

14 NON-MUXED OUT

13 MUX SELECT

FEATURES

- **EPIC™** (Enhanced-Performance Implanted **CMOS) Submicron Process**
- Useful for Jumperless Configuration of PC Motherboard
- Inputs Accept Voltages to 5.5 V
- **MUX OUT Signals are 2.5-V Outputs**
- NON-MUXED OUT Signal is a 3.3-V Output
- **Minimum of 1000 Write Cycles**
- Minimum of 10 Years Data Retention
- **Package Options Include Plastic** Small-Outline (D), Shrink Small-Outline (DB), and Thin Shrink Small-Outline (PW) Packages

DESCRIPTION/ORDERING INFORMATION

This 4-bit 1-of-2 multiplexer with I^2C input interface is designed for 3-V to 3.6-V V_{CC} operation.

The PCA8550 is designed to multiplex four bits of data from parallel inputs or from I²C input data stored in a nonvolatile register. An additional bit of register output also is provided, which is latched to prevent changes in the output value during the write cycle. The factory default for the contents of the register is all low. These stored values can be read from, or written to, using the I²C bus. The ability to control writing to the register is provided by the write protect (WP) input. The override (OVERRIDE) input forces all the register outputs to a low.

This device provides a fast-mode (400 kbit/s) or standard-mode (100 kbit/s) I²C serial interface for data input and output. The implementation is as a slave. The device address is specified in the I²C interface definition table. Both of the I²C Schmitt-trigger inputs (SCL and SDA) provide integrated pullup resistors and are 5-V tolerant.

The PCA8550 requires a monotonic power-supply ramp at start-up in the region of 1.1 V to 2.5 V. The nonvolatile registers and I²C state machine initialize to their default states after this V_{CC} level is passed.

The PCA8550 is characterized for operation from 0°C to 70°C.

ORDERING INFORMATION

T _A	PACK	AGE ⁽¹⁾	ORDERABLE PART NUMBER	TOP-SIDE MARKING	
0°C to 70°C		Tube of 40	PCA8550D		
	30IC - D	Reel of 2500	PCA8550DR	DCAREEO	
	SSOP – DB	Reel of 2000	PCA8550DBR	PCA0000	
	TSSOP – PW	Reel of 2000	PCA8550PWR]	

Package drawings, standard packing quantities, thermal data, symbolization, and PCB design guidelines are available at (1)www.ti.com/sc/package.

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet. EPIC is a trademark of Texas Instruments.

16 Vcc

15 WP

D, DB, OR PW PACKAGE

(TOP VIEW)

1²C SCL

OVERRIDE 3

MUX IN A 4

I²C SDA **[**] 2

TEXAS INSTRUMENTS www.ti.com

FUNCTION TABLE

INPL	JTS	OUTPUTS		
MUX SELECT	OVERRIDE	MUX OUT	NON-MUXED OUT	
L	L	L	L	
L	Н	Nonvolatile register	Nonvolatile register	
Н	Х	MUX IN	Latched NON-MUXED OUT ⁽¹⁾	

(1) The latched NON-MUXED OUT state is the value present on the NON-MUXED OUT output at the time the MUX SELECT input transitions from the low to the high state.

LOGIC DIAGRAM (POSITIVE LOGIC)

I²C Interface

 I^2C communication with this device is initiated by a master sending a start condition, a high-to-low transition on the serial data (SDA) input/output while the serial clock (SCL) input is high. After the start condition, the device address byte is sent, MSB first, including the data-direction bit (R/W). This device does not respond to the general call address. After receiving the valid address byte, this device responds with an acknowledge, a low on the SDA input/output during the high of the acknowledge-related clock pulse.

The data byte follows the address acknowledge. If the R/\overline{W} bit is high, the data from this device are the values read from the nonvolatile register. If the R/\overline{W} bit is low, the data are from the master, to be written into the register. A valid data byte is one in which the three high-order bits are low. The first valid data byte that is received is written into the register, following the stop condition. If an invalid data byte is received, it is acknowledged, but is not written into the register. The data byte is followed by an acknowledge sent from this device. If other data bytes are sent from the master, following the acknowledge, they are ignored by this device.

A stop condition, a low-to-high transition on the SDA input/output while the SCL input is high, is sent by the master. If the WP input is low during the falling edge of the first valid data byte acknowledge on the SCL input and the R/\overline{W} bit is low, the stop condition causes the I²C interface logic to write the data byte value into the nonvolatile register. Data are written only if complete bytes are received and acknowledged. Writing to the register takes time (t_{wr}), during which the device does not respond to its slave address. If the WP input is high, the I²C interface logic does not write to the register.

DVTE	BIT									
DTIE	7 (MSB)	6	5	4	3	2	1	0 (LSB)		
Address	Н	L	L	н	Н	Н	L	R/W		
Data	L	L	L	NON- MUXED OUT	MUX OUT D	MUX OUT C	MUX OUT B	MUX OUT A		

I²C Interface Definition Table

Absolute Maximum Ratings⁽¹⁾

over operating free-air temperature range (unless otherwise noted)

			MIN	MAX	UNIT
V _{CC}	Supply voltage range		-0.5	6.5	V
VI	Input voltage range ⁽²⁾		-0.5	6.5	V
		SDA ⁽²⁾	-0.5	6.5	
Vo	Output voltage range	MUX OUT outputs ⁽²⁾	-0.5	2.9	V
		NON-MUXED OUT output ⁽²⁾⁽³⁾	-0.5	V _{CC} + 0.5	
I _{IK}	Input clamp current	V ₁ < 0		-50	mA
I _{ОК}	Output clamp current	$V_{O} < 0 \text{ or } V_{O} > V_{CC}^{(3)}$		-50, +10	mA
I _{IOK}	Input/output clamp current	V _O < 0		-50	mA
I _O	Continuous output current	$V_{O} = 0$ to $V_{CC}^{(3)}$		±15	mA
	Continuous current through V_{CC} or GND			±30	mA
		D package		113	
θ_{JA}	Package thermal impedance ⁽⁴⁾	DB package		131	°C/W
		PW package		149	
T _{stg}	Storage temperature range		-65	85	°C

(1) Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

(2) The input negative-voltage and output voltage ratings may be exceeded if the input and output current ratings are observed.

(3) The value of V_{CC} is provided in the recommended operating conditions table.

(4) The package thermal impedance is calculated in accordance with JESD 51.

PCA8550 NONVOLATILE 5-BIT REGISTER WITH I²C INTERFACE

SCPS050C-MARCH 1999-REVISED MAY 2005

Recommended Operating Conditions

			MIN	MAX	UNIT	
V _{CC}	Supply voltage		3	3.6	V	
V	High lovel input veltage	SCL, SDA	2.7	4		
VIН	nigh-level liput voltage	OVERRIDE, MUX IN, MUX SELECT, WP	2	4	V	
		SCL, SDA	-0.5	0.9	V	
VIL	Low-level input voltage	OVERRIDE, MUX IN, MUX SELECT, WP	-0.5	0.8	V	
I _{OH}	High-level output current	MUX OUT, NON-MUXED OUT		-2	mA	
		SDA		6		
I _{OL} Low-level output current		MUX OUT, NON-MUXED OUT		2	ША	
$\Delta t/\Delta v$	Input transition rise or fall rate	OVERRIDE, MUX IN, MUX SELECT, WP		10	ns/V	
T _A	Operating free-air temperature		0	70	°C	

Electrical Characteristics

over recommended operating free-air temperature range, V_{CC} = 3.3 V \pm 0.3 V (unless otherwise noted)

PARAMETER		TEST CONDITIONS	MIN	MAX	UNIT
VIK	Input diode clamp voltage	I _I = -18 mA	-1.5		V
V _{hys} ⁽¹⁾	SCL, SDA		0.19		V
	MUX OUT	I _{OH} = -100 μA	2	2.625	
V	MOX OUT	$I_{OH} = -1 \text{ mA}$	1.7	2.625	V
VOH		I _{OH} = -100 μA	2.4	3.6	v
	NON-MOXED OUT	$I_{OH} = -2 \text{ mA}$	2	3.6	
	MUX OUT	I _{OL} = 100 μA	-0.3	0.4	
	MOX OUT	$I_{OL} = 2 \text{ mA}$	-0.3	0.7	V
V		I _{OL} = 100 μA	-0.5	0.4	
VOL	NON-MOXED OUT	I _{OL} = 2 mA	-0.5	0.7	
	504	I _{OL} = 3 mA		0.4	
	SDA	I _{OL} = 6 mA		0.6	
	SCL, SDA		-1.5	-12	^
I _{IH}	OVERRIDE, MUX SELECT, WP	V _{IH} = 2.4 V	-20	-100	μΑ
	MUX IN		-0.166	-0.75	mA
	SCL, SDA		-7	-32	
IIL	OVERRIDE, MUX SELECT, WP	$V_{IL} = 0.4 V$	-86	-267	μA
	MUX IN		-0.72	-2	mA
I _{CC}	During read or write cycle	$V_{I}=0 \text{ to } V_{CC}, \qquad I_{O}=0, \qquad \qquad V_{CC}=3.3 \text{ V}$		10	mA
	Not during read or write cycle	$V_{I} = V_{CC}, \qquad I_{O} = 0$		500	μÂ
Ci		$V_{I} = V_{CC} \text{ or } GND$		10	pF

