National Semiconductor is now part of

Texas Instruments.

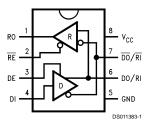
Search <u>http://www.ti.com/</u> for the latest technical

information and details on our current products and services.

July 1998

National Semiconductor

DS36276 FAILSAFE Multipoint Transceiver


General Description

The DS36276 FAILSAFE Multipoint Transceiver is designed for use on bi-directional differential busses. It is compatible with existing TIA/EIA-485 transceivers, however, it offers an additional feature not supported by standard transceivers.

The FAILSAFE feature guarantees the receiver output to a known state when the Interface is in the following conditions: Floating Line, Idle Line (no active drivers), and Line Fault conditions (open or short). The receiver output is in a HIGH state for the following conditions: OPEN Inputs, Terminated Inputs (50Ω), and SHORTED Inputs.

FAILSAFE is a highly desirable feature when the transceivers are used with Asynchronous Controllers such as UARTs.

Connection and Logic Diagram

Order Number DS36276M See NS Package Number M08A

Features

- FAILSAFE receiver, RO = HIGH for:
 - OPEN inputs
 - SHORTED inputs
- Compatible with popular interface standards:
 - TIA/EIA-485 (RS-485)
 - TIA/EIA-405 (RS-405) — TIA/EIA-422-A (RS-422-A)
 - CCITT Recommendation V.11
- Bi-Directional Transceiver
- Designed for multipoint transmission
- Separate driver input, driver enable, receiver enable, and receiver output for maximum flexibility
- Wide bus common mode range — (-7V to +12V)
- Pin compatible with: DS75176B, DS96176, DS3695 and SN75176A and B
- Available in SOIC package

Truth Tables

Driver

	Inputs		Outputs			
RE	DE	DI	DO/RI	DO /RI		
Х	н	Н	Н	L		
x	н	L	L	н		
x	L	Х	Z	Z		

Receiver

	Output		
RE	DE	RI– R I	RO
L	L	≥0V	Н
L	L	≤–500 mV	L
Н	Х	Х	Z

Receiver FAILSAFE

	Output		
RE	DE	RI-RI	RO
L	L	SHORTED	н
L	L	OPEN	н
н	x	X	Z

TRI-STATE® is a registered trademark of National Semiconductor Corporation.

Absolute Maximum Ratings (Note 1)

•

If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/ Distributors for availability and specifications.

Supply Voltage (V _{CC})	7V
Input Voltage (DE, RE , and DI)	5.5V
Driver Output Voltage/	
Receiver Input Voltage	-10V to +15V
Receiver Output Voltage (RO)	5.5V
Maximum Package Power Dissipation	@ +25°C
M Package (derate 5.8 mW/°C above	
+25°C)	726 mW
Storage Temperature Range	–65°C to +150°C

Lead Temperature (Soldering 4	
sec.)	260°C
Max Junction Temperature	150°C
ESD Rating (HBM, 1.5 kΩ, 100	
pF)	≥ 6.0 kV

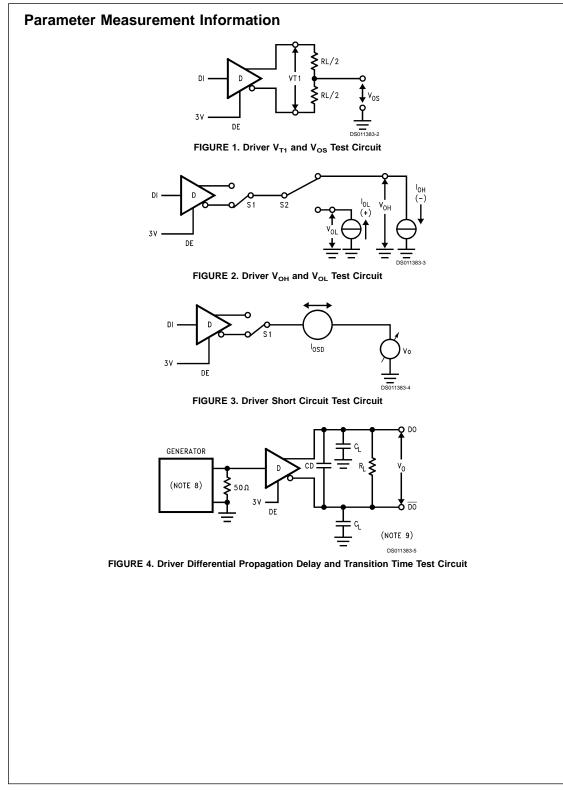
Recommended Operating Conditions

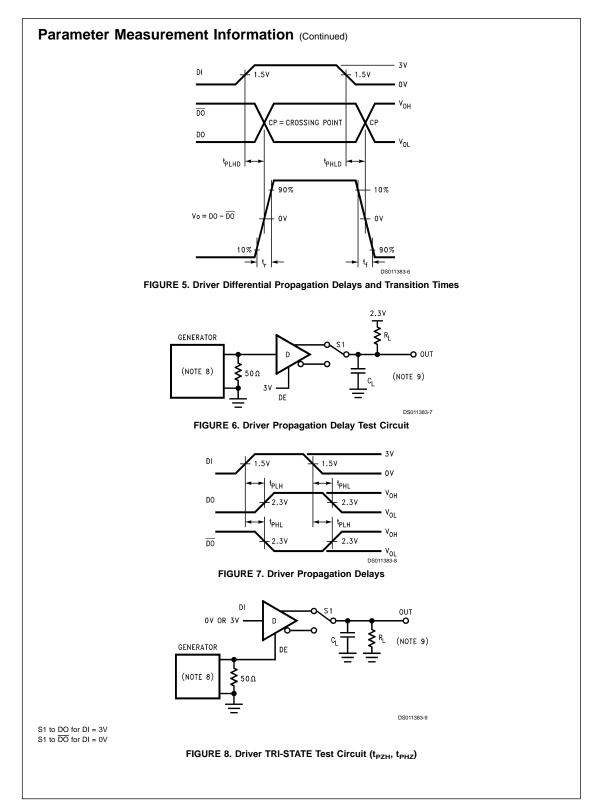
	Min	Max	Units
Supply Voltage, V _{CC}	4.75	5.25	V
Bus Voltage	-7	+12	V
Operating Temperature (T _A)			
DS36276	0	+70	°C

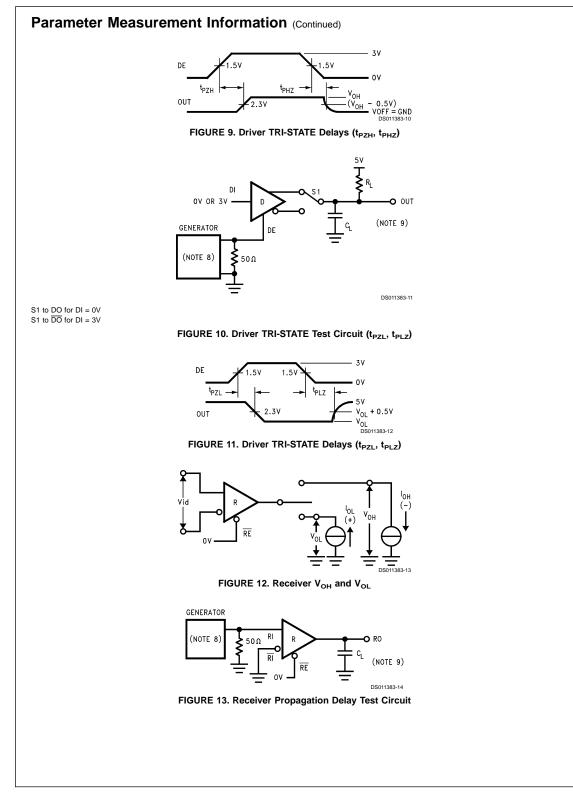
Electrical Characteristics (Notes 2, 4) Over recommended Supply Voltage and Operating Temperature ranges, unless otherwise specified.

Symbol	Parameter	Conditions		Min	Тур	Max	Units	
DRIVER C	HARACTERISTICS							
V _{OD}	Differential Output Voltage	I _O = 0 mA (No Load)		1.5	4.8	6.0	V
V _{oDO}	Output Voltage	I _O = 0 mA (Output to	$I_{O} = 0 \text{ mA}$ (Output to GND)				6.0	V
V _{oDO}	Output Voltage		0		6.0	V		
V _{T1}	Differential Output Voltage	$R_{L} = 54\Omega$ (485)	(Figure 1)		1.5	2.0	5.0	V
	(Termination Load)	R _L = 100Ω (422)			2.0	2.3	5.0	V
ΔV_{T1}	Balance of V _{T1}	$R_L = 54\Omega$	(Note 3)		-0.2	0.07	+0.2	V
	$ V_{T1} - \overline{V}_{\overline{T1}} $	R _L = 100Ω			-0.2	0.07	+0.2	V
Vos	Driver Common Mode	$R_L = 54\Omega$	(Figure 1)		0	2.5	3.0	V
	Output Voltage	R _L = 100Ω]		0	2.3	3.0	V
ΔV_{OS}	Balance of V _{OS}	$R_L = 54\Omega$	(Note 3)		-0.2	0.08	+0.2	V
	V _{os} − V _{os}	R _L = 100Ω			-0.2	0.08	+0.2	V
I _{OSD}	Driver Short-Circuit	V _O = +12V	(Figure 3)			134	290	mA
	Output Current	$V_{O} = V_{CC}$				140		mA
		$V_{O} = 0V$	1			-140		mA
		$V_{O} = -7V$	1			-180	-290	mA
RECEIVE	R CHARACTERISTICS							
V _{TH}	Differential Input High Threshold Voltage (Note 5)	$V_{O} = V_{OH}, I_{O} = -0.4 \text{ mA}$ -7V $\leq V_{CM} \leq +12V$				-0.18	0	V
V _{TL}	Differential Input Low Threshold Voltage (Note 5)	$V_O = V_{OL}, I_O = 8.0 \text{ mA}$ -7V $\leq V_{CM} \leq +12V$			-0.5	-0.23		V
V _{HST}	Hysteresis (Note 6)	$V_{CM} = 0V$				50		mV
I _{IN}	Line Input Current	Other Input = 0V	V _I = +12V			0.7	1.0	mA
	(V _{CC} = 4.75V, 5.25V, 0V)	DE = V _{IH} (Note 7)	$V_1 = -7V$			-0.5	-0.8	mA
I _{OSR}	Short Circuit Current	$V_{O} = 0V$		RO	-5.0	-30	-85	mA
l _{oz}	TRI-STATE [®] Leakage Current	V _O = 0.4 to 2.4V		1	-20		+20	μA
V _{OH}	Output High Voltage	$V_{ID} = 0V, I_{OH} = -0.4$	1 mA	1	2.5	3.5		V
	(Figure 12)	V _{ID} = OPEN, I _{OH} =		1	2.5	3.5		V
V _{OL}	Output Low Voltage	$V_{ID} = -0.5V, I_{OL} = +$		1		0.25	0.6	V
	(Figure 12)	$V_{ID} = -0.5V, I_{OL} = +$	-16 mA	1		0.35	0.7	V
R _{IN}	Input Resistance			1	12	19		kΩ

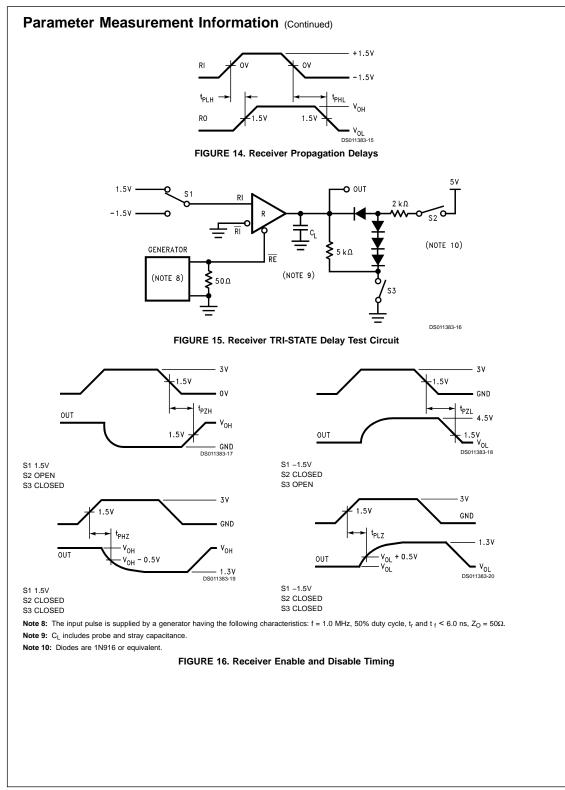
Vil Low Vil Low Vil High Ilit Low VcL Input Icc Outg Iccc Input Iccc Input Iccc Outg Iccc Input Iccc Outg Iccc Outg Iccc Over recomme Symbol DRIVER CHAR	h Level Input Voltage / Level Input Voltage h Level Input Current / Level Input Current ut Clamp Voltage put Low Voltage pyly Current Load) g Characteristics (nded Supply Voltage and Ope Parameter	DE = DE = DE = DE =	0.4V -18 mA 3V, $\overline{RE} = 0V$, $DI = 0V$ $\overline{RE} = 0V$, $DI = 0V$ 3V, $\overline{RE} = 3V$, $DI = 0V$ $\overline{0V}$, $\overline{RE} = 3V$, $DI = 0V$	BS otherwis		Typ -0.75 42 28 43 31	Max V _{CC} 0.8 20 -100 -1.5 60 45 60 50	Units
VIH High VIL Low IIH High IIL Low VCL Input ICCR Outp ICCD ICCD ICCX Sup Over recomme Symbol DRIVER CHARX DRIVER CHARX	h Level Input Voltage / Level Input Voltage h Level Input Current / Level Input Current ut Clamp Voltage put Low Voltage put Low Voltage ply Current Load) g Characteristics (inded Supply Voltage and Ope Parameter ACTERISTICS	$V_{IL} = 0$ $I_{CL} = 0$ $DE = 0$ $DE = 0$ $DE = 0$ $DE = 0$	0.4V -18 mA 3V, $\overline{RE} = 0V$, $DI = 0V$ $\overline{0V}$, $\overline{RE} = 0V$, $DI = 0V$ 3V, $\overline{RE} = 3V$, $DI = 0V$ $\overline{0V}$, $\overline{RE} = 3V$, $DI = 0V$ $\overline{0V}$, $\overline{RE} = 3V$, $DI = 0V$	RE, or DI	GND	42 28 43 31	0.8 20 -100 -1.5 60 45 60 50	V Ац V 4m Ат Ат
VIL Low VIL High IIL Low VcL Input Icc Outp IccR Sup IccN Outp Over recomme Symbol DRIVER CHARA Interver	ACTERISTICS	$V_{IL} = 0$ $I_{CL} = 0$ $DE = 0$ $DE = 0$ $DE = 0$ $DE = 0$	0.4V -18 mA 3V, $\overline{RE} = 0V$, $DI = 0V$ $\overline{0V}$, $\overline{RE} = 0V$, $DI = 0V$ 3V, $\overline{RE} = 3V$, $DI = 0V$ $\overline{0V}$, $\overline{RE} = 3V$, $DI = 0V$ $\overline{0V}$, $\overline{RE} = 3V$, $DI = 0V$	RE, or DI	GND	42 28 43 31	0.8 20 -100 -1.5 60 45 60 50	V Ац V 4m Ат Ат
IIIH Higt IIL Low VCL Inpu ICC Outp ICCR Sup ICCD (No ICCX Over recomme Symbol DRIVER CHARX	h Level Input Current / Level Input Current ut Clamp Voltage put Low Voltage ply Current Load) g Characteristics (inded Supply Voltage and Ope Parameter ACTERISTICS	$V_{IL} = 0$ $I_{CL} = 0$ $DE = 0$ $DE = 0$ $DE = 0$ $DE = 0$	0.4V -18 mA 3V, $\overline{RE} = 0V$, $DI = 0V$ $\overline{0V}$, $\overline{RE} = 0V$, $DI = 0V$ 3V, $\overline{RE} = 3V$, $DI = 0V$ $\overline{0V}$, $\overline{RE} = 3V$, $DI = 0V$ $\overline{0V}$, $\overline{RE} = 3V$, $DI = 0V$	or DI	e specific	42 28 43 31	20 -100 -1.5 60 45 60 50	Ац Ац V Am Am Am
Switching Over recomme Symbol DRIVER CHARX	ACTERISTICS	$V_{IL} = 0$ $I_{CL} = 0$ $DE = 0$ $DE = 0$ $DE = 0$ $DE = 0$	0.4V -18 mA 3V, $\overline{RE} = 0V$, $DI = 0V$ $\overline{0V}$, $\overline{RE} = 0V$, $DI = 0V$ 3V, $\overline{RE} = 3V$, $DI = 0V$ $\overline{0V}$, $\overline{RE} = 3V$, $DI = 0V$ $\overline{0V}$, $\overline{RE} = 3V$, $DI = 0V$	- DI		42 28 43 31	-100 -1.5 60 45 60 50	Aų V Am Am Am
