

54F/74F573

Octal D-Type Latch with TRI-STATE® Outputs

General Description

The 'F573 is a high speed octal latch with buffered common Latch Enable (LE) and buffered common Output Enable (\overline{OE}) inputs.

This device is functionally identical to the 'F373 but has different pinouts.

Features

- Inputs and outputs on opposite sides of package allowing easy interface with microprocessors
- Useful as input or output port for microprocessors
- Functionally identical to 'F373
- TRI-STATE outputs for bus interfacing
- Guaranteed 4000V minimum ESD protection

Commercial	Military	Package Number	Package Description
74F573PC		N20A	20-Lead (0.300" Wide) Molded Dual-In-Line
	54F573DM (Note 2)	J20A	20-Lead Ceramic Dual-In-Line
74F573SC (Note 1)		M20B	20-Lead (0.300" Wide) Molded Small Outline, JEDEC
74F573SJ (Note 1)		M20D	20-Lead (0.300" Wide) Molded Small Outline, EIAJ
	54F573FM (Note 2)	W20A	20-Lead Cerpak
	54F573LM (Note 2)	E20A	20-Lead Ceramic Leadless Chip Carrier, Type C

Note 1: Devices also available in 13" reel. Use suffix = SCX and SJX.

Note 2: Military grade device with environmental and burn-in processing. Use suffix = DMQB, FMQB and LMQB.

Logic Symbols

Connection Diagrams

Unit Loading/Fan Out

			54F/74F
Pin Names	Pin Names Description		Input I _{IH} /I _{IL} Output I _{OH} /I _{OL}
D ₀ -D ₇	Data Inputs	1.0/1.0	20 μA/-0.6 mA
LE	Latch Enable Input (Active HIGH)	1.0/1.0	20 μA/ – 0.6 mA
ŌĒ	TRI-STATE Output Enable Input (Active LOW)	1.0/1.0	20 μA/ – 0.6 mA
O ₀ -O ₇	TRI-STATE Latch Outputs	150/40(33.3)	-3 mA/24 mA (20 mA)

Functional Description

The 'F573 contains eight D-type latches with 3-state output buffers. When the Latch Enable (LE) input is HIGH, data on the D_n inputs enters the latches. In this condition the latches are transparent, i.e., a latch output will change state each time its D input changes. When LE is LOW the latches store the information that was present on the D inputs a setup time preceding the HIGH-to-LOW transition of LE. The 3state buffers are controlled by the Output Enable (OE) input. When \overline{OE} is LOW, the buffers are in the bi-state mode. When $\overline{\text{OE}}$ is HIGH the buffers are in the high impedance mode but this does not interfer with entering new data into the latches.

Function Table

	Inputs		Outputs
ŌĒ	LE	D	0
L	Н	Н	Н
L	Н	L	L
L	L	Χ	O ₀
Н	X	Χ	Z

H = HIGH Voltage Level

L = LOW Voltage Level
X = Immaterial

 $O_0 = Value$ stored from previous clock cycle

Logic Diagram

Please note that this diagram is provided only for the understanding of logic operations and should not be used to estimate propagation delays.

Absolute Maximum Ratings (Note 1)

If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and specifications.

Storage Temperature -65°C to +150°C Ambient Temperature under Bias -55°C to +125°C Junction Temperature under Bias -55°C to +175°C Plastic -55°C to +150°C

V_{CC} Pin Potential to

Ground Pin -0.5V to +7.0VInput Voltage (Note 2) -0.5V to +7.0VInput Current (Note 2) -30~mA to +5.0~mA

Voltage Applied to Output in HIGH State (with $V_{CC} = 0V$)

 $-0.5\mbox{V}$ to $\mbox{V}_{\mbox{CC}}$ Standard Output

TRI-STATE Output -0.5V to +5.5V

Current Applied to Output in LOW State (Max) twice the rated I_{OL} (mA) ESD Last Passing Voltage (Min)

4000V

Note 1: Absolute maximum ratings are values beyond which the device may be damaged or have its useful life impaired. Functional operation under these conditions is not implied.

Note 2: Either voltage limit or current limit is sufficient to protect inputs.

