# MICROCIRCUIT DATA SHEET 

## MNMM54COO-X REV 1AO

## QUAD 2-INPUT NAND GATE

## General Description

These logic gates employ complementary MOS (CMOS) to achieve wide power supply operating range, low power consumption, high noise immunity and symmetric controlled rise and fall times. With features such as this the 54C logic family is close to ideal for use in digital systems. Function and pin out compatibility with series 54 devices minimizes design time for those designers already familiar with the standard 54 logic family.
All inputs are protected from damage due to static discharge by diode clamps to Vcc and Gnd.

Industry Part Number MM54C00

Prime Die
MM5 4C00

## NS Part Numbers

MM5 4C00J/883
MM5 4C00W/883

## Processing

MIL-STD-883, Method 5004

Quality Conformance Inspection

Static tests at Static tests at Static tests at Dynamic tests at Dynamic tests at Dynamic tests at Functional tests at Functional tests at Functional tests at Switching tests at Switching tests at
Switching tests at

Temp ( ${ }^{\circ} \mathrm{C}$ )
+25
$+125$

- 55
$+25$
+125
-55
$+25$
$+125$
-55
$+25$
$+125$
-55


## Features

- Wide supply voltage range
- Guaranteed noise margin
- High noise immunity
- Low power consumption
- Low power

TTL compatibility

3 V to 15 V
1V
0.45 Vcc (typ.)
$10 \mathrm{nW} /$ package (typ.)
Fan out of 2
driving 74L

## (Absolute Maximum Ratings)

| Voltage at Any Pin | -0.3 V to $\mathrm{Vcc}+0.3 \mathrm{~V}$ |
| :--- | :--- |
| Operating Temperature Range | -55 C to +125 C |
| Storage Temperature Range | -65 C to +150 C |
| Operating Vcc Range | 3.0 V to 15 V |
| Maximum Vcc Voltage | 18 V |
| Power Dissipation (Pd) <br> Dual-In-Line <br> Small Outline | 700 mW |
| Lead Temperature |  |
| (Soldering, 10 seconds) | 500 mW |
| Mon C |  |

## Electrical Characteristics

## DC PARAMETERS

| SYMBOL | PARAMETER | CONDITIONS | NOTES | $\begin{aligned} & \text { PIN- } \\ & \text { NAME } \end{aligned}$ | MIN | MAX | UNIT | SUBGROUPS |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Voh | Logical "1" Output Voltage | ```Vcc = 4.5V, Iout = -360uA, Vin = 1.0V (all inputs)``` |  |  | 2.4 |  | V | $\begin{array}{ll} 1,2, \\ 3 \end{array}$ |
|  |  | ```Vcc = 5V, Iout = -10uA, Vin = 1.5V (all inputs)``` |  |  | 4.5 |  | V | $\begin{aligned} & 1,2, \\ & 3 \end{aligned}$ |
|  |  | $\begin{aligned} & \text { Vcc }=10 \mathrm{~V}, \text { Iout }=-10 \mathrm{uA}, \text { Vin }=2.0 \mathrm{~V} \\ & \text { (all inputs) } \end{aligned}$ |  |  | 9 |  | V | $\begin{aligned} & 1,2, \\ & 3 \end{aligned}$ |
| Vol | Logical "0" Output Voltage | ```Vcc = 4.5V, Iout = 360uA, Vin = 4V (all inputs)``` |  |  |  | 0.4 | V | $\begin{aligned} & 1,2, \\ & 3 \end{aligned}$ |
|  |  | ```Vcc = 5V, Iout = 10uA, Vin = 3.5V (all inputs)``` |  |  |  | 0.5 | V | $\begin{aligned} & 1,2, \\ & 3 \end{aligned}$ |
|  |  | ```Vcc = 10V, Iout = 10uA, Vin = 8V (all inputs)``` |  |  |  | 1 | V | $\begin{array}{ll} 1,2, \\ 3 \end{array}$ |
| Iih | Logical "1" Input Current | $\mathrm{Vcc}=15 \mathrm{~V}, \mathrm{Vin}=15 \mathrm{~V},$ <br> other inputs at 0V |  |  |  | 1 | uA | $\begin{aligned} & 1,2, \\ & 3 \end{aligned}$ |
| Iil | Logical "0" Input Current | $\mathrm{Vcc}=15 \mathrm{~V}, \mathrm{Vil}=0 \mathrm{~V},$ $\text { other inputs at } 15 \mathrm{~V}$ |  |  | -1 |  | uA | $\begin{aligned} & 1,2, \\ & 3 \end{aligned}$ |
| Icc | Quiescent Device Current | $\mathrm{Vcc}=15 \mathrm{~V}, \mathrm{Vil}=0 \mathrm{~V}, \mathrm{Vin}=15 \mathrm{~V}$ |  |  |  | 15 | uA | $\begin{aligned} & 1,2, \\ & 3 \end{aligned}$ |
| Isource | Output Source Current | Vcc $=5 \mathrm{~V}$, Vout $=0 \mathrm{~V}$, Vin $=5 \mathrm{~V}$ <br> (1 input per gate, other inputs at 0 ) |  |  | -1.75 |  | mA | 1, 3 |
|  |  |  |  |  | -1.2 |  | mA | 2 |
|  |  | $\text { Vcc }=10 \mathrm{~V}, \text { Vout }=0 \mathrm{~V}, \mathrm{Vin}=10 \mathrm{~V}$ <br> (1 input per gate, other inputs at 0) |  |  | -8 |  | mA | 1, 3 |
|  |  |  |  |  | -5.6 |  | mA | 2 |
| Isink | Output Sink Current | ```Vcc = 4.5V, Vout = 0.4V, Vin = 4V (all inputs)``` |  |  | 360 |  | uA | $\begin{aligned} & 1,2, \\ & 3 \end{aligned}$ |
|  |  | ```Vcc = 5V, Vout = 5V, Vin = 5V (all inputs)``` |  |  | 1.75 |  | mA | 1, 3 |
|  |  |  |  |  | 1.20 |  | mA | 2 |
|  |  | ```Vcc = 10v, Vout = 10v, Vin = 10V (all inputs)``` |  |  | 8 |  | mA | 1, 3 |
|  |  |  |  |  | 5.6 |  | mA | 2 |
| Vih | Logical "1" Input Voltage | $\mathrm{VCC}=4.5 \mathrm{~V}$, (LP to CMOS) | 1 |  | 3 |  | V | $\begin{aligned} & 1,2, \\ & 3 \end{aligned}$ |
|  |  | $\mathrm{VCC}=4.5 \mathrm{~V}$, (CMOS to LP) | 1 |  | 4 |  | V | $\begin{array}{ll} 1, & 2, \\ 3 \end{array}$ |
|  |  | $\mathrm{Vcc}=5 \mathrm{~V}$ | 1 |  | 3.5 |  | V | $\begin{aligned} & 1,2, \\ & 3 \end{aligned}$ |
|  |  | $\mathrm{Vcc}=10 \mathrm{~V}$ | 1 |  | 8 |  | V | $\begin{aligned} & 1,2, \\ & 3 \end{aligned}$ |