V _{CL} Inpu I _{CC} Outş I _{CCR} Sup I _{CCD} (No I _{CCX} Over recomme Symbol DRIVER CHARA	It Clamp Voltage put Low Voltage ply Current Load) g Characteristics (ended Supply Voltage and Ope Parameter ACTERISTICS	$I_{CL} = 0$ $DE = 0$	-18 mA $3V, \overline{RE} = 0V, DI = 0V$ $0V, \overline{RE} = 0V, DI = 0V$ $3V, \overline{RE} = 3V, DI = 0V$ $0V, \overline{RE} = 3V, DI = 0V$ $Fremperature ranges, unless$			42 28 43 31	-1.5 60 45 60 50	MA MA MA MA
Iccc Out IccR Sup IccD (No Iccx Over recomme Symbol DRIVER CHARX	put Low Voltage ply Current Load) g Characteristics (ended Supply Voltage and Ope Parameter ACTERISTICS	DE = DE = DE = DE =	$\overline{3V, \overline{RE}} = 0V, DI = 0V$ $\overline{0V, \overline{RE}} = 0V, DI = 0V$ $\overline{3V, \overline{RE}} = 3V, DI = 0V$ $\overline{0V, \overline{RE}} = 3V, DI = 0V$ $\overline{0V, \overline{RE}} = 3V, DI = 0V$ $\overline{0V, \overline{RE}} = 3V, DI = 0V$			42 28 43 31	60 45 60 50	mA mA mA mA
cc Outi ccR Sup ccD (No ccx Outing Switching Over recomme Symbol DRIVER CHARX	ply Current Load) g Characteristics (ended Supply Voltage and Ope Parameter ACTERISTICS	DE = DE = DE =	$\overline{RE} = 0V, DI = 0V$ $\overline{3V}, \overline{RE} = 3V, DI = 0V$ $\overline{0V}, \overline{RE} = 3V, DI = 0V$ $\overline{0V}, \overline{RE} = 3V, DI = 0V$			28 43 31	45 60 50	mA mA mA
CCR Sup CCD (No CCX Over recomme Symbol DRIVER CHARJ	Load) g Characteristics (ended Supply Voltage and Ope Parameter ACTERISTICS	DE = DE =	$3V, \overline{RE} = 3V, DI = 0V$ $0V, \overline{RE} = 3V, DI = 0V$ Femperature ranges, unless			43 31	60 50	m/ m/
Switching Over recomme Symbol DRIVER CHARA	g Characteristics (ended Supply Voltage and Ope Parameter ACTERISTICS	DE =	OV, RE = 3V, DI = 0V			31 ed.	50	mA
Switching Over recomme Symbol DRIVER CHAR	nded Supply Voltage and Ope Parameter ACTERISTICS	Note 4)	Femperature ranges, unles			ed.		
Switching Over recomme Symbol DRIVER CHAR	nded Supply Voltage and Ope Parameter ACTERISTICS		Temperature ranges, unles				Max	Units
			$R_L = 54\Omega$	7		21	60	ns
t _{PHLD} C	Diff. Prop. Delay High to Low		C _L = 50 pF	7		19	60	ns
t _{skd} C	Diff. Skew (t _{PLHD} -t _{PHLD})		$C_D = 50 \text{ pF}$			2	10	ns
r D	Diff. Rise Time		(Figures 4, 5)			12	50	ns
f C	Diff. Fall Time					12	50	ns
PLH P	Prop. Delay Low to High		$R_L = 27\Omega, C_L = 15 \text{ pF}$			22	45	ns
PHL P	Prop. Delay High to Low		(Figures 6, 7)			22	45	ns
PZH E	Enable Time Z to High		$R_L = 110\Omega$			32	55	ns
t _{PZL} E	Enable Time Z to Low		$C_L = 50 \text{ pF}$			32	65	ns
t _{PHZ} C	Disable Time High to Z		(Figure 8 – Figure 11)			22	55	ns
PLZ C	Disable Time Low to Z					16	55	ns
	ARACTERISTICS							
	Prop. Delay Low to High		$V_{ID} = -1.5V$ to +1.5V	15		40	70	ns
t _{PHL} P	Prop. Delay High to Low		C _L = 15 pF (<i>Figures 13, 14</i>)	15	5	42	70	ns
-	Skew (t _{PLH} -t _{PHL})					2	15	ns
1211	Enable Time Z to High		$C_{L} = 15 \text{ pF}$			15	50	ns
126	Enable Time Z to Low		(Figures 15, 16)			17	50	ns
1112	Disable Time High to Z					24 19	50 50	ns

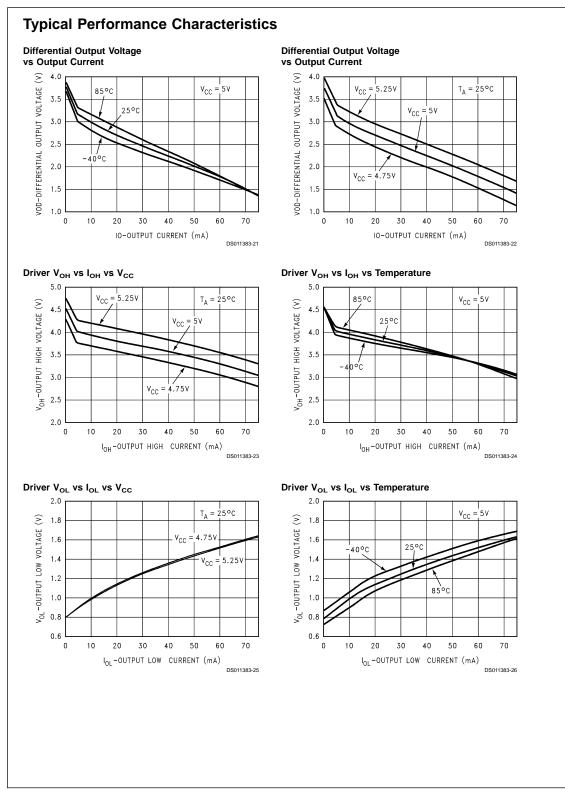

Note 2: Current into device pins is defined as positive. Current out of device pins is defined as negative. All voltages are referenced to ground unless otherwise specified.

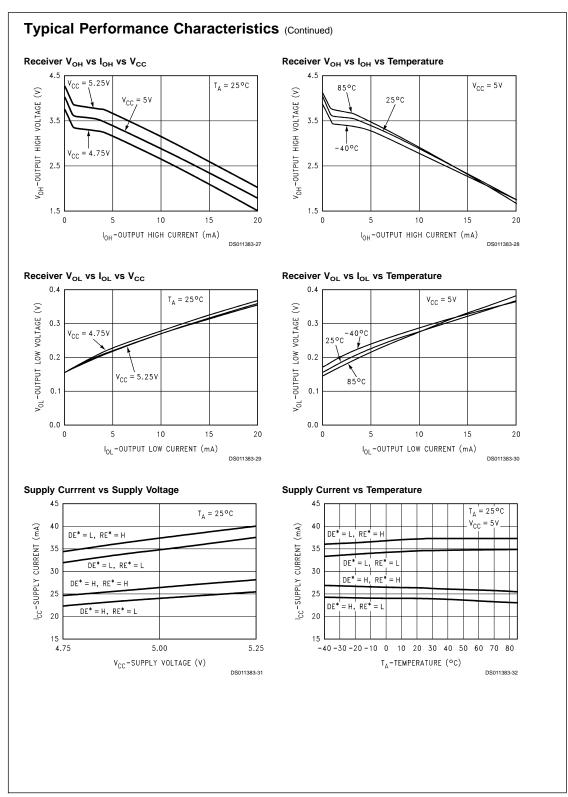

Note 3: $\Delta |V_{T1}|$ and $\Delta |V_{OS}|$ are changes in magnitude of V_{T1} and V_{OS} , respectively, that occur when the input changes state.

