National Semiconductor			
54F/74F151A			
8-Input Multiplexer			
General Description			
The ' $F 151 A$ is a high-speed 8 -input digital multiplexer. It provides in one package the ability to select one line of data from up to eight sources. The 'F151A can be used as a			niversal function generator to generate any logic function f four variables. Both assertion and negation outputs are provided.
Commercial	Military	Package Number	Package Description
74F151APC		N16E	16-Lead (0.300" Wide) Molded Dual-In-Line
	54F151ADM (Note 2)	J16A	16-Lead Ceramic Dual-In-Line
74F151ASC (Note 1)		M16A	16-Lead (0.150" Wide) Molded Small Outline, JEDEC
74F151ASJ (Note 1)		M16D	16-Lead (0.300" Wide) Molded Small Outline, EIAJ
	54F151AFM (Note 2)	W16A	16-Lead Cerpack
	54F151ALM (Note 2)	E20A	20-Lead Ceramic Leadless Chip Carrier, Type C

Note 1: Devices also available in $13^{\prime \prime}$ reel. Use suffix = SCX and SJX.
Note 2: Military grade device with environmental and burn-in processing. Use suffix = DQMB, FMQB and LMQB.

Logic Symbols

TRI-STATE is a registered trademark of National Semiconductor Corporation.

TL/F/9481-1

Unit Loading/Fan Out

Pin Names	Description		$54 F / 74 F$	
		U.L. HIGH/LOW	Input $\mathbf{I}_{\mathbf{I H}} / \mathbf{I}_{\mathbf{I L}}$ Output $I_{\mathrm{OH}} / I_{\mathrm{OL}}$	
	Data Inputs	$1.0 / 1.0$	$20 \mu \mathrm{~A} /-0.6 \mathrm{~mA}$	
$\mathrm{~S}_{0}-\mathrm{S}_{2}$	Select Inputs	$1.0 / 1.0$	$20 \mu \mathrm{~A} /-0.6 \mathrm{~mA}$	
$\overline{\mathrm{E}}$	Enable Input (Active LOW)	$1.0 / 1.0$	$20 \mu \mathrm{~A} /-0.6 \mathrm{~mA}$	
Z	Data Output	$50 / 33.3$	$-1 \mathrm{~mA} / 20 \mathrm{~mA}$	
$\overline{\mathrm{Z}}$	Inverted Data Output	$50 / 33.3$	$-1 \mathrm{~mA} / 20 \mathrm{~mA}$	

Functional Description

The ' F 151 A is a logic implementation of a single pole, 8-position switch with the switch position controlled by the state of three Select inputs, $\mathrm{S}_{0}, \mathrm{~S}_{1}, \mathrm{~S}_{2}$. Both assertion and negation outputs are provided. The Enable input ($\overline{\mathrm{E}}$) is active LOW. When it is not activated, the negation output is HIGH and the assertion output is LOW regardless of all other inputs. The logic function provided at the output is:

$$
\begin{aligned}
\mathrm{Z}= & \overline{\mathrm{E}} \bullet\left(\mathrm{I}_{0} \overline{\mathrm{~S}}_{2} \overline{\mathrm{~S}}_{1} \overline{\mathrm{~S}}_{0}+\mathrm{I}_{1} \overline{\mathrm{~S}}_{2} \overline{\mathrm{~S}}_{1} \mathrm{~S}_{0}+\mathrm{I}_{2} \overline{\mathrm{~S}}_{2} \mathrm{~S}_{1} \overline{\mathrm{~S}}_{0}+\right. \\
& \mathrm{I}_{3} \mathrm{~S}_{2} \mathrm{~S}_{1} \mathrm{~S}_{0}+\mathrm{I}_{4} \mathrm{~S}_{2} \overline{\mathrm{~S}}_{1} \overline{\mathrm{~S}}_{0}+\mathrm{I}_{5} \mathrm{~S}_{2} \overline{\mathrm{~S}}_{1} \mathrm{~S}_{0}+ \\
& \left.\mathrm{I}_{6} \mathrm{~S}_{2} \mathrm{~S}_{1} \overline{\mathrm{~S}}_{0}+\mathrm{I}_{7} \mathrm{~S}_{2} \mathrm{~S}_{1} \mathrm{~S}_{0}\right)
\end{aligned}
$$

The 'F151A provides the ability, in one package, to select from eight sources of data or control information. By proper manipulation of the inputs, the ' F 151 A can provide any logic function of four variables and its negation.

