

54ACQ244 • 54ACTQ244 Quiet Series Octal Buffer/Line Driver with TRI-STATE® Outputs

General Description

The 'ACQ/'ACTQ244 is an octal buffer and line driver designed to be employed as a memory address driver, clock driver and bus oriented transmitter or receiver which provides improved PC board density. The ACQ/ACTQ utilizes NSC Quiet Series technology to guarantee quiet output switching and improved dynamic threshold performance. FACT Quiet Series™ features GTO™ output control and undershoot corrector in addition to a split ground bus for superior performance.

- Guaranteed simultaneous switching noise level and dynamic threshold performance
- Improved latch-up immunity
- TRI-STATE outputs drive bus lines or buffer memory address registers
- Outputs source/sink 24 mA
- Faster prop delays than the standard 'AC/'ACT244
- 4 kV minimum ESD immunity
- Standard Microcircuit Drawing (SMD)
 - 'ACTQ244: 5962-92186

07

GND

— 'ACQ244: 5962-92176

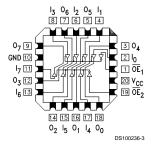
Features

 \blacksquare I_{CC} and I_{OZ} reduced by 50%

Logic Symbol

Connection Diagrams

Pin Names	Description
$\overline{OE}_1,\overline{OE}_2$	TRI-STATE Output Enable Inputs
I ₀ -I ₇	Inputs
O ₀ -O ₇	Outputs


for DIP and Flatpak 1 20 V_{CC} 2 3 19 0Ē₂ 4 17 17 14 5 6 16 0₁ 15 15 0₁

11

DS100236-2

Pin Assignment

Pin Assignment for LCC

GTO™ is a trademark of National Semiconductor Corporation.
TRI-STATE® is a registered trademark of National Semiconductor Corporation.
FACT® is a registered trademark of Fairchild Semiconductor Corporation.
FACT Quiet Series™ is a trademark of Fairchild Semiconductor Corporation.

Truth Tables

Inputs		Outputs
ŌE ₁	I _n	(Pins 12, 14, 16, 18)
L	L	L
L	Н	н
Н	Х	z

Inputs		Outputs
ŌĒ₂	l _n	(Pins 3, 5, 7, 9)
L	L	L
L	Н	Н
Н	X	Z

H = HIGH Voltage Level
L = LOW Voltage Level
X = Immaterial
Z = High Impedance

Absolute Maximum Ratings (Note 1)

If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/ Distributors for availability and specifications.

Supply Voltage (V_{CC}) -0.5V to +7.0V DC Input Diode Current (I_{IK}) $V_1 = -0.5V$ -20 mA $V_I = V_{CC} + 0.5V$ +20 mA DC Input Voltage (V_I) –0.5V to $V_{\rm CC}$ + 0.5V DC Output Diode Current (IOK) $V_{O} = -0.5V$ -20 mA $V_{\rm O} = V_{\rm CC} + 0.5 V$ +20 mA DC Output Voltage (V_O) -0.5V to V_{CC} + 0.5V DC Output Source or Sink Current (I_O) ±50 mA DC V_{CC} or Ground Current per Output Pin (I_{CC} or I_{GND}) ±50 mA Storage Temperature (T_{STG}) -65°C to +150°C DC Latch-Up Source or Sink Current ±300 mA Junction Temperature (T_J) CDIP 175°C

Recommended Operating Conditions

Supply Voltage (V_{CC}) 'ACQ 2.0V to 6.0V 'ACTQ 4.5V to 5.5V 0V to V_{CC} Input Voltage (V_I) Output Voltage (Vo) 0V to V_{CC} Operating Temperature (T_A)

54ACQ/ACTQ -55°C to +125°C

Minimum Input Edge Rate ΔV/Δt

'ACQ Devices

 V_{IN} from 30% to 70% of V_{CC}

V_{CC} @ 3.0V, 4.5V, 5.5V 125 mV/ns

Minimum Input Edge Rate $\Delta V/\Delta t$

'ACTQ Devices

 V_{IN} from 0.8V to 2.0V

V_{CC} @ 4.5V, 5.5V

Note 1: Absolute maximum ratings are those values beyond which damage to the device may occur. The databook specifications should be met, without exception, to ensure that the system design is reliable over its power supply, temperature, and output/input loading variables. National does not recommend operation of FACT® circuits outside databook specifications.