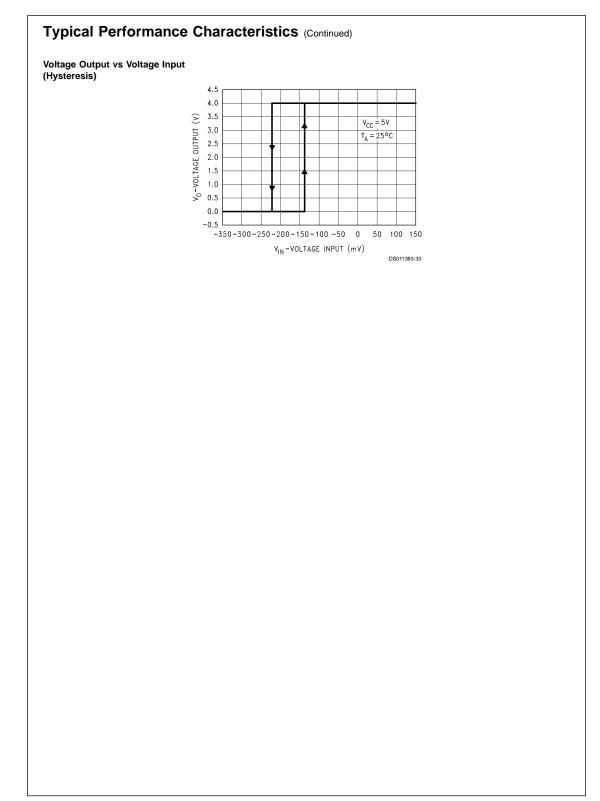

Note 4: All typicals are given for V $_{CC}$ = 5.0V and T_{A} = +25 $^{\circ}C.$

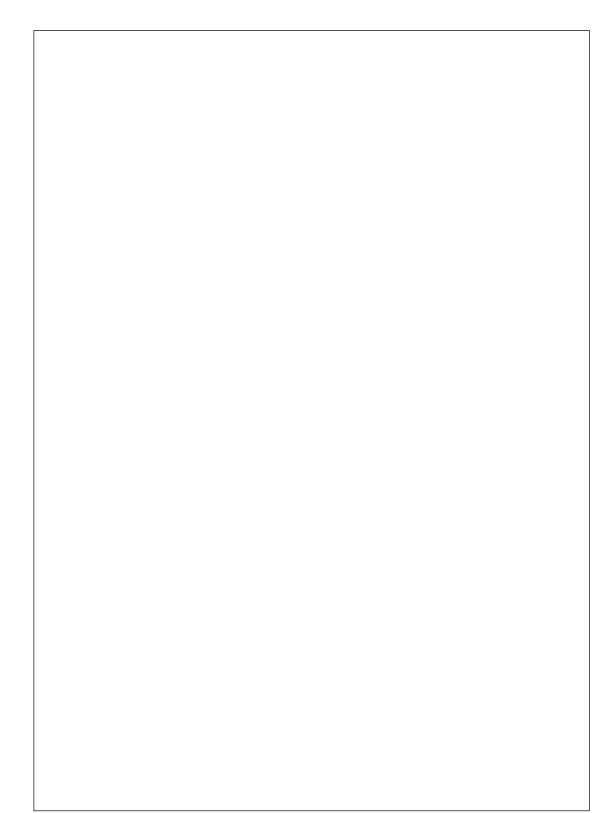
Note 5: Threshold parameter limits specified as an algebraic value rather than by magnitude.

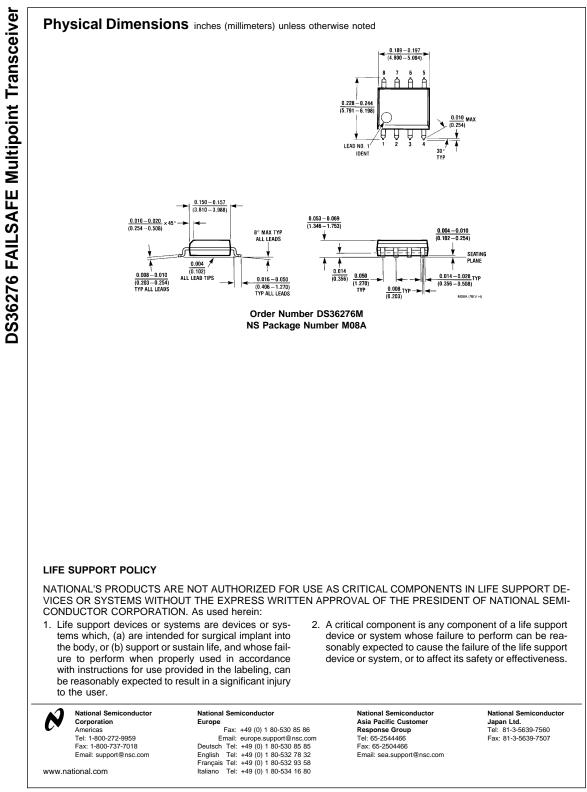

Note 6: Hysteresis defined as $V_{HST} = V_{TH} - V_{TL}$. Note 7: I_{IN} includes the receiver input current and driver TRI-STATE leakage current.






