- 3-State Buffer-Type Noninverting Outputs Drive Bus Lines Directly
- Bus-Structured Pinout
- Buffered Control Inputs
- SN74ALS575A and 'AS575 Have Synchronous Clear
- Package Options Include Plastic Small-Outline (DW) Packages, Ceramic Chip Carriers (FK), Standard Plastic (N, NT) and Ceramic (J, JT) 300-mil DIPs, and Ceramic Flat (W) Packages

description

These octal D-type edge-triggered flip-flops feature 3 -state outputs designed specifically for bus driving. They are particularly suitable for implementing buffer registers, I/O ports, bidirectional bus drivers, and working registers.
The eight flip-flops enter data on the low-to-high transition of the clock (CLK) input. The SN74ALS575A, SN54AS575, and SN74AS575 may be synchronously cleared by taking the clear ($\overline{\mathrm{CLR}}$) input low.
The output-enable ($\overline{\mathrm{OE}}$) input does not affect internal operations of the flip-flops. Old data can be retained or new data can be entered while the outputs are in the high-impedance state.
The SN54ALS574B, SN54AS574, and SN54AS575 are characterized for operation over the full military temperature range of $-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$. The SN74ALS574B, SN74ALS575A, SN74AS574, and SN74AS575 are characterized for operation from $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$.

SN54ALS574B, SN54AS574 . . . J OR W PACKAGE
SN74ALS574B, SN74AS574 . . . DW OR N PACKAGE
(TOP VIEW)

1D 2	19] $1 Q$
2D 3	18	2Q
3D 4	17	3Q
5	16	4Q
50 6	15	15 Q
6D	14	6Q
7D	13	7Q
8D 9	12	8Q
GND [10	11	1 CL

SN54ALS574B, SN54AS574 . . FK PACKAGE (TOP VIEW)

SN54AS575 ... JT OR W PACKAGE SN74ALS575A, SN74AS575 . . DW OR NT PACKAGE (TOP VIEW)

CLR ${ }^{1}$	U_{24}	
OE ${ }^{\text {a }}$	23	NC
1D 3	22	$1 Q$
2D 4	21	12 Q
3D 5	20	$3 Q$
4D 6	19	4Q
5D 7	18	5Q
6D 8	17	6Q
7D 9	16	7Q
8D 10	15	8Q
NC [11	14	CLK
GND 12	13	NC

SN54AS575 ... FK PACKAGE
(TOP VIEW)

NC - No internal connection

Function Tables
SN54ALS574B, SN74ALS574B, SN54AS574, SN7

(each flip-flop)			
$\overline{\mathrm{OE}}$	CLK	D	OUTPUT
Q			
L	\uparrow	H	H
L	\uparrow	L	L
L	L	X	Q_{0}
H	X	X	Z

SN74ALS575A, SN54AS575, SN74AS575
(each flip-flop)

INPUTS				OUTPUTQ
$\overline{\mathrm{OE}}$	$\overline{\text { CLR }}$	CLK	D	
L	L	\uparrow	X	L
L	H	\uparrow	H	H
L	H	\uparrow	L	L
L	H	L	X	Q_{0}
H	X	H	X	Z

logic symbols \dagger

† These symbols are in accordance with ANSI/IEEE Std 91-1984 and IEC Publication 617-12.
Pin numbers shown are for the DW, J, JT, N, and NT packages.

SN54ALS574B, SN54AS574, SN54AS575
 SN74ALS574B, SN74ALS575A, SN74AS574, SN74AS575 OCTAL D-TYPE EDGE-TRIGGERED FLIP-FLOPS WITH 3-STATE OUTPUTS

logic diagrams (positive logic)

To Seven Other Channels
Pin numbers shown are for the DW, J, JT, N, and NT packages.

absolute maximum ratings over operating free-air temperature range (unless otherwise noted) \dagger

\qquad
Supply voltage, V_{CC}

Voltage applied to a disabled 3-state output .. 5.5 V

SN74ALS574B, SN74ALS575A $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$
Storage temperature range
$-65^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$
\dagger Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.
recommended operating conditions