Truth Table

Inputs				Outputs	
$\overline{\mathbf{E}}$	$\mathbf{S}_{\mathbf{2}}$	$\mathbf{S}_{\mathbf{1}}$	$\mathbf{S}_{\mathbf{0}}$	$\overline{\mathbf{Z}}$	\mathbf{Z}
H	X	X	X	H	L
L	L	L	L	\bar{I}_{0}	I_{0}
L	L	L	H	\bar{I}_{1}	I_{1}
L	L	H	L	\bar{I}_{2}	I_{2}
L	L	H	H	\bar{I}_{3}	I_{3}
L	H	L	L	\bar{I}_{4}	I_{4}
L	H	L	H	\bar{I}_{5}	I_{5}
L	H	H	L	\bar{I}_{6}	I_{6}
L	H	H	H	\bar{I}_{7}	I_{7}

$$
\begin{aligned}
& \mathrm{H}=\text { HIGH Voltage Level } \\
& \mathrm{L}=\text { LOW Voltage Level } \\
& \mathrm{X}=\text { Immaterial }
\end{aligned}
$$

Logic Diagram

Absolute Maximum Ratings (Note 1)
If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and specifications.

Storage Temperature
$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Ambient Temperature under Bias
Junction Temperature under Bias Plastic
$V_{C C}$ Pin Potential to Ground Pin
Input Voltage (Note 2)
Input Current (Note 2)
$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
$-55^{\circ} \mathrm{C}$ to $+175^{\circ} \mathrm{C}$
$-55^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$

$$
-0.5 \mathrm{~V} \text { to }+7.0 \mathrm{~V}
$$

$$
-0.5 \mathrm{~V} \text { to }+7.0 \mathrm{~V}
$$

Voltage Applied to Output

$$
\begin{array}{lr}
\text { in HIGH State (with } \mathrm{V}_{\mathrm{CC}}=0 \mathrm{~V} \text {) } & -0.5 \mathrm{~V} \text { to } \mathrm{V}_{\mathrm{CC}} \\
\text { Standard Output } & -0.5 \mathrm{~V} \text { to }+5.5 \mathrm{~V} \\
\text { TRI-STATE }{ }^{\circledR} \text { Output } &
\end{array}
$$

Current Applied to Output
in LOW State (Max)
twice the rated $\mathrm{I}_{\mathrm{OL}}(\mathrm{mA})$
Note 1: Absolute maximum ratings are values beyond which the device may be damaged or have its useful life impaired. Functional operation under these conditions is not implied.
Note 2: Either voltage limit or current limit is sufficient to protect inputs.

Recommended Operating

 ConditionsFree Air Ambient Temperature

Military	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Commercial	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Supply Voltage	
Military	+4.5 V to +5.5 V
Commercial	+4.5 V to +5.5 V