## Electrical Characteristics

## DC PARAMETERS (Continued)

| SYMBOL | PARAMETER | CONDITIONS | NOTES | PINNAME | MIN | MAX | UNIT | SUBGROUPS |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Vil | Logical "0" Input Voltage | $\mathrm{Vcc}=4.5 \mathrm{~V}, \quad(\mathrm{LP}$ to CMOS $)$ | 1 |  |  | 0.8 | V | $\begin{aligned} & 1,2, \\ & 3 \end{aligned}$ |
|  |  | $\mathrm{Vcc}=4.5 \mathrm{~V}, \quad(\mathrm{CMOS}$ to LP) | 1 |  |  | 1 | V | $\begin{aligned} & 1,2, \\ & 3 \end{aligned}$ |
|  |  | $\mathrm{Vcc}=5 \mathrm{~V}$ | 1 |  |  | 1.5 | V | $\begin{array}{ll} 1,2, \\ 3 \end{array}$ |
|  |  | $\mathrm{Vcc}=10 \mathrm{~V}$ | 1 |  |  | 2 | V | $\begin{aligned} & 1,2, \\ & 3 \end{aligned}$ |

## AC PARAMETERS

(The following conditions apply to all the following parameters, unless otherwise specified.) $\mathrm{AC}: \quad \mathrm{Cl}=50 \mathrm{pF}$

| tPHL | Propagation Delay Time | $\mathrm{Vcc}=5 \mathrm{~V}$ | 3 |  |  | 90 | nS | 9 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | 3 |  |  | 125 | nS | 10 |
|  |  |  | 3 |  |  | 70 | nS | 11 |
|  |  | $\mathrm{Vcc}=10 \mathrm{~V}$ | 2 |  |  | 60 | nS | 9 |
|  |  |  | 2 |  |  | 85 | nS | 10 |
|  |  |  | 2 |  |  | 50 | nS | 11 |
| tPLH | Propagation Delay Time | $\mathrm{Vcc}=5 \mathrm{~V}$ | 3 |  |  | 90 | nS | 9 |
|  |  |  | 3 |  |  | 125 | nS | 10 |
|  |  |  | 3 |  |  | 70 | nS | 11 |
|  |  | $\mathrm{Vcc}=10 \mathrm{~V}$ | 2 |  |  | 60 | nS | 9 |
|  |  |  | 2 |  |  | 85 | nS | 10 |
|  |  |  | 2 |  |  | 50 | nS | 11 |

Note 1: Parameter tested go-no-go only.
Note 2: Guaranteed parameter not tested.
Note 3: Tested at 25 C ; guaranteed but not tested at +125 C and -55 C .

