

## Unit Loading/Fan Out

| Pin <br> Names | Description | $54 \mathrm{~F} / 74 \mathrm{~F}$ |  |
| :--- | :--- | :---: | :---: |
|  |  | U.L. <br> HIGH/LOW | Input $\mathbf{I}_{\mathbf{I H}} / \mathbf{I}_{\mathbf{I L}}$ <br> Output $I_{\mathrm{OH}} / \mathbf{I O L}_{\mathbf{O L}}$ |
| $\mathrm{D}_{\mathbf{0}}-\mathrm{D}_{7}$ | Data Inputs | $1.0 / 1.0$ | $20 \mu \mathrm{~A} /-0.6 \mathrm{~mA}$ |
| CP | Clock Pulse Input (Active Rising Edge) | $1.0 / 1.0$ | $20 \mu \mathrm{~A} /-0.6 \mathrm{~mA}$ |
| $\overline{\mathrm{OE}}$ | TRI-STATE Output Enable Input (Active LOW) | $1.0 / 1.0$ | $20 \mu \mathrm{~A} /-0.6 \mathrm{~mA}$ |
| $\mathrm{O}_{0}-\mathrm{O}_{7}$ | TRI-STATE Outputs | $150 / 40(33.3)$ | $-3 \mathrm{~mA} / 24 \mathrm{~mA}(20 \mathrm{~mA})$ |

## Functional Description

The 'F374 consists of eight edge-triggered flip-flops with individual D-type inputs and TRI-STATE true outputs. The buffered clock and buffered Output Enable are common to all flip-flops. The eight flip-flops will store the state of their individual D inputs that meet the setup and hold time requirements on the LOW-to-HIGH Clock (CP) transition. With the Output Enable ( $\overline{\mathrm{OE}}$ ) LOW, the contents of the eight flipflops are available at the outputs. When the $\overline{O E}$ is HIGH, the outputs go to the high impedance state. Operation of the $\overline{\mathrm{OE}}$ input does not affected the state of the flip-flops.

Truth Table

| Inputs |  |  | Internal <br> Register | Output |
| :---: | :---: | :---: | :---: | :---: |
| $\mathbf{D}_{\boldsymbol{n}}$ | CP | $\overline{\mathbf{O E}}$ |  |  |
| H | - | L | H | H |
| L |  |  | L | L |
| X | X | H | X | L |

H = HIGH Voltage Level
L = LOW Voltage Level
$\mathrm{X}=$ Immaterial
$\mathrm{Z}=$ High Impedance
$\Gamma=$ LOW-to-HIGH Clock Transition

## Logic Diagram



Please note that this diagram is provided only for the understanding of logic operations and should not be used to estimate propagation delays.
Absolute Maximum Ratings (Note 1)
If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and specifications.

Storage Temperature
$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Ambient Temperature under Bias Junction Temperature under Bias Plastic
$\mathrm{V}_{\mathrm{CC}}$ Pin Potential to Ground Pin
Input Voltage (Note 2)
Input Current (Note 2)
Voltage Applied to Output

$$
\begin{array}{lr}
\text { in HIGH State (with } \mathrm{V}_{\mathrm{CC}}=0 \mathrm{~V} \text { ) } & -0.5 \mathrm{~V} \text { to } \mathrm{V}_{\mathrm{CC}} \\
\text { Standard Output } & -0.5 \mathrm{~V} \text { to }+5.5 \mathrm{~V} \\
\text { TRI-STATE Output } &
\end{array}
$$

Current Applied to Output in LOW State (Max)
$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
$-55^{\circ} \mathrm{C}$ to $+175^{\circ} \mathrm{C}$
$-55^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$

$$
-0.5 \mathrm{~V} \text { to }+7.0 \mathrm{~V}
$$

$$
-0.5 \mathrm{~V} \text { to }+7.0 \mathrm{~V}
$$

$$
-30 \mathrm{~mA} \text { to }+5.0 \mathrm{~mA}
$$

ESD Last Passing Voltage (Min)
4000 V
Note 1: Absolute maximum ratings are values beyond which the device may be damaged or have its useful life impaired. Functional operation under these conditions is not implied.
Note 2: Either voltage limit or current limit is sufficient to protect inputs.