Note 2: All commercial packaging is not recommended for applications requiring greater than 2000 temperature cycles from -40°C to +125°C.

DC Electrical Characteristics for 'ACQ Family Devices

			54ACQ		
Symbol	Parameter	V _{cc}	T _A = -55°C to +125°C	Units	Conditions
		(V)	Guaranteed Limits		
V _{IH}	Minimum High Level	3.0	2.1		V _{OUT} = 0.1V
	Input Voltage	4.5	3.15	V	or V _{CC} – 0.1V
		5.5	3.85		
V _{IL}	Maximum Low Level	3.0	0.9		V _{OUT} = 0.1V
	Input Voltage	4.5	1.35	V	or V _{CC} – 0.1V
		5.5	1.65		
V _{OH}	Minimum High Level	3.0	2.9		I _{OUT} = -50 μA
	Output Voltage	4.5	4.4	V	
		5.5	5.4		
					(Note 3)
		0.0	0.4		$V_{IN} = V_{IL} \text{ or } V_{IH}$
		3.0	2.4	.,	I _{OH} = -12 mA
		4.5	3.7	V	I _{OH} = -24 mA
		5.5	4.7		I _{OH} = -24 mA
V_{OL}	Maximum Low Level	3.0	0.1		I _{OUT} = 50 μA
	Output Voltage	4.5	0.1	V	
		5.5	0.1		
					(Note 3)
					$V_{IN} = V_{IL} \text{ or } V_{IH}$
		3.0	0.50		I _{OL} = 12 mA
		4.5	0.50	V	I _{OL} = 24 mA
		5.5	0.50		I _{OL} = 24 mA
I _{IN}	Maximum Input	5.5	±1.0	μA	$V_I = V_{CC}$, GND
	Leakage Current				(Note 5)

DC Electrical Characteristics for 'ACQ Family Devices (Continued)

			54ACQ		
Symbol	Parameter	V _{cc}	T _A = -55°C to +125°C	Units	Conditions
		(V)	Guaranteed Limits		
I _{OLD}	Minimum Dynamic (Note 4)	5.5	50	mA	V _{OLD} = 1.65V Max
I _{OHD}	Output Current	5.5	-50	mA	V _{OHD} = 3.85V Min
I _{cc}	Maximum Quiescent	5.5	80.0	μA	V _{IN} = V _{CC}
	Supply Current				or GND (Note 5)
l _{oz}	Maximum TRI-STATE				$V_{I}(OE) = V_{IL}, V_{IH}$
	Leakage Current	5.5	±5.0	μΑ	$V_I = V_{CC}$, GND
					$V_O = V_{CC}$, GND
V _{OLP}	Quiet Output	5.0	1.5	V	(Notes 6, 7)
	Maximum Dynamic V _{OL}				
V _{OLV}	Quiet Output	5.0	-1.2	V	(Notes 6, 7)
	Minimum Dynamic V _{OL}				

Note 3: All outputs loaded thresholds on input associated with output under test.

DC Electrical Characteristics for 'ACTQ Family Devices

			54ACTQ		
Symbol	Parameter	V _{cc}	-55°C to +125°C	Units	Conditions
		(V)	Guaranteed Limits		
V _{IH}	Minimum High Level	4.5	2.0	V	V _{OUT} = 0.1V
	Input Voltage	5.5	2.0		or V _{CC} – 0.1V
V _{IL}	Maximum Low Level	4.5	0.8	V	V _{OUT} = 0.1V
	Input Voltage	5.5	0.8		or V _{CC} – 0.1V
V _{OH}	Minimum High Level	4.5	4.4	V	I _{OUT} = -50 μA
	Output Voltage	5.5	5.4		
					(Note 9)
					$V_{IN} = V_{IL} \text{ or } V_{IH}$
		4.5	3.70	V	$I_{OH} = -24 \text{ mA}$
		5.5	4.70		I _{OH} = -24 mA
V _{OL}	Maximum Low Level	4.5	0.1	V	I _{OUT} = 50 μA
	Output Voltage	5.5	0.1		
					(Note 9)
					$V_{IN} = V_{IL} \text{ or } V_{IH}$
		4.5	0.50	V	I _{OL} = 24 mA
		5.5	0.50		I _{OL} = 24 mA
I _{IN}	Maximum Input	5.5	±1.0	μA	$V_I = V_{CC}$, GND
	Leakage Current				
I _{OZ}	Maximum TRI-STATE	5.5	±5.0	μA	$V_{I} = V_{IL}, V_{IH}$
	Leakage Current				$V_O = V_{CC}$, GND
I _{CCT}	Maximum I _{CC} /Input	5.5	1.6	mA	$V_I = V_{CC} - 2.1V$

Note 4: Maximum test duration 2.0 ms, one output loaded at a time.

Note 5: I_{IN} and I_{CC} @ 3.0V are guaranteed to be less than or equal to the respective limit @ 5.5V V_{CC} .

I_{CC} for 54ACQ @ 25°C is identical to 74ACQ @ 25°C.

Note 6: Plastic DIP package.

Note 7: Max number of outputs defined as (n). Data Inputs are driven 0V to 5V. One output @ GND.

Note 8: Max number of Data Inputs (n) switching. (n – 1) Inputs switching 0V to 5V ('ACQ). Input-under-test switching: 5V to threshold (V_{ILD}), 0V to threshold (V_{IHD}), f = 1 MHz.

DC Electrical Characteristics for 'ACTQ Family Devices (Continued)

			54ACTQ		
Symbol	Parameter	V _{cc}	-55°C to +125°C	Units	Conditions
		(V)	Guaranteed Limits	1	
I _{OLD}	Minimum Dynamic	5.5	50	mA	V _{OLD} = 1.65V Max
	(Note 10)				
I _{OHD}	Output Current	5.5	-50	mA	V _{OHD} = 3.85V Min
I _{cc}	Maximum Quiescent	5.5	80.0	μA	V _{IN} = V _{CC}
	Supply Current				or GND (Note 11)
V _{OLP}	Quiet Output	5.0	1.5	V	(Notes 12, 13)
	Maximum Dynamic V _{OL}				
V _{OLV}	Quiet Output	5.0	-1.2	V	(Notes 12, 13)
	Minimum Dynamic V _{OL}				

Note 9: All outputs loaded thresholds on input associated with output under test.

Note 10: Maximum test duration 2.0 ms, one output loaded at a time.

Note 11: I_{CC} for 54ACTQ @ 25°C is identical to 74ACTQ @ 25°C.

Note 12: Plastic DIP package.

Note 13: Max number of outputs defined as (n). Data Inputs are driven 0V to 3V. One output @ GND.

AC Electrical Characteristics

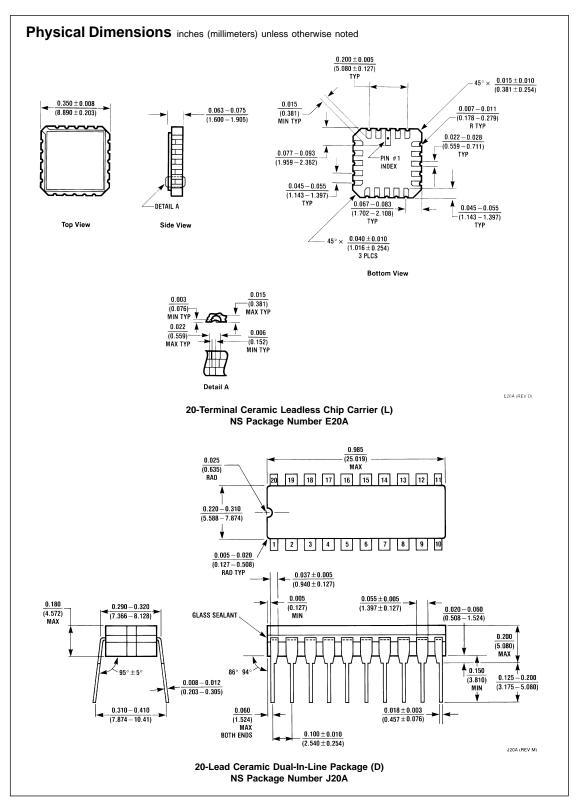
Symbol	Parameter	V _{CC} (V) (Note 14)	54ACQ T _A = -55°C to +125°C C _L = 50 pF		Units	Fig. No.
			Min	Max		
t _{PHL,} t _{PLH}	Propagation Delay	3.3	1.0	12.5	ns	
	Data to Output	5.0	1.0	9.0		
t _{PZL,} t _{PZH}	Output Enable Time	3.3	1.0	12.0	ns	
		5.0	1.0	10.0		
t _{PHZ} , t _{PLZ}	Output Disable Time	3.3	1.0	11.5	ns	
		5.0	1.0	10.0		

Note 14: Voltage Range 5.0 is $5.0V \pm 0.5V$.

