

MILITARY DATA SHEET

MN54F13-X REV 1A0

Original Creation Date: 03/11/96 Last Update Date: 07/30/96 Last Major Revision Date: 03/11/96

DUAL 4-INPUT NAND SCHMITT TRIGGER

General Description

The F13 contains two 4-Input NAND gates which accept standard TTL input signal and provide standard TTL output levels. They are capable of transforming slowly changing input signals into clearly defined, jitter-free output signals. In addition, they have a greater noise margin than conventional NAND gates.

Each circuit contains a 4-Input Schmitt trigger followed by a Darlington level shifter and a phase splitter driving a TTL totem-pole output. The Schmitt trigger uses positive feedback to effectively speed-up slow input transistors, and provide different input threshold voltages for positive and negative going transitions. This hystersis between the positive-going and negative-going input threshold (Typically 800 mV) is determined by resistor ratios and is essentially insensitive to temperature and supply voltage variations.

Industry Part Number	NS Part Numbers
54F13	54F13DMQB 54F13FMQB 54F13LMOB
Prime Die	24гтэтилр

M013

Processing	Subgrp	Description	Temp ($^{\circ}$ C)
MIL-STD-883, Method 5004	1	Static tests at	+25
	2	Static tests at	+125
	3	Static tests at	-55
Quality Conformance Inspection	4	Dynamic tests at	+25
	5	Dynamic tests at	+125
MIL-STD-883, Method 5005	6	Dynamic tests at	-55
	7	Functional tests at	+25
	8A	Functional tests at	+125
	8B	Functional tests at	-55
	9	Switching tests at	+25
	10	Switching tests at	+125
	11	Switching tests at	-55

Features

- Guaranteed 4000V minimum ESD protection

(Absolute Maximum Ratings)

Ξ.

Storage Temperature	-65 C to +150 C
Ambient Temperature under Bias	-55 C to +125 C
Junction Temperature under Bias	
Vcc Pin Potential to Ground Pin	-55 C to +175 C
Input Voltage	-0.5V to +7.0V
(Note 2)	-0.5V to +7.0V
Input Current (Note 2)	
	-30 mA to +5.0mA
Voltage Applied to Output in HIGH State (with Vcc=OV) Standard Output TRI-STATE Output	-0.5V to Vcc -0.5V to +5.5V
Current Applied to Output in LOW State (Max)	twice the rated Iol(mA)
ESD Last Passing Voltage (Min)	4000V

Note 1: Absolute Maximum ratings are those values beyond which the device may be damaged or have its useful life impaired. Functional operation under these conditions is not implied. Note 2: Either voltage limit or current limit is sufficient to protect inputs.

Recommended Operating Conditions

Free Air Ambient Temperature	
Commercial	0 C to +70 C
Military	-55 C to +125 C
Supply Voltage	
Military	+4.5V to +5.5V
Commercial	+4.5V to +5.5V

Electrical Characteristics

DC PARAMETER

(The following conditions apply to all the following parameters, unless otherwise specified.) DC: VCC 4.5V to 5.5V, Temp range: -55C to 125C

SYMBOL	PARAMETER	CONDITIONS	NOTES	PIN- NAME	MIN	MAX	UNIT	SUB- GROUPS
IIH	Input High Current	VCC=5.5V, VM=2.7V, VINL=0.0V, VINH=5.5V	1, 3	INPUTS		20	uA	1, 2, 3
IBVI	Input High Current	VCC=5.5V, VM=7.0V, VINL=0.0V, VINH=5.5V	1, 3	INPUTS		100	uA	1, 2, 3
IIL	Input LOW Current	VCC=5.5V, VM=0.5V, VINH=5.5V	1, 3	INPUTS		-0.6	mA	1, 2, 3
VOL	Output LOW Voltage	VCC=4.5V, VIH=2.0V, IOL=20mA, VINH=5.5V	1, 3	OUTPUTS		0.5	V	1, 2, 3
VOH	Output HIGH Voltage	VCC=4.5V, VIL=0.7V, IOH=-1.0mA, VINH=5.5V	1, 3	OUTPUTS	2.5		V	1, 2, 3
IOS	Short-Circuit Current	VCC=5.5V, VINL=0.0V, VM=0.0V, VINH=5.5V	1, 3	OUTPUTS	-60	-150	mA	1, 2, 3
VCD	Input Clamp Diode Voltage	VCC=4.5V, IM=-18mA, VINH=5.5V	1, 3	INPUTS		-1.2	V	1, 2, 3
ICCH	Supply Current	VCC=5.5V, VINL=0.0V	1, 3	VCC		8.5	mA	1, 2, 3
ICCL	Supply Current	VCC=5.5V, VINL=5.5V	1, 3	VCC		10.0	mA	1, 2, 3
VT+	Positive-Going Threshold	VCC=5.0V	1, 3	INPUTS	1.45	2.0	V	1, 2, 3
VT-	Negative-Going Threshold	VCC=5.0V	1, 3	INPUTS	0.7	1.05	V	1, 2, 3
ICEX	Output HIGH Leakage Current	VCC=5.5V, VINL=0.0V, VINH=5.5V, VM=5.5V	1, 3	OUTPUTS		250	uA	1, 2, 3

AC PARAMETER

(The following conditions apply to all the following parameters, unless otherwise specified.) AC: CL=50pf, RL=500 OHMS, TR=2.5ns, TF=2.5ns SEE AC FIGS

tpLH		<pre>opagation Delay VCC=5.0V @25C, VCC=4.5V & 5.5V @-55/125C</pre>	2, 4	In to On	5.0	10.5	ns	9
			2, 4	$\frac{\text{In to}}{\overline{\text{On}}}$	3.0	16.0	ns	10, 11
tpHL	Propagation Delay	VCC=5.0V @25C, VCC=4.5V & 5.5V @-55/125C	2, 4	In to On	8.5	18.5	ns	9
			2, 4	In to On	8.5	22.0	ns	10, 11

3, 7 & 8. S, 7 & 8. Screen tested 100% on each device at +25C temperature only, subgroup A9. Sample tested (Method 5005, Table 1) on each MFG. lot at +25C, +125C & -55C temperature, subgroups A1, 2, 3, 7 & 8. Sample tested (Method 5005, Table 1) on each MFG. lot at +25C subgroup A9, & periodically at +125C & -55C temperature, subgroups 10 & 11. Note 2: Note 3:

Note 4: