

DS1776 PI-Bus Transceiver

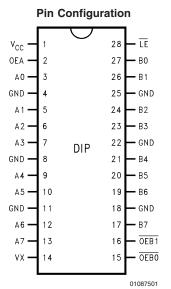
General Description

The DS1776 is an octal PI-bus Transceiver. The A to B path is latched. B outputs are open collector with series Schottky diode, ensuring minimum B output loading. B outputs also have ramped rise and fall times (2.5 ns typical), ensuring minimum PI-bus ringing. B inputs have glitch rejection circuitry, 4 ns typical.

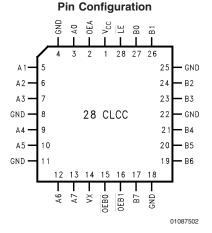
Designed using National's Bi-CMOS process for both low operating and disabled power. AC performance is optimized for the PI-Bus inter-operability requirements.

The DS1776 is an octal latched transceiver and is intended to provide the electrical interface to a high performance wired-or bus. This bus has a loaded characteristic impedance range of 20Ω to 50Ω and is terminated on each end with a 30Ω to 40Ω resistor.

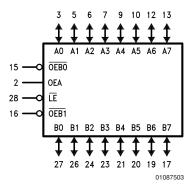
The DS1776 is an octal bidirectional transceiver with open collector B and TRI-STATE® A port output drivers. A latch function is provided for the A port signals. The B port output


driver is designed to sink 100 mA from 2V and features a controlled linear ramp to minimize crosstalk and ringing on the bus.

A separate high level control voltage (V_X) is provided to prevent the A side output high level from exceeding future high density processor supply voltage levels. For 5V systems, V_X is tied to V_{CC} .


Features

- Mil-Std-883C qualified
- Similar to BTL
- Low power I_{CCL} = 41 mA max
- B output controlled ramp rate
- B input noise immunity, typically 4 ns
- Available in 28-pin DIP, Flatpak and CLCC
- Pin and function compatible with Signetics 54F776


Pin Configurations

Order Number DS1776E/883 or DS1776J/883 See NS Package E28A or J28B

Logic Symbol

TRI-STATE® is a registered trademark of National Semiconductor Corporation.

MIL-STD-883C

Device Specifications

Absolute Maximum Ratings (Note 1),

(Note 2)

The 883 specifications are written to reflect the Rel Electrical Test Specifications (RETS) established by National Semiconductor for this product. For a copy of the latest RETS please contact your local National Semiconductor sales office or distributor.

Supply Voltage (V_{CC}) -0.5V to +7.0V V_X , V_{OH} Output Level Control Voltage (A Outputs) -0.5V to +7.0V \overline{OEB} n, OEA, \overline{LE} Input Voltage (V_I) -0.5V to +7.0V A0-A7, B0-B7 Input Voltage (V_I) -0.5V to +5.5V Input Current (I_I) -40 mA to +5 mA

Voltage Applied to Output in

High Output State (V _O)	$-0.5V$ to $+V_{\rm CC}V$
A0-A7 Current Applied to Output	
in Low Output State (I _O)	40 mA
B0-B7 Current Applied to Output	
in Low Output State (I _O)	200 mA
Storage Temperature Range (T _{STG})	–65°C to +150°C
Lead Temperature	
(Soldering 10 Sec.)	260°C
ESD Tolerance:	
$C_{ZAP} = 120 \text{ pF}, R_{ZAP} = 1500\Omega$	0.5 kV

Operating Conditions

	Min	Max	Units	
Supply Voltage (V _{CC})	4.5	5.5	V	
Operating Temp. Range (T _A)	-55	+125	°C	
Input Rise or Fall Times (t_r,t_f)		50	ns	

PI Bus Transceiver DS1776

DC Electrical Characteristics

 $V_{CC} = 5V \pm 10\%$ (Unless Otherwise Specified) DC testing temp. groups: $1 = +25^{\circ}C$, $2 = +125^{\circ}C$, $3 = -55^{\circ}C$

Symbol	Param	eter	Condition	Temp.	Min	Тур	Max	Units	
			(Notes 3,	5)	Group		(Note 4)		
V _{IH}	High Level Input	Except Bn			1, 2, 3	2			V
	Voltage	Bn				1.6			V
V _{IL}	Low Level Input	Except Bn			1, 2, 3			0.8	V
	Voltage	Bn						1.45	V
I _{OH}	High Level Output	An	$V_{IN} = V_{IH}$		1, 2, 3			-3	mA
	Current		$V_{OH} = V_{CC} - 2.0V$						
	High Level Output	Bn	$V_{CC} = Max, OEA = \overline{LE}$					100	μA
	Current		$V_{IH} = 2.0V, V_{OH} = 2.1V$						
I _{OL}	Low Level Output	An	$V_{IN} = V_{IL}$		1, 2, 3				
	Current		$V_{OL} = 0.5V$					20	mA
		Bn	V _{OL} = 1.15V					100	mA
I _{IK}	Input Clamp	Except An			1, 2, 3			-18	mA
	Current								
		An						-40	mA
I_{OZ}	TRI-STATE Output	An			1, 2, 3			±70	μΑ
	Leakage Current	Bn							
V_{OH}	High Level Output	An	$V_{CC} = Min, V_{IH} = 1.9V$	$I_{OH} = -3 \text{ mA}$	1, 2, 3	2.5		V _{CC}	V
	Voltage			$V_X = V_{CC}$					
				$I_{OH} = -0.4 \text{ mA}$		2.5		V _X	V
				$V_{X} = 3.13V \text{ to}$					
				3.47V					L
V_{OL}	Low Output	An	V _{CC} =Min, V _{IL} =1.2V	I _{OL} =20 mA,				0.5	V
	Level Voltage			V _X =V _{CC}					
		Bn	V _{CC} =Min, V _{IL} =0.8V	I _{OL} =100 mA	1, 2, 3			1.15	V
				I _{OL} =4 mA		0.4			
V_{IK}	Input Clamp	An	V _{CC} =Min, I _I =-40 mA		1, 2, 3			-0.5	V
	Voltage	Except An	V _{CC} =Min, I _I =-18 mA					-1.2	V
I_{IH2}	Input Current	OEBn, OEA, LE	V _{CC} =Min, V _I =7.0V		1, 2, 3		1	100	μΑ

DC Electrical Characteristics (Continued)

 $V_{CC} = 5V \pm 10\%$ (Unless Otherwise Specified) DC testing temp. groups: $1 = +25^{\circ}C$, $2 = +125^{\circ}C$, $3 = -55^{\circ}C$

Symbol	Para	meter	Conditions	Temp.	Min	Тур	Max	Units
			(Notes 3, 5)	Group		(Note 4)		
	at Max	An	V _{CC} =Min, V _I =5.5V			0.01	1	mA
	Input Voltage	Bn	V _{CC} =Min, V _I =5.5V			0.01	1	mA
I _{IH1}	Input Current	OEB, OEA, LE	V _{CC} =Max, V _I =2.7V				20	μΑ
	at Max	B0-B7	V _{CC} =Max, V _I =2.1V				100	μA
	Input Voltage							
I _{IL}	Low Level	OEB, OEA, LE	V _{CC} =Max, V _I =0.5V	2, 3	-40			μA
	Input Current			1	-20			μA
		Bn	V _{CC} =Max, V _I =0.3V	1, 2, 3	-100			μΑ
I _{OZH}	TRI-STATE	An	V _{CC} =Max, V _O =2.7V	1, 2, 3				
$+I_{IH}$	Output Current,						70	μA
	High Level							
	Voltage Applied							
I _{OZH}	TRI-STATE	An	V _{CC} =Max, V _O =0.5V	1, 2, 3				
$+I_{IL}$	Output Current,				-70			μΑ
	Low Level							
	Voltage Applied							
I _X	High Level		V _{CC} =Max, V _X =V _{CC} ,	1, 2, 3				
	Control Current		LE=OEA=OEBn=2.7V		-100		100	μA
			An=2.7V, Bn=2.0V					
			V _{CC} =Max, V _X =3.14V &	1, 2, 3				
			3.47V,					
			LE=OEA=OEBn=2.7V,		-10		10	mA
			An=2.7V, Bn=2.0V					
I_{OS}	Short-Circuit	An	V _{CC} =Max, Bn=1.9V,	1, 2, 3				
	Output Current		OEA=2.0V, OEBn=2.7V		-60	-75	-150	mA
	(Note 6)							
I_{CC}	Supply Current	I _{CCH}	V _{CC} =Max, V _{IH} (A)=5.0V	1, 2			37	mA
		I _{CCH}		3			41	mA
		I _{CCL}	V _{CC} =Max, V _{IL} (A)=0.3V	1, 2, 3			38	mA
		I _{ccz}	V _{CC} =Max, V _{IL} (A)=0.3V	1, 2, 3			35	mA
I_{OFF}	Power Off		Bn=2.1V, V _{CC} =0.0V,	1, 2, 3			100	μΑ
	Output Current		V _{IL} =Max or V _{IH} =Min					

