & 7.0 \\ & \hline \end{aligned}$	$\begin{aligned} & 3.0 \\ & 2.0 \\ & \hline \end{aligned}$	$\begin{aligned} & 8.0 \\ & 6.5 \\ & \hline \end{aligned}$	ns
$t_{\text {PLH }}$ ${ }^{\text {tpHL }}$	Propagation Delay LE to O_{n}	$\begin{aligned} & 5.0 \\ & 3.0 \\ & \hline \end{aligned}$	$\begin{aligned} & 9.0 \\ & 5.2 \\ & \hline \end{aligned}$	$\begin{gathered} 11.0 \\ 7.0 \end{gathered}$	$\begin{aligned} & 5.0 \\ & 3.0 \\ & \hline \end{aligned}$	$\begin{gathered} 13.5 \\ 7.5 \end{gathered}$	$\begin{aligned} & 5.0 \\ & 3.0 \\ & \hline \end{aligned}$	$\begin{gathered} 12.0 \\ 7.0 \\ \hline \end{gathered}$	ns
$\begin{aligned} & \text { tpZH } \\ & \mathrm{t}_{\mathrm{PZL}} \\ & \hline \end{aligned}$	Output Enable Time	$\begin{aligned} & 2.0 \\ & 2.0 \end{aligned}$	$\begin{aligned} & 5.0 \\ & 5.6 \\ & \hline \end{aligned}$	$\begin{aligned} & 8.0 \\ & 8.5 \end{aligned}$	$\begin{aligned} & 2.0 \\ & 2.0 \end{aligned}$	$\begin{aligned} & 10.0 \\ & 10.0 \\ & \hline \end{aligned}$	$\begin{aligned} & 2.0 \\ & 2.0 \\ & \hline \end{aligned}$	$\begin{aligned} & 9.0 \\ & 9.5 \end{aligned}$	ns
$\begin{aligned} & \text { tphZ } \\ & \mathrm{t}_{\mathrm{PLLZ}} \end{aligned}$	Output Disable Time	$\begin{aligned} & 1.5 \\ & 1.5 \end{aligned}$	$\begin{aligned} & 4.5 \\ & 3.8 \end{aligned}$	$\begin{aligned} & 5.5 \\ & 5.5 \end{aligned}$	$\begin{aligned} & 1.5 \\ & 1.5 \end{aligned}$	$\begin{aligned} & 7.0 \\ & 5.5 \end{aligned}$	$\begin{aligned} & 1.5 \\ & 1.5 \end{aligned}$	$\begin{aligned} & 6.5 \\ & 5.5 \end{aligned}$	

AC Operating Requirements

Symbol	Parameter	74F		54F		74F		Units
		$\begin{gathered} \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}}=+5.0 \mathrm{~V} \end{gathered}$		$\mathrm{T}_{\mathbf{A}}, \mathrm{V}_{\mathbf{C C}}=\mathbf{M i l}$		$\mathrm{T}_{\mathbf{A}}, \mathrm{V}_{\mathbf{C C}}=\mathbf{C o m}$		
		Min	Max	Min	Max	Min	Max	
$\mathrm{t}_{\mathrm{s}}(\mathrm{H})$	Setup Time, HIGH or LOW	2.0		2.0		2.0		ns
$\mathrm{t}_{\mathrm{s}}(\mathrm{L})$	D_{n} to LE	2.0		2.0		2.0		
$\mathrm{th}_{\mathrm{h}}(\mathrm{H})$	Hold Time, HIGH or LOW	3.0		3.0		3.0		
$\mathrm{th}^{(L)}$	D_{n} to LE	3.5		4.0		3.5		
$\mathrm{t}_{\mathrm{w}}(\mathrm{H})$	LE Pulse Width, HIGH	4.0		4.0		4.0		ns

Ordering Information

The device number is used to form part of a simplified purchasing code where the package type and temperature range are defined as follows:

Physical Dimensions inches (millimeters)

Top View
$\frac{0.200 \pm 0.005}{(5.080 \pm 0.127)}$

20-Lead Ceramic Leadless Chip Carrier (L) NS Package Number E20A

Physical Dimensions inches (millimeters) (Continued)

Physical Dimensions inches (millimeters) (Continued)

LIFE SUPPORT POLICY

NATIONAL'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF NATIONAL SEMICONDUCTOR CORPORATION. As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and whose failure to perform, when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

