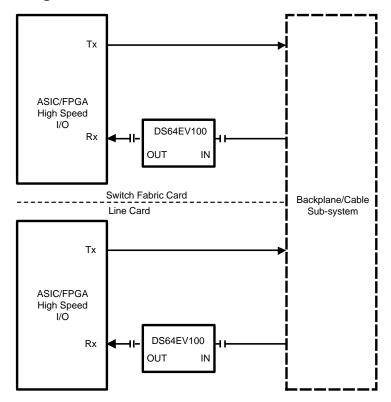


DS64EV100 Programmable Single Equalizer

Check for Samples: DS64EV100

FEATURES


- Equalizes up to 24 dB loss at 10 Gbps
- Equalizes up to 22 dB loss at 6.4 Gbps
- 8 levels of programmable equalization
- Operates up to 10 Gbps with 30" FR4 traces
- Operates up to 6.4 Gbps with 40" FR4 traces
- 0.175 UI residual deterministic jitter at 6.4 Gbps with 40" FR4 traces
- Single 2.5V or 3.3V power supply
- Supports AC or DC-Coupling with wide input common-mode
- Low power consumption: 100 mW Typ at 2.5V
- Small 3 mm x 4 mm 14-pin WSON package
- > 8 kV HBM ESD Rating
- -40 to 85°C operating temperature range

DESCRIPTION

The DS64EV100 programmable equalizer provides compensation for transmission medium losses and reduces the medium-induced deterministic jitter for NRZ data channel. The DS64EV100 is optimized for operation up to 10 Gbps for both cables and FR4 traces. The equalizer channel has eight levels of input equalization that can be programmed by three control pins.

The equalizer supports both AC and DC-coupled data paths for long run length data patterns such as PRBS-31, and balanced codes such as 8b/10b. The device uses differential current-mode logic (CML) inputs and outputs. The DS64EV100 is available in a 3 mm x 4 mm 14-pin leadless WSON package. Power is supplied from either a 2.5V or 3.3V supply.

Simplified Application Diagram

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

All trademarks are the property of their respective owners.

Pin Diagram

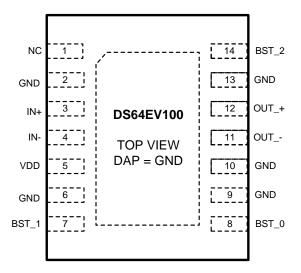


Figure 1. 14-Pin WSON Package (3 mm x 4 mm x 0.8 mm, 0.5 mm pitch) See Package Number NHK0014A

Table 1. Pin Descriptions

		1	
Pin Name	Pin #	I/O, Type	Description
HIGH SPEED	DIFFERENTIA	L I/O	
IN+ IN-	3 4	I, CML	Inverting and non-inverting CML differential inputs to the equalizer. An on-chip 100Ω terminating resistor is connected between IN+ and IN Refer to Figure 4.
OUT+ OUT-	12 11	O, CML	Inverting and non-inverting CML differential outputs from the equalizer. An on-chip 50Ω terminating resistor connects OUT+ to V_{DD} and OUT- to V_{DD} .
EQUALIZATION	ON CONTROL		
BST_2 BST_1 BST_0	14 7 8	I, CMOS	BST_2, BST_1, and BST_0 select the equalizer strength. BST_2 is internally pulled high. BST_1 and BST_0 are internally pulled low.
POWER			
V_{DD}	5	I, Power	V_{DD} = 2.5V ±5% or 3.3V ±10%. V_{DD} pins should be tied to V_{DD} plane through low inductance path. A 0.01µF bypass capacitor should be connected between each V_{DD} pin to GND planes.
GND	2, 6, 9, 10, 13	I, Power	Ground reference. GND should be tied to a solid ground plane through a low impedance path.
DAP	PAD	I, Power	Ground reference. The exposed pad at the center of the package must be connected to ground plane of the board.
OTHER			
NC	1		Reserved. Do not connect.

These devices have limited built-in ESD protection. The leads should be shorted together or the device placed in conductive foam during storage or handling to prevent electrostatic damage to the MOS gates.

www.ti.com

Absolute Maximum Ratings (1)(2)

Supply Voltage (V _{DD})	−0.5V to +4V
CMOS Input Voltage	-0.5V to +4.0V
CMOS Output Voltage	-0.5V to +4.0V
CML Input/Output Voltage	-0.5V to +4.0V
Junction Temperature	+150°C
Storage Temperature	−65°C to +150°C
Lead Temperature Soldering, 4 sec	+260°C
ESD Rating	
HBM, 1.5 kΩ, 100 pF	> 8 kV
EIAJ, 0Ω, 200 pF	> 250 V
Thermal Resistance, $\theta_{\text{JA}},$ No Airflow	40 °C/W

- (1) "Absolute Maximum Ratings" indicate limits beyond which damage to the device may occur, including inoperability and degradation of device reliability and/or performance. Functional operation of the device and/or non-degradation at the Absolute Maximum Ratings or other conditions beyond those indicated in the Recommended Operating Conditions is not implied. The Recommended Operating Conditions indicate conditions at which the device is functional and the device should not be operated beyond such conditions. Absolute Maximum Numbers are guaranteed for a junction temperature range of -40°C to +125°C. Models are validated to Maximum Operating Voltages only.
- (2) If Military/Aerospace specified devices are required, please contact the Texas Instruments Sales Office / Distributors for availability and specifications.

Recommended Operating Conditions

	MIN	TYP	MAX	UNIT
Supply Voltage ⁽¹⁾		<u>'</u>		•
V _{DD2.5} to GND	2.375	2.5	2.625	V
V _{DD3.3} to GND	3.0	3.3	3.6	V
Ambient Temperature	-40	25	+85	°C

⁽¹⁾ The $V_{DD2.5}$ is V_{DD} = 2.5V ± 5% and $V_{DD3.3}$ is V_{DD} = 3.3V ± 10%.

Electrical Characteristics

Over recommended operating supply and temperature ranges unless other specified. (1) (2)

	PARAMETER	TEST CONDITIONS	MIN	TYP ⁽¹⁾	MAX	UNIT
POWE	R					
Р	Power Supply	V _{DD3.3}		140	200	mW
۲	Consumption	V _{DD2.5}		100	150	mW
N	Supply Noise Tolerance	50 Hz – 100 Hz 100 Hz – 10 MHz 10 MHz – 1.6 GHz		100 40 10		$\begin{array}{c} mV_{P-P} \\ mV_{P-P} \\ mV_{P-P} \end{array}$
LVTTL	DC SPECIFICATIONS				.	
V	High Lovel Innet Voltage	V _{DD2.5}	1.6		V _{DD2.}	V
V _{IH}	High Level Input Voltage	V_{IL}	2.0		V _{DD3.}	V
V _{IL}	Low Level Input Voltage		-0.3		0.8	V
1/	High Lovel Input Voltage	$I_{OH} = -3 \text{ mA}, V_{DD3.3}$	2.4			V
V _{OH}	High Level Input Voltage	I _{IN}	2.0			V
V _{OL}	Low Level Input Voltage	I _{OL} = 3 mA			0.4	V

⁽¹⁾ Typical values represent most likely parametric norms at V_{DD} = 3.3V or 2.5V, T_A = 25°C., and at the Recommended Operation Conditions at the time of product characterization and are not guaranteed.

⁽²⁾ The Electrical Characteristics tables list guaranteed specifications under the listed Recommended Operating Conditions except as otherwise modified or specified by the Electrical Characteristics Conditions and/or Notes. Typical specifications are estimations only and are not guaranteed.

⁽³⁾ Allowed supply noise (mV_{P-P} sine wave) under typical conditions.

Electrical Characteristics (continued)

Over recommended operating supply and temperature ranges unless other specified. (1) (2)