Recommended Operating Conditions

Free Air Ambient Temperature

 $-55^{\circ}\text{C to } + 125^{\circ}\text{C}$ Military Commercial 0° C to $+70^{\circ}$ C

Supply Voltage

Military +4.5V to +5.5VCommercial +4.5V to +5.5V

DC Electrical Characteristics

Symbol	Parameter			54F/74	=	Units	Vcc	Conditions	
Symbol	Faranie	tei	Min	Тур	Max	Onits	\ \cc	Conditions	
V _{IH}	Input HIGH Voltage		2.0			V		Recognized as a HIGH Signa	
V _{IL}	Input LOW Voltage				0.8	V		Recognized as a LOW Signa	
V _{CD}	Input Clamp Diode Vo	oltage			-1.2	V	Min	$I_{IN} = -18 \text{ mA}$	
V _{OH}	Output HIGH Voltage	54F 10% V _{CC} 54F 10% V _{CC} 74F 10% V _{CC} 74F 10% V _{CC} 74F 5% V _{CC} 74F 5% V _{CC}	2.5 2.4 2.5 2.4 2.7 2.7			V	Min	$\begin{split} I_{OH} &= -1 \text{ mA} \\ I_{OH} &= -3 \text{ mA} \\ I_{OH} &= -1 \text{ mA} \\ I_{OH} &= -3 \text{ mA} \\ I_{OH} &= -1 \text{ mA} \\ I_{OH} &= -3 \text{ mA} \end{split}$	
V _{OL}	Output LOW Voltage	54F 10% V _{CC} 74F 10% V _{CC}			0.5 0.5	٧	Min	I _{OL} = 20 mA I _{OL} = 24 mA	
I _{IH}	Input HIGH Current	54F 74F			20.0 5.0	μΑ	Max	$V_{IN} = 2.7V$	
I _{BVI}	Input HIGH Current Breakdown Test	54F 74F			100 7.0	μΑ	Max	$V_{IN} = 7.0V$	
ICEX	Output HIGH Leakage Current	54F 74F			250 50	μΑ	Max	$V_{OUT} = V_{CC}$	
V _{ID}	Input Leakage Test	74F	4.75			٧	0.0	$I_{\text{ID}} = 1.9 \mu\text{A}$ All Other Pins Grounded	
I _{OD}	Output Leakage Circuit Current	74F			3.75	μΑ	0.0	V _{IOD} = 150 mV All Other Pins Grounded	
I _{IL}	Input LOW Current				-0.6	mA	Max	V _{IN} = 0.5V	
lozh	Output Leakage Curre	ent			50	μΑ	Max	V _{OUT} = 2.7V	
l _{OZL}	Output Leakage Curre	ent			-50	μΑ	Max	$V_{OUT} = 0.5V$	
I _{OS}	Output Short-Circuit (Current	-60		-150	mA	Max	$V_{OUT} = 0V$	
I _{ZZ}	Bus Drainage Test	·			500	μΑ	0.0V	V _{OUT} = 5.25V	
I _{CCL}	Power Supply Curren	t		35	55	mA	Max	$V_O = LOW$	
Iccz	Power Supply Curren	t		35	55	mA	Max	V _O = HIGH Z	

AC Electrical Characteristics

Symbol	Parameter				T _A , V _C	4F C = Mil 50 pF	74F T _A , V _{CC} = Com C _L = 50 pF		Units
		Min	Тур	Max	Min	Max	Min	Max	
t _{PLH} t _{PHL}	Propagation Delay D _n to O _n	3.0 2.0	5.3 3.7	7.0 6.0	3.0 2.0	9.0 7.0	3.0 2.0	8.0 6.5	ns
t _{PLH} t _{PHL}	Propagation Delay LE to O _n	5.0 3.0	9.0 5.2	11.0 7.0	5.0 3.0	13.5 7.5	5.0 3.0	12.0 7.0	ns
t _{PZH}	Output Enable Time	2.0 2.0	5.0 5.6	8.0 8.5	2.0 2.0	10.0 10.0	2.0 2.0	9.0 9.5	ns
t _{PHZ}	Output Disable Time	1.5 1.5	4.5 3.8	5.5 5.5	1.5 1.5	7.0 5.5	1.5 1.5	6.5 5.5	113

AC Operating Requirements

		7	4F	54	F	7		
Symbol	Parameter		+ 25°C + 5.0V	${\sf T_A,V_{CC}}={\sf Mil}$		T _A , V _{CC} = Com		Units
		Min	Max	Min	Max	Min	Max	
t _S (H) t _S (L)	Setup Time, HIGH or LOW D _n to LE	2.0 2.0		2.0 2.0		2.0 2.0		ns
t _h (H) t _h (L)	Hold Time, HIGH or LOW D _n to LE	3.0 3.5		3.0 4.0		3.0 3.5		113
t _w (H)	LE Pulse Width, HIGH	4.0		4.0		4.0		ns

Ordering Information

The device number is used to form part of a simplified purchasing code where the package type and temperature range are defined as follows:

 $\begin{array}{ll} S = & \text{Small Outline SOIC JEDEC} \\ \text{SJ} = & \text{Small Outline SOIC EIAJ} \end{array}$

Physical Dimensions inches (millimeters)

20-Lead Ceramic Leadless Chip Carrier (L) NS Package Number E20A E20A (REV D)

Physical Dimensions inches (millimeters) (Continued)

LIFE SUPPORT POLICY

NATIONAL'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF NATIONAL SEMICONDUCTOR CORPORATION. As used herein:

- 1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and whose failure to perform, when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
- 2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

National Semiconductor National Semiconducto Corporation 1111 West Bardin Road Arlington, TX 76017 Tel: 1(800) 272-9959 Fax: 1(800) 737-7018

National Semiconductor Europe

Fax: (+49) 0-180-530 85 86 Fax: (+49) U-18U-35U oo oo Email: onjwege tevm2.nsc.com Deutsch Tel: (+49) 0-180-530 85 85 English Tei: (+49) 0-180-532 78 32 Français Tel: (+49) 0-180-532 93 58 Italiano Tel: (+49) 0-180-534 16 80

National Semiconductor National Semiconductor Hong Kong Ltd. 13th Floor, Straight Block, Ocean Centre, 5 Canton Rd. Tsimshatsui, Kowloon Hong Kong Tel: (852) 2737-1600 Fax: (852) 2736-9960 National Semiconductor Japan Ltd.
Tel: 81-043-299-2309
Fax: 81-043-299-2408

X	<u>Design</u>	Purchasing	Quality	Company	<u>Jobs</u>
Products > Military/Aero	ospace > Log	<u>ic</u> > <u>FAST</u> > 5	4F573		

54F573 Octal D Latch with TRI-STATE Outputs

Contents

- General Description
- Features
- Datasheet
- Package Availability, Models, Samples & Pricing

General Description

The 'F573 is a high speed octal latch with buffered common Latch Enable (LE) and buffered common Output Enable (OE#) inputs.

This device is functionally identical to the 'F373 but has different pinouts.

Features

- Inputs and outputs on opposite sides of package allowing easy interface with microprocessors
- Useful as input or output port for microprocessors
- Functionally identical to 'F373
- TRI-STATE outputs for bus interfacing
- Guaranteed 4000V minimum ESD protection

Datasheet

Title	Size (in Kbytes)	Date	View Online	Download	Receive via Email
54F573 Octal D-Type Latch with TRI-STATE(RM) Outputs	166 Kbytes	9-Dec-97	View Online	Download	Receive via Email

Please use <u>Adobe Acrobat</u> to view PDF file(s). If you have trouble printing, see <u>Printing Problems</u>.

Package Availability, Models, Samples & Pricing

D. AN. J.	Pack	age	G4.4	Mod	els	Samples &	Duugciai			Package
Part Number	Туре	# pins	Status	SPICE	IBIS	Electronic Orders	Quantity	\$US each	Pack Size	Marking
5962-9173801M2A	LCC	20	Full production	N/A	N/A		50+	\$8.0000	tube of 50	[logo]¢Z¢S¢4¢A 54F573 LMQB/Q¢M\$E 5962- 9173801M2A
5962-9173801MRA	Cerdip	20	Full production	N/A	N/A	×	50+	\$5.4000	tube of 20	[logo]¢Z¢S¢4¢A\$E 54F573DMQB/Q¢M 5962-9173801MRA
JM38510/34604B2	LCC	20	Full production	N/A	N/A		50+	\$15.1000	tube of 50	[logo] JM38510 /34604B2A 27014 QS ¢Z¢S¢4¢A\$E
JM38510/34604BR	Cerdip	20	Full production	N/A	N/A		50+	\$11.0000		[logo] ¢Z¢S¢4¢A\$E JM38510/34604BRA 27014 QS
JM38510/34604BS	Cerpack	20	Full production	N/A	N/A		50+	\$16.0000	tube of 19	[logo]¢Z¢S¢4¢A\$E JM38510/ 34604BSA 27014 QS

[Information as of 1-Sep-2000]

Quick Search	<u>Parametric</u> <u>Search</u>	<u>System</u> <u>Diagrams</u>	Product Tree	<u>Home</u>
	<u>Search</u>	<u>Diagrams</u>	<u>Tree</u>	11011

About Languages . About the Site . About "Cookies"
National is QS 9000 Certified . Privacy/Security
Copyright © National Semiconductor Corporation
Preferences . Feedback