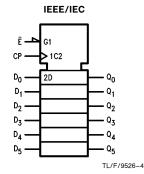


54F/74F378 Parallel D Register with Enable

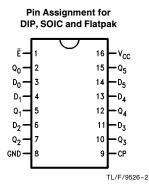
General Description

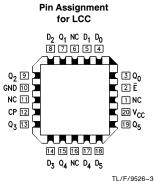
The 'F378 is a 6-bit register with a buffered common Enable. This device is similar to the 'F174, but with common Enable rather than common Master Reset.

Features


- 6-bit high-speed parallel register
- Positive edge-triggered D-type inputs
- Fully buffered common clock and enable inputs
- Input clamp diodes limit high-speed termination effects
- Full TTL and CMOS compatible

Commercial	Military	Package Number	Package Description
74F378PC		N16E	16-Lead (0.300" Wide) Molded Dual-In-Line
	54F378DM (QB)	J16A	16-Lead Ceramic Dual-In-Line
74F378SC (Note 1)		M16A	16-Lead (0.150" Wide) Molded Small Outline, JEDEC
74F378SJ (Note 1)		M16D	16-Lead (0.300" Wide) Molded Small Outline, EIAJ
	54F378FM (QB)	W16A	16-Lead Cerpack
	54F378LM (QB)	E20A	20-Lead Ceramic Leadless Chip Carrier, Type C


Note 1: Devices also available in 13" reel. Use suffix = SCX and SJX.


Logic Symbols

D₀ D₁ D₂ D₃ D₄ D₅ E CP Q₀ Q₁ Q₂ Q₃ Q₄ Q₅ TL/F/9526-1

Connection Diagrams

TRI-STATE® is a registered trademark of National Semiconductor Corporation.

Unit Loading/Fan Out

		54F/74F			
Pin Names	Description	U.L. HIGH/LOW	Input I _{IH} /I _{IL} Output I _{OH} /I _{OL}		
Ē	Enable Input (Active LOW)	1.0/1.0	20 μA/-0.6 mA		
$D_0 - D_5$	Data Inputs	1.0/1.0	20 μA/-0.6 mA		
CP	Clock Pulse Input (Active Rising Edge)	1.0/1.0	20 μA/-0.6 mA		
Q ₀ -Q ₅	Outputs	50/33.3	-1 mA/20 mA		

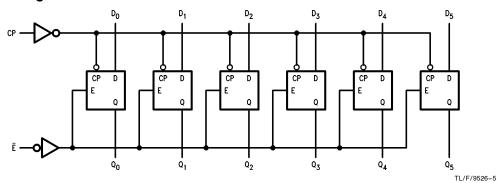
Functional Description

The 'F378 consists of six edge-triggered D-type flip-flops with individual D inputs and Q inputs. The Clock (CP) and Enable (E) inputs are common to all flip-flops.

When the $\overline{\rm E}$ input is LOW, new data is entered into the register on the LOW-to-HIGH transition of the CP input. When the $\overline{\mathsf{E}}$ input is HIGH the register will retain the present data independent of the CP input.

Truth Table

	Inputs	Output	
Ē	СР	D _n	Q_n
Н	_	Х	No Change
L		Н	Н
L		L	L


H = HIGH Voltage Level

L = LOW Voltage Level

X = Immaterial

✓ = LOW-to-HIGH Clock Transition

Logic Diagram

Please note that this diagram is provided only for the understanding of logic operations and should not be used to estimate propagation delays.

Absolute Maximum Ratings (Note 1)

If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and specifications.

 $\begin{array}{lll} \mbox{Storage Temperature} & -65^{\circ}\mbox{C to} + 150^{\circ}\mbox{C} \\ \mbox{Ambient Temperature under Bias} & -55^{\circ}\mbox{C to} + 125^{\circ}\mbox{C} \\ \mbox{Junction Temperature under Bias} & -55^{\circ}\mbox{C to} + 175^{\circ}\mbox{C} \\ \mbox{Plastic} & -55^{\circ}\mbox{C to} + 150^{\circ}\mbox{C} \\ \end{array}$

V_{CC} Pin Potential to

Ground Pin -0.5V to +7.0V Input Voltage (Note 2) -0.5V to +7.0V Input Current (Note 2) -30 mA to +5.0 mA

Voltage Applied to Output in HIGH State (with $V_{CC} = 0V$)

 $\begin{array}{lll} \text{Standard Output} & -0.5 \text{V to V}_{\text{CC}} \\ \text{TRI-STATE} & \text{Output} & -0.5 \text{V to } +5.5 \text{V} \end{array}$

Current Applied to Output

in LOW State (Max) twice the rated I_{OL} (mA)

Note 1: Absolute maximum ratings are values beyond which the device may be damaged or have its useful life impaired. Functional operation under these conditions is not implied.

Note 2: Either voltage limit or current limit is sufficient to protect inputs.

Recommended Operating Conditions

Free Air Ambient Temperature

Military $-55^{\circ}\text{C to} + 125^{\circ}\text{C}$ Commercial $0^{\circ}\text{C to} + 70^{\circ}\text{C}$

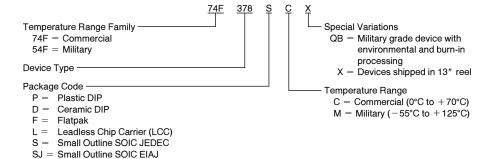
Supply Voltage

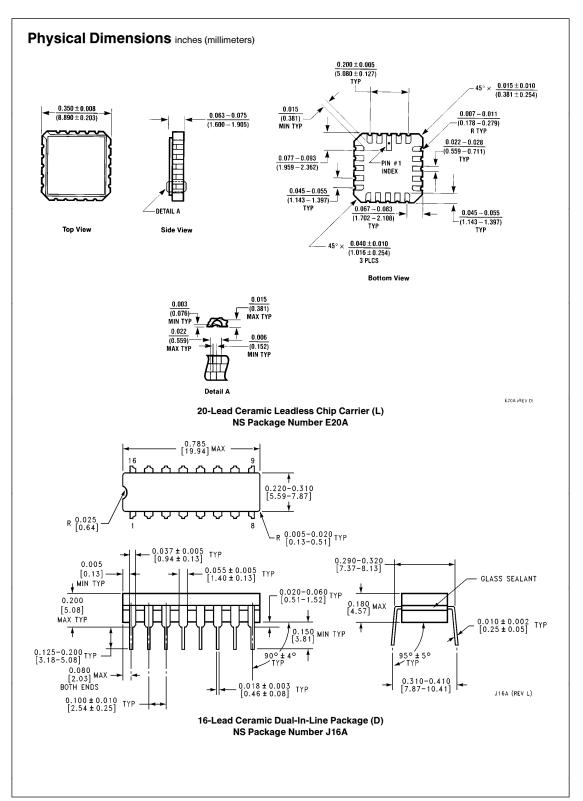
Military + 4.5V to + 5.5V Commercial + 4.5V to + 5.5V