	PARAMETER	TEST CONDITIONS	MIN	TYP ⁽¹⁾	MAX	UNIT
POWER						
		$V_{IN} = V_{DD}$		+1.8	+15	μΑ
I _{IN}	Input Current	V _{IN} = GND	-15	0		μA
	Input Leakage Current	V _{IN} = GND, with internal pull-down resistors		+95		μA
I _{IN-P}	with Internal Pull- Down/Up Resistors	V _{IN} = GND, with internal pull-up resistors	-20			μA
CML REC	CEIVER INPUTS (IN+, IN-)					
V _{TX}	Source Transmit Launch Signal Level (IN diff)	AC-Coupled or DC-Coupled Requirement, Differential measurement at point A. Figure 1	400		1600	mV _{P-F}
V _{INTRE}	Input Threshold Voltage	Differential measurement at point B . Figure 1		120		mV _{P-F}
V_{DDTX}	Supply Voltage of Transmitter to EQ	DC-Coupled Requirement	1.6		V_{DD}	V
V _{ICMDC}	Input Common-Mode Voltage	DC-Coupled Requirement Differential measurement at point A. Figure 1 (4)	V _{DDTX} -0.8		V _{DDT} _X -0.2	V
R _{LI}	Differential Input Return Loss	100 MHz – 3.2 GHz, with fixture's effect de-embedded		10		dB
R _{IN}	Input Resistance	Differential Across IN+ and IN Figure 4	85	100	115	Ω
CML OUT	TPUTS (OUT+, OUT-)		'			
V _{OD}	Output Differential Voltage Level (OUT diff)	Differential measurement with OUT+ and OUT-terminated by 50Ω to GND, AC-Coupled Figure 2	550	620	725	mV _{P-F}
V _{OCM}	Output Common-Mode Voltage	Single-ended measurement DC-Coupled with 50Ω terminations $^{(5)}$	V _{DD} -0.2		V _{DD} - 0.1	V
t _R , t _F	Transition Time	20% to 80% of differential output voltage, measured within 1" from output pins. Figure 2 (5)	20		60	ps
Ro	Output Resistance	Single-ended to V _{DD}	42	50	58	Ω
R _{LO}	Differential Output Return Loss	100 MHz – 1.6 GHz, with fixture's effect de- embedded. IN+ = static high.		10		dB
t _{PLHD}	Differential Low to High Propagation Delay	Propagation delay measurement at 50% V _{OD} between input to output, 100 Mbps		240		ps
t _{PHLD}	Differential High to Low Propagation Delay	Figure 3 ⁽⁵⁾		240		ps
EQUALIZ	ATION					
DJ1	Residual Deterministic Jitter at 10 Gbps	30" of 6 mil microstrip FR4, EQ Setting 0x06, PRBS-7 (2 ⁷ -1) pattern		0.20		UI _{P-F}
DJ2	Residual Deterministic Jitter at 6.4 Gbps	40" of 6 mil microstrip FR4, EQ Setting 0x06, PRBS-7 (2 ⁷ -1) pattern (6)(7)		0.17	0.26	UI _{P-P}
DJ3	Residual Deterministic Jitter at 5 Gbps	40" of 6 mil microstrip FR4, EQ Setting 0x07, PRBS-7 (2 ⁷ -1) pattern (6)(7)		0.12	0.20	UI _{P-P}
DJ4	Residual Deterministic Jitter at 2.5 Gbps	40" of 6 mil microstrip FR4, EQ Setting 0x07, PRBS-7 (2 ⁷ -1) pattern (6)(7)		0.10	0.16	UI _{P-P}

⁽⁴⁾ Measured with clock-like {11111 00000} pattern.

Submit Documentation Feedback

Copyright © 2006–2013, Texas Instruments Incorporated

Measured with clock-like {11111 00000} pattern.

Specification is guaranteed by characterization at optimal boost setting and is not tested in production.

Deterministic jitter is measured at the differential outputs (point C of Figure 1), minus the deterministic jitter before the test channel (point A of Figure 1). Random jitter is removed through the use of averaging or similar means.

Electrical Characteristics (continued)

Over recommended operating supply and temperature ranges unless other specified. (1) (2)

	PARAMETER	TEST CONDITIONS	MIN	TYP ⁽¹⁾	MAX	UNIT
POWER						
RJ	Random Jitter	(5)(8)		0.5		ps _{rms}

(8) Random jitter contributed by the equalizer is defined as sqrt (J_{OUT}² – J_{IN}²). J_{OUT} is the random jitter at equalizer outputs in ps_{rms}, see point C of Figure 1; J_{IN} is the random jitter at the input of the equalizer in ps_{rms}, see Figure 1.