(1) V_{hys} is the hysteresis of Schmitt-trigger inputs.

Nonvolatile Storage Specifications

PARAMETER	SPECIFICATIONS
Write time (t _{wr})	10 ms, typical
Memory-cell data retention	10 years, minimum
Maximum number of memory-cell write cycles	1000 cycles, minimum

I²C Interface Timing Requirements

over recommended operating free-air temperature range (unless otherwise noted) (see Figure 1)

		V 22V 02V		
		$v_{\rm CC} = 3.3 v_{\rm CC}$	± 0.3 V	UNIT
		MIN	MAX	•••••
f _{scl}	I ² C clock frequency	10	400	kHz
t _{sch}	I ² C clock high time	600		ns
t _{scl}	I ² C clock low time	1.3		μs
t _{sp}	I ² C spike time	0	50	ns
t _{sds}	I ² C serial data setup time	100		ns
t _{sdh}	I ² C serial data hold time	0	900	ns
t _{icr}	I ² C input rise time	20	300	ns
t _{icf}	I ² C input fall time	20	300	ns
t _{ocf}	I ² C output fall time (10-pF to 400-pF bus)	20 + 0.1 C _b ⁽¹⁾	250	ns
t _{buf}	I ² C bus free time between stop and start	1.3		μs
t _{sts}	I ² C start or repeated start condition setup	600		ns
t _{sth}	I ² C start or repeated start condition hold	600		ns
t _{sps}	I ² C stop condition setup	600		ns
C _b ⁽¹⁾	I ² C bus capacitive load		400	pF

(1) C_b = capacitance of one bus line in pF

Switching Characteristics

over recommended operating free-air temperature range (unless otherwise noted) (see Figure 2)

PARAMETER		FROM TO		V _{CC} = 3.3 V ± 0.3 V		UNIT
				MIN	MAX	
t _{mpd}	Mux input to output propagation delay	MUX IN	MUX OUT		20	ns
t _{sov}	MUX SELECT to output valid	MUX SELECT	Output valid		22	ns
t _{ovn}	OVERRIDE to NON-MUXED OUT output delay	OVERRIDE	NON-MUXED OUT		15	ns
t _{ovm}	OVERRIDE to MUX OUT output delay	OVERRIDE	MUX OUT		25	ns
t _{su}	Setup time	WP	Falling edge of first valid data byte acknowledge on the SCL input	30		ns
t _h	Hold time	WP	Falling edge of first valid data byte acknowledge on the SCL input	120		ns
t _r	Output rise time			1	3	ns/V
t _f	Output fall time			1	3	ns/V

SCPS050C-MARCH 1999-REVISED MAY 2005

PARAMETER MEASUREMENT INFORMATION

BYTE	DESCRIPTION			
1	I ² C address			
2	Nonvolatile register data			

Figure 1. I²C Interface Load Circuit and Voltage Waveforms

PCA8550 NONVOLATILE 5-BIT REGISTER WITH I²C INTERFACE

SCPS050C-MARCH 1999-REVISED MAY 2005

PARAMETER MEASUREMENT INFORMATION

- B. All input pulses are supplied by generators having the following characteristics: PRR \leq 10 MHz, Z_O = 50 Ω , t_r \leq 2.5 ns, t_f \leq 2.5 ns.
 - C. The outputs are measured one at a time, with one transition per measurement.
 - D. t_{PLH} and t_{PHL} are the same as t_{sov} and t_{ovn} .
 - E. t_{PLH} and t_{PHL} are the same as t_{mpd} , t_{sov} , and t_{ovm} .