Note 1: Absolute Maximum Ratings are those values beyond which damage to the device may occur.

Note 2: Unless otherwise specified all voltages are referenced to ground.

Note 3: For conditions shown as Min or Max, use the appropriate value specified under recommended operating conditions. Unless otherwise specified, $V_X = V_{CC}$ for all test conditions.

Note 4: All typical values are at $V_{CC} = 5V$, $T_A = 25^{\circ}C$.

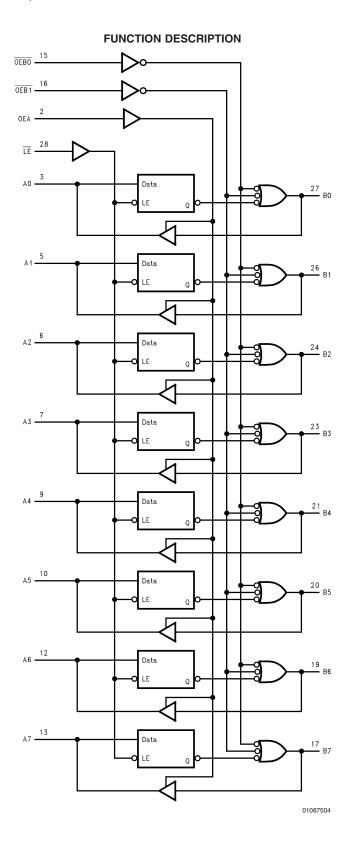
Note 5: Due to test equipment limitations, actual test conditions are for $V_{IH} = 1.9V$ and for $V_{IL} = 1.2V$, however the specified test limits and conditions are guaranteed.

Note 6: Not more than one output should be shorted at a time. For testing I_{OS} the use of high speed test apparatus and/or sample-and-hold techniques are preferable in order to minimize internal heating and more accurately reflect operational values. Otherwise, prolonged shorting of a High output may raise the chip temperature above normal and thereby cause invalid readings in other parameter tests. In any squence of parameter test I_{OS} test should be performed last.

Note 7: Not more than one output should be shorted at a time. For testing I_{OS} , the use of high speed test apparatus and/or sample-and-hold techniques are preferable in order to minimize internal heating and more accurately reflect operational values. Otherwise, prolonged shorting of a High output may raise the chip temperature above normal and thereby cause invalid readings in other parameter tests. In any squence of parameter test, I_{OS} tests should be performed last.

AC Electrical Characteristics

 $V_{CC} = 5V \pm 10\%$ (Unless otherwise specified) AC testing temp. groups: $1 = +25^{\circ}C$, $2 = +125^{\circ}C$, $3 = -55^{\circ}C$


Path	Parameter	Conditions	Temp.	Min	Max	Units
			Group			
B-TO-A PA	ATH	'		'		
PLH	Propagation Delay B to A	Waveform 1, 2	1, 2, 3	4.5	17	ns
PHL				6	17	ns
PZH	Output Enable OEA to A	Waveform 3, 4	1, 2, 3	4	17	ns
PZL				4	17	ns
PHZ	Output Disable OEA to A	Waveform 3, 4	1, 2, 3	2	12	ns
PLZ				2	13	ns
A-TO-B PA	ATH					
t _{PLH}	Propagation Delay A to B	Waveform 1, 2	1, 3	2	13	ns
			2	2	17	ns
PHL			1, 2, 3	2.5	13	ns
PLH	Propagation Delay LE to B	Waveform 1, 2	1, 3	2	16	ns
			2	2	22	ns
PHL			1, 2, 3	2	16	ns
PLH	Enable/Disable OEBn to B	Waveform 1, 2	1, 3	2	13	ns
			2	2	16	ns
PHL			1	3.5	14	ns
			2	3.5	13	ns
			3	3.5	16	ns
TLH	Transition Time, B Side	1.3V to 1.7V	1, 3	0.5	5.5	ns
			2	0.5	10	ns
THL		1.7V to 1.3V	1	0.5	5.5	ns
			2	0.5	7	ns
			3	0.5	10	ns
SETUP/HO	DLD/PULSE WIDTH SPECS			<u> </u>		
S	A to LE Setup	Waveform 5	1, 2, 3	7		ns
H	A to LE Hold	Waveform 5	1, 2, 3	0		ns
w	LE Pulse Width Low	Waveform 5	1, 2, 3	12		ns

Descriptions

TABLE 1. Pin Description

Symbol	Pins	Туре	Name and Function
A0	3	I/O	
A1	5	I/O	
A2	6	I/O	
A3	7	I/O	TTL Level, latched input/TRI-STATE output (with V _X control option)
A4	9	I/O	
A5	10	I/O	
A6	12	I/O	
A7	13	I/O	
В0	27	I/O	
B1	26	I/O	
B2	24	I/O	
B3	23	I/O	Data input with special threshold circuitry to reject noise/Open Collector output,
B4	21	I/O	High current drive
B5	20	I/O	
B6	19	I/O	
B7	17	I/O	
OEB 0	15	I	Enables the B outputs when both pins are low
OEB 1	16	I	
OEA	2	I	Enables the A outputs when High
<u>LE</u>	28	I	Latched when High (a special delay feature is built in for proper enabling times)
V_X	14	I	Clamping voltage keeping V_{OH} from rising above V_X ($V_X = V_{CC}$ for normal use)

Descriptions (Continued)

 $V_{CC} = Pin \ 1$ $V_X = Pin \ 14$ $GND = Pins \ 4, \ 8, \ 11, \ 18, \ 22, \ 25$

FIGURE 1. Functional Logic Diagram

Descriptions (Continued)

TABLE 2. Function Table

		ts			Latch	0	utputs	Mode	
An	Bn (Note 8)	LE	OEA	OEB	OEB	State	An	Bn	
				0	1	State			
Н	X	L	L	L	L	Н	Z	Н	A TRI-STATE, Data from A to B
L	X	L	L	L	L	L	Z	L	
Χ	Х	Н	L	L	L	Qn	Z	Qn	A TRI-STATE, Latched Data to B
_	_	L	Н	L	L	(Note 10)	(Note 8)	(Note 8)	Feedback: A to B, B to A
_	Н	Н	Н	L	L	H (Note 9)	Н	off (Note 9)	Preconditioned Latch Enabling
_	L	Н	Н	L	L	H (Note 9)	L	off (Note 9)	Data Transfer from B to A
_	_	Н	Н	L	L	Qn	Qn	Qn	Latch State to A and B
Н	Х	L	L	Н	Х	Н	Z	off	
L	Х	L	L	Н	Х	L	Z	off	B off and A TRI-STATE
Х	Х	Н	L	Н	Х	Qn	Z	off	
_	Н	L	Н	Н	Х	Н	Н	off	
_	L	L	Н	Н	Х	L	L	off	
_	Н	Н	Н	Н	Х	Qn	Н	off	B off, Data from B to A
_	L	Н	Н	Н	Х	Qn	L	off	
Η	X	L	L	Х	Н	Н	Z	off	
L	X	L	L	Х	Н	L	Z	off	B off and A TRI-STATE
Х	Х	Н	L	Х	Н	Qn	Z	off	
_	Н	L	Н	Х	Н	Н	Н	off	
_	L	L	Н	Х	Н	L	L	off	B off, Data from B to A
	Н	Н	Н	Х	Н	Qn	Н	off	
_	L	Н	Н	Х	Н	Qn	L	off	