TIMING DIAGRAMS

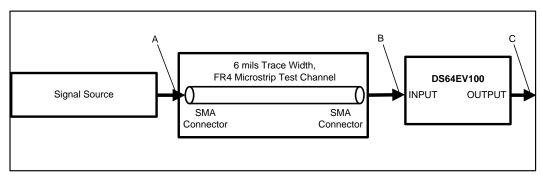


Figure 2. Test Setup Diagram

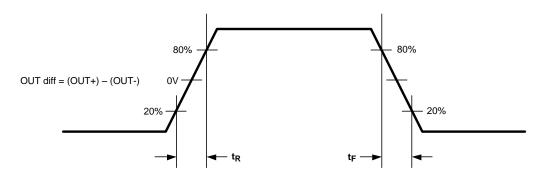


Figure 3. CML Output Transition Times

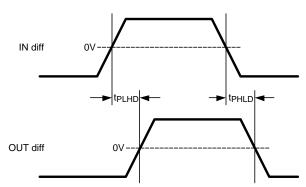


Figure 4. Propagation Delay Timing Diagram

Copyright © 2006–2013, Texas Instruments Incorporated

TIMING DIAGRAMS (continued)

Figure 5. Simplified Receiver Input Termination Circuit

DS64EV100 APPLICATIONS INFORMATION

The DS64EV100 is a programmable equalizer optimized for operation up to 10 Gbps for backplane and cable applications. The equalizer channel consists of an equalizer stage, a limiting amplifier, a DC offset correction block, and a CML driver as shown in Figure 5.

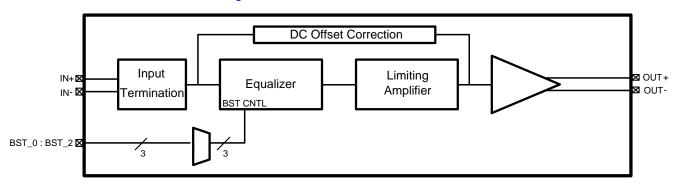


Figure 6. Simplified Block Diagram

EQUALIZER BOOST CONTROL

The equalizer channel supports eight programmable levels of equalization boost, and is controlled by the Boost Set pins (BST_[2:0]) in accordance with Table 2. The eight levels of boost settings enables the DS64EV100 to address a wide range of media loss and data rates.

Table 2. EQ Boost Control Table

6 mil Microstrip FR4 Trace Length (in)	24 AWG Twin-AX Cable Length (m)	Channel Loss at 3.2 GHz (db)	Channel Loss at 5 GHz (dB)	BST_N [2, 1, 0]
0	0	0	0	0 0 0
5	2	5	6	0 0 1
10	3	7.5	10	010
15	4	10	14	011
20	5	12.5	18	1 0 0 (Default)
25	6	15	21	1 0 1
30	7	17	24	110
40	10	22	30	111

GENERAL RECOMMENDATIONS

The DS64EV100 is a high performance circuit capable of delivering excellent performance. Careful attention must be paid to the details associated with high-speed design as well as providing a clean power supply. Refer to the LVDS Owner's Manual for more detailed information on high-speed design tips to address signal integrity design issues.

PCB LAYOUT CONSIDERATIONS FOR DIFFERENTIAL PAIRS

The CML inputs and outputs must have a controlled differential impedance of 100Ω . It is preferable to route CML lines exclusively on one layer of the board, particularly for the input traces. The use of vias should be avoided if possible. If vias must be used, they should be used sparingly and must be placed symmetrically for each side of a given differential pair. Route the CML signals away from other signals and noise sources on the printed circuit board. See AN-1187 for additional information on WSON packages.

POWER SUPPLY BYPASSING

Two approaches are recommended to ensure that the DS64EV100 is provided with an adequate power supply. First, the supply (V_{DD}) and ground (GND) pins should be connected to power planes routed on adjacent layers of the printed circuit board. The layer thickness of the dielectric should be minimized so that the V_{DD} and GND planes create a low inductance supply with distributed capacitance. Second, careful attention to supply bypassing through the proper use of bypass capacitors is required. A $0.01\mu F$ bypass capacitor should be connected to each V_{DD} pin such that the capacitor is placed as close as possible to the DS64EV100. Smaller body size capacitors can help facilitate proper component placement. Additionally, three capacitors with capacitance in the range of $2.2~\mu F$ to $10~\mu F$ should be incorporated in the power supply bypassing design as well. These capacitors can be either tantalum or an ultra-low ESR ceramic and should be placed as close as possible to the DS64EV100.

DC COUPLING

The DS64EV100 supports both AC coupling with external ac coupling capacitor, and DC coupling to its upstream driver, or downstream receiver. With DC coupling, users must ensure the input signal common mode is within the range of the electrical specification V_{ICMDC} and the device output is terminated with 50 Ω to V_{DD} .