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

PARAMETER		TEST CONDITIONS		SN54ALS574B			SN74ALS574B SN74ALS575A			UNIT		
		MIN	TYP†	MAX	MIN	TYP†	MAX					
VIK				$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$,	$\mathrm{I}=-18 \mathrm{~mA}$			-1.2			-1.2	V
V_{OH}		$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$ to 5.5 V ,	$\mathrm{IOH}=-0.4 \mathrm{~mA}$	$\mathrm{V}_{\mathrm{CC}}-2$			$\mathrm{V}_{\mathrm{CC}}-2$			V		
		$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$	$\mathrm{IOH}=-1 \mathrm{~mA}$	2.4	3.3							
		$\mathrm{IOH}=-2.6 \mathrm{~mA}$				2.4	3.2					
VOL			$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$	$\mathrm{OL}=12 \mathrm{~mA}$		0.25	0.4		0.25	0.4	V	
		$\mathrm{IOL}=24 \mathrm{~mA}$						0.35	0.5			
IOZH		$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}$,	$\mathrm{V}_{\mathrm{O}}=2.7 \mathrm{~V}$			20			20	$\mu \mathrm{A}$		
IOZL		$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}$,	$\mathrm{V}_{\mathrm{O}}=0.4 \mathrm{~V}$			-20			-20	$\mu \mathrm{A}$		
I		$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}$,	$\mathrm{V}_{\mathrm{I}}=7 \mathrm{~V}$			0.1			0.1	mA		
IIH		$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}$,	$\mathrm{V}_{\mathrm{I}}=2.7 \mathrm{~V}$			20			20	$\mu \mathrm{A}$		
IIL		$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}$,	$\mathrm{V}_{\mathrm{I}}=0.4 \mathrm{~V}$			-0.2			-0.2	mA		
10^{\ddagger}		$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}$,	$\mathrm{V}_{\mathrm{O}}=2.25 \mathrm{~V}$	-20		-112	-30	-112		mA		
ICC	'ALS574B	$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}$	Outputs high		11	18		11	18	mA		
			Outputs low		17	27		17	27			
			Outputs disabled		17	28		17	28			
	SN74ALS575A	$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}$	Outputs high		10	17		10	17			
			Outputs low		15	24		15	24			
			Outputs disabled		16	30		16	30			

\dagger All typical values are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
\ddagger The output conditions have been chosen to produce a current that closely approximates one half of the true short-circuit output current, IOS.
switching characteristics (see Figure 1)

PARAMETER	FROM (INPUT)	TO (OUTPUT)	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V} \text { to } 5.5 \mathrm{~V}, \\ & \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \\ & \mathrm{R} 1=500 \Omega, \\ & \mathrm{R} 2=500 \Omega, \\ & \mathrm{~T}_{\mathrm{A}}=\operatorname{MIN} \text { to MAX§ } \end{aligned}$						UNIT
			SN54ALS574B		SN74ALS574B		SN74ALS575A		
			MIN	MAX	MIN	MAX	MIN	MAX	
${ }_{\text {max }}$			28		35		30		MHz
tPLH	CLK	Q	4	22	3	14	4	14	ns
tPHL			4	17	4	14	4	14	
tPZH	$\overline{\mathrm{OE}}$	Q	4	21	3	18	4	18	ns
tPZL			4	26	4	18	4	18	
tPHZ	$\overline{\mathrm{OE}}$	Q	2	16	1	10	2	10	ns
tPLZ			2	25	2	12	3	13	

§ For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions.

SN54ALS574B, SN54AS574, SN54AS575
 SN74ALS574B, SN74ALS575A, SN74AS574, SN74AS575 OCTAL D-TYPE EDGE-TRIGGERED FLIP-FLOPS WITH 3-STATE OUTPUTS

absolute maximum ratings over operating free-air temperature range (unless otherwise noted) \dagger
\qquad
\qquad

Operating free-air temperature range, T_{A} : SN54AS574, SN54AS575 $\ldots \ldots \ldots \ldots \ldots . . .5^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$ SN74AS574, SN74AS575 $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$
Storage temperature range $-65^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$
\dagger Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.
recommended operating conditions

* On products compliant to MIL-STD-883, Class B, this parameter is based on characterization data but is not production tested.
electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

PARAMETER		TEST CONDITIONS		SN54AS574 SN54AS575			SN74AS574 SN74AS575			UNIT		
		MIN	TYP†	MAX	MIN	TYP \dagger	MAX					
V_{IK}				$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$,	$1 \mathrm{l}=-18 \mathrm{~mA}$			-1.2			-1.2	V
V OH		$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$ to 5.5 V ,	$\mathrm{OH}=-2 \mathrm{~mA}$	$\mathrm{V}_{\mathrm{CC}}-2$			$\mathrm{V}_{\mathrm{CC}}-2$			V		
		$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$	$\mathrm{I} \mathrm{OH}=-12 \mathrm{~mA}$		3.2							
		$\mathrm{I} \mathrm{OH}=-15 \mathrm{~mA}$				2.4	3.3					
VOL			$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$	$\mathrm{I} \mathrm{OL}=32 \mathrm{~mA}$		0.29	0.5				V	
		$\mathrm{IOL}=48 \mathrm{~mA}$						0.34	0.5			
IOZH		$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}$,	$\mathrm{V}_{\mathrm{O}}=2.7 \mathrm{~V}$			50			50	$\mu \mathrm{A}$		
IOZL		$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}$,	$\mathrm{V}_{\mathrm{O}}=0.4 \mathrm{~V}$			-50			-50	$\mu \mathrm{A}$		
1		$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}$,	$\mathrm{V}_{\mathrm{I}}=7 \mathrm{~V}$			0.1			0.1	mA		
${ }^{1} \mathrm{IH}$		$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}$,	$\mathrm{V}_{\mathrm{I}}=2.7 \mathrm{~V}$			20			20	$\mu \mathrm{A}$		
IIL	$\overline{\mathrm{OE}}, \mathrm{CLK}, \overline{\mathrm{CLR}}$	$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}$,	$\mathrm{V}_{\mathrm{I}}=0.4 \mathrm{~V}$			-0.5			-0.5	mA		
	D					-3			-2			
10^{\ddagger}		$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}$,	$\mathrm{V}_{\mathrm{O}}=2.25 \mathrm{~V}$	-30		-112	-30		-112	mA		
ICC	'AS574	$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}$	Outputs high		73	116		73	116	mA		
			Outputs low		85	134		85	134			
			Outputs disabled		84	134		84	134			
	'AS575	$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}$	Outputs high		78	126		78	126			
			Outputs low		89	142		89	142			
			Outputs disabled		88	142		88	142			

\dagger All typical values are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
\ddagger The output conditions have been chosen to produce a current that closely approximates one half of the true short-circuit output current, IOS.
switching characteristics (see Figure 1)

PARAMETER	FROM (INPUT)	$\begin{gathered} \text { TO } \\ \text { (OUTPUT) } \end{gathered}$	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V} \text { to } 5.5 \mathrm{~V}, \\ & \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \\ & \mathrm{R} 1=500 \Omega, \\ & \mathrm{R} 2=500 \Omega, \\ & \mathrm{~T}_{\mathrm{A}}=\operatorname{MIN} \text { to MAX§ } \end{aligned}$				UNIT
			$\begin{aligned} & \text { SN54AS574 } \\ & \text { SN54AS575 } \end{aligned}$		SN74AS574 SN74AS575		
			MIN	MAX	MIN	MAX	
$\mathrm{f}_{\text {max }}{ }^{*}$			100		90		MHz
tPLH	CLK	Any Q	3	11	3	8	ns
tPHL			4	11	4	9	
tPZH	$\overline{\mathrm{OE}}$	Any Q	2	7	2	6	ns
tpZL			3	11	3	10	
tpHZ	$\overline{\mathrm{OE}}$	Any Q	2	7	2	6	ns
tplZ			2	7	2	6	

[^0]
PARAMETER MEASUREMENT INFORMATION SERIES 54ALS/74ALS AND 54AS/74AS DEVICES

NOTES: A. C_{L} includes probe and jig capacitance.
B. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control.
C. When measuring propagation delay items of 3-state outputs, switch S1 is open.
D. All input pulses have the following characteristics: $\mathrm{PRR} \leq 1 \mathrm{MHz}, \mathrm{t}_{\mathrm{f}}=\mathrm{t}_{\mathrm{f}}=2 \mathrm{~ns}$, duty cycle $=50 \%$.
E. The outputs are measured one at a time with one transition per measurement.

Figure 1. Load Circuits and Voltage Waveforms

IMPORTANT NOTICE

Texas Instruments and its subsidiaries (TI) reserve the right to make changes to their products or to discontinue any product or service without notice, and advise customers to obtain the latest version of relevant information to verify, before placing orders, that information being relied on is current and complete. All products are sold subject to the terms and conditions of sale supplied at the time of order acknowledgement, including those pertaining to warranty, patent infringement, and limitation of liability.

TI warrants performance of its semiconductor products to the specifications applicable at the time of sale in accordance with Tl's standard warranty. Testing and other quality control techniques are utilized to the extent TI deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily performed, except those mandated by government requirements.

CERTAIN APPLICATIONS USING SEMICONDUCTOR PRODUCTS MAY INVOLVE POTENTIAL RISKS OF DEATH, PERSONAL INJURY, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE ("CRITICAL APPLICATIONS"). TI SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, AUTHORIZED, OR WARRANTED TO BE SUITABLE FOR USE IN LIFE-SUPPORT DEVICES OR SYSTEMS OR OTHER CRITICAL APPLICATIONS. INCLUSION OF TI PRODUCTS IN SUCH APPLICATIONS IS UNDERSTOOD TO BE FULLY AT THE CUSTOMER'S RISK.

In order to minimize risks associated with the customer's applications, adequate design and operating safeguards must be provided by the customer to minimize inherent or procedural hazards.

TI assumes no liability for applications assistance or customer product design. TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right of TI covering or relating to any combination, machine, or process in which such semiconductor products or services might be or are used. Tl's publication of information regarding any third party's products or services does not constitute Tl's approval, warranty or endorsement thereof.

\gg Semiconductor Home $>$ Products $>$ Digital Logic $>$ Flip-Flops $>$ D-Type (3-State) Flip-Flops $>$

SN54AS575, Octal D-type Edge-Triggered Flip-Flops With 3-State Outputs

Device Status: Active
$>$ Description
$>$ Features
$>$ Datasheets
> Pricing/Samples/Availability
> Application Notes
> Related Documents
$>$ Training

Parameter Name	SN54AS575
Voltage Nodes (V)	5
Vcc range (V)	4.5 to 5.5
Input Level	TTL
Output Level	TTL
No. of Outputs	8
Logic	True

Description

These octal D-type edge-triggered flip-flops feature 3-state outputs designed specifically for bus driving. They are particularly suitable for implementing buffer registers, I/O ports, bidirectional bus drivers, and working registers.

The eight flip-flops enter data on the low-to-high transition of the clock (CLK) input. The SN74ALS575A, SN54AS575, and SN74AS575 may be synchronously cleared by taking the clear ($\overline{\mathrm{CLR}}$) input low.

The output-enable ($\overline{\mathrm{OE}}$) input does not affect internal operations of the flip-flops. Old data can be retained or new data can be entered while the outputs are in the high-impedance state.

The SN54ALS574B, SN54AS574, and SN54AS575 are characterized for operation over the full military temperature range of $-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$. The SN74ALS574B, SN74ALS575A, SN74AS574, and SN74AS575 are characterized for operation from $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$.

Features

- 3-State Buffer-Type Noninverting Outputs Drive Bus Lines Directly
- Bus-Structured Pinout
- Buffered Control Inputs
- SN74ALS575A and 'AS575 Have Synchronous Clear
- Package Options Include Plastic Small-Outline (DW) Packages, Ceramic Chip Carriers (FK), Standard Plastic (N, NT) and Ceramic (J, JT) 300-mil DIPs, and Ceramic Flat (W) Packages

To view the following documents, Acrobat Reader 3.x is required.
To download a document to your hard drive, right-click on the link and choose 'Save'.

Datasheets

Full datasheet in Acrobat PDF: sdas165b.pdf (129 KB)
Full datasheet in Zipped PostScript: sdas165b.psz (129 KB)

Pricing/Samples/Availability

Orderable Device	Package	Pins	Temp (${ }^{\circ} \mathrm{C}$)	Status	$\begin{array}{\|c\|} \hline \text { Price/unit } \\ \text { USD (100-999) } \end{array}$	Pack Qty	DSCC Number	Availability / Samples
5962-9754901QKA	W	24	-55 TO 125	ACTIVE	15.45	1		Check stock or order
SN54AS575JT	JT	24	-55 TO 125	ACTIVE	5.93	1		Check stock or order
SNJ54AS575FK	FK	28	-55 TO 125	ACTIVE	15.45	1	5962-9754901Q3A	Check stock or order
SNJ54AS575JT	JT	24	-55 TO 125	ACTIVE	7.43	1	5962-9754901QLA	Check stock or order
SNJ54AS575W	W	24	-55 TO 125	OBSOLETE				

Application Reports

View Application Reports for Digital Logic

- Advanced Schottky (ALS and AS) Logic Families (SDAA010 - Updated: 08/01/1995)
- Advanced Schottky Load Management (SDYA016-Updated: 02/01/1997)
- Designing With Logic (SDYA009C - Updated: 06/01/1997)
- Input And Output Characteristics Of Digital Integrated Circuits (SDYA010 - Updated: 10/01/1996)
- Live Insertion (SDYA012 - Updated: 10/01/1996)

Related Documents

- Documentation Rules (SAP) And Ordering Information (SZZU001B, 4 KB - Updated: 05/06/1999)
- Logic Selection Guide Second Half 2000 (SDYU001N, 5035 KB - Updated: 04/17/2000)
- MicroStar Junior BGA Design Summary (SCET004, 284 KB - Updated: 07/28/2000)
- More Power In Less Space - Technical Article (SCAU001A, 850 KB - Updated: 03/01/1996)

Table Data Updated on: 9/7/2000

[^0]: * On products compliant to MIL-STD-883, Class B, this parameter is based on characterization data but is not production tested.
 § For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions.