H = High Voltage Level

 $Qn = High \ or \ Low \ voltage \ level \ one \ setup \ time \ prior \ to \ the \ Low-to-High \ \overline{LE} \ transition$

Note 8: Condition will cause a feedback loop path; A to B and B to A.

Note 9: The latch must be preconditioned such that B inputs may assume a High or Low level while $\overline{\text{OEB}}$ 0 and $\overline{\text{OEB}}$ 1, are Low and $\overline{\text{LE}}$ is high.

Note 10: Precaution should be taken to ensure that the B inputs do not float. If they do, they are equal to a Low state.

Note 11: off = Applies to "B" (OC) outputs only. Indicates that the outputs are turned off.

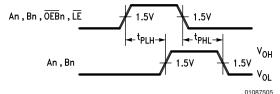
CONTROLLER POWER SEQUENCING OPERATION

The DS1776 has a design feature which controls the output transitions during power up (or down). There are two possible conditions that occur.

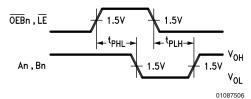
 When LE = Low and OEB n = Low, the B outputs are disabled until the LE circuit can take control. This feature ensures that the B outputs will follow the A inputs and allow only one transition during power up (or down).

2. If \overline{LE} = High or \overline{OEB} n = High, then the B outputs still remain disabled during power up (or down).

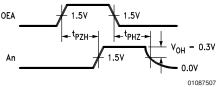
L = Low Voltage Level

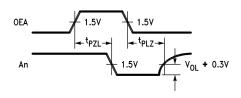

X = Don't Care

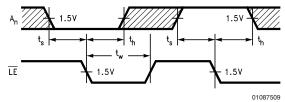
^{- =} Input not externally driven


Z = High Impedance (off) state

Switching Characteristics

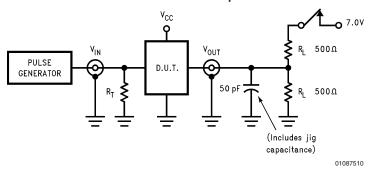

AC WAVEFORMS


Waveform 1: Propagation Delay for Data to Output


Waveform 2: Propagation Delay for Data to Output

Waveform 3: TRI-STATE Output Enable Time to High Level and Output Disable Time from High Level

Waveform 4: TRI-STATE Output Enable Time to Low Level and Output Disable Time from Low Level

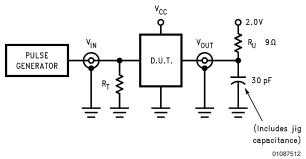


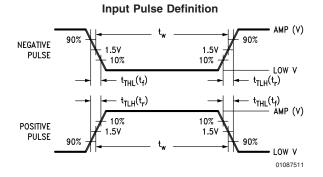
The shaded areas indicate when the input is permitted to change for predictable output performance.