TYPICAL PERFORMANCE EYE DIAGRAMS AND CURVES

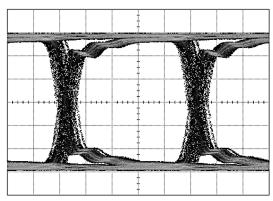


Figure 7. Equalized Signal (40 in FR4, 2.5 Gbps, PRBS7, 0x07 Setting)

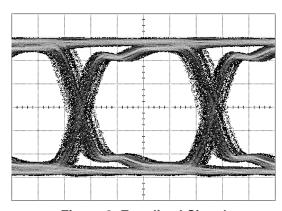


Figure 8. Equalized Signal (40 in FR4, 5 Gbps, PRBS7, 0x07 Setting)

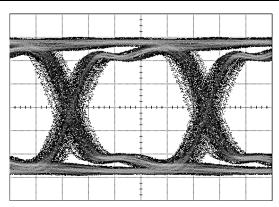


Figure 9. Equalized Signal (40 in FR4, 6.4 Gbps, PRBS7, 0x06 Setting)

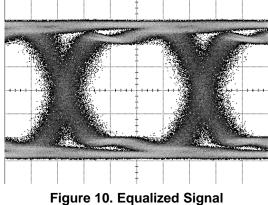


Figure 10. Equalized Signal (40 in FR4, 6.4 Gbps, PRBS31, 0x06 Setting)

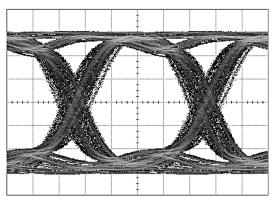


Figure 11. Equalized Signal (30 in FR4, 10 Gbps, PRBS7, 0x06 Setting)

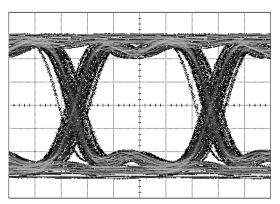


Figure 12. Equalized Signal (10m 24 AWG Twin-AX Cable, 6.4 Gbps, PRBS7, 0x06 Setting)

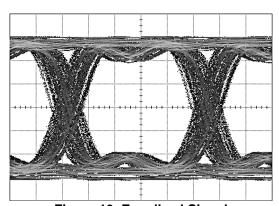


Figure 13. Equalized Signal (32 in Tyco XAUI Backplane, 6.25 Gbps, PRBS7, 0x06 Setting)

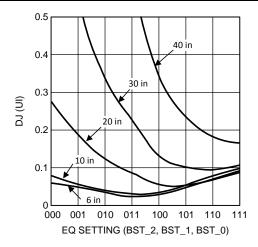


Figure 14. DJ vs. EQ Setting (6.4 Gbps)

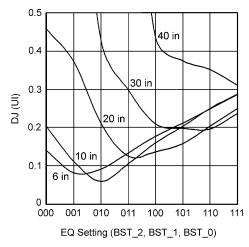


Figure 15. DJ vs. EQ Setting (10 Gbps)

SNLS232E - OCTOBER 2006-REVISED FEBRUARY 2013

REVISION HISTORY

Cr	nanges from Revision D (February 2013) to Revision E	Page
•	Changed layout of National Data Sheet to TI format	9

PACKAGE OPTION ADDENDUM

30-May-2018

PACKAGING INFORMATION

Orderable Device	Status	Package Type	_	Pins	_	Eco Plan	Lead/Ball Finish	MSL Peak Temp	Op Temp (°C)	Device Marking	Samples
	(1)		Drawing		Qty	(2)	(6)	(3)		(4/5)	
DS64EV100SD/NOPB	LIFEBUY	WSON	NHK	14	1000	Green (RoHS & no Sb/Br)	CU SN	Level-1-260C-UNLIM	-40 to 85	D64E1SD	

(1) The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

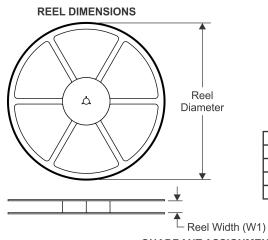
OBSOLETE: TI has discontinued the production of the device.

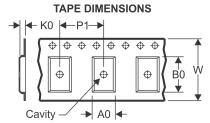
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may reference these types of products as "Pb-Free".

RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.

Green: TI defines "Green" to mean the content of Chlorine (CI) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based flame retardants must also meet the <=1000ppm threshold requirement.