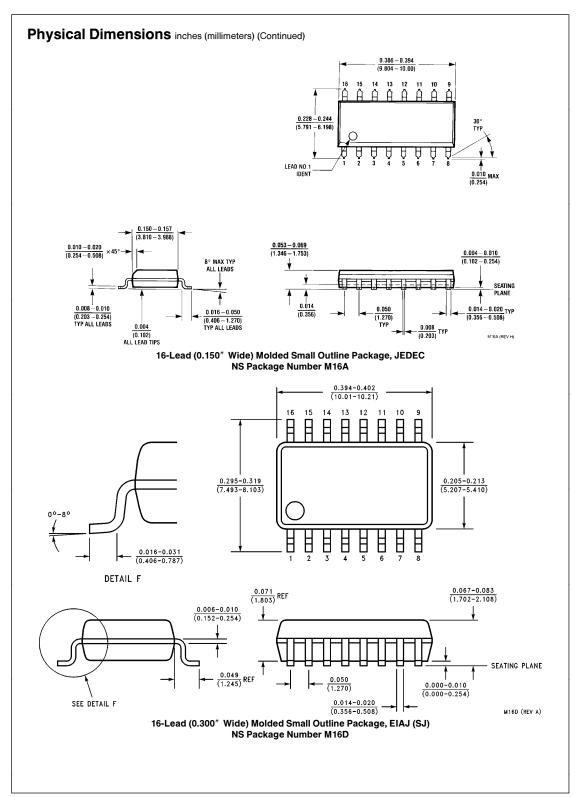
DC Electrical Characteristics

Symbol	Parameter			54F/74F			v _{cc}	Conditions	
Symbol	Faiaiii	c (C)	Min	Тур	Max	Units	VCC	Conditions	
V _{IH}	Input HIGH Voltage		2.0			V		Recognized as a HIGH Signal	
V_{IL}	Input LOW Voltage				0.8	V		Recognized as a LOW Signal	
V _{CD}	Input Clamp Diode Vo	oltage			-1.2	V	Min	$I_{\text{IN}} = -18 \text{ mA}$	
V _{OH}	Output HIGH Voltage	54F 10% V 74F 10% V 74F 5% V _O	CC 2.5			V	Min	$I_{OH} = -1 \text{ mA}$ $I_{OH} = -1 \text{ mA}$ $I_{OH} = -1 \text{ mA}$	
V _{OL}	Output LOW Voltage	54F 10% V 74F 10% V	00		0.5 0.5	V	Min	$I_{OL} = 20 \text{ mA}$ $I_{OL} = 20 \text{ mA}$	
Іін	Input HIGH Current	54F 74F			20.0 5.0	μΑ	Max	V _{IN} = 2.7V	
I _{BVI}	Input HIGH Current Breakdown Test	54F 74F			100 7.0	μΑ	Max	V _{IN} = 7.0V	
ICEX	Output HIGH Leakage Current	54F 74F			250 50	μΑ	Max	$V_{OUT} = V_{CC}$	
V_{ID}	Input Leakage Test	74F	4.75			V	0.0	$I_{\text{ID}} = 1.9 \mu\text{A}$ All Other Pins Grounded	
lod	Output Leakage Circuit Current	74F			3.75	μΑ	0.0	V _{IOD} = 150 mV All Other Pins Grounded	
I _{IL}	Input LOW Current				-0.6	mA	Max	$V_{IN} = 0.5V$	
Ios	Output Short-Circuit Current				-150	mA	Max	V _{OUT} = 0V	
ICCL	Power Supply Curren	t		30	45	mA	Max	$V_0 = LOW$	

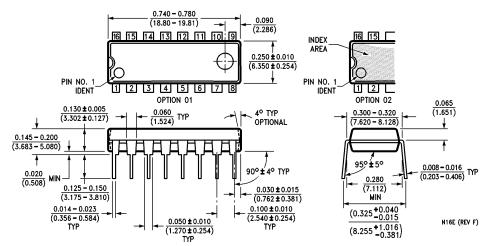
AC Electrical Characteristics

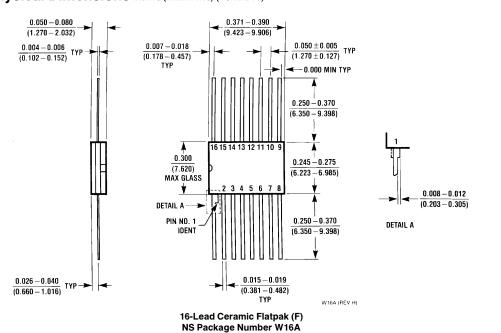

		74F			54F		74F		
Symbol	Parameter	٧	$egin{aligned} \Gamma_{A} &= +25^\circ \ C_{CC} &= +5.0 \ C_{L} &= 50 \ pF \end{aligned}$	V	T _A , V _{CC} = Mil C _L = 50 pF		T _A , V _{CC} = Com C _L = 50 pF		Units
		Min	Тур	Max	Min	Max	Min	Max	<u> </u>
f _{max}	Maximum Input Frequency	80	100		70		80		MHz
t _{PLH}	Propagation Delay CP to Q _n	3.0 3.5	5.5 6.0	7.5 8.5	3.0 3.5	10.0 10.5	3.0 3.5	8.5 9.5	ns