DC Electrical Characteristics

Symbol	Parameter		54F/74F			Units	$\mathrm{V}_{\mathbf{C C}}$	Conditions
			Min	Typ	Max			
V_{IH}	Input HIGH Voltage		2.0			V		Recognized as a HIGH Signal
$\mathrm{V}_{\text {IL }}$	Input LOW Voltage				0.8	V		Recognized as a LOW Signal
V_{CD}	Input Clamp Diode Voltage				-1.2	V	Min	$\mathrm{I}_{\mathrm{IN}}=-18 \mathrm{~mA}$
V_{OH}	Output HIGH Voltage	54F 10\% VCC 74F 10\% VCC 74F 5\% VCC	$\begin{aligned} & 2.5 \\ & 2.5 \\ & 2.7 \\ & \hline \end{aligned}$			V	Min	$\begin{aligned} & \mathrm{I}_{\mathrm{OH}}=-1 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{OH}}=-1 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{OH}}=-1 \mathrm{~mA} \end{aligned}$
$\mathrm{V}_{\text {OL }}$	Output LOW Voltage	$\begin{aligned} & 54 \mathrm{~F} 10 \% \mathrm{~V}_{\mathrm{CC}} \\ & 74 \mathrm{~F} 10 \% \mathrm{~V}_{\mathrm{CC}} \end{aligned}$			$\begin{aligned} & 0.5 \\ & 0.5 \end{aligned}$	V	Min	$\begin{aligned} & \mathrm{IOL}_{\mathrm{OL}}=20 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{OL}}=20 \mathrm{~mA} \end{aligned}$
I_{H}	Input HIGH Current	$\begin{aligned} & 54 \mathrm{~F} \\ & 74 \mathrm{~F} \end{aligned}$			$\begin{gathered} 20.0 \\ 5.0 \end{gathered}$	$\mu \mathrm{A}$	Max	$\mathrm{V}_{\mathrm{IN}}=2.7 \mathrm{~V}$
$\mathrm{I}_{\mathrm{BVI}}$	Input HIGH Current Breakdown Test	$\begin{aligned} & 54 \mathrm{~F} \\ & 74 \mathrm{~F} \end{aligned}$			$\begin{aligned} & 100 \\ & 7.0 \end{aligned}$	$\mu \mathrm{A}$	Max	$\mathrm{V}_{\mathrm{IN}}=7.0 \mathrm{~V}$
$\mathrm{I}_{\text {CEX }}$	Output HIGH Leakage Current	$\begin{aligned} & 54 \mathrm{~F} \\ & 74 \mathrm{~F} \end{aligned}$			$\begin{gathered} 250 \\ 50 \end{gathered}$	$\mu \mathrm{A}$	Max	$\mathrm{V}_{\text {OUT }}=\mathrm{V}_{\text {CC }}$
$\mathrm{V}_{\text {ID }}$	Input Leakage Test	74F	4.75			V	0.0	$\mathrm{I}_{\mathrm{ID}}=1.9 \mu \mathrm{~A}$ All Other Pins Grounded
IOD	Output Leakage Circuit Current	74F			3.75	$\mu \mathrm{A}$	0.0	$V_{I O D}=150 \mathrm{mV}$ All Other Pins Grounded
$\mathrm{I}_{\text {IL }}$	Input LOW Current				-0.6	mA	Max	$\mathrm{V}_{\mathrm{IN}}=0.5 \mathrm{~V}$
los	Output Short-Circuit Current		-60		-150	mA	Max	$\mathrm{V}_{\text {OUT }}=0 \mathrm{~V}$
ICC	Power Supply Current			13.5	21.0	mA	Max	$\mathrm{V}_{\mathrm{O}}=\mathrm{HIGH}$