Waveform 5: Data Setup and Hold Times and LE Pulse Widths

TEST CIRCUIT AND WAVEFORMS

Test Circuit for TRI-STATE Outputs on A Side




Switch Position

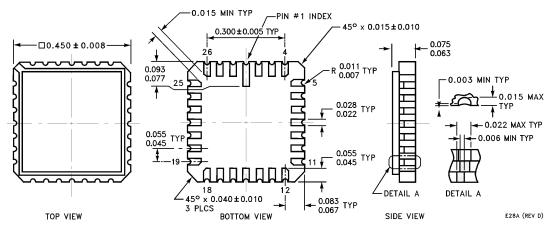
Test	Switch
t_{PLZ}, t_{PZL}	Closed
All Other	Open

Switching Characteristics (Continued)

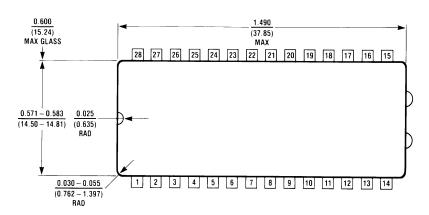
Test Circuit for TRI-STATE Outputs on B Side

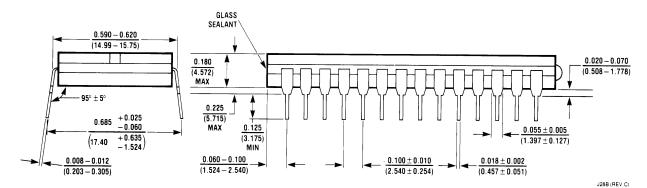
DEFINITIONS

 R_L = Load resistor 500Ω

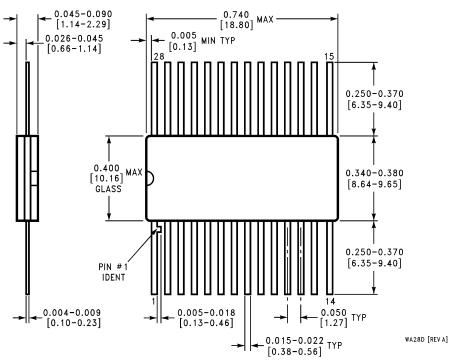

 C_L = Load capacitance includes jig and probe capacitance

 $\ensuremath{R_{T}}$ = Termination resistance should be equal to $\ensuremath{Z_{OUT}}$ of pulse generators.


 R_U = Pull up resistor


	Input Pulse Characteristics										
	Amplitude Low V Rep. Rate t _w t _{TLH} t _{TH}										
A Side	3.0V	0.0V	1 MHz	500 ns	2 ns	2 ns					
B Side	2.0V	1.0V	1 MHz	500 ns	2 ns	2 ns					

Physical Dimensions inches (millimeters) unless otherwise noted


28-Lead Leadless Chip Carrier (E) Order Number DS1776E/883 **NS Package Number E28A**

28-Lead Ceramic Dual-In-Line Package (J) Order Number DS1776J/883 **NS Package Number J28B**

Physical Dimensions inches (millimeters) unless otherwise noted (Continued)

28-Lead Ceramic Flatpak (F) Order Number DS1776W/883 **NS Package Number WA28D**

LIFE SUPPORT POLICY

NATIONAL'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT AND GENERAL COUNSEL OF NATIONAL SEMICONDUCTOR CORPORATION. As used herein:

- 1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
- 2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

BANNED SUBSTANCE COMPLIANCE

National Semiconductor certifies that the products and packing materials meet the provisions of the Customer Products Stewardship Specification (CSP-9-111C2) and the Banned Substances and Materials of Interest Specification (CSP-9-111S2) and contain no "Banned Substances" as defined in CSP-9-111S2.

National Semiconductor **Americas Customer** Support Center Email: new.feedback@nsc.com

Tel: 1-800-272-9959

www.national.com

National Semiconductor Europe Customer Support Center Fax: +49 (0) 180-530 85 86

Email: europe.support@nsc.com Deutsch Tel: +49 (0) 69 9508 6208 English Tel: +44 (0) 870 24 0 2171 Français Tel: +33 (0) 1 41 91 8790

National Semiconductor Asia Pacific Customer Support Center Email: ap.support@nsc.com **National Semiconductor** Japan Customer Support Center Fax: 81-3-5639-7507 Email: jpn.feedback@nsc.com Tel: 81-3-5639-7560