AC Operating Requirements


		74F		54	F	74F		
Symbol	Parameter		+ 25°C + 5.0V	T _A , V _{CC}	; = Mil	T _A , V _{CC} = Com		Units
		Min	Max	Min	Max	Min	Max	<u> </u>
t _s (H) t _s (L)	Setup Time, HIGH or LOW D _n to CP	4.0 4.0		5.0 5.0		4.0 4.0		- ns
t _h (H)	Hold Time, HIGH or LOW D _n to CP	0 0		2.0 2.0		0 0		115
t _s (H) t _s (L)	Setup Time, HIGH or LOW E to CP	6.0 10.0		4.5 13.0		6.0 10.0		- ns
t _h (H) t _h (L)	Hold Time, HIGH or LOW E to CP	0 0		0		0 0		113
t _w (H)	CP Pulse Width HIGH or LOW	4.0 6.0		5.0 7.5		4.0 6.0		ns

Ordering Information


The device number is used to form part of a simplified purchasing code where the package type and temperature range are defined as follows:



Physical Dimensions inches (millimeters) (Continued)

16-Lead (0.300" Wide) Molded Dual-In-Line Package (P) NS Package Number N16E

Physical Dimensions inches (millimeters) (Continued)

LIFE SUPPORT POLICY

NATIONAL'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF NATIONAL SEMICONDUCTOR CORPORATION. As used herein:

- Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and whose failure to perform, when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
- A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

National Semiconductor Corporation 2900 Semiconductor Drive P.O. Box 58090 Santa Clara, CA 95052-8090 Tel: 1(800) 272-9959 TWX: (910) 339-9240 National Semiconductor GmbH Livry-Gargan-Str. 10 D-82256 Fürstenfeldbruck Germany Tel: (81-41) 35-0 Telex: 527649 Fax: (81-41) 35-1

National Semiconductor Japan Ltd. Sumitomo Chemical Engineering Center Bldg. 7F 1-7-1, Nakase, Mihama-Ku Chiba-City, Ciba Prefecture 261

National Semiconductor Hong Kong Ltd. 13th Floor, Straight Block, Ocean Centre, 5 Canton Rd. Tsimshatsui, Kowloon Hong Kong Tel: (852) 2737-1600 Fax: (852) 2736-9960 National Semiconductores Do Brazil Ltda. Rue Deputado Lacorda Franco 120-3A Sao Paulo-SP Brazil 05418-000 Tel: (55-11) 212-5066 Telex: 391-1131931 NSBR BR Fax: (55-11) 212-1181 National Semiconductor (Australia) Pty, Ltd. Building 16 Business Park Drive Monash Business Park Nottinghill, Melbourne Victoria 3168 Australia Tel: (3) 558-9999 Fax: (3) 558-9998

54F378 Parallel D Register with Enable

Contents

- General Description
- Features
- Datasheet
- Package Availability, Models, Samples & Pricing

General Description

The 'F378 is a 6-bit register with a buffered common Enable. This device is similar to the 'F174, but with common Enable rather than common Master Reset.

Features

- 6-bit high-speed parallel register
- Positive edge-triggered D-type inputs
- Fully buffered common clock and enable inputs
- Input clamp diodes limit high-speed termination effects
- Full TTL and CMOS compatible

Datasheet

Title	Size (in Kbytes)	Date	View Online	X Download	Receive via Email
54F378 Parallel D Register with Enable	166 Kbytes	9-Dec-97	View Online	Download	Receive via Email

Please use <u>Adobe Acrobat</u> to view PDF file(s). If you have trouble printing, see <u>Printing Problems</u>.

Package Availability, Models, Samples & Pricing

Part Number	Pack	age	Status	Models		Samples &	& Budgetary Fricing			Package	
Part Number	Type	# pins	Status	SPICE	IBIS	Electronic Orders	Quantity	\$US each	Pack Size	Marking	
5962-8855501EA	Cerdip	16	Full production	N/A	N/A	· ×	50+	\$6.0000	tube of 25	[logo]¢Z¢S¢4¢A\$E 54F378DMQB /Q¢M 5962-8855501EA	
5962-8855501FA	Cerpack	16	Full production	N/A	N/A		50+	\$6.0000	tube of 19	[logo]¢Z¢S¢4¢A\$E 54F378FMQB Q¢M 5962- 8855501FA	

[Information as of 1-Sep-2000]

Quick SearchParametricSystemProductSearchDiagramsTree

About Languages . About the Site . About "Cookies"
National is QS 9000 Certified . Privacy/Security
Copyright © National Semiconductor Corporation

— Preferences . Feedback