## Recommended Operating Conditions

Free Air Ambient Temperature
Military

Commercial
Supply Voltage Military Commercial

$$
\begin{array}{r}
-55^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C} \\
0^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C} \\
\\
+4.5 \mathrm{~V} \text { to }+5.5 \mathrm{~V} \\
+4.5 \mathrm{~V} \text { to }+5.5 \mathrm{~V}
\end{array}
$$

## DC Electrical Characteristics

| Symbol | Parameter |  | 54F/74F |  |  | Units | $\mathrm{V}_{\text {cc }}$ | Conditions |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | Min | Typ | Max |  |  |  |
| $\mathrm{V}_{\mathrm{IH}}$ | Input HIGH Voltage |  | 2.0 |  |  | V |  | Recognized as a HIGH Signal |
| $\mathrm{V}_{\text {IL }}$ | Input LOW Voltage |  |  |  | 0.8 | V |  | Recognized as a LOW Signal |
| $\mathrm{V}_{\mathrm{CD}}$ | Input Clamp Diode Voltage |  |  |  | -1.2 | V | Min | $\mathrm{I}_{\mathrm{IN}}=-18 \mathrm{~mA}$ |
| $\mathrm{V}_{\mathrm{OH}}$ | Output HIGH Voltage | 54F 10\% VCC 54F 10\% VCC <br> 74F 10\% VCC <br> $74 \mathrm{~F} 10 \% \mathrm{~V}_{\mathrm{CC}}$ <br> 74F 5\% VCC <br> 74F 5\% VCC | $\begin{aligned} & 2.5 \\ & 2.4 \\ & 2.5 \\ & 2.4 \\ & 2.7 \\ & 2.7 \\ & \hline \end{aligned}$ |  |  | V | Min | $\begin{aligned} & \mathrm{I}_{\mathrm{OH}}=-1 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{OH}}=-3 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{OH}}=-1 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{OH}}=-3 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{OH}}=-1 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{OH}}=-3 \mathrm{~mA} \end{aligned}$ |
| $\mathrm{V}_{\mathrm{OL}}$ | Output LOW <br> Voltage | $\begin{aligned} & 54 \mathrm{~F} 10 \% \mathrm{~V}_{\mathrm{CC}} \\ & 74 \mathrm{~F} 10 \% \mathrm{~V}_{\mathrm{C}} \end{aligned}$ |  |  | $\begin{aligned} & 0.5 \\ & 0.5 \end{aligned}$ | V | Min | $\begin{aligned} & \mathrm{I}_{\mathrm{OL}}=20 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{OL}}=24 \mathrm{~mA} \end{aligned}$ |
| $\mathrm{I}_{\mathrm{H}}$ | Input HIGH Current | $\begin{aligned} & 54 \mathrm{~F} \\ & 74 \mathrm{~F} \end{aligned}$ |  |  | $\begin{gathered} 20.0 \\ 5.0 \end{gathered}$ | $\mu \mathrm{A}$ | Max | $\mathrm{V}_{\mathrm{IN}}=2.7 \mathrm{~V}$ |
| $\mathrm{I}_{\mathrm{BVI}}$ | Input HIGH Current Breakdown Test | $\begin{aligned} & 54 \mathrm{~F} \\ & 74 \mathrm{~F} \end{aligned}$ |  |  | $\begin{aligned} & 100 \\ & 7.0 \end{aligned}$ | $\mu \mathrm{A}$ | Max | $\mathrm{V}_{\mathrm{IN}}=7.0 \mathrm{~V}$ |
| $I_{\text {CEX }}$ | Output HIGH <br> Leakage Current | $\begin{aligned} & 54 \mathrm{~F} \\ & 74 \mathrm{~F} \end{aligned}$ |  |  | $\begin{gathered} 250 \\ 50 \end{gathered}$ | $\mu \mathrm{A}$ | Max | $\mathrm{V}_{\text {OUT }}=\mathrm{V}_{\text {CC }}$ |
| $V_{\text {ID }}$ | Input Leakage Test | 74F | 4.75 |  |  | V | 0.0 | $\mathrm{I}_{\mathrm{ID}}=1.9 \mu \mathrm{~A}$ <br> All Other Pins Grounded |
| IOD | Output Leakage Circuit Current | 74F |  |  | 3.75 | $\mu \mathrm{A}$ | 0.0 | $V_{I O D}=150 \mathrm{mV}$ <br> All Other Pins Grounded |
| IIL | Input LOW Current |  |  |  | -0.6 | mA | Max | $\mathrm{V}_{\text {IN }}=0.5 \mathrm{~V}$ |
| IOZH | Output Leakage Cur |  |  |  | 50 | $\mu \mathrm{A}$ | Max | $\mathrm{V}_{\text {OUT }}=2.7 \mathrm{~V}$ |
| lozL | Output Leakage Cur |  |  |  | -50 | $\mu \mathrm{A}$ | Max | $\mathrm{V}_{\text {OUT }}=0.5 \mathrm{~V}$ |
| los | Output Short-Circuit | urrent | -60 |  | -150 | mA | Max | $\mathrm{V}_{\text {OUT }}=0 \mathrm{~V}$ |
| $\mathrm{I}_{\mathrm{zz}}$ | Bus Drainage Test |  |  |  | 500 | $\mu \mathrm{A}$ | 0.0V | $\mathrm{V}_{\text {OUT }}=5.25 \mathrm{~V}$ |
| $\mathrm{I}_{\text {CCZ }}$ | Power Supply Curre |  |  | 55 | 86 | mA | Max | $\mathrm{V}_{\mathrm{O}}=\mathrm{HIGH} \mathrm{Z}$ |

## AC Electrical Characteristics

| Symbol | Parameter | 74F |  |  | 54F |  | 74F |  | Units |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | $\begin{gathered} \mathrm{T}_{\mathbf{A}}=+25^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}}=+5.0 \mathrm{~V} \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \\ \hline \end{gathered}$ |  |  | $\begin{gathered} \mathrm{T}_{\mathrm{A}}, \mathrm{~V}_{\mathbf{C C}}=\mathrm{Mil} \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \end{gathered}$ |  | $\begin{gathered} \mathrm{T}_{A}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{Com} \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \end{gathered}$ |  |  |
|  |  | Min | Typ | Max | Min | Max | Min | Max |  |
| $\mathrm{f}_{\text {max }}$ | Maximum Clock Frequency | 100 | 140 |  | 60 |  | 70 |  | MHz |
| $\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \end{aligned}$ | Propagation Delay CP to $\mathrm{O}_{\mathrm{n}}$ | $\begin{aligned} & 4.0 \\ & 4.0 \end{aligned}$ | $\begin{aligned} & 6.5 \\ & 6.5 \\ & \hline \end{aligned}$ | $\begin{aligned} & 8.5 \\ & 8.5 \end{aligned}$ | $\begin{aligned} & 4.0 \\ & 4.0 \end{aligned}$ | $\begin{aligned} & 10.5 \\ & 11.0 \end{aligned}$ | $\begin{aligned} & 4.0 \\ & 4.0 \end{aligned}$ | $\begin{aligned} & 10.0 \\ & 10.0 \\ & \hline \end{aligned}$ | ns |
| $\begin{aligned} & \mathrm{t}_{\mathrm{PZH}} \\ & \mathrm{t}_{\mathrm{PZL}} \end{aligned}$ | Output Enable Time | $\begin{aligned} & 2.0 \\ & 2.0 \end{aligned}$ | $\begin{aligned} & 9.0 \\ & 5.8 \end{aligned}$ | $\begin{gathered} 11.5 \\ 7.5 \end{gathered}$ |  | $\begin{aligned} & 14.0 \\ & 10.0 \end{aligned}$ | $\begin{aligned} & 2.0 \\ & 2.0 \end{aligned}$ | $\begin{gathered} 12.5 \\ 8.5 \end{gathered}$ | ns |
| $\begin{aligned} & \mathrm{t}_{\mathrm{PHZ}} \\ & \mathrm{t}_{\mathrm{PLZ}} \end{aligned}$ | Output Disable Time | $\begin{aligned} & 2.0 \\ & 1.5 \end{aligned}$ | $\begin{aligned} & 5.3 \\ & 4.3 \end{aligned}$ | $\begin{aligned} & 7.0 \\ & 5.5 \end{aligned}$ |  |  | $\begin{aligned} & 2.0 \\ & 1.5 \end{aligned}$ | $\begin{aligned} & 8.0 \\ & 6.5 \end{aligned}$ |  |