National Semiconductor Corporation 1111 West Bardin Road Arlington, TX 76017 Tel: 1(800) 272-9959 Fax: 1(800) 737-7018	National Semiconductor Europe Fax: (+49) 0-180-530 8586 Email: cnjwge @tevm2.nsc.com Deutsch Tel: (+49) 0-180-530 8585 English Tel: $(+49)$ 0-180-532 7832 Français Tel: $(+49)$ 0-180-532 9358 Italiano Tel: (+49) 0-180-534 1680	National Semiconductor Hong Kong Ltd. 13th Floor, Straight Block, Ocean Centre, 5 Canton Rd. Tsimshatsui, Kowloon Hong Kong Tel: (852) 2737-1600 Fax: (852) 2736-9960	National Semiconductor Japan Ltd. Tel: 81-043-299-2309 Fax: 81-043-299-2408

\square

54F573

Octal D Latch with TRI-STATE Outputs

Contents

- General Description
- Features
- Datasheet
- Package Availability, Models, Samples
\& Pricing

General Description

The 'F573 is a high speed octal latch with buffered common Latch Enable (LE) and buffered common Output Enable (OE\#) inputs.

This device is functionally identical to the 'F373 but has different pinouts.

Features

- Inputs and outputs on opposite sides of package allowing easy interface with microprocessors
- Useful as input or output port for microprocessors
- Functionally identical to 'F373
- TRI-STATE outputs for bus interfacing
- Guaranteed 4000 V minimum ESD protection

Datasheet

Title	Size (in Kbytes)	Date	\square View Online	Download	Receive via Email
54 F 573 Octal D-Type Latch with TRI-STATE(RM) Outputs	166 Kbytes	9-Dec-97	View Online	Download	Receive via Email

Please use Adobe Acrobat to view PDF file(s).
If you have trouble printing, see Printing Problems.

Package Availability, Models, Samples \& Pricing

Part Number	Package		Status	Models		$\begin{gathered} \text { Samples } \\ \& \\ \text { Electronic } \\ \text { Orders } \end{gathered}$	Budgetary Pricing		$\\| \begin{gathered} \text { Std } \\ \text { Pack } \\ \text { Size } \end{gathered}$	Package Marking
	Type	\# pins		SPICE	IBIS		Quantity	\$US each		
$5962-9173801 \mathrm{M} 2 \mathrm{~A}$	LCC	20	Full production	N/A	N/A	.	50+	\$8.0000	$\left\lvert\, \begin{gathered} \text { tube } \\ \text { of } \\ 50 \end{gathered}\right.$	[logo] $\not \subset \mathrm{Z} \phi \mathrm{S} \phi 4 \not 4 \mathrm{~A}$ 54 F 573 LMQB/Q $¢ \mathrm{M} \$ \mathrm{E}$ $5962-$ 9173801M2A
5962-9173801MRA	Cerdip	20	Full production	N/A	N/A	区	50+	\$5.4000	$\begin{array}{\|\|c\|} \hline \text { tube } \\ \text { of } \\ 20 \\ \hline \end{array}$	$[\operatorname{logo}] \& \mathrm{Z} \phi \mathrm{S} \phi 4 \not 4 \mathrm{~A} \$ \mathrm{E}$ $54 \mathrm{~F} 573 \mathrm{DMQB} / \mathrm{Q} \not \mathrm{M}$ 5962-9173801MRA
JM38510/34604B2	LCC	20	Full production	N/A	N/A		50+	\$15.1000	$\left\lvert\, \begin{gathered} \text { tube } \\ \text { of } \\ 50 \end{gathered}\right.$	$\begin{gathered} \hline[\text { logo] JM38510 } \\ \text { /34604B2A } \\ 27014 \mathrm{QS} \\ \phi \mathrm{Z} \phi \mathrm{~S} \phi 4 \phi \mathrm{~A} \$ \mathrm{E} \\ \hline \end{gathered}$
JM38510/34604BR	Cerdip	20	Full production	N/A	N/A		50+	\$11.0000	$\begin{array}{\|\|c\|} \hline \text { tube } \\ \text { of } \\ 20 \\ \hline \end{array}$	$\begin{array}{\|c} \hline \text { [logo] } \not \mathrm{Z} \not \subset S \phi 4 \notin \mathrm{~A} \$ \mathrm{E} \\ \text { JM38510/34604BRA } \\ 27014 \text { QS } \\ \hline \end{array}$
JM38510/34604BS	Cerpack	20	Full production	N/A	N/A	.	50+	\$16.0000	$\left\lvert\, \begin{gathered} \text { tube } \\ \text { of } \\ 19 \end{gathered}\right.$	$[\operatorname{logo}] \not \subset \mathrm{Z} \not \subset S \notin 4 \not \subset \mathrm{~A} \$ \mathrm{E}$ $\mathrm{JM} 38510 /$ 34604BSA 27014 QS

[^0]
About Languages . About the Site . About "Cookies"

National is QS 9000 Certified . Privacy/Security Copyright © National Semiconductor Corporation \square Preferences . Feedback

[^0]: [Information as of 1-Sep-2000]