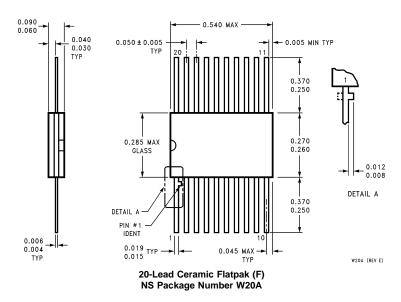
Voltage Range 3.3 is 3.3V ± 0.3 V.

Note 15: Skew is defined as the absolute value of the difference between the actual propagation delay for any two separate outputs of the same device. The specification applies to any outputs switching in the same direction, either HIGH to LOW (t_{OSHL}) or LOW to HIGH (t_{OSLH}). Parameter guaranteed by design.

AC Electrical Characteristics


Symbol	Parameter	V _{cc} (V) (Note 16)	54ACTQ T _A = -55°C to +125°C C _L = 50 pF		Units	Fig. No.
			Min	Max		
t _{PHL} , t _{PLH}	Propagation Delay	5.0	1.5	9.0	ns	
	Data to Output					
t _{PZL} , t _{PZH}	Output Enable Time	5.0	1.5	10.5	ns	
t _{PHZ} , t _{PLZ}	Output Disable Time	5.0	1.5	10.5	ns	

Note 16: Voltage Range 5.0 is 5.0V ± 0.5 V.


Note 17: Skew is defined as the absolute value of the difference between the actual propagation delay for any two separate outputs of the same device. The specification applies to any outputs switching in the same direction, either HIGH to LOW (t_{OSHL}) or LOW to HIGH (t_{OSLH}). Parameter guaranteed by design.

Capacitance

Symbol	Parameter	Тур	Units	Conditions
C _{IN}	Input Capacitance	4.5	pF	V _{CC} = OPEN
C _{PD}	Power Dissipation	70	pF	V _{CC} = 5.0V
	Capacitance			

Physical Dimensions inches (millimeters) unless otherwise noted (Continued)

LIFE SUPPORT POLICY

NATIONAL'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DE-VICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF NATIONAL SEMI-CONDUCTOR CORPORATION. As used herein:

- 1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
- 2. A critical component in any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

National Semiconductor Corporation Americas

Tel: 1-800-272-9959 Fax: 1-800-737-7018 Email: support@nsc.com

www.national.com

National Semiconductor

Fax: +49 (0) 1 80-530 85 86 Fax: +49 (0) 1 80-530 85 85 Email: europe.support@nsc.com

Deutsch Tel: +49 (0) 1 80-530 85 85 English Tel: +49 (0) 1 80-532 78 32 Français Tel: +49 (0) 1 80-534 16 80 Italiano Tel: +49 (0) 1 80-534 16 80

National Semiconductor Asia Pacific Customer Response Group Tel: 65-2544466

Fax: 65-2504466 Email: sea.support@nsc.com National Semiconductor Japan Ltd. Tel: 81-3-5620-6175 Fax: 81-3-5620-6179

<u>Products</u> > <u>Military/Aerospace</u> > <u>Logic</u> > <u>FACT ACTQ</u> > **54ACTQ244**

54ACTQ244 Product Folder

Quiet Series Octal Buffer/Line Driver w/TRI-STATE Outputs

<u>General</u>	Features	Datasheet	<u>Package</u>	<u>Samples</u>
<u>Description</u>	reatures	Datasneet	<u>& Models</u>	<u>& Pricing</u>

Datasheet

Title	Size in Kbytes	Date	View Online	Download	Receive via Email
54ACQ244 54ACTQ244 Quiet Series Octal Buffer Line Driver with TRI-STATE Outputs	140 Kbytes	14-Aug-98	View Online	Download	Receive via Email
54ACTQ244 Mil-Aero Datasheet MN54ACTQ244-X	16 Kbytes		View Online	Download	Receive via Email
54ACTQ244 Mil-Aero Datasheet MV54ACTQ244-X	22 Kbytes		View Online	Download	Receive via Email

If you have trouble printing or viewing PDF file(s), see Printing Problems.

Package Availability, Models, Samples & Pricing

Part Number	Package			Status	Models		Samples & Electronic	Budgetary Pricing		Std Pack	<u>Package</u>
	Туре	Pins	MSL		SPICE	IBIS	Orders	Qty	\$US each	Size	<u>Marking</u>
54ACTQ244LMQB-R	LCC	20	MSL	Full production	N/A	N/A				rail of N/A	[logo]¢Z¢S¢4¢A 54ACTQ244 LMQB-R R9218601 M2A /Q¢M\$E
5962-9218601M2A (54ACTQ244LMQB)	LCC	20	MSL	Full production	N/A	N/A	Buy Now	50+	\$12.5000	rail of 50	[logo]¢Z¢S¢4¢A 54ACTQ244 LMQB /Q¢M\$E 5962- 9218601M2A
54ACTQ244DMQB-R	CERDIP	20	MSL	Full production	N/A	N/A				rail of N/A	[logo]¢Z¢S¢4¢A\$E 54ACTQ244DMQB- R /Q¢M 5962R9218601MRA
5962-9218601MRA (54ACTQ244DMQB)	CERDIP	20	MSL	Full production	N/A	N/A	Buy Now	50+	\$9.8000	rail of 20	[logo]¢Z¢S¢4¢A\$E 54ACTQ244DMQB /Q¢M 5962-9218601MRA
54ACTQ244FMQB-R	CERPACK	20	MSL	Full production	N/A	N/A				rail of N/A	[logo]¢Z¢S¢4¢A\$E 54ACTQ244FMQB -R /Q¢M 5962R 9218601MSA

5962-9218601MSA (54ACTQ244FMQB)	CERPACK	20	MSL	Full production	N/A	N/A	50+	\$10.4000	rail of 19	[logo]¢Z¢S¢4¢A\$E 54ACTQ244FMQB Q¢M 5962- 9218601MSA
5962R9218601V2A (54ACTQ244ERQMLV)	LCC	20	MSL	Full production	N/A	N/A	50+	\$138.0000	rail of 50	[logo]¢Z¢S¢4¢A 54ACTQ244 ERQMLV \$E 5962R 9218601V2A
5962R9218601VRA (54ACTQ244JRQMLV)	CERDIP	20	MSL	Full production	N/A	N/A	50+	\$138.0000	rail of 20	[logo]¢Z¢S¢4¢A\$E 54ACTQ244JRQMLV 5962R9218601VRA
RM54ACTQ244VSA	CERPACK	20	MSL	Preliminary	N/A	N/A			rail of N/A	[logo]¢Z¢S¢4¢A\$E RM54ACTQ244VSA ¢R WAFER #
RM54ACTQ245VSA	CERPACK	20	MSL	Preliminary	N/A	N/A			rail of N/A	RM54ACTQ245VSA cR WAFER #
5962R9218601VSA (54ACTQ244WRQMLV)	CERPACK	20	MSL	Full production	N/A	N/A	50+	\$138.0000	rail of 19	[logo]¢Z¢S¢4¢A\$E 54ACTQ244W RQMLV 5962R 9218601VSA

General Description

The 'ACQ/'ACTQ244 is an octal buffer and line driver designed to be employed as a memory address driver, clock driver and bus oriented transmitter or receiver which provides improved PC board density. The ACQ/ACTQ utilizes NSC Quiet Series technology to guarantee quiet output switching and improved dynamic threshold performance. FACT Quiet Series features GTO output control and undershoot corrector in addition to a split ground bus for superior performance.

Features

- I_{CC} and I_{OZ} reduced by 50%
- · Guaranteed simultaneous switching noise level and dynamic threshold performance
- Improved latch-up immunity
- TRI-STATE outputs drive bus lines or buffer memory address registers
- Outputs source/sink 24 mA
- Faster prop delays than the standard 'AC/'ACT244
- 4 kV minimum ESD immunity
- Standard Microcircuit Drawing (SMD)
 - 'ACTQ244: 5962-92186'ACQ244: 5962-92176

[Information as of 5-Aug-2002]

Search	<u>Design</u>	Purchasing	Quality	Company	Home

<u>About Languages</u>. <u>Website Guide</u>. <u>About "Cookies"</u>. National is <u>QS 9000 Certified</u>. <u>Privacy/Security Statement</u>. <u>Contact Us</u>. <u>Site Terms & Conditions of Use</u>. Copyright 2002 © National Semiconductor Corporation. <u>My Preferences</u>. **Feedback**