## AC Operating Requirements

| Symbol | Parameter |  |  |  |  |  |  | Units |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | $\begin{gathered} \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}}=+5.0 \mathrm{~V} \end{gathered}$ |  | $\mathbf{T}_{\mathbf{A}}, \mathrm{V}_{\mathbf{C C}}=\mathbf{M i l}$ |  | $\mathrm{T}_{\mathbf{A}}, \mathrm{V}_{\mathbf{C C}}=\mathbf{C o m}$ |  |  |
|  |  | Min | Max | Min | Max | Min | Max |  |
| $\mathrm{t}_{\mathrm{s}}(\mathrm{H})$ | Setup Time, HIGH or LOW$D_{n} \text { to } C P$ | 2.0 |  | $\begin{aligned} & 2.5 \\ & 2.0 \end{aligned}$ |  | $\begin{aligned} & 2.0 \\ & 2.0 \\ & \hline \end{aligned}$ |  | ns |
| $\mathrm{t}_{\mathrm{s}}(\mathrm{L})$ |  | 2.0 |  |  |  |  |  |  |
| $t_{\text {h }}(\mathrm{H})$ | Hold Time, HIGH or LOW | 2.0 |  | 2.0 |  | 2.0 |  |  |
| $t_{\text {h }}(\mathrm{L})$ | $\mathrm{D}_{\mathrm{n}}$ to CP | 2.0 |  | 2.5 |  | 2.0 |  |  |
| $\mathrm{t}_{\mathrm{w}}(\mathrm{H})$ | CP Pulse Width | 7.0 |  | 7.0 |  | 7.0 |  | ns |
| $\mathrm{t}_{\mathrm{w}}(\mathrm{L})$ | HIGH or LOW | 6.0 |  | 6.0 |  | 6.0 |  | ns |

## Ordering Information

The device number is used to form part of a simplified purchasing code where the package type and temperature range are defined as follows:



Physical Dimensions inches (millimeters) (Continued)


20-Lead ( $0.300^{\prime \prime}$ Wide) Molded Small Outline Package, EIAJ (SJ)
NS Package Number M20D

Physical Dimensions inches (millimeters) (Continued)


Physical Dimensions inches (millimeters) (Continued)


## LIFE SUPPORT POLICY

NATIONAL'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF NATIONAL SEMICONDUCTOR CORPORATION. As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and whose failure to perform, when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.


## ®

Design Purchasing Quality Company Jobs

Products > Military/ Aerospace > Logic > FAST > 54F374

## 冈

## 54F374

Octal D Flip-Flop with Clock Enable

## Contents

- General Description
- Features
- Datasheet
- Package Availability, Models, Samples \& Pricing


## General Description

The 'F374 is a high-speed, low-power octal D-type flip-flop featuring separate D-type inputs for each flip-flop and TRI-STATE outputs for bus-oriented applications. A buffered Clock (CP) and Output Enable (OE\#) are common to all flip-flops.