Figure 2. Load Circuit and Voltage Waveforms

PACKAGING INFORMATION

Orderable Device	Status ⁽¹⁾	Package Type	Package Drawing	Pins Packag Qty	ge Eco Plan ⁽²⁾	Lead/Ball Finish	MSL Peak Temp ⁽³⁾
PCA8550D	ACTIVE	SOIC	D	16	TBD	Call TI	Call TI
PCA8550DBR	ACTIVE	SSOP	DB	16	TBD	Call TI	Call TI
PCA8550DBRE4	ACTIVE	SSOP	DB	16	TBD	Call TI	Call TI
PCA8550DE4	ACTIVE	SOIC	D	16	TBD	Call TI	Call TI
PCA8550DR	ACTIVE	SOIC	D	16	TBD	Call TI	Call TI
PCA8550DRE4	ACTIVE	SOIC	D	16	TBD	Call TI	Call TI
PCA8550PWR	PREVIEW	TSSOP	PW	16 2000	TBD	Call TI	Call TI
PCA8550PWRE4	ACTIVE	TSSOP	PW	16	TBD	Call TI	Call TI

⁽¹⁾ The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

⁽²⁾ Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details.

TBD: The Pb-Free/Green conversion plan has not been defined.

Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.

Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.

Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)

⁽³⁾ MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

MECHANICAL DATA

MTSS001C - JANUARY 1995 - REVISED FEBRUARY 1999

PW (R-PDSO-G**)

PLASTIC SMALL-OUTLINE PACKAGE

14 PINS SHOWN

NOTES: A. All linear dimensions are in millimeters.

- B. This drawing is subject to change without notice.
- C. Body dimensions do not include mold flash or protrusion not to exceed 0,15.
- D. Falls within JEDEC MO-153

D (R-PDSO-G16)

PLASTIC SMALL-OUTLINE PACKAGE

NOTES: A. All linear dimensions are in inches (millimeters).

- B. This drawing is subject to change without notice.
- Body length does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed .006 (0,15) per end.
- Body width does not include interlead flash. Interlead flash shall not exceed .017 (0,43) per side.
- E. Reference JEDEC MS-012 variation AC.

D(R-PDSO-G16)

NOTES:

- A. All linear dimensions are in millimeters.
- B. This drawing is subject to change without notice.
- C. Refer to IPC7351 for alternate board design.
- D. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Refer to IPC-7525
- E. Customers should contact their board fabrication site for solder mask tolerances between and around signal pads.

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

TI products are not authorized for use in safety-critical applications (such as life support) where a failure of the TI product would reasonably be expected to cause severe personal injury or death, unless officers of the parties have executed an agreement specifically governing such use. Buyers represent that they have all necessary expertise in the safety and regulatory ramifications of their applications, and acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related requirements concerning their products and any use of TI products in such safety-critical applications, notwithstanding any applications-related information or support that may be provided by TI. Further, Buyers must fully indemnify TI and its representatives against any damages arising out of the use of TI products in such safety-critical applications.

TI products are neither designed nor intended for use in military/aerospace applications or environments unless the TI products are specifically designated by TI as military-grade or "enhanced plastic." Only products designated by TI as military-grade meet military specifications. Buyers acknowledge and agree that any such use of TI products which TI has not designated as military-grade is solely at the Buyer's risk, and that they are solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI products are neither designed nor intended for use in automotive applications or environments unless the specific TI products are designated by TI as compliant with ISO/TS 16949 requirements. Buyers acknowledge and agree that, if they use any non-designated products in automotive applications, TI will not be responsible for any failure to meet such requirements.

Following are URLs where you can obtain information on other Texas Instruments products and application solutions:

Products		Applications	
Amplifiers	amplifier.ti.com	Audio	www.ti.com/audio
Data Converters	dataconverter.ti.com	Automotive	www.ti.com/automotive
DSP	dsp.ti.com	Broadband	www.ti.com/broadband
Clocks and Timers	www.ti.com/clocks	Digital Control	www.ti.com/digitalcontrol
Interface	interface.ti.com	Medical	www.ti.com/medical
Logic	logic.ti.com	Military	www.ti.com/military
Power Mgmt	power.ti.com	Optical Networking	www.ti.com/opticalnetwork
Microcontrollers	microcontroller.ti.com	Security	www.ti.com/security
RFID	www.ti-rfid.com	Telephony	www.ti.com/telephony
RF/IF and ZigBee® Solutions	www.ti.com/lprf	Video & Imaging	www.ti.com/video
		Wireless	www.ti.com/wireless

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2008, Texas Instruments Incorporated