- (3) MSL, Peak Temp. The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.
- (4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.
- (5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.
- (6) Lead/Ball Finish Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead/Ball Finish values may wrap to two lines if the finish value exceeds the maximum column width.


Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

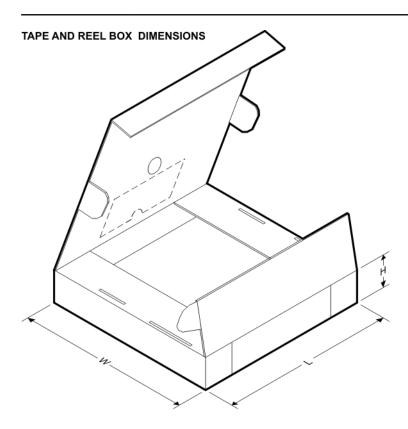

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

PACKAGE MATERIALS INFORMATION

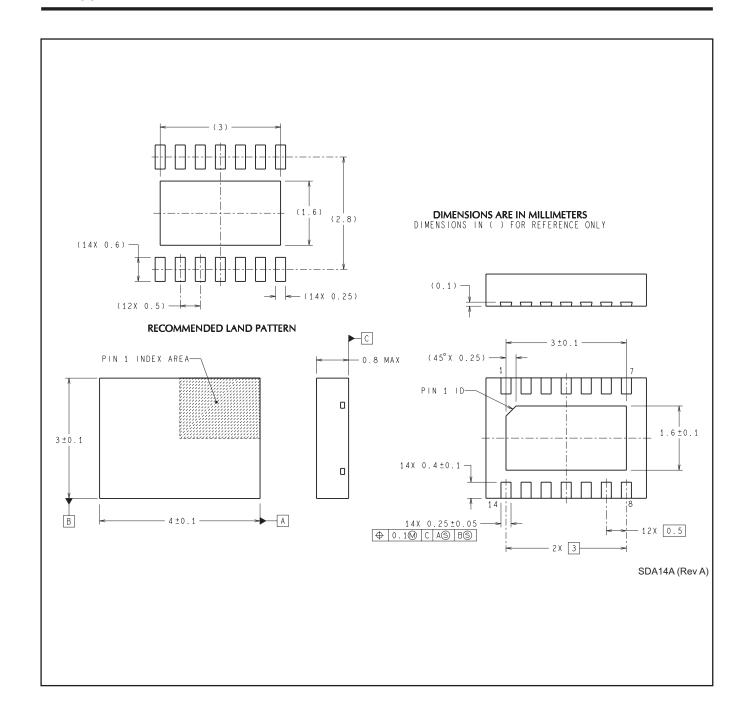
www.ti.com 2-Sep-2015

TAPE AND REEL INFORMATION

	Dimension designed to accommodate the component width
	Dimension designed to accommodate the component length
K0	Dimension designed to accommodate the component thickness
W	Overall width of the carrier tape
P1	Pitch between successive cavity centers


QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE

*All dimensions are nominal


Device	Package Type	Package Drawing			Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
DS64EV100SD/NOPB	WSON	NHK	14	1000	178.0	12.4	3.3	4.3	1.0	8.0	12.0	Q1

www.ti.com 2-Sep-2015

*All dimensions are nominal

Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
DS64EV100SD/NOPB	WSON	NHK	14	1000	210.0	185.0	35.0

IMPORTANT NOTICE

Texas Instruments Incorporated (TI) reserves the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete.

TI's published terms of sale for semiconductor products (http://www.ti.com/sc/docs/stdterms.htm) apply to the sale of packaged integrated circuit products that TI has qualified and released to market. Additional terms may apply to the use or sale of other types of TI products and services.

Reproduction of significant portions of TI information in TI data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such reproduced documentation. Information of third parties may be subject to additional restrictions. Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Buyers and others who are developing systems that incorporate TI products (collectively, "Designers") understand and agree that Designers remain responsible for using their independent analysis, evaluation and judgment in designing their applications and that Designers have full and exclusive responsibility to assure the safety of Designers' applications and compliance of their applications (and of all TI products used in or for Designers' applications) with all applicable regulations, laws and other applicable requirements. Designer represents that, with respect to their applications, Designer has all the necessary expertise to create and implement safeguards that (1) anticipate dangerous consequences of failures, (2) monitor failures and their consequences, and (3) lessen the likelihood of failures that might cause harm and take appropriate actions. Designer agrees that prior to using or distributing any applications that include TI products, Designer will thoroughly test such applications and the functionality of such TI products as used in such applications.