6





8

National does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and National reserves the right at any time without notice to change said circuitry and specifications.

<u>Products > Analog - Interface > Data Transmission Circuits > RS-485 > DS36276</u>

Product Folder

DS36276 FailSafe Multipoint Transceiver

Contents

- General Description
- <u>Features</u>
- Datasheet
- Package Availability, Models, Samples & Pricing
- <u>Application Notes</u>

General Description

The DS36276 FAILSAFE Multipoint Transceiver is designed for use on bi-directional differential busses. It is compatible with existing TIA/EIA-485 transceivers, however, it offers an additional feature not supported by standard transceivers.

The FAILSAFE feature guarantees the receiver output to a known state when the Interface is in the following conditions: Floating Line, Idle Line (no active drivers), and Line Fault conditions (open or short). The receiver output is in a HIGH state for the following conditions: OPEN Inputs, Terminated Inputs (50 Ohm), and SHORTED Inputs.

FAILSAFE is a highly desirable feature when the transceivers are used with Asynchronous Controllers such as UARTs.

Features

- FAILSAFE receiver, RO = HIGH for:
 - O OPEN inputs
 - Terminated inputs
 - SHORTED inputs
- Compatible with popular interface standards:
 - o TIA/EIA-485 (RS-485)
 - o TIA/EIA-422-A (RS-422-A)
 - o CCITT Recommendation V.11
- Bi-Directional Transceiver
 - Designed for multipoint transmission

Parametric Table					
Number of Drivers	1				
Number of Receivers	1				
Supply Voltage	5 V				
Process	Bipolar				

National P/N DS36276 - FailSafe Multipoint Transceiver

- Separate driver input, driver enable, receiver enable, and receiver output for maximum flexibility
- Wide bus common mode range
 - (-7V to +12V)
- Pin compatible with: DS75176B, DS96176, DS3695 and SN75176A and B
- Available in SOIC package

Datasheet

Title	Size (in Kbytes)	Date	View Online	Download	Receive via Email
DS36276 FAILSAFE Multipoint Transceiver	236 Kbytes	4-Mar-99	View Online	Download	<u>Receive via</u> <u>Email</u>
DS36276 FAILSAFE Multipoint Transceiver (JAPANESE)	431 Kbytes		View Online	Download	Receive via Email

Please use <u>Adobe Acrobat</u> to view PDF file(s).

If you have trouble printing, see <u>Printing Problems</u>.

Package Availability, Models, Samples & Pricing

Part Number	Package		Status	Mod	Models Samples &		- Duugetary Pricing		& Budgetary Pricing		Std Pack	Package
	Туре	# pins		SPICE	IBIS	Electronic Orders	Quantity	\$US each		Marking		
DS36276M	SOIC NARROW	8	Full production	N/A	N/A	24 Hour Samples	1K+	\$1.3400	tube of	[logo]¢2¢T DS36		
					1 1/11	Buy Now		¢1.5 100	95	276M		
DS36276MX	SOIC NARROW	8	Full production	N/A	N/A		1K+	\$1.3400	reel of 2500	[logo]¢2¢T DS36 276M		
DS36276 MDC	Die		Full production	N/A	N/A				tray of N/A	-		

Application Notes

Title	Size (in Kbytes)	Date	View Online	Download	Receive via Email
AN-1057: Application Note 1057 Ten Ways to Bulletproof RS-485 Interfaces	155 Kbytes	5-Oct-98	View Online	Download	Receive via Email
AN-1031: Application Note 1031 TIA/EIA-422-B Overview	101 Kbytes	3-Feb-00	View Online	Download	Receive via Email

National P/N DS36276 - FailSafe Multipoint Transceiver

Please use <u>Adobe Acrobat</u> to view PDF file(s).

If you have trouble printing, see <u>Printing Problems</u>.

[Information as of 3-Oct-2001]				
Quick Search	Parametric Search	<u>System</u> Diagrams	Product Tree	Home

<u>About Languages</u> . <u>Website Guide</u> . <u>About "Cookies"</u> . National is <u>QS 9000 Certified</u> <u>Site Terms & Conditions of Use</u> . Copyright 2001 © National Semiconductor Corporation <u>Privacy/Security Statement</u> . <u>Preferences</u> . <u>Feedback</u>