## Features

- Edge-triggered D-type inputs
- Buffered positive edge-triggered clock
- TRI-STATE outputs for bus-oriented applications
- Guaranteed 4000 V minimum ESD protection


## Datasheet

| Title | $\begin{gathered} \text { Size } \\ \text { (in } \\ \text { Kbytes) } \end{gathered}$ | Date | View Online | Download | Receive via Email |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 54F374 Octal D-Type Flip-Flop with TRI-STATE(RM) Outputs | 175 <br> Kbytes | $\begin{array}{\|l} 9-\text { Dec- } \\ 97 \end{array}$ | View Online | Download | Receive via Email |


| 54F374 Mil-Aero Datasheet MN54F374X | 23 Kbytes | View Online | Download | Receive via Email |
| :---: | :---: | :---: | :---: | :---: |

Please use Adobe Acrobat to view PDF file(s).
If you have trouble printing, see Printing Problems.

## Package Availability, Models, Samples \& Pricing

| Part Number | Package |  | Status | Models |  | Samples \& Electronic Orders | Budgetary Pricing |  | Std <br> Pack <br> Size |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Type | $\begin{array}{c\|} \hline \begin{array}{c}  \\ \text { pins } \end{array} \\ \hline \end{array}$ |  | SPICE | IBIS |  | Quantity | \$US each |  |
| 54F374LMQB | LCC | 20 | Full production | N/A | N/A | x | 50+ | \$3.4000 | $\left\lvert\, \begin{gathered} \text { tube } \\ \text { of } \\ 50 \end{gathered}\right.$ |
| 54F374DM | Cerdip | 20 | Full production | N/A | N/A | . | 50+ | \$3.4000 | $\begin{array}{\|cc} \hline \text { tube } \\ \text { of } \\ 20 \\ \hline \end{array}$ |
| 54F374DMQB | Cerdip | 20 | Full production | N/A | N/A | $x^{-}$ | 50+ | \$1.7000 | $\begin{array}{\|\|c\|} \hline \text { tube } \\ \text { of } \\ 20 \end{array}$ |
| 54F374FMQB | Cerpack | 20 | Full production | N/A | N/A | ® | 50+ | \$2.8000 | tube <br> of <br> 19 |
| 54F374DC | Cerdip | 20 | Full production | N/A | N/A | . |  |  | $\begin{array}{\|l\|} \hline \text { tube } \\ \text { of } \\ \text { N/A } \end{array}$ |
| JM38510/34105B2 | LCC | 20 | Full production | N/A | N/A | . | 50+ | \$4.5000 | $\left\lvert\, \begin{gathered} \text { tube } \\ \text { of } \\ 50 \end{gathered}\right.$ |
| JM38510/34105BR | Cerdip | 20 | Full production | N/A | N/A | . | 50+ | \$1.9000 | $\begin{array}{\|\|c\|} \hline \text { tube } \\ \text { of } \\ 20 \end{array}$ |
| JM38510/34105BS | Cerpack | 20 | Full production | N/A | N/A | . | 50+ | \$4.5000 | $\left\lvert\, \begin{array}{\|c} \text { tube } \\ \text { of } \\ 19 \end{array}\right.$ |
| JD54F374SRA | Cerdip | 20 | Preliminary | N/A | N/A | . |  |  | $\begin{array}{\|\|c\|} \hline \text { tube } \\ \text { of } \\ \text { N/A } \end{array}$ |
| 54F374 MW8 | wafe |  | Full production | N/A | N/A | . |  |  | N/A |


| Quick Search | $\underline{\text { Parametric }}$ | $\underline{\text { System }}$ | $\underline{\text { Product }}$ | Home |
| :--- | :--- | :--- | :--- | :--- |
|  | $\underline{\text { Search }}$ | $\underline{\text { Diagrams }}$ | $\underline{\text { Tree }}$ | Hen |

About Languages. About the Site . About "Cookies"<br>National is QS 9000 Certified . Privacy/Security Copyright © National Semiconductor Corporation - Preferences . Feedback