AC Electrical Characteristics

Symbol	Parameter	74F			54F		74F		Units
		$\begin{gathered} \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}}=+5.0 \mathrm{~V} \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \\ \hline \end{gathered}$			$\begin{gathered} \mathrm{T}_{\mathrm{A}}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{Mil} \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \end{gathered}$		$\begin{gathered} \mathrm{T}_{\mathrm{A}}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{Com} \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \end{gathered}$		
		Min	Typ	Max	Min	Max	Min	Max	
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \\ & \hline \end{aligned}$	Propagation Delay $S_{n} \text { to } \bar{Z}$	$\begin{aligned} & 4.0 \\ & 3.2 \\ & \hline \end{aligned}$	$\begin{aligned} & 6.2 \\ & 5.2 \\ & \hline \end{aligned}$	$\begin{aligned} & 9.0 \\ & 7.5 \\ & \hline \end{aligned}$	$\begin{aligned} & 3.5 \\ & 3.0 \\ & \hline \end{aligned}$	$\begin{gathered} 11.5 \\ 8.0 \\ \hline \end{gathered}$	$\begin{aligned} & 3.5 \\ & 3.2 \\ & \hline \end{aligned}$	$\begin{aligned} & 9.5 \\ & 7.5 \\ & \hline \end{aligned}$	ns
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \\ & \hline \end{aligned}$	Propagation Delay S_{n} to Z	$\begin{aligned} & 4.5 \\ & 4.0 \\ & \hline \end{aligned}$	$\begin{aligned} & 7.5 \\ & 6.2 \\ & \hline \end{aligned}$	$\begin{gathered} 10.5 \\ 9.0 \\ \hline \end{gathered}$	$\begin{aligned} & 4.5 \\ & 4.0 \\ & \hline \end{aligned}$	$\begin{gathered} 13.5 \\ 9.5 \\ \hline \end{gathered}$	$\begin{aligned} & 4.5 \\ & 4.0 \\ & \hline \end{aligned}$	$\begin{gathered} 12.0 \\ 9.0 \\ \hline \end{gathered}$	ns
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \\ & \hline \end{aligned}$	Propagation Delay $\overline{\mathrm{E}}$ to $\overline{\mathrm{Z}}$	$\begin{aligned} & 3.0 \\ & 3.0 \\ & \hline \end{aligned}$	$\begin{aligned} & 4.7 \\ & 4.4 \end{aligned}$	$\begin{aligned} & 6.1 \\ & 6.0 \\ & \hline \end{aligned}$	$\begin{aligned} & 3.0 \\ & 2.5 \\ & \hline \end{aligned}$	$\begin{aligned} & 7.5 \\ & 6.5 \\ & \hline \end{aligned}$	$\begin{aligned} & 3.0 \\ & 2.5 \end{aligned}$	$\begin{aligned} & 7.0 \\ & 6.0 \\ & \hline \end{aligned}$	ns
tpLH t_{PHL}	Propagation Delay \bar{E} to Z	$\begin{aligned} & 5.0 \\ & 3.5 \end{aligned}$	$\begin{aligned} & 7.0 \\ & 5.3 \end{aligned}$	$\begin{aligned} & 9.5 \\ & 7.0 \end{aligned}$	$\begin{aligned} & 4.0 \\ & 3.0 \end{aligned}$	$\begin{gathered} 12.0 \\ 8.0 \end{gathered}$	$\begin{aligned} & 4.0 \\ & 3.0 \end{aligned}$	$\begin{gathered} 10.5 \\ 7.5 \\ \hline \end{gathered}$	ns
$\begin{aligned} & \text { tpLH } \\ & \mathrm{t}_{\mathrm{PHL}} \end{aligned}$	Propagation Delay I_{n} to \bar{Z}	$\begin{aligned} & 3.0 \\ & 1.5 \\ & \hline \end{aligned}$	$\begin{aligned} & 4.8 \\ & 2.5 \\ & \hline \end{aligned}$	$\begin{aligned} & 6.5 \\ & 4.0 \\ & \hline \end{aligned}$	$\begin{aligned} & 2.5 \\ & 1.5 \\ & \hline \end{aligned}$	$\begin{aligned} & 7.5 \\ & 6.0 \\ & \hline \end{aligned}$			ns
$t_{\text {PLH }}$ $\mathrm{t}_{\mathrm{PHL}}$	Propagation Delay I_{n} to Z	$\begin{aligned} & 3.0 \\ & 3.7 \end{aligned}$	$\begin{aligned} & 4.8 \\ & 5.5 \end{aligned}$	$\begin{aligned} & 6.5 \\ & 7.0 \end{aligned}$	$\begin{aligned} & 2.5 \\ & 3.5 \end{aligned}$	$\begin{aligned} & 8.5 \\ & 9.0 \end{aligned}$	$\begin{aligned} & 2.5 \\ & 3.7 \end{aligned}$	$\begin{aligned} & 7.5 \\ & 7.5 \end{aligned}$	ns

Ordering Information

Temperature Range Family
$74 \mathrm{~F}=$ Commercial
$54 \mathrm{~F}=$ Military

Device Type
Device Type
Package Code
P = Plastic DIP
D = Ceramic DIP
F = Flatpak
$\mathrm{L}=$ Leadless Chip Carrier (LCC)
S = Small Outline SOIC JEDEC
SJ = Small Outline SOIC EIAJ

Physical Dimensions inches (millimeters) (Continued)

Physical Dimensions inches (millimeters) (Continued)

16-Lead ($0.300^{\prime \prime}$ Wide) Molded Small Outline Package, EIAJ (SJ)
NS Package Number M16D

16-Lead (0.300 " Wide) Molded Dual In-Line Package (P) NS Package Number N16E

LIFE SUPPORT POLICY

NATIONAL'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF NATIONAL SEMICONDUCTOR CORPORATION. As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and whose failure to perform, when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

National Semiconductor Corporation 1111 West Bardin Road Arlington, TX 76017 Tel: 1(800) 272-9959 Fax: 1(800) 737-7018	National Semiconductor Europe Fax: (+49) 0-180-530 8586 Email: cnjwge@tevm2.nsc.com Deutsch Tel: $(+49)$ 0-180-530 8585 English Tel: $(+49)$ 0-180-532 7832 Français Tel: $(+49)$ 0-180-532 9358 Italiano Tel: (+49) 0-180-534 1680	National Semiconductor Hong Kong Ltd. 13th Floor, Straight Block, Ocean Centre, 5 Canton Rd. Tsimshatsui, Kowloon Hong Kong Tel: (852) 2737-1600 Fax: (852) 2736-9960	National Semiconductor Japan Ltd. Tel: 81-043-299-2309 Fax: 81-043-299-2408