TI's provision of technical, application or other design advice, quality characterization, reliability data or other services or information, including, but not limited to, reference designs and materials relating to evaluation modules, (collectively, "TI Resources") are intended to assist designers who are developing applications that incorporate TI products; by downloading, accessing or using TI Resources in any way, Designer (individually or, if Designer is acting on behalf of a company, Designer's company) agrees to use any particular TI Resource solely for this purpose and subject to the terms of this Notice.

TI's provision of TI Resources does not expand or otherwise alter TI's applicable published warranties or warranty disclaimers for TI products, and no additional obligations or liabilities arise from TI providing such TI Resources. TI reserves the right to make corrections, enhancements, improvements and other changes to its TI Resources. TI has not conducted any testing other than that specifically described in the published documentation for a particular TI Resource.

Designer is authorized to use, copy and modify any individual TI Resource only in connection with the development of applications that include the TI product(s) identified in such TI Resource. NO OTHER LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE TO ANY OTHER TI INTELLECTUAL PROPERTY RIGHT, AND NO LICENSE TO ANY TECHNOLOGY OR INTELLECTUAL PROPERTY RIGHT OF TI OR ANY THIRD PARTY IS GRANTED HEREIN, including but not limited to any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information regarding or referencing third-party products or services does not constitute a license to use such products or services, or a warranty or endorsement thereof. Use of TI Resources may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

TI RESOURCES ARE PROVIDED "AS IS" AND WITH ALL FAULTS. TI DISCLAIMS ALL OTHER WARRANTIES OR REPRESENTATIONS, EXPRESS OR IMPLIED, REGARDING RESOURCES OR USE THEREOF, INCLUDING BUT NOT LIMITED TO ACCURACY OR COMPLETENESS, TITLE, ANY EPIDEMIC FAILURE WARRANTY AND ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, AND NON-INFRINGEMENT OF ANY THIRD PARTY INTELLECTUAL PROPERTY RIGHTS. TI SHALL NOT BE LIABLE FOR AND SHALL NOT DEFEND OR INDEMNIFY DESIGNER AGAINST ANY CLAIM, INCLUDING BUT NOT LIMITED TO ANY INFRINGEMENT CLAIM THAT RELATES TO OR IS BASED ON ANY COMBINATION OF PRODUCTS EVEN IF DESCRIBED IN TI RESOURCES OR OTHERWISE. IN NO EVENT SHALL TI BE LIABLE FOR ANY ACTUAL, DIRECT, SPECIAL, COLLATERAL, INDIRECT, PUNITIVE, INCIDENTAL, CONSEQUENTIAL OR EXEMPLARY DAMAGES IN CONNECTION WITH OR ARISING OUT OF TI RESOURCES OR USE THEREOF, AND REGARDLESS OF WHETHER TI HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

Unless TI has explicitly designated an individual product as meeting the requirements of a particular industry standard (e.g., ISO/TS 16949 and ISO 26262), TI is not responsible for any failure to meet such industry standard requirements.

Where TI specifically promotes products as facilitating functional safety or as compliant with industry functional safety standards, such products are intended to help enable customers to design and create their own applications that meet applicable functional safety standards and requirements. Using products in an application does not by itself establish any safety features in the application. Designers must ensure compliance with safety-related requirements and standards applicable to their applications. Designer may not use any TI products in life-critical medical equipment unless authorized officers of the parties have executed a special contract specifically governing such use. Life-critical medical equipment is medical equipment where failure of such equipment would cause serious bodily injury or death (e.g., life support, pacemakers, defibrillators, heart pumps, neurostimulators, and implantables). Such equipment includes, without limitation, all medical devices identified by the U.S. Food and Drug Administration as Class III devices and equivalent classifications outside the U.S.

TI may expressly designate certain products as completing a particular qualification (e.g., Q100, Military Grade, or Enhanced Product). Designers agree that it has the necessary expertise to select the product with the appropriate qualification designation for their applications and that proper product selection is at Designers' own risk. Designers are solely responsible for compliance with all legal and regulatory requirements in connection with such selection.

Designer will fully indemnify TI and its representatives against any damages, costs, losses, and/or liabilities arising out of Designer's non-compliance with the terms and provisions of